《高数》下册第十二章练习题
高等数学(同济大学第五版)第十二章
![高等数学(同济大学第五版)第十二章](https://img.taocdn.com/s3/m/117b5af5f61fb7360b4c65b9.png)
习题12−11. 试说出下列各微分方程的阶数:(1)x (y ′)2−2yy ′+x =0;解 一阶.(2)x 2y ′−xy ′+y =0;解 一阶.(3)xy ′′′+2y ′+x 2y =0;解 三阶.(4)(7x −6y )dx +(x +y )dy =0;解 一阶.(5)022=++C Q dt dQ R dtQ d L ; 解 二阶.(6)θρθρ2sin =+d d . 解 一阶.2. 指出下列各题中的函数是否为所给微分方程的解:(1)xy ′=2y , y =5x 2;解 y ′=10x .因为xy ′=10x 2=2(5x 2)=2y , 所以y =5x 2是所给微分方程的解.(2)y ′+y =0, y =3sin x −4cos x ;解 y ′=3cos x +4sin x .因为y ′+y =3cos x +4sin x +3sin x −4cos x =7sin x −cos x ≠0,所以y =3sin x −4cos x 不是所给微分方程的解.(3)y ′′−2y ′+y =0, y =x 2e x ;解 y ′=2xe x +x 2e x , y ′′=2e x +2xe x +2xe x +x 2e x =2e x +4xe x +x 2e x .因为y ′′−2y ′+y =2e x +4xe x +x 2e x −2(2xe x +x 2e x )+x 2e x =2e x ≠0,所以y =x 2e x 不是所给微分方程的解.(4)y ′′−(λ1+λ2)y ′+λ1λ2y =0, .x x e C e C y 2121λλ+= 解 , .x x e C e C y 212211λλλλ+=′x x e C e C y 21222211λλλλ+=′′因为y y y 2121)(λλλλ+′+−′′)())((2121212121221121222211x x x x x x e C e C e C e C e C e C λλλλλλλλλλλλλλ++++−+= =0,所以是所给微分方程的解.x x e C e C y 2121λλ+= 3. 在下列各题中, 验证所给二元方程所确定的函数为所给微分方程的解:(1)(x −2y )y ′=2x −y , x 2−xy +y 2=C ;解 将x 2−xy +y 2=C 的两边对x 求导得2x −y −xy ′+2y y ′=0,即 (x −2y )y ′=2x −y ,所以由x 2−xy +y 2=C 所确定的函数是所给微分方程的解.(2)(xy −x )y ′′+xy ′2+yy ′−2y ′=0, y =ln(xy ).解 将y =ln(xy )的两边对x 求导得y y x y ′+=′11, 即xxy y y −=′. 再次求导得 )(1)()()1()(2222y y y y y x x xy x xy y y y x x xy y x y y x xy y y ′+′−′−⋅−=−+−′−=−−′+−−′=′′. 注意到由y y x y ′+=′11可得1−′=′y x y yx , 所以 )2(1])1([12y y y y x xxy y y y y y x x xy y ′+′−′−⋅−=′+′−′−′−⋅−=′′, 从而 (xy −x )y ′′+xy ′2+yy ′−2y ′=0,即由y =ln(xy )所确定的函数是所给微分方程的解.4. 在下列各题中, 确定函数关系式中所含的参数, 使函数满足所给的初始条件:(1)x 2−y 2=C , y |x =0=5;解 由y |x =0=0得02−52=C , C =−25, 故x 2−y 2=−25.(2)y =(C 1+C 2x )e 2x , y |x =0=0, y ′|x =0=1;解 y ′=C 2e 2x +2(C 1+C 2x )e 2x .由y |x =0=0, y ′|x =0=1得, ⎩⎨⎧=+=10121C C C 解之得C 1=0, C 2=1, 故y =xe 2x .(3)y =C 1sin(x −C 2), y |x =π=1, y ′|x =π=0.解 y ′=C 1cos(x −C 2).由y |x =π=1, y ′|x =π=0得, 即, ⎩⎨⎧=−=−0)cos(1)sin(2121C C C C ππ⎩⎨⎧=−=0cos 1sin 2121C C C C 解之得C 1=1, 22π=C , 故2sin(π−=x y , 即y =−cos x . 5. 写出由下列条件确定的曲线所满足的微分方程:(1)曲线在点(x , y )处的切线的斜率等于该点横坐标的平方;解 设曲线为y =y (x ), 则曲线上点(x , y )处的切线斜率为y ′, 由条件y ′=x 2, 这便是所求微分方程.(2)曲线上点P (x , y )处的法线与x 轴的交点为Q , 且线段PQ 被y 轴平分.解 设曲线为y =y (x ), 则曲线上点P (x , y )处的法线斜率为y ′−1, 由条件第PQ 中点的横坐标为0, 所以Q 点的坐标为(−x , 0), 从而有y x x y ′−=+−10, 即yy ′+2x =0. 6. 用微分方程表示一物理命题: 某种气体的气压P 对于温度T 的变化率与气压成正比, 所温度的平方成反比.解2T P k dT dP =, 其中k 为比例系数.习题12−111. 试用幂级数求下列各微分方程的解:(1)y ′−xy −x =1;解 设方程的解为, 代入方程得 ∑∞=+=10n n n x a a y ,111011=−−−∑∑∞=+∞=−x x a x a x na n n n n n n 即 . 0])2[()12()1(112021=−++−−+−+∞=+∑n n n n x a a n x a a a 可见 a 1−1=0, 2a 2−a 0−1=0, (n +2)a n +2−a n =0(n =1, 2, ⋅ ⋅ ⋅),于是 , 11=a 2102a a +=, !!313=a , !!4104a a +=, ⋅ ⋅ ⋅ , !)!12(112−=−k a k , !)!2(102k a a k +=, ⋅ ⋅ ⋅. 所以 ]!)!2(1!)!12(1[120120∑∞=−++−+=k k k x k a x k a y ∑∑∞=∞=−++−+=12011202(!1)1(!)!12(1k k k k x k a xk a ∑∞=−−+++−=11220!)!12(1)1(12k k x x k e a , 即原方程的通解为∑∞=−−+−=1122!)!12(112k k x x k Ce y .(2)y ′′+xy ′+y =0;解 设方程的解为, 代入方程得 ∑∞==0n n n x a y ,0)1(01122=++−∑∑∑∞=∞=−∞=−n n n n n n n n n x a xna x x a n n即 , 0])1()1)(2[(21220=++++++∑∞=+n n n n x a n a n n a a 于是 0221a a −=,1331a a −=, ⋅ ⋅ ⋅,1112!)!12()1(a k a k k −−=−−,02!)!2()1(a k a k k −=, ⋅ ⋅ ⋅. 所以 ]!)!12()1(!)!2()1([12112010+∞=+−+−++=∑k k k k k x k a x k a x a a y ∑∑∞=−−∞=−−+−=11211020!)!12()1()2(!!1k k k k k x k a x k a ∑∞=−−−−−+=1121120!)!12()1(2k k k x x k a e a , 即原方程的通解为∑∞=−−−−−+=1121221!)!12()1(2k k k x x k C e C y . (3)xy ′′−(x +m )y ′+my =0(m 为自然数);解 设方程的解为, 代入方程得 ∑∞==0n n n x a y , 0)()1(01122=++−−∑∑∑∞=∞=−∞=−n n n n n n n n n x a m xna m x x a n n x 即 . 0])())(1[()(1110=−−−++−∑∞=+n n n n x a m n a m n n a a m 可见 (a 0−a 1)m =0, (n −m )[(n +1)a n +1−a n ]=0 (n ≠m ),于是 a 0=a 1,)2( )2()1(1+≥+⋅⋅⋅−=+m n m n n a a m n ,)( !11m n a n a n ≤=. 所以 ∑∑∞+=+++=+⋅⋅⋅−+++=2111100)2()1(!m n n m m m m n n x m n n a x a x n a a y∑∑∞+=+++=+++=211100!)!1(!m n n m n m mn n n x a m x a n x a ∑∑∞+=+=++=1100!)!1(!m n n m m n n n x a m n x a )!()!1(!0100∑∑=+=−++=m n n x m m n n n x e a m n x a∑=+++−++=m n n m x m n x a m a e a m 0101!])!1([)!1(, 即原方程的通解为∑=+=m n n x n x C e C y 021!(其中C 1, C 2为任意常数). (4)(1−x )y ′=x 2−y ;解 设方程的解为, 代入方程得 ∑∞==0n n n x a y ,∑∑∞=∞=−−=−0211)1(n n n n n n x a x x na x 即 . 0])1[()13(231223201=+−++−−+++∑∞=+n n n n n x a na a n x a a x a a a 可见 a 1+a 0=0, 2a 2=0, 3a 3−a 2−1=0, (n +1)a n +1−(n −1)a n =0(n ≥3),于是 a 1=−a 0, a 2=0, 313=a , )1(221−=−=−n n a n n a n n (n ≥4). 因此原方程的通解为∑∞=−++−=43)1(231)1(n n x n n x x C y (C =a 0为任意常数). . (5)(x +1)y ′=x 2−2x +y .解 设方程的解为, 代入方程得 ∑∞==0n n n x a y, ∑∑∞=∞=−+−=+02112)1(n n n n n n x a x x x na x 即 . 0])1()1[()13()1(231232210=++−+−+++++−∑∞=+n n n n x a n a n x a a x a a a 于是 a 1=a 0, a 2=−1,323=a ,)4()1(4)1( 231≥−−=−−=−−n n n a n n a n n n. 因此原方程的通解为 ∑∞=−−−++−+=4332)1(4)1(32)1(n n n x n n x x x C y (C =a 0为任意常数). 2. 试用幂级数求下列方程满足所给初始条件的解:(1)y ′=y 2+x 3, 21|0==x y ; 解 根据初始条件, 可设方程的解为∑∞=+=121n n n x a y , 代入方程得 32111)21(x x a x na n n n n n n ++=∑∑∞=∞=−, 即 ⋅⋅⋅+++++++=+∑∑∞=∞=− )2(2414312232122113211x a a a x a a x a x a x x na a n n n n n n . 比较两边同次幂的系数得411=a , 2a 2=a 1, 3a 3=a 2+a 12, 4a 4=a 3+2a 1a 2+1, ⋅ ⋅ ⋅, 于是 411=a , 812=a , 1613=a , 3294=a , ⋅ ⋅ ⋅. 因此所求特解为329161814121432⋅⋅⋅+++++=x x x x y . (2)(1−x )y ′+y =1+x , y |x =0=0;解 根据初始条件, 可设方程的解为, 代入方程得 ∑∞==1n n n x a y,x x a x na x n n n n n n +=+−∑∑∞=∞=−1)1(111即 . x x a n a n a n n n n +=−+−+∑∞=+1])1()1[(111比较系数得 , 11=a 212=a , )3( )1(121≥−=−=−n n n a n n a n n . 因此所求特解为∑∑∞=∞=−+=−++=232)1(1)1(121n n n n x n n x x n n x x y . 因为∑∞=−2)1(1n n x n n 的和函数为(1−x )ln(1−x )+x , 所以特解还可以写成 y =2x +(1−x )ln(1−x )+x .(3)0cos 22=+t x dt x d , x |t =0=a , 0|0==t dt dx . 解 根据初始条件, 可设方程的解为. ∑∞=+=2n n n t a a x 将, ∑∞=+=2n nn t a a x ∑∞=−−=2222)1(n n n t a n n dt x d 和∑∞=−=02)!2()1(cos n n n t n t 代 入方程得0)!2()1()()1(02222=−++−∑∑∑∞=∞=∞=−n n n n n n n n n t n t a a t a n n .将级数展开、整理合并同次项, 并比较系数得, a a =001=a , !22a a −=, , 03=a !424a a =, , 05=a !696a a −=, , 07=a !8558a a =, ⋅ ⋅ ⋅. 故所求特解为 !855!69!42!211(8642⋅⋅⋅++−+−=t t t t a x .习题12−21. 求下列微分方程的通解:(1)xy ′−y ln y =0;解 分离变量得dx xdy y y 1ln 1=, 两边积分得∫∫=dx x dy y y 1ln 1, 即 ln(ln y )=ln x +ln C ,故通解为y =e Cx .(2)3x 2+5x −5y ′=0;解 分离变量得5dy =(3x 2+5x )dx ,两边积分得, ∫∫+=dx x x dy )53(52即 123255C x x y ++=, 故通解为C x x y ++=232151, 其中151C =为任意常数.(3)2211y y x −=′−;解 分离变量得2211x dx y dy −=−, 两边积分得∫∫−=−2211x dx y dy 即 arcsin y =arcsin x +C ,故通解为y =sin(arcsin x +C ).(4)y ′−xy ′=a (y 2+y ′);解 方程变形为(1−x −a )y ′=ay 2, 分离变量得dx x a a dy y −−=112, 两边积分得∫∫−−=dx xa a dy y 112, 即 1)1ln(1C x a a y−−−−=−, 故通解为)1ln(1x a a C y −−+=, 其中C =aC 1为任意常数. (5)sec 2x tan ydx +sec 2y tan xdy =0; 解 分离变量得dx xx y y y tan sec tan sec 22−=, 两边积分得∫∫−=dx xx y y y tan sec tan sec 22, 即 ln(tan y )=−ln(tan x )+ln C , 故通解为tan x tan y =C .(6)y x dxdy +=10; 解 分离变量得10−y dy =10x dx ,两边积分得∫∫=−dx dy x y 1010, 即 10ln 10ln 1010ln 10C x y +=−−, 或 10−y =10x +C ,故通解为y =−lg(C −10x ).(7)(e x +y −e x )dx +(e x +y +e y )dy =0;解 方程变形为e y (e x +1)dy =e x (1−e y )dx , 分离变量得dx e e dy e e xx y y +=−11, 两边积分得∫∫+=−dx e e dy e e xx y y 11, 即 −ln(e y )=ln(e x +1)−ln C ,故通解为(e x +1)(e y −1)=C .(8)cos x sin ydx +sin x cos ydy =0;解 分离变量得dx xx dy y y sin cos sin cos −=, 两边积分得∫∫−=dx x x dy y y sin cos sin cos , 即 ln(sin y )=−ln(sin x )+ln C ,故通解为sin x sin y =C .(9)0)1(32=++x dxdy y ; 解 分离变量得(y +1)2dy =−x 3dx ,两边积分得∫∫−=+dx x dy y 32)1(, 即 14341)1(31C x y +−=+, 故通解为4(y +1)3+3x 4=C (C =12C 1).(10)ydx +(x 2−4x )dy =0.解 分离变量得dx xx dy y 411(4−+=, 两边积分得∫∫−+=dx x x dy y )411(4, 即 ln y 4=ln x −ln(4−x )+ln C ,故通解为y 4(4−x )=Cx .2. 求下列微分方程满足所给初始条件的特解:(1)y ′=e 2x −y , y |x =0=0;解 分离变量得e y dy =e 2x dx ,两边积分得, ∫∫=dx e dy e x y 2即 C e e x y +=221,或 )21ln(2C e y x +=.由y |x =0=0得0)21ln(=+C , 21=C , 所以特解2121ln(2+=x e y .(2)cos x sin ydy =cos y sin xdx , 4|0π==x y ; 解 分离变量得tan y dy =tan x dx ,两边积分得∫∫=xdx ydy tan tan ,即 −ln(cos y )=−ln(cos x )−ln C , 或 cos y =C cos x . 由4|0π==x y 得C C ==0cos 4cos π, 21=C , 所以特解为x y cos cos 2=.(3)y ′sin x =y ln y , e y x ==2π;解 分离变量得dx xdy y y sin 1ln 1=, 两边积分得∫∫=dx x dy y y sin 1ln 1,即 C xy ln 2ln(tan )ln(ln +=, 或2tan x C e y =. 由e y x ==π2得4tan πC e e =, C =1,所以特解为2tan x e y =.(4)cos ydx +(1+e −x )sin ydy =0, 4|0π==x y ; 解 分离变量得dx e e dy y y x x +=−1cos sin , 两边积分得∫∫+=−dx e e dy y y xx 1cos sin , 即 ln|cos y |=ln(e x +1)+ln |C |,或 cos y =C (e x +1).由4|0π==x y 得)1(4cos 4+=ππe C , 42=C , 所以特解为)1(42cos +=x e y . (5)xdy +2ydx =0, y |x =2=1.解 分离变量得dx xdy y 21−=, 两边积分得∫∫−=dx x dy y 21, 即 ln y =−2ln x +ln C ,或 y =Cx −2.由y |x =2=1得C ⋅2−2=1, C =4, 所以特解为24x y =.3. 有一盛满了水的圆锥形漏漏斗, 高为10cm , 顶角为60°, 漏斗下面有面积为0. 5cm 2的孔, 求水面高度变化的规律及流完所需的时间.解 设t 时该已流出的水的体积为V , 高度为x , 则由水力学有x dtdV )9802(5.062.0×××=, 即dt x dV )9802(5.062.0×××=. 又因为330tan x x r =°=,故 dx x dx r V 223ππ−=−=, 从而 dx x dt x 23)9802(5.062.0π−=×××, 即 x dt 2398025.062.03×××=π,因此 C x t +×××−=2598025.062.032π. 又因为当t =0时, x =10, 所以251098025.062.053××××=πC ,故水从小孔流出的规律为 645.90305.0)10(98025.062.0532252525+−=−××××=x x t π. 令x =0, 得水流完所需时间约为10s .4. 质量为1g (克)的质点受外力作用作直线运动, 这外力和时间成正比, 和质点运动的速度成反比. 在t =10s 时, 速度等于50cm/s , 外力为4g cm/s 2, 问从运动开始经过了一分钟后的速度是多少?解 已知v t k F =, 并且法t =10s 时, v =50cm/s , F =4g cm/s 2, 故50104k =, 从而k =20, 因此vt F 20=. 又由牛顿定律, F =ma , 即v t dt dv 201=⋅, 故v dv =20t d t . 这就是速度与时间应满足的微分方程. 解之得C t v +=221021, 即C t v 2202+=. 由初始条件有C +×=2210105021, C =250. 因此 500202+=t v .当t =60s 时, cm/s 3.26950060202=+×=v .5. 镭的衰变有如下的规律: 镭的衰变速度与它的现存量R 成正比. 由经验材料得知, 镭经过1600年后, 只余原始量R 0的一半. 试求镭的量R 与时间t 的函数关系.解 由题设知,R dt dR λ−=, 即dt RdR λ−=, 两边积分得ln R =−λt +C 1,从而 .)( 1C t e C Ce R ==−λ 因为当t =0时, R =R 0, 故R 0=Ce 0=C , 即R =R 0e −λt .又由于当t =1600时, 021R R =, 故λ16000021−=e R R , 从而16002ln =λ. 因此 t t e R e R R 000433.0010002ln 0−−==.6. 一曲线通过点(2, 3), 它在两坐标轴间的任一切线线段均被切点所平分, 求这曲线方程.解 设切点为P (x , y ), 则切线在x 轴, y 轴的截距分别为2x , 2y , 切线斜率为 xy x y −=−−2002, 故曲线满足微分方程:x y dx dy −=, 即dx x dy y 11−=, 从而 ln y +ln x =ln C , xy =C .因为曲线经过点(2, 3), 所以C =2×3=6, 曲线方程为xy =6.7. 小船从河边点O 处出发驶向对岸(两岸为平行直线). 设船速为a , 船行方向始终与河岸垂直, 又设河宽为h , 河中任一点处的水流速度与该点到两岸距离的乘积成正比(比例系数为k ). 求小船的航行路线.解 建立坐标系如图. 设t 时刻船的位置为(x , y ), 此时水速为)(y h ky dt dx v −==, 故dx =ky (h −y )dt .又由已知, y =at , 代入上式得dx =kat (h −at )dt ,积分得C t ka kaht x +−=3223121.由初始条件x |t =0=0, 得C =0, 故3223121t ka kaht x −=. 因此船运动路线的函数方程为⎪⎩⎪⎨⎧=−=ayy t ka kaht x 3223121, 从而一般方程为)312(32y y h a k x −=.习题12−31. 求下列齐次方程的通解:(1)022=−−−′x y y y x ;解 原方程变为1)(2−−=x y x y dx dy . 令xy u =, 则原方程化为 12−+=+u u dx du x u , 即dx x du u 1112=−, 两边积分得C x u u ln ln )1ln(2+=−+, 即Cx u u =−+12, 将xy u =代入上式得原方程的通解Cx x y x y =−+1)(2, 即222Cx x y y =−+. (2)xy y dx dy xln =; 解 原方程变为xy x y dx dy ln =. 令xy u =, 则原方程化为 u u dx du x u ln =+, 即dx x du u u 1)1(ln 1=−, 两边积分得ln(ln u −1)=ln x +ln C , 即u =e Cx +1, 将xy u =代入上式得原方程的通解 y =xe Cx +1.(3)(x 2+y 2)dx −xydy =0;解 这是齐次方程. 令xy u =, 即y =xu , 则原方程化为 (x 2+x 2u 2)dx −x 2u (udx +xdu )=0, 即dx x udu 1=,两边积分得u 2=ln x 2+C , 将xy u =代入上式得原方程的通解 y 2=x 2(ln x 2+C ).(4)(x 3+y 3)dx −3xy 2dy =0;解 这是齐次方程. 令xy u =, 即y =xu , 则原方程化为 (x 3+x 3u 3)dx −3x 3u 2(udx +xdu )=0, 即dx x du u u 121332=−, 两边积分得C x u ln ln )21ln(213+=−−, 即2312x C u −=, 将xy u =代入上式得原方程的通解 x 3−2y 3=Cx .(5)0ch 3)ch 3sh2(=−+dy xy x dx x y y x y x ; 解 原方程变为xy x y dx dy +=th 32. 令xy u =, 则原方程化为 u u dx du x u +=+th 32, 即dx x du u u 2sh ch 3=, 两边积分得3ln(sh u )=2ln x +ln C , 即sh 3u =Cx 2, 将xy u =代入上式得原方程的通解 22sh Cx xy =. (6)0)1(2)21(=−++dy yx e dx e y x y x . 解 原方程变为y xy xe e y x dy dx 21)1(2+−=.令yx u =, 则原方程化为 u u e e u dy du y u 21)1(2+−=+, 即u u ee u dy du y 212++−=, 分离变量得dy y du e u e uu 1221−=++, 两边积分得ln(u +2e u )=−ln y +ln C , 即y (u +2e u )=C , 将yx u =代入上式得原方程的通解 C e yx y y x =+)2(, 即C ye x y x =+2. 2. 求下列齐次方程满足所给初始条件的特解:(1)(y 2−3x 2)dy +2xydx =0, y |x =0=1;解 这是齐次方程. 令xy u =, 即y =xu , 则原方程化为 (x 2u 2−3x 2)(udx +xdu )+2x 2udx =0,即 dx x du u u u 1332=−−, 或dx x du u u u 1)11113(=−+++− 两边积分得−3ln |u |+ln|u +1|+ln|u −1|=ln|x |+ln|C |, 即u 2−1=Cxu 3, 将xy u =代入上式得原方程的通解 y 2−x 2=Cy 3.由y |x =0=1得C =1, 故所求特解为y 2−x 2=y 3.(2)xy y x y +=′, y |x =1=2; 解 令xy u =, 则原方程化为 u u dx du x u +=+1, 即dx xudu 1=, 两边积分得C x u +=ln 212,将xy u =代入上式得原方程的通解 y 2=2x 2(ln x +C ).由y |x =1=2得C =2, 故所求特解为y 2=2x 2(ln x +2).(3)(x 2+2xy −y 2)dx +(y 2+2xy −x 2)dy =0, y |x =1=1.解 这是齐次方程. 令xy u =, 即y =xu , 则原方程化为 (x 2+2x 2u −x 2u 2)dx +(x 2u 2+2x 2u −x 2)(udx +xdu )=0,即dx x du u u u u u 1112232−=+++−+, 或 dx x du u u u 1)1211(2=+−+, 两边积分得ln|u +1|−ln(u 2+1)=ln|x |+ln|C |, 即u +1=Cx (u 2+1), 将xy u =代入上式得原方程的通解 x +y =C (x 2+y 2).由y |x =1=1得C =1, 故所求特解为x +y =(x 2+y 2).3. 设有连结点O (0, 0)和A (1, 1)的一段向上凸的曲线弧A O , 对于A O 上任一点P (x , y ), 曲线弧P O 与直线段所围图形的面积为x 2, 求曲线弧A O 的方程. 解 设曲线弧A O 的方程为y =y (x ). 由题意得 20)(21)(x x xy dx x y x =−∫,两边求导得 x x y x x y x y 2)(21)(21)(=′−−, 即 4−=′x y y . 令xy u =, 则有 4−=+u dx du x u , 即dx xdu u 41−=, 两边积分得u =−4ln x +C . 将xy u =代入上式得方程的通解 y =−4x ln x +Cx .由于A (1, 1)在曲线上, 即y (1)=1, 因而C =1, 从则所求方程为y =−4x ln x +x .习题12−41. 求下列微分方程的通解:(1)x e y dxdy −=+; 解 )()()(C x e C dx e e e C dx e e e y x x x x dx x dx +=+⋅=+∫⋅∫=−−−−−∫∫. (2)xy ′+y =x 2+3x +2;解 原方程变为x x y x y 231++=+′.])23([11C dx e x x e y x x +∫⋅++∫=∫−])23(1])23([12C dx x x x C xdx x x x +++=+++=∫∫x Cx x C x x x x +++=+++=22331)22331(1223.(3)y ′+y cos x =e −sin x ;解 )(cos sin cos C dx e e e y xdx x dx +∫⋅∫=∫−−)()(sin sin sin sin C x e C dx e e e x x x x +=+⋅=−−−∫.(4)y ′+y tan x =sin 2x ;解 )2sin (tan tan C dx e x e y xdx xdx +∫⋅∫=∫−)2sin (cos ln cos ln C dx e x e x x +⋅=∫−∫+⋅=)cos 1cos sin 2(cos C dx x x x x=cos x (−2cos x +C )=C cos x −2cos 2x .(5)(x 2−1)y ′+2xy −cos x =0;解 原方程变形为1cos 1222−=−+′x xy x xy .)1cos(1221222C dx e x x e y x xdx x x +∫⋅−∫=∫−−−)(sin 11])1(1cos [112222C x x C dx x x xx +−=+−⋅−−=∫.(6)23=+ρθρd d ; 解 )2(33C d e e d d +∫⋅∫=∫−θρθθ )2(33C d e e +=∫−θθθ θθθ33332)32(−−+=+=Ce C e e . (7)x xy dxdy 42=+; 解 )4(22C dx e x e y xdx xdx +∫⋅∫=∫− )4(22C dx e x e x x +⋅=∫− .2222)2(x x x Ce C e e −−+=+= (8)y ln ydx +(x −ln y )dy =0;解 原方程变形为y x y y dy dx 1ln 1=+. )1(ln 1ln 1C dy e ye x y y dy y y +∫⋅∫=∫− )ln 1(ln 1C ydy yy +⋅=∫ yC y C y y ln ln 21)ln 21(ln 12+=+=. (9)3)2(2)2(−+=−x y dxdy x ; 解 原方程变形为2)2(221−=−−x y x dx dy . ])2(2[21221C dx e x e y dx x dx x +∫⋅−∫=∫−−− ∫+−⋅−−=]21)2(2)[2(2C dx x x x =(x −2)[(x −2)2+C ]=(x −2)3+C (x −2).(10)02)6(2=+−y dxdy x y .解 原方程变形为y x y dy dx 213−=−. ])21([33C dy e y e x y dy y +∫⋅−∫=∫− )121(33C dy y y y +⋅−=∫ 32321)21(Cy y C y y +=+=. 2. 求下列微分方程满足所给初始条件的特解:(1)x x y dxdy sec tan =−, y |x =0=0; 解 )sec (tan tan C dx e x e y xdx xdx +∫⋅∫=∫− )(cos 1)cos sec (cos 1C x xC xdx x x +=+⋅=∫. 由y |x =0=0, 得C =0, 故所求特解为y =x sec x .(2)xx x y dx dy sin =+, y |x =π=1; 解 )sin (11C dx e x x e y dx x x +∫∫=∫− )cos (1)sin (1C x xC xdx x x x +−=+⋅=∫. 由y |x =π=1, 得C =π−1, 故所求特解为)cos 1(1x x y −−=π. (3)x e x y dx dy cos 5cot =+, 4|−==πx y ; 解 )5(cot cos cot C dx e e e y xdx x xdx +∫⋅∫=∫− )5(sin 1)sin 5(sin 1cos cos C e xC xdx e x x x +−=+⋅=∫. 由4|2−==πx y , 得C =1, 故所求特解为)15(sin 1cos +−=x e x y . (4)83=+y dxdy , y |x =0=2;解 )8(33C dx e e y dx dx +∫⋅∫=∫− x x x x x Ce C e e C dx e e 3333338)38()8(−−−+=+=+=∫. 由y |x =0=2, 得32−=C , 故所求特解为)4(323x e y −−=. (5)13232=−+y x x dx dy , y |x =1=0. 解 )1(223232C dx e e y dx x x dx x x +∫⋅∫=∫−−− )21()1(22221131313C e e x C dx e x e x x x x x +=+=−−∫. 由y |x =1=0, 得e C 21−=, 故所求特解为)1(211132−−=x e x y . 3. 求一曲线的方程, 这曲线通过原点, 并且它在点(x , y )处的切线斜率等于2x +y . 解 由题意知y ′=2x +y , 并且y |x =0=0.由通解公式得)2()2(C dx xe e C dx xe e y x x dx dx +=+∫∫=∫∫−− =e x (−2xe −x −2e −x +C )=Ce x −2x −2.由y |x =0=0, 得C =2, 故所求曲线的方程为y =2(e x −x −1).4. 设有一质量为m 的质点作直线运动, 从速度等于零的时刻起, 有一个与运动方向一至、大小与时间成正比(比例系数为k 1)的力作用于它, 此外还受一与速度成正比(比例系数为k 2)的阻力作用. 求质点运动的速度与时间的函数关系.解 由牛顿定律F =ma , 得v k t k dt dv m21−=, 即t m k v m k dt dv 12=+. 由通解公式得)()(222211C dt e t m k e C dt e t m k e v t m k t m k dt m km k +⋅=+∫⋅∫=∫∫−− )(22222121C e k m k te k k e t m kt m k t m k +−=−.由题意, 当t =0时v =0, 于是得221k m k C =. 因此 )(22122121222k m k e k m k te k k e v t m k t m k m k +−=− 即 )1(22121t m k e k m k t k k v −−−=. 5. 设有一个由电阻R =10Ω、电感L =2h(亨)和电源电压E =20sin5t V (伏)串联组成的电路. 开关K 合上后, 电路中有电源通过. 求电流i 与时间t 的函数关系.解 由回路电压定律知01025sin 20=−−i dt di t , 即t i dt di 5sin 105=+. 由通解公式得t dt dt Ce t t C dt e t e i 5555cos 5sin )5sin 10(−−+−=+∫⋅∫=∫. 因为当t =0时i =0, 所以C =1. 因此)45sin(25cos 5sin 55π−+=+−=−−t e e t t i t t (A).6. 设曲在右半平面(x >0)内与路径无关, 其中f (x )可导, 且f (1)=1, 求f (x ).dy x x xf dx x yf L ])(2[)(2−+∫ 解 因为当x >0时, 所给积分与路径无关, 所以])(2)]([2x x xf xx yf y −∂∂=∂∂, 即 f (x )=2f (x )+2xf ′(x )−2x , 或 1)(21)(=+′x f xx f . 因此 x C x C dx x x C dx e e x f dx x dx x +=+=+∫⋅∫=∫∫−32)(1)1()(2121. 由f (1)=1可得31=C , 故xx x f 3132)(+=. 7. 求下列伯努利方程的通解:(1))sin (cos 2x x y y dxdy −=+;解 原方程可变形为x x ydx dy y sin cos 11−=+, 即x x y dx y d cos sin )(11−=−−−. ])cos sin ([1C dx e x x e y dx dx +∫⋅−∫=−−∫x Ce C dx e x x e x x x sin ])sin (cos [−=+−=∫−, 原方程的通解为x Ce y x sin 1−=. (2)23xy xy dxdy =−; 解 原方程可变形为x y x dxdy y =−1312, 即x xy dx y d −=+−−113)(. ])([331C dx e x e y xdx xdx +∫⋅−∫=∫−−)(222323C dx xe e x x +−=∫− 31)31(222232323−=+−=−−x x x Ce C e e , 原方程的通解为311223−=−x Ce y . (3)4)21(3131y x y dx dy −=+; 解 原方程可变形为)21(31131134x y dx dy y −=+, 即12)(33−=−−−x y dx y d . ])12([3C dx e x e y dx dx +∫⋅−∫=−−∫x x x Ce x C dx e x e +−−=+−=∫−12])12([, 原方程的通解为1213−−=x Ce y x .(4)5xy y dxdy =−; 解 原方程可变形为x ydx dy y =−4511, 即x y dx y d 44)(44−=+−−. ])4([444C dx e x e y dx dx +∫⋅−∫=∫−− )4(44C dx xe e x +−=∫− x Ce x 441−++−=, 原方程的通解为x Ce x y 44411−++−=.(5)xdy −[y +xy 3(1+ln x )]dx =0.解 原方程可变形为 )ln 1(11123x yx dx dy y +=⋅−⋅, 即)ln 1(22)(22x y x dx y d +−=+−−. ])ln 1(2[222C dx e x e y x dx x +∫⋅+−∫=∫−− ])ln 1(2122C dx x x x ++−=∫ x x x x C 94ln 322−−=, 原方程的通解为x x x x C y 94ln 32122−−=. 8. 验证形如yf (xy )dx +xg (xy )dy =0的微分方程, 可经变量代换v =xy 化为可分离变量的方程, 并求其通解.解 原方程可变形为)()(xy xg xy yf dx dy −=. 在代换v =xy 下原方程化为)()(22v g x v vf x v dx dv x −=−,即dx xdu v f v g v v g 1)]()([)(=−, 积分得 C x du v f v g v v g +=−∫ln )]()([)(, 对上式求出积分后, 将v =xy 代回, 即得通解.9. 用适当的变量代换将下列方程化为可分离变量的方程, 然 后求出通解:(1)2)(y x dxdy +=; 解 令u =x +y , 则原方程化为21u dx du =−, 即21u du dx +=. 两边积分得x =arctan u +C .将u =x +y 代入上式得原方程的通解x =arctan(x +y )+C , 即y =−x +tan(x −C ).(2)11+−=yx dx dy ; 解 令u =x −y , 则原方程化为 111+=−udx du , 即dx =−udu . 两边积分得 1221C u x +−=.将u =x +y 代入上式得原方程的通解12)(21C y x x +−−=, 即(x −y )2=−2x +C (C =2C 1).(3)xy ′+y =y (ln x +ln y );解 令u =xy , 则原方程化为u x u x u x u dx du x x ln )1(2=+−, 即du uu dx x ln 11=. 两边积分得ln x +ln C =lnln u , 即u =e Cx .将u =xy 代入上式得原方程的通解xy =e Cx , 即Cx e xy 1=. (4)y ′=y 2+2(sin x −1)y +sin 2x −2sin x −cos x +1;解 原方程变形为y ′=(y +sin x −1)2−cos x .令u =y +sin x −1, 则原方程化为x u x dx du cos cos 2−=−, 即dx du u =21. 两边积分得 C x u +=−1. 将u =y +sin x −1代入上式得原方程的通解 C x x y +=−+−1sin 1, 即C x x y +−−=1sin 1.(5)y (xy +1)dx +x (1+xy +x 2y 2)dy =0 . 解 原方程变形为)1()1(22y x xy x xy y dx dy +++−=. 令u =xy , 则原方程化为)1()1(1222u u x u u x u dx du x +++−=−, 即)1(1223u u x u dx du x ++=. 分离变量得du uu u dx x )111(123++=. 两边积分得 u uu C x ln 121ln 21+−−=+. 将u =xy 代入上式得原方程的通解 xy xy y x C x ln 121ln 221+−−=+, 即 2x 2y 2ln y −2xy −1=Cx 2y 2(C =2C 1).习题12−51. 判别下列方程中哪些是全微分方程, 并求全微分方程的通解:(1)(3x 2+6xy 2)dx +(6x 2y +4y 2)dy =0;解 这里P =3x 2+6xy 2, Q =6x 2y +4y 2. 因为x Q xy yP ∂∂==∂∂12, 所以此方程是全微分方程, 其通解为 , C dy y y x dx x y x =++∫∫02202)46(3即 C y y x x =++3223343. (2)(a 2−2xy −y 2)dx −(x +y )2dy =0;解 这里P =a 2−2xy −y 2, Q =−(x +y )2. 因为xQ y x y P ∂∂=−−=∂∂22, 所以此方程是全微分方程, 其通解为 , C dy y x dx a y x =+−∫∫0202)(即 a 2x −x 2y −xy 2=C .(3)e y dx +(xe y −2y )dy =0;解 这里P =e y , Q =xe y −2y . 因为x Q e yP y ∂∂==∂∂, 所以此方程是全微分方程, 其通解为 , C dy y xe dx e y y x =−+∫∫000)2(即 xe y −y 2=C .(4)(x cos y +cos x )y ′−y sin x +sin y =0;解 原方程变形为(x cos y +cos x )dy −(y sin x +sin y )dx =0. 这里P =−(y sin x +sin y ), Q =x cos y +cos x . 因为xQ x y y P ∂∂=−=∂∂sin cos ,所以此方程是全微分方程, 其通解为, C dy x y x dx yx =++∫∫00)cos cos (0即 x sin y +y cos x =C .解(5)(x 2−y )dx −xdy =0;解 这里P =x 2−y , Q =−x . 因为x Q yP ∂∂=−=∂∂1, 所以此方程是全微分方程, 其通解为, C xdy dx x y x =−∫∫002即 C xy x =−331. (6)y (x −2y )dx −x 2dy =0;解 这里P =y (x −2y ), Q =−x 2. 因为y x yP 4−=∂∂, x x Q 2−=∂∂, 所以此方程不是全微分方程.(7)(1+e 2θ)d ρ+2ρe 2θd θ=0;解 这里P =1+e 2θ, Q =2ρe 2θ. 因为xQ e y P ∂∂==∂∂θ22, 所以此方程是全微分方程, 其通解为 , C d e d =+∫∫θθρθρρ02022即 ρ(e 2θ+1)=C .(8)(x 2+y 2)dx +xydy =0.解 这里P =x 2+y 2, Q =xy . 因为y yP 2=∂∂, y x Q =∂∂, 所以此方程不是全微分方程.2. 利用观察法求出下列方程的积分因子, 并求其通解:(1)(x +y )(dx −dy )=dx +dy ;解 方程两边同时乘以y x +1得 y x dy dx dy dx ++=−, 即d (x −y )=d ln(x +y ), 所以yx +1为原方程的一个积分因子, 并且原方程的通解为 x −y =ln(x +y )+C .(2)ydx −xdy +y 2xdx =0;解 方程两边同时乘以21y 得 02=+−xdx y xdy ydx , 即02()(2=+x d y x d , 所以21y 为原方程的一个积分因子, 并且原方程的通解为 C x y x =+22. (3)y 2(x −3y )dx +(1−3y 2x )dy =0;解 原方程变形为xy 2dx −3y 3dx +dy −3x 2dy =0, 两边同时乘以21y 并整理得 0)33(2=+−+xdy ydx ydy xdx , 即0)(3)1()2(2=−−xy d y d x d , 所以21y 为原方程的一个积分因子, 并且原方程的通解为 C xy yx =−−3122. (4)xdx +ydy =(x 2+y 2)dx ;解 方程两边同时乘以221y x +得 022=−++dx yx ydy xdx , 即0)]ln(21[22=−+dx y x d , 所以221y x +为原方程的一个积分因子, 并且原方程的通解为 x 2+y 2=Ce 2x .(5)(x −y 2)dx +2xydy =0;解 原方程变形为xdx −y 2dx +2xydy =0, 两边同时乘以21x 得 0222=−+x dx y xydy x dx , 即0)()(ln 2=+x y d x d , 所以21x为原方程的一个积分因子, 并且原方程的通解为 C x y x =+2ln , 即x ln x +y 2=Cx . (6)2ydx −3xy 2dx −xdy =0.解 方程两边同时乘以x 得2xydx −x 2dy −3x 2y 2dx =0, 即yd (x 2)−x 2dy −3x 2y 2dx =0, 再除以y 2得03)(2222=−−dx x ydy x x yd , 即0)(32=−x y x d 所以2y x 为原方程的一个积分因子, 并且原方程的通解为 032=−x yx . 3. 验证)]()([1xy g xy f xy −是微分方程yf (xy )dx +xg (xy )dy =0的积分因子, 并求下列方程的通解:解 方程两边乘以)]()([1xy g xy f xy −得 0])()()]()([1=+−dy xy xg dx xy yf xy g xy f xy , 这里)]()([)(xy g xy f x xy f P −=, )]()([)(xy g xy f y xy g Q −=. 因为x Q xy g xy f xy g xy f xy g xy f y P ∂∂=−′−′=∂∂2)]()([)()()()(, 所以)]()([1xy g xy f xy −是原方程的一个积分因子. (1)y (x 2y 2+2)dx +x (2−2x 2y 2)dy =0;解 这里f (xy )=x 2y 2+2, g (xy )=2−2x 2y 2 , 所以 31)]()([1y x xy g xy f xy =− 是方程的一个积分因子. 方程两边同乘以3331y x 得全微分方程 032323222232=−++dy y x y x dx y x x , 其通解为C dy y x y x dx x x y x =−++∫∫122123232, 即C y x y x =−+−)11ln (ln 31222, 或2212y x e Cy x =.(2)y (2xy +1)dx +x (1+2xy −x 3y 3)dy =0.解 这里f (x y )=2x y +1, g (x y )=1+2x y −x 3 y 3 , 所以 441)]()([1yx xy g xy f xy =− 是方程的一个积分因子. 方程两边同乘以1y x 得全微分方程 02112433334=−+++dy y x y x xy dx yx xy ,其通解为C dy y x y x xy dx x x y x =−+++∫∫14333142112, 即 C y y x y x =++||ln 3113322. 4. 用积分因子法解下列一阶线性方程:(1)xy ′+2y =4ln x ;解 原方程变为x x y x y ln 42=+′, 其积分因子为 22)(x e x x =∫=μ, 在方程x xy x y ln 42=+′的两边乘以x 2得 x 2y ′+2xy =4x ln x , 即(x 2y )′=4x ln x ,两边积分得, C x x x xdx x y x +−==∫222ln 2ln 4原方程的通解为21ln 2x C x y +−=. (2)y ′−tan x ⋅y =x . 解 积分因子为,x e x xdx cos )(tan =∫=−μ在方程的两边乘以cos x 得cos x ⋅y ′−sin x ⋅y =x cos x , 即(cos x ⋅y )′=x cos x , 两边积分得C x x x xdx x y x ++==⋅∫cos sin cos cos , 方程的通解为xC x x y cos 1tan ++=.习题12−61. 求下列各微分方程的通解:(1)y ′′=x +sin x ;解 12cos 21)sin (C x x dx x x y +−=+=′∫, 21312sin 61)cos 21(C x C x x dx C x x y ++−=+−=∫, 原方程的通解为213sin 61C x C x x y ++−=. (2)y ′′′=xe x ;解 , 12C e xe dx xe y x x x +−==′′∫, 21122)2(C x C e xe dx C e xe y x x x x ++−=+−=′∫, 3221213)22(C x C x C e xe dx C x C e xe y x x x x +++−=++−=∫原方程的通解为.32213C x C x C e xe y x x +++−= (3)211x y +=′′; 解 12arctan 11C x dx x y +=+=′∫ x C dx x x x x dx C x y 1211arctan )(arctan ++−=+=∫∫ 212)1ln(21arctan C x C x x x +++−=, 原方程的通解为2121ln arctan C x C x x x y +++−=.(4)y ′′=1+y ′2;解 令p =y ′, 则原方程化为p ′=1+p 2, 即dx dp p =+211, 两边积分得arctan p =x +C 1, 即y ′=p =tan(x +C 1),, 211|)cos(|ln )tan(C C x dx C x y ++−=+=∫原方程的通解为21|)cos(|ln C C x y ++−=.(5)y ′′=y ′+x ;解 令p =y ′, 则原方程化为p ′−p =x ,由一阶线性非齐次方程的通解公式得, 1)()(111−−=+=+∫⋅∫=∫∫−−x e C C dx xe e C dx e x e p x x x dx dx 即 y ′=C 1e x −x −1,于是 221121)1(C x x e C dx x e C y x x +−−=−−=∫, 原方程的通解为22121C x x e C y x +−−=.(6)xy ′′+y ′=0;解 令p =y ′, 则原方程化为 x p ′+p =0, 即01=+′p xp , 由一阶线性齐次方程的通解公式得xC e C e C p x x 1ln 111==∫=−−, 即 xC y 1=′, 于是 211ln C x C dx xC y +==∫, 原方程的通解为y =C 1ln x +C 2 .(7)yy ′′+′=y ′2;解 令p =y ′, 则dy dp p dx dy dy dp y =⋅=′′, 原方程化为 21p dy dp yp =+, 即dy y dp p p 112=−, 两边积分得||ln ||ln |1|ln 2112C y p +=−, 即. 22121y C p ±− 当|y ′|=|p |>1时, 方程变为2211y C y +±=′, 即dx dy y C ±=+21)(11, 两边积分得arcsh(C 1y )=±C 1x +C 2,即原方程的通解为)(sh 1121x C C C y ±=. 当|y ′|=|p |<1时, 方程变为 2211y C y −±=′, 即dx dy y C ±=−21)(11, 两边积分得arcsin(C 1y )=±C 1x +C 2,即原方程的通解为)(sin 1121x C C C y ±=.(8)y 3y ′′−1=0;解 令p =y ′, 则dy dp py =′′, 原方程化为 013=−dy dp py , 即pdp =y −3dy , 两边积分得122212121C y p +−=−, 即p 2=−y −2+C 1, 故 21−−±=′y C y , 即dx dy y C ±=−−211, 两边积分得)(12121C x C y C +±=−,即原方程的通解为C 1y 2=(C 1x +C 2)2 .(9)yy 1=′′; 解 令p =y ′, 则dy dp py =′′, 原方程化为 y dy dp p 1=, 即dy ypdp 1=, 两边积分得122221C y p +=, 即1244C y p +=, 故 12C y y +±=′, 即dx dy C y ±=+11, 两边积分得原方程的通211231]2)(32[C C y C C y x ++−+±=.(10)y ′′=y ′3+y ′. 解 令p =y ′, 则dydp py =′′, 原方程化为 p p dy dp p +=3, 即0)]1([2=+−p dy dp p . 由p =0得y =C , 这是原方程的一个解. 由0)1(2=+−p dydp 得 arctan p =y −C 1, 即y ′=p =tan(y −C 1),从而 )sin(ln )tan(1112C y dy C y C x −=−=+∫, 故原方程的通解为.12arcsin C e y C x +=+ 2. 求下列各微分方程满足所给初始条件的特解:(1)y 3 y ′′+1=0, y |x =1=1, y ′|x =1=0;解 令p =y ′, 则dy dp p y =′′, 原方程化为013=+dy dp p y , 即dy ypdp 31−=, 两边积分得1221C y p +=, 即y y C y 211+±=′. 由y |x =1=1, y ′|x =1=0得C 1=−1, 从而yy y 21−±=′, 分离变量得dx dy yy =−±21, 两边积分得221C x y +=−±, 即22)(1C x y +−±=.由y |x =1=1得C 2=−1, 2)1(1−−=x y , 从而原方程的通解为22x x y −=.(2)y ′′−ay ′2=0, y |x =0=0, y ′|x =0=−1;解 令p =y ′, 则原方程化为02=−ap dx dp , 即adx dp p=21, 两边积分得 11C ax p +=−, 即11C ax y +−=′. 由y ′|x =0=−1得C 1=1, 11+−=′ax y , 两边积分得 2)1ln(1C ax a y ++−=.由y |x =0=0得C 2=0, 故所求特解为)1ln(1+−=ax a y .(3)y ′′′=e ax , y |x =1=y ′|x =1=y ′′|x =1=0;解 11C e adx e y ax ax +==′′∫.。
高等数学下册第十二章习题答案详解
![高等数学下册第十二章习题答案详解](https://img.taocdn.com/s3/m/506e7ef9ed630b1c58eeb55f.png)
高等数学下册第十二章习题答案详解1.写出下列级数的一般项: (1)1111357++++;2242468x x +++⋅⋅⋅⋅;(3)35793579a a a a -+-+.解:(1)121n U n =-;(2)()2!!2n n xU n =;(3)()211121n n n a U n ++=-+; 2.求下列级数的和: (1) 23111555+++;(2) 11(1)(2)n n n n ∞=++∑;(3)1n ∞=∑.解:(1) 因为21115551115511511145n n n n S =+++⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎣⎦=-⎡⎤⎛⎫=-⎢⎥ ⎪⎝⎭⎣⎦从而1lim 4n n S →∞=,即级数的和为14. (2)()()()()()()()111111211n u x n x n x n x n x n x n x n =+-+++⎛⎫-=⎪+-++++⎝⎭从而()()()()()()()()()()()()()()11111211212231111111211nS x x x x x x xx x n x nx n x n x x x n x n ⎛-+-=+++++++⎝⎫++-⎪+-++++⎭⎛⎫-=⎪++++⎝⎭因此()1lim 21nn S x x →∞=+,故级数的和为()121x x +(3)因为nU =-从而(11n S n =-+-+-++-+=-=所以lim 1n n S →∞=13.判定下列级数的敛散性:(1)1n ∞=∑;(2)1111166111116(54)(51)n n +++++⋅⋅⋅-+;(3)231232222(1)3333nn n --+-+-+;(4)1155n ++.解:(1) (11n S n =++++=从而lim n n S →∞=+∞,故级数发散.(2) 1111111115661111165451111551n S n n n ⎛⎫=-+-+-++- ⎪-+⎝⎭⎛⎫=- ⎪+⎝⎭从而1lim 5n n S →∞=,故原级数收敛,其和为15.(3)此级数为23q =-的等比级数,且|q |<1,故级数收敛.(4)∵n U =lim 10n n U →∞=≠,故级数发散. *4.利用柯西审敛原理判别下列级数的敛散性:(1)11(1)n n n +∞=-∑;(2)1cos 2n n nx ∞=∑; (3)()0111313233n n n n ∞=+-+++∑.解:(1)当P 为偶数时,()()()()122341111112311111231111112112311n n n pn n n n p U U U n n n n pn n n n pn p n p n n pn n n +++++++++++----=++++++++-+--=++++⎛⎫⎛⎫-=----- ⎪ ⎪+-+-++++⎝⎭⎝⎭<+当P 为奇数时,()()()()1223411111123111112311111112311n n n pn n n n p U U U n n n n pn n n n pn p n p n n n n +++++++++++----=++++++++-+-+=++++⎛⎫⎛⎫-=---- ⎪ ⎪+-++++⎝⎭⎝⎭<+因而,对于任何自然数P ,都有12111n n n p U U U n n++++++<<+, ∀ε>0,取11N ε⎡⎤=+⎢⎥⎣⎦,则当n >N 时,对任何自然数P 恒有12n n n p U U U ε++++++<成立,由柯西审敛原理知,级数()111n n n +∞=-∑收敛.(2)对于任意自然数P ,都有()()()1212121cos cos cos 12222111222111221121112212n n n pn n n pn n n p n p n p n U U U xn p x xn n ++++++++++++++++=+++≤+++⎛⎫- ⎪⎝⎭=-⎛⎫=- ⎪⎝⎭<于是, ∀ε>0(0<ε<1),∃N =21log ε⎡⎤⎢⎥⎣⎦,当n >N 时,对任意的自然数P 都有12n n n p U U U ε++++++<成立,由柯西审敛原理知,该级数收敛.(3)取P =n ,则()()()()()121111113113123133213223231131132161112n n n pU U U n n n n n n n n n n ++++++⎛⎫=+-+++-⎪++++++⋅+⋅+⋅+⎝⎭≥++++⋅+≥+>从而取0112ε=,则对任意的n ∈N ,都存在P =n 所得120n n n p U U U ε++++++>,由柯西审敛原理知,原级数发散.习题12-21.用比较判别法法判别下列级数的敛散性: (1)1114657(3)(5)n n ++++⋅⋅++; (2)22212131112131nn +++++++++++;(3)π1sin 3n n ∞=∑;(4)n ∞=; (5)11)1(0nn aa ∞=+>∑; (6)11(21)nn ∞=-∑.解:(1)∵ ()()21135n U nn n =<++而211n n ∞=∑收敛,由比较审敛法知1n n U ∞=∑收敛. (2)∵221111n n n U n n n n++=≥=++ 而11n n ∞=∑发散,由比较审敛法知,原级数发散.(3)∵ππsinsin 33lim lim ππ1π33n nn n n n→∞→∞=⋅=而1π3n n ∞=∑收敛,故1πsin 3n n ∞=∑也收敛.(4)∵321n U n=<=而3121n n∞=∑收敛,故1n ∞=收敛.(5)当a >1时,111n n nU a a =<+,而11n n a ∞=∑收敛,故111n n a∞=+∑也收敛. 当a =1时,11lim lim022n n n U →∞→∞==≠,级数发散.当0<a <1时,1lim lim 101n nn n U a →∞→∞==≠+,级数发散.综上所述,当a >1时,原级数收敛,当0<a ≤1时,原级数发散.(6)由021lim ln 2xx x →-=知121lim ln 211nx n→∞-=<而11n n ∞=∑发散,由比较审敛法知()1121n n ∞=-∑发散.2.用比值判别法判别下列级数的敛散性:(1)213n n n ∞=∑;(2)1!31n n n ∞=+∑; (3)232233331222322n n n +++++⋅⋅⋅⋅; (4) 12!n n n n n ∞=⋅∑. 解:(1) 23n n n U =,()2112311lim lim 133n n n n n nU n U n ++→∞→∞+=⋅=<,由比值审敛法知,级数收敛.(2) ()()111!311lim lim 31!31lim 131n n n n n nn n n U n U n n ++→∞→∞+→∞++=⋅++=⋅++=+∞所以原级数发散.(3) ()()11132lim lim 2313lim 21312n nn n n n n nn U n U n n n +++→∞→∞→∞⋅=⋅⋅+=+=> 所以原级数发散.(4) ()()1112!1lim lim 2!1lim 21122lim 1e 11n nn n nn n nnn n n U n n U n n n n n +++→∞→∞→∞→∞⋅+=⋅⋅+⎛⎫= ⎪+⎝⎭==<⎛⎫+ ⎪⎝⎭故原级数收敛.3.用根值判别法判别下列级数的敛散性:(1)1531nn n n ∞=⎛⎫⎪+⎝⎭∑; (2)()11ln(1)n n n ∞=+∑; (3)21131n n n n -∞=⎛⎫ ⎪-⎝⎭∑; (4)1nn n b a ∞=⎛⎫⎪⎝⎭∑,其中,,,()n n a a n a b a →→∞均为正数.解:(1)55lim1313n n n n →∞==>+,故原级数发散. (2) ()1lim01ln 1n n n →∞==<+,故原级数收敛.(3)121lim 1931nn n n n -→∞⎛⎫==<⎪-⎝⎭, 故原级数收敛.(4) lim limn n nb b a a →∞==, 当b <a 时,b a <1,原级数收敛;当b >a 时,b a >1,原级数发散;当b =a 时,ba=1,无法判定其敛散性.习题12-31.判定下列级数是否收敛?若收敛,是绝对收敛还是条件收敛?(1) 1+;(2)111(1)ln(1)n n n ∞-=-+∑;(3)2341111111153555333⋅-⋅+⋅-⋅+;(4)112(1)!n n n n ∞+=-⋅∑; (5)11ln (1)n n n n∞-=-⋅∑; (6)()11113∞--=-∑n n n n; *(6)1(1)111(1)23nnn n∞=-++++⋅∑. 解:(1)()11n n U-=-,级数1n n U ∞=∑>0n =,由莱布尼茨判别法级数收敛,又11121nn n Un∞∞===∑∑是P <1的P 级数,所以1nn U∞=∑发散,故原级数条件收敛. (2)()()111ln 1n n U n -=-+,()()1111ln 1n n n ∞---+∑为交错级数,且()()11ln ln 12n n >++,()1lim0ln 1n n →∞=+,由莱布尼茨判别法知原级数收敛,但由于()11ln 11n U n n =≥++ 所以,1nn U∞=∑发散,所以原级数条件收敛.(3)()11153n n nU -=-⋅,显然1111115353n n n n n n U ∞∞∞=====⋅∑∑∑,而113n n ∞=∑是收敛的等比级数,故1nn U∞=∑收敛,所以原级数绝对收敛.(4)由()121!+=-nn n u n2122=<==⨯⨯,由正项级数的根值判别法知,2!n n 收敛,则级数()1121!∞+=-∑nn n n 收敛,112(1)!n n n n ∞+=-⋅∑绝对收敛. (5)函数()ln =xf x x在[)e,+∞为单调递减函数,则当n 充分大时()ln 1ln 1+>+n n n n ,且ln lim 0→∞=n n n ,由莱布尼兹判别法知交错级数收敛,又ln 1>n n n ,而调和级数11∞=∑n n是发散的,则11ln (1)n n nn∞-=-⋅∑条件收敛. (6)111310333+-+---=-=>n n n n nn n n n u u ,则1+>n n u u ,又1lim 03-→∞=n n n,根据莱布尼兹判别法知()11113∞--=-∑n n n n 收敛,又由比较判别法知1131133-+=<+n n nn n n ,则级数()11113∞--=-∑n n n n 收敛,则级数()11113∞--=-∑n n n n绝对收敛. *(6)由于11111123n nn ⎛⎫⋅>++++ ⎪⎝⎭ 而11n n ∞=∑发散,由此较审敛法知级数 ()11111123nn nn ∞=⎛⎫-⋅++++ ⎪⎝⎭∑发散. 记1111123n U nn ⎛⎫=⋅++++ ⎪⎝⎭,则()()()()()()1222111111123111111112311111111231110n n U U n n n n n n n n n n n n n n +⎛⎫⎛⎫-=-++++- ⎪⎪+⎝⎭⎝⎭+⎛⎫=-++++ ⎪⎝⎭++⎛⎫⎛⎫-=++++ ⎪ ⎪⎝⎭+++⎝⎭>即1n n U U +> 又11111lim lim12311d n n n n U n n x n x→∞→∞⎛⎫=++++ ⎪⎝⎭=⎰ 由1111lim d lim 01t t t t x t x →+∞→+∞==⎰ 知lim 0n n U →∞=,由莱布尼茨判别法,原级数()11111123nn n n ∞=⎛⎫-⋅++++ ⎪⎝⎭∑收敛,而且是条件收敛. 2.如果级数23111111122!23!2!2nn ⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的和用前n 项的和代替,试估计其误差.()()()()()()()12121211111=1!22!211111!21!21111=11!222111=11!21211!2n n n n n n nn n n n n n n σ++++++⎛⎫⎛⎫++⎪⎪++⎝⎭⎝⎭⎛⎫⎛⎫++ ⎪ ⎪++⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎛⎫ ⎪+⎝⎭-=+<3.若2lim n n n u →∞存在,证明:级数1n n u ∞=∑收敛.221211lim =lim ,.1n n n n n n n u n u nnu ∞→∞→∞=∞=∑∑存在而收敛所以也收敛*4.证明:若21nn u∞=∑收敛,则1nn u n ∞=∑绝对收敛. 222211111110221,2.n n n n n n n n n n n n u u u n n nu u n n u un n∞∞∞===∞∞===≤+∑∑∑∑∑<而和都收敛,由比较审敛法得知收敛从而收敛,即绝对收敛习题12-41.求下列函数项级数的收敛域: (1)11x n n∞=∑;(2)()1111n xn n ∞+=-∑.2.求下列幂级数的收敛半径及收敛域: (1)2323nx x x nx +++++;(2)1!nnn n x n∞=∑; (3)21121n n x n ∞-=-∑;(4)21(1)2nn x n n∞=-⋅∑. 解:(1)因为11limlim 1n n n n a n a n ρ+→∞→∞+===,所以收敛半径11R ρ==收敛区间为(-1,1),而当x =±1时,级数变为()11nn n ∞=-∑,由lim(1)0nx nn →-≠知级数1(1)n n n ∞=-∑发散,所以级数的收敛域为(-1,1).(2)因为()()1111!11lim lim lim lim e 1!11nn n n n n n n n n a n n n a n n n n ρ-+-+→∞→∞→∞→∞⎡⎤+⎛⎫⎛⎫==⋅===+ ⎪⎢⎥ ⎪+⎝⎭+⎝⎭⎣⎦所以收敛半径1e R ρ==,收敛区间为(-e,e).当x =e 时,级数变为1e !∞=∑n n n n n,()()()()11111!11!11e e e e +++++++⎛⎫=== ⎪+⎝⎭+n n nnn n n nnn n n n u n n u n n n 11e =⎛⎫+ ⎪⎝⎭nn , 在→+∞n 的过程中,11+>n nu u ,又0>n u ,则e =x 时,常数项级数为单调递增函数,1e =u ,则lim 0→∞≠n n u ,由级数收敛的必要条件,级数的一般项不趋于零,则该级数必发散,同理在e =-x 时,()1e !∞=-∑nnn n n 变为交错级数,其中!lim e →∞n n n n n依旧不等于0,,则在e =-x 时也发散,则其收敛域为(),e e -.(3)级数缺少偶次幂项.根据比值审敛法求收敛半径.211212221lim lim 2121lim 21n n n n n nn U x n U n x n x n x ++-→∞→∞→∞-=⋅+-=⋅+= 所以当x 2<1即|x |<1时,级数收敛,x 2>1即|x |>1时,级数发散,故收敛半径R =1.当x =1时,级数变为1121n n ∞=-∑,当x =-1时,级数变为1121n n ∞=--∑,由1121lim 012n n n→∞-=>知,1121n n ∞=-∑发散,从而1121n n ∞=--∑也发散,故原级数的收敛域为(-1,1). (4)令t =x -1,则级数变为212nn t n n∞=⋅∑,因为()()2122lim lim 1211n n n n a n n a n n ρ+→∞→∞⋅===⋅++ 所以收敛半径为R =1.收敛区间为 -1<x -1<1 即0<x <2.当t =1时,级数3112n n ∞=∑收敛,当t =-1时,级数()31112nn n ∞=-⋅∑为交错级数,由莱布尼茨判别法知其收敛.所以,原级数收敛域为 0≤x ≤2,即[0,2] 3.利用幂级数的性质,求下列级数的和函数:(1)11n n nx∞-=∑;(2)2221n n x n ∞+=+∑. ()()()()1112111111111n n n n n n n n nx x x S x nx x x x x x ∞-=∞∞∞-==='''⎛⎫⎛⎫===== ⎪ ⎪-⎝⎭-⎝⎭∑∑∑∑解:()可求得函数在<时收敛,<(2)由2422221lim 23n n n x n x n x++→∞+=⋅+知,原级数当|x |<1时收敛,而当|x |=1时,原级数发散,故原级数的收敛域为(-1,1),记()2221002121n n n n x x S x x n n ++∞∞====++∑∑,易知级数21021n n x n +∞=+∑收敛域为(-1,1),记()211021n n x S x n +∞==+∑,则()212011nn S x x x ∞='==-∑, 故()1011d ln 21xx S x x x +'=-⎰ 即()()1111ln 021x S S x x+-=-,()100S =,所以()()()11ln 121x xS xS x x x x+==<-习题12-51.将下列函数展开成x 的幂级数,并求展开式成立的区间: (1)()()ln 2f x x =+; (2)()2cos f x x =; (3)()()()1ln 1f x x x =++; (4)()2x f =(5)()23f x xx =+;(6)()e e)12(x x f x -=-; 解:(1)()()ln ln 2ln 2ln 11222x x f x x ⎛⎫⎛⎫===++++ ⎪ ⎪⎝⎭⎝⎭由于()()0ln 111nnn x x n ∞==+-+∑,(-1<x ≤1)故()()11ln 11221n nn n x x n +∞+=⎛⎫=+- ⎪⎝⎭+∑,(-2≤x ≤2) 因此()()()11ln ln 22121n nn n x x n +∞+==++-+∑,(-2≤x ≤2)(2)()21cos 2cos 2xf x x +==由()()20cos 1!2nnn x x n ∞==-∑,(-∞<x <+∞)得()()()()()220042cos 211!!22n n n nn n n x x x n n ∞∞==⋅==--∑∑ 所以()()22011()cos cos 222114122!2n nn n f x x x x n ∞===+⋅=+-∑,(-∞<x <+∞) (3)f (x ) = (1+x )ln(1+x ) 由()()()1ln 111n nn x x n +∞==+-+∑,(-1≤x ≤1)所以()()()()()()()()()()()()()1120111111111111111111111111111n nn n n nn n n n n nn n n n n n n n n n x f x x n x x n n x x x n n n n x xn n x xn n +∞=++∞∞==++∞∞+==+∞+=-∞+==+-+=+--++=++--+++--=+⋅+-=++∑∑∑∑∑∑∑ (-1≤x ≤1)(4)()22f x x ==()()()21!!2111!!2n n n n x n ∞=-=+-∑ (-1≤x ≤1) 故()()()()221!!2111!!2n n n n x f x x n ∞=⎛⎫-+=- ⎪⎝⎭∑()()()()2211!!211!!2n n n n x x n ∞+=-=+-∑ (-1≤x ≤1)(5)()()()(220211131313313nn n n nn n x f x x x x x x ∞=+∞+==⋅+⎛⎫=⋅- ⎪⎝⎭=-<∑∑(6)由0e !nxn x n ∞==∑,x ∈(-∞,+∞)得()01e !n nxn x n ∞-=⋅-=∑,x ∈(-∞,+∞)所以()()()()()()0002101e e 2112!!1112!,!21x x n n n n n n n n n n f x x x n n x n x x n -∞∞==∞=+∞==-⎛⎫-=- ⎪⎝⎭=⋅⎡⎤--⎣⎦=∈-∞+∞+∑∑∑∑2.将()2132x x f x ++=展开成()4x +的幂级数.()()()()()()20100102101113212111114x+4141343333134713111114414224222212462241323nn nn n nn nn n nn n x x x x x x x x x x x x x x x x x x x x ∞=∞+=∞=∞+=∞+==-+++++⎛⎫⎛⎫==-=- ⎪ ⎪++-++⎝⎭⎝⎭-+=---+⎛+⎫⎛⎫==-=-< ⎪ ⎪++-++⎝⎭⎝⎭-+=--+=-++∑∑∑∑∑解:而<<<<<-从而()()()10110421146223nn n n n n n x x x ∞+=∞++=++⎛⎫=-+-- ⎪⎝⎭∑∑<<3.将函数()f x 1()x -的幂级数. 解:因为()()()()()211111111!2!!m nm m m m m m n x x x x x n ---+=++++++-<<所以()()[]()()()3221133333331121222222211111!2!!nf x x n x x x n ==+-⎛⎫⎛⎫⎛⎫⎛⎫----+ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭=+++++---(-1<x -1<1)即()()()()()()()()()()()()()2323133131313251111111222!23!2!3152111022!nnn nn n f x x x x x n n x x n ∞=⋅⋅⋅⋅⋅⋅--+--=+++++----⋅⋅⋅⋅⋅⋅--=+-<<⋅∑4.利用函数的幂级数展开式,求下列各数的近似值: (1) ln3(误差不超过10.000); (2) cos2︒(误差不超过10.000).解:(1)35211ln 213521n x x x x x x n -+⎛⎫=+++++ ⎪--⎝⎭,x ∈(-1,1) 令131x x +=-,可得()11,12x =∈-, 故()35211111112ln3ln 212325222112n n -+⎡⎤+++++==⎢⎥⋅⋅⋅-⎣⎦- 又()()()()()()()()()()2123212121232521242122112222123222212112222123252111222212112211413221n n n n n n n n n n n r n n n n n n n n n n +++++++++-⎡⎤++=⎢⎥⋅⋅++⎣⎦⎡⎤⋅⋅++=+++⎢⎥⋅⋅+++⎣⎦⎛⎫<+++ ⎪⎝⎭+=⋅+-=+故5810.000123112r <≈⨯⨯61010.000033132r <≈⨯⨯. 因而取n =6则35111111ln32 1.098623252112⎛⎫=≈++++⎪⋅⋅⋅⎝⎭(2)()()2420ππππ909090cos 2cos 11902!4!!2nn n ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭==-+-++-∵24π906102!-⎛⎫ ⎪⎝⎭≈⨯;48π90104!-⎛⎫⎪⎝⎭≈ 故2π90cos 2110.00060.99942!⎛⎫ ⎪⎝⎭≈-≈-≈ 5.将函数()d 0arctan x tF x t t=⎰展开成x 的幂级数. 解:由于()21arctan 121n nn t t n +∞==-+∑所以()()()()()20002212000arctan d d 121d 112121n xx nn n n xnnn n t t F t tx t n t x t n n ∞=+∞∞====-+==--++∑⎰⎰∑∑⎰(|x |≤1)6.求下列级数的和函数: (1) 2121n n x n ∞+=+∑;(2)10(1)!n n nx n ∞-=-∑(提示:应用e x 的幂级数展开式);解:(1)可求得原级数的收敛半径R =1,且当|x |=1时,原级数发散.记()21021n n x S x n +∞==+∑则()22011n n S x x x∞='==-∑ ()200111d d ln 121xxx S x x x x x +'==--⎰⎰,即()()11ln 021xS S x x+-=-,S (0)=0 所以()11ln 21xS x x+=-,(|x |<1)(2)由()11!lim lim 0!1n n n n n a n n a n +→∞→∞+==-知收敛域为(-∞,+∞).记()()11!1n n n S x x n ∞-==-∑则()()()111d e !!11nn xx n n x x S x x x x n n -∞∞=====--∑∑⎰,所以()()()e 1e x x S x x x '==+,(-∞<x <+∞)7.试用幂级数解法求下列微分方程的解:222(1)0;(2)0;(3)1;(4)(1);(5)(1)2.y x y y xy y y xy x x y x y x y x x y '''''-=++=''--=-=-'+=-+()()()()()()()()()1220120220120223405121,,11212021=210320435421nn n nn n n n n n n n nnn n n n nnn n n n n n y a x y na xy n n a xn n a x n n a x xa xn n a x a x a a a a a a n n a a ∞∞∞∞--+====∞∞+==∞∞+-==+-'''===-=++++-=++====++=∑∑∑∑∑∑∑∑解:()设则代入原方程得即比较同次幂系数,得一般地()()()()222001423456785801910111291134243042,3,210,,,0,3445783478,0,894589111234781112,12134589121303478414n n k k k n a a n n a a a a a a a a a a a a a a a a a a a a a a a a a a k k-+++==++===================-即所以有所以()()()14145121481221,2,1,2,4589441134347834781112145458945891213k k a a k k k x x x y C x x x C x +===+⎛⎫=++++⎪⋅⋅⋅⋅⋅⋅⋅⋅⋅⎝⎭⎛⎫+++++⎪⋅⋅⋅⋅⋅⋅⋅⋅⋅⎝⎭因此是方程的解()()()()()()()()()212120222220210211021100,1,2,10,1,2,2111122222n n n n n n n n n n n n nn n n n n n n k k y a x a n n xx a nxa x n n a n a x n n a n a n a a n n a a a k k k ∞=∞∞∞--===∞+=++-=-++=++++=⎡⎤⎣⎦++++===-=+⎛⎫⎛⎫⎛⎫=-=---= ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭∑∑∑∑∑()设为该方程的解,代入该方程得即故即从而()()()()01212112242000021351111!2111112121213135211111!22!2!211313513521kk k k nnk k a k a a a a k k k k a a a y a x x x n a a x a x x k +-+⎛⎫- ⎪⎝⎭⎛⎫⎛⎫⎛⎫=-=---=- ⎪⎪ ⎪++-⋅⋅+⎝⎭⎝⎭⎝⎭⎡⎤⎛⎫⎛⎫⎛⎫=+-+-++-++⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦⎡-+++-+⎢⋅⋅⋅⋅⋅-⎣因而()()()()()()22222202135135212011221211111!22!2!2111131351352111313513521121!!n k k x n nn x x x x a n x a x x x k x x x a e a x k y C eC x n ++-+-⎤⎥⎦⎡⎤⎛⎫⎛⎫⎛⎫=+-+-++-+⎢⎥⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎡⎤+-+++-+⎢⎥+⎣⎦⎡⎤=+-+-+-+⎢⎥+⎣⎦-=+-故原方程的通解为11n n ∞-=∑()()()101110111120210001234567213,=,112120111111,,,,,,23243524611,,3571nn n n n n n n nn n n n nn n n y a a x y na x na xx a a x x a a a x a n a x a a a a a a a a a a a ∞∞-==∞∞-==∞++=-'=+⎛⎫-+-= ⎪⎝⎭-+--+-++=⎡⎤⎣⎦+++======⋅⋅⋅⋅==⋅⋅⋅∑∑∑∑∑()设方程的解为从而代入方程得即因而()()()()()()023521242000023521222001,352124621113!!5!!21!!24!!2!!111113!!5!!21!!22!!2!!2n n n n n a a n n a a a x x x y a x x x x n n x x x x x x a x a n n --+=⋅-⋅⋅⎡⎤⎡⎤+++=+++++++++++⎢⎥⎢⎥-⎣⎦⎣⎦⎡⎡⎤⎛⎫⎛⎫⎛⎫=++++++++-++++++⎢⎥ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎣⎦因此()()()()()()()222321200032120212113!!21!!113!!21!!121!!x n x n x n x x a a a e x n x x a e x n x y Ce n ---⎤⎢⎥⎢⎥⎣⎦⎡⎤=-+++++++⎢⎥-⎣⎦⎡⎤=++-++++⎢⎥-⎣⎦=+-+-故方程的通解为()()()()()()01210210102321102311110,20,3=1,11041,0,,32234521123431n n n n nn n n n n n n n n n n n y a x x na xx a x n a n a x x a a a a a n a n a n a a a a n n n n n a a n n n n n y C ∞=∞∞-==∞+=+-=-=-++-=⎡⎤⎣⎦+==-+--=≥=-==-----==---=∑∑∑∑(4)令是该方程的解,代入该方程得即比较系数得以及故因而()()3412.31n n x x x n n ∞=-++-∑是方程的解()()()()10112011121101102231102315,=,2120,22,3111032,1,311nn n n n n n n n nnn n n n n n n n n n n n y a x y na x na x na xa a x x xna n a a x a a x xa a a a a n a n a n a a a a n a n ∞∞-==∞∞∞-===∞+=++'=+--=-++-+-=-⎡⎤⎣⎦-==-+=-++=≥==-=-=-+∑∑∑∑∑∑()设方程的解为则代入方程得即比较系数得从而()()()()()()()()()()()1344331234121242114641131141412411.31n n n n n n n n n n n n n a a a n n n n a n n n n n a n n n y C x x x x n n ----∞-=-----⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=--==--- ⎪⎪ ⎪⎪⎪++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭=-=-≥++=-≥-=+-++--∑即因而原方程的通解为8. 试用幂级数解法求下列方程满足所所给定初始条件的解:2222(1)(2)2(1)20,(0)(1)1;(2),(0)0;(3)cos 0,(0),(0)0.x x y x y y y y dyx y y dx d xx t x a x dt '''-+-+====+='+===()()()()12122212121,,12121201.nn n n n n n n n n n n n n n n n n y a x y na xy n n a x xx n n a x x na x a x y x x ∞∞∞--===∞∞∞--==='''===---+-+==-+∑∑∑∑∑∑()设则代入原方程得比较同次项系数,由初始条件可得方程的解为()1001211125,,00,0..11220nn n n n n n n n n n n y a x y na x y a na x a x xy x x ∞∞-==∞∞-=='====⎛⎫-= ⎪⎝⎭=++∑∑∑∑(2)设则由得代入原方程得比较同次幂系数得方程的解为()()()()21220120123423456246230123232345(3),,10,00,,0232435465102!4!6!23243546nn n n n n n n n dx d x x a t na t n n a t dt dt x a x a a a a a t a t a t a t t t t a a t a t a t a a t a t a t ∞∞∞--======-'====+⋅+⋅+⋅+⋅+⎛⎫+++++-+-+= ⎪⎝⎭++++∑∑∑设则由初始条件所以代入原方程得即4602240012123420310421530264010213024502!2!2!4!203204302!5402!6502!4!,0,220322!434!a t a a a a a a t a t a t a t a a a a a a a aa a aa a a a a a a a a aa a a a a a ++⎛⎫⎛⎫⎛⎫++-+-+-++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭+=⋅+=⋅+-=⋅+-=⋅+-+====-=-=-=⋅-+==⋅比较系数得又得到1350024246867824682!0549552!4!2!4!6,0,,656!878!1295512!4!6!8!a a a a a a a a a a a a a t x a t t t t -+==⋅-+--+-+==-===⋅⋅⎛⎫=-+-+- ⎪⎝⎭所以习题12-61.设()f x 是周期为π2的周期函数,它在(,ππ-⎤⎦上的表达式为ππ. 32,0,(),0x f x x x -<≤⎧⎪=⎨<≤⎪⎩试问()f x 的傅里叶级数在πx =-处收敛于何值?解:所给函数满足狄利克雷定理的条件,x =-π是它的间断点,在x =-π处,f (x )的傅里叶级数收敛于()()[]()33ππ11π22π222f f -+-+-=+=+ 2.写出函数ππ. 21,0,(),0x f x x x --<≤⎧⎪=⎨<≤⎪⎩的傅里叶级数的和函数.解:f (x )满足狄利克雷定理的条件,根据狄利克雷定理,在连续点处级数收敛于f (x ),在间断点x =0,x =±π处,分别收敛于()()00122f f -++=-,()()2πππ122f f -++-=,()()2πππ122f f -+-+--=,综上所述和函数.()221π00π102π1π2x x x S x x x --<<⎧⎪<<⎪⎪=-=⎨⎪⎪-=±⎪⎩3. 写出下列以π2为周期的周期函数的傅里叶级数,其中()f x 在),ππ-⎡⎣上的表达式为: (1)π,0π4()π,π04x f x x ⎧≤<⎪=⎨⎪--≤<⎩ ;(2)()2()f x x πx π=-≤<;(3)ππ,π22ππ(),22ππ,π22x f x x x x ⎧--≤<-⎪⎪⎪=-≤<⎨⎪⎪≤<⎪⎩ ; (4)()ππcos ()2f x x x=-≤≤. 解:(1)函数f (x )满足狄利克雷定理的条件,x =n π,n ∈z 是其间断点,在间断占处f (x )的傅里叶级数收敛于()()ππ0044022f f +-⎛⎫+- ⎪+⎝⎭==,在x ≠n π,有()π0π-ππ011π1πcos d cos d cos d 0ππ4π4n a f x nx x nx x nx x -⎛⎫==-+= ⎪⎝⎭⎰⎰⎰()π0π-ππ011π1πsin d sin d sin d ππ4π40,2,4,6,,1,1,3,5,.n b f x nx x nx x nx x n n n-⎛⎫==-+ ⎪⎝⎭=⎧⎪=⎨=⎪⎩⎰⎰⎰于是f (x )的傅里叶级数展开式为()()11sin 2121n f x n x n ∞==--∑(x ≠n π)(2)函数f (x )在(-∞,+∞)上连续,故其傅里叶级数在(-∞,+∞)上收敛于f (x ),注意到f (x )为偶函数,从而f (x )cos nx 为偶函数,f (x )sin nx 为奇函数,于是()π-π1sin d 0πn b f x nx x ==⎰,2π20-π12πd π3a x x ==⎰, ()()ππ22-π0124cos d cos d 1ππnn a f x nx x x nx x n===-⋅⎰⎰ (n =1,2,…) 所以,f (x )的傅里叶级数展开式为:()()221π41cos 3nn f x nx n∞==+-⋅∑ (-∞<x <∞)(3)函数在x =(2n +1)π (n ∈z )处间断,在间断点处,级数收敛于0,当x ≠(2n +1)π时,由f (x )为奇函数,有a n =0,(n =0,1,2,…)()()()πππ2π002222πsin d sin d sin d ππ212π1sin 1,2,π2n nb f x nx x x nx x nx x n n n n ⎡⎤==+⎢⎥⎣⎦=--+=⎰⎰⎰ 所以()()12112π1sin sin π2n n n f x nx n n ∞+=⎡⎤=-⋅+⎢⎥⎣⎦∑ (x ≠(2n +1)π,n ∈z )(4)因为()cos2xf x =作为以2π为周期的函数时,处处连续,故其傅里叶级数收敛于f (x ),注意到f (x )为偶函数,有b n =0(n =1,2,…),()()ππ-π0π0π1212cos cos d cos cos d π2π2111cos cos d π2211sin sin 12211π224110,1,2,π41n n x xa nx x nx xn x n x x n x n x n n n n +==⎡⎤⎛⎫⎛⎫=++- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦⎡⎤⎛⎫⎛⎫+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎢⎥=+⎢⎥+-⎢⎥⎣⎦⎛⎫=-= ⎪-⎝⎭⎰⎰⎰所以f (x )的傅里叶级数展开式为:()()12124cos 1ππ41n n nxf x n ∞+==+--∑ x ∈[-π,π] 4. 将下列函数()f x 展开为傅里叶级数: (1)()πππ(2)4x xf x =-<<-;(2)()π2sin (0)f x xx =≤≤.解:(1) ()ππ0-ππ11ππcos d d ππ422x a f x nx x x -⎛⎫==-= ⎪⎝⎭⎰⎰ []()ππππ-π-πππ1π11cos d cos d x cos d π4242π1sin 001,2,4n x a nx x nx x nx xnx n n--⎛⎫=-=- ⎪⎝⎭=-==⎰⎰⎰()ππππ-π-π1π11sin d sin d xsin d π4242π11n n x b nx x nx x nx x n-⎛⎫=-=- ⎪⎝⎭=-⋅⎰⎰⎰故()()1πsin 14n n nxf x n∞==+-∑ (-π<x <π)(2)所给函数拓广为周期函数时处处连续, 因此其傅里叶级数在[0,2π]上收敛于f (x ),注意到f (x )为偶函数,有b n =0,()ππ0πππ011cos0d sin d ππ24sin d ππa f x x x x x x x --====⎰⎰⎰()()()()()()ππ0ππ02222cos d sin cos d ππ1sin 1sin 1d π211π10,1,3,5,4,2,4,6,π1n na f x nx x x nx xn x n x x n n n n -===+--⎡⎤⎣⎦-⎡⎤=+-⎣⎦-=⎧⎪-=⎨=⎪-⎩⎰⎰⎰所以()()2124cos2ππ41n nxf x n ∞=-=+-∑ (0≤x ≤2π) 5. 设()π1(0)f x x x =+≤≤,试分别将()f x 展开为正弦级数和余弦级数. 解:将f (x )作奇延拓,则有a n =0 (n =0,1,2,…)()()()()ππ0022sin d 1sin d ππ111π2πn nb f x nx x x nx x n==+--+=⋅⎰⎰从而()()()1111π2sin πnn f x nx n∞=--+=∑ (0<x <π)若将f (x )作偶延拓,则有b n =0 (n =1,2,…)()()ππ00222cos d 1cos d ππ0,2,4,64,1,3,5,πn a f x nx x x nx x n n n ==+=⎧⎪=-⎨=⎪⎩⎰⎰()()ππ0π012d 1d π2ππa f x x x x -==+=+⎰⎰从而()()()21cos 21π242π21n n xf x n ∞=-+=--∑ (0≤x ≤π) 6. 将()211()f x xx =+-≤≤展开成以2为周期的傅里叶级数,并由此求级数211n n∞=∑的和.解:f (x )在(-∞,+∞)内连续,其傅里叶级数处处收敛,由f (x )是偶函数,故b n =0,(n =1,2,…)()()1101d 22d 5a f x x x x -==+=⎰⎰()()()1112cos d 22cos d 0,2,4,64,1,3,5,πn a f x nx x x nx xn n n -==+=⎧⎪-=⎨=⎪⎩⎰⎰所以()()()221cos 21π542π21n n xf x n ∞=-=--∑,x ∈[-1,1]取x =0得,()2211π821n n ∞==-∑,故 ()()22222111111111π48212n n n n n n n n ∞∞∞∞=====+=+-∑∑∑∑ 所以211π6n n ∞==∑ 7. 将函数()12(0)f x x x =-≤≤展开成周期为4的余弦级数.解:将f (x )作偶延拓,作周期延拓后函数在(-∞,+∞)上连续,则有b n =0 (n =1,2,3,…)()()220201d 1d 02a f x x x x -==-=⎰⎰ ()()()222022221ππcos d 1cos d 2224[11]π0,2,4,6,8,1,3,5,πn nn x n xa f x x x xn n n n -==-=--=⎧⎪=⎨-=⎪⎩⎰⎰ 故()()()22121π81cos π221n n x f x n ∞=-=-⋅-∑(0≤x ≤2)8. 设11,02()122,2x x f x x x ⎧≤≤⎪=⎨⎪-<<⎩,()01cos π,2n n a a n x s x x ∞==-∞<∞+<+∑,其中πd 102()cos n a f x n x x =⎰,求()52s -.解:先对f (x )作偶延拓到[-1,1],再以2为周期延拓到(-∞,+∞)将f (x )展开成余弦级数而得到 s (x ),延拓后f (x )在52x =-处间断,所以515511122222221131224s f f f f +-+-⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-=-+-=-+-⎢⎥⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎛⎫=+= ⎪⎝⎭9.设函数()21(0)f x x x =≤<,而()1sin π,n n n x b s x x ∞==-∞<<+∞∑,其中()πd 1,2,3,102()sin n f x n x xb n ==⎰.求()12s-.解:先对f (x )作奇延拓到,[-1,1],再以2为周期延拓到(-∞,+∞),并将f (x )展开成正弦级数得到s (x ),延拓后f (x )在12x =-处连续,故. 211112224s f ⎛⎫⎛⎫⎛⎫-=--=--=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 10. 将下列各周期函数展开成为傅里叶级数,它们在一个周期内的表达式分别为: (1)()2111 22f x x x ⎛⎫=--≤< ⎪⎝⎭ ;(2) 3. 21,30,()1,0x x f x x +-≤≤⎧=⎨≤<⎩解:(1) f (x )在(-∞,+∞)上连续,故其傅里叶级数在每一点都收敛于f (x ),由于f (x )为偶函数,有b n =0 (n =1,2,3,…)()()112221002112d 41d 6a f x x x x -==-=⎰⎰, ()()()()112221021222cos2n πd 41cos2n πd 11,2,πn n a f x x x x x xn n -+==--==⎰⎰所以()()12211111cos 2π12πn n f x n x n +∞=-=+∑(-∞<x <+∞)(2) ()()303033011d 21d d 133a f x x x x x --⎡⎤==++=-⎢⎥⎣⎦⎰⎰⎰, ()()()()330330221πcos d 331π1π21cos d cos d 3333611,1,2,3,πn nn xa f x xn x n x x x x n n --==++⎡⎤=--=⎣⎦⎰⎰⎰()()()()33033011πsin d 331π1π21sin d sin d 333361,1,2,πn n n xb f x x n x n x x x x n n --+==++=-=⎰⎰⎰而函数f (x )在x =3(2k +1),k =0,±1,±2,…处间断,故()()()122116π6π11cos 1sin 2π3π3n n n n x n x f x n n ∞+=⎧⎫⎡⎤=-+--+-⎨⎬⎣⎦⎩⎭∑ (x≠3(2k +1),k =0,±1,±2,…)习题十二1. 填空题:(1)级数1211()1n n n ∞=+∑的敛散性是 发散(2)级数1()21nn n n ∞=-∑的敛散性是 收敛 (3)已知幂级数级数级数1(2)04nn n a x x x ∞=+==-∑在处收敛,在处发散,则幂级数1(3)nn n a x ∞=-∑的处收敛域为 (1,5](4) 设函数()1()f x x x ππ=+-<<的傅里叶级数的和函数为(),(5)S x S π则等于 1(5)设函数2()(0)f x x x π=≤≤的正弦函数1sin nn bnx ∞=∑的和函数(),(,2)()S x S x ππ∈=则当x 时, 2(2)x π--2. 选择题:(1) 正项级数1nn a∞=∑收敛的充分条件是( C )。
练习册(答案)-高数II下(12-13-2)-(9)
![练习册(答案)-高数II下(12-13-2)-(9)](https://img.taocdn.com/s3/m/49c29948a76e58fafab00395.png)
高等数学II 练习题________学院_______专业 班级 姓名______ ____学号_______定积分计算1、由定积分的几何意义求 0⎰的值。
2、已知221,||2()1,24x x f x x x +≤⎧=⎨+<≤⎩,且340()3k f x dx =⎰,求k 的值。
3、226cos udu ππ⎰4、0π⎰5、1⎰6、0ax ⎰7、21ln x xdx ⎰8、32(21)cos x x xdx ππ-++⎰高等数学II 练习题________学院_______专业 班级 姓名______ ____学号_______反常积分、定积分应用(一)1、求无穷限积分0ax e dx +∞-⎰(0>a )。
2、求瑕积分21⎰。
3、求由曲线22y x =与4x y +=所围成图形的面积。
4、求由曲线1=xy 和直线x y =,2=x 所围成的平面图形的面积。
22232244282244(4)d (4)18226x x y x y y x y y y y S y y y --==⎧=⎧⎧⇒⎨⎨⎨==-+=⎩⎩⎩∴=--=--=⎰解:或是两交点0111d(-)ax axe ax e a aa+∞--+∞=-=-=⎰22112310001,d 2d 1021(1)182d 2(1)d 2()33t x t x t t x t x t t t t t t t t t ==+=→→==+=⋅=+=+=⎰⎰解:令当时,,当时,原式5、抛物线342-+-=x x y 与其在点)3,0(-和)0,3(处的切线所围成的图形的面积。
6、设椭圆的参数方程为2cos ,x t y t ==,求椭圆的面积。
7、在]1,0[上给定函数2x y =,问t 取何值时,右图中曲边三角形OACO 与ADBA 的面积之和最小?何时最大?2223312200322(22()(1(3341331()42,()0,021[0,]()021[,1]()021112(0),(),(1)32431t tt OACO ADBA A t A t y y y y y t t A t t t A t t t t A t t A t A A A t ∴=+=+-=-+''∴=-=∴=='∈<'∈>====⎰⎰解:设曲边三角形和的面积之和为令或当时,,函数单调减少当时,,函数单调增加所以当时,12t =面积之和最大,当时,面积之和最小。
高数 下 典型习题及参考答案 第8、9、10、11、12章习题及答案
![高数 下 典型习题及参考答案 第8、9、10、11、12章习题及答案](https://img.taocdn.com/s3/m/28209eebaeaad1f346933ffc.png)
4 f (x, y)dy
x2
0
0
0
C、
4
y
∫0 dy∫0
f
(x,
y )dx
D、
4
∫0 dy∫0
y
f
(x,
y)dx
2、设 Ω 是由 x = 0, x = 1, y = 0, y = 1, z = 0, z = 1所围成的区域,则 ∫∫∫ xyzdxdydz =
Ω
3、旋转抛物面 z = x 2 + y 2 在 0 ≤ z ≤ 2 那部分的曲面面积 S=( ) 2
−a
a2 −x2
0
−a
28、设 D 由 x 轴和 y = sin x, x ∈ [0,π ]所围成,则积分 ∫∫ dσ = D
29、设 Ω :
0
≤
x
≤
1,0
≤
y
≤ 1,0
≤
z
≤
K
,且
∫∫∫
xdxdydz =
1 4
,则
K
=
Ω
二、解答题
( ) ( ) 1、计算三重积分 ∫∫∫ x2 + y 2 dv ,其中Ω是由曲面 2 x2 + y 2 = z 与平面 z = 4所围成的区域。
Ω
∫ ∫ ∫ ∫ ∫ ∫ ( ) 正确的(
)A、
2π
dθ
a
1
dr
r 3dz
B、
2π
dθ
a
dr
1
r
r2
+
z2
dz
0
0
0
0
0
0
∫ ∫ ∫ ∫ ∫ ∫ ( ) C、
2π
高等数学同济第七版第十二章课后习题答案
![高等数学同济第七版第十二章课后习题答案](https://img.taocdn.com/s3/m/2497345fc77da26924c5b034.png)
…I I
半径为 I,收敛区间为(-1 J).
(4)lim %" = lim —= 0 ,故收敛半在为+8,收敛区间是(-8 , ♦ 8 ). …14 | …2 (门♦ I)
第十二童无穷级数
221
由此可知.对任意给定的正数£ .取正整数 A m 岫十,当〃 >投时,对一切正整数 p, 都有 S--
力 < £ ,按柯西收敛原理.该级数收敛•
(4)本题与(2)类同.因 4 =丁\ + (
故对 3/1 ♦ 1 \3n +2 3n + 3) 3〃 ♦ I An
% = + .不论/!取什么正整数.取 p = 〃时.就有 1〃.,・h1 =%八+U..2 ।…+
219
解(D 此级数为公比 g =-5 的等比级数.因|°| < 1 ,故该级数收敛.
(2)此级数的部分和
即该级数发散.
lim sA = + oc , 冬■一
(3)此级数的一股项% =*,有 要条 忖% = lim(y), = 1 ,不满足级数收敛的必
件,故该级数发散. (4)此级数为公比 4 二方的等比级数,因|q| > 1 ,故该级数发散. (5)此级数的一般项% =3.二注意到与£ 上分别是公比”;
•
・a
散,故各项乘;志的级数 Ej 也发放,由比较审敛法知原级数 s 二二■? 发散.
1 解法二 因=1,而 y 1 发故.故由极限形式的比较审敛法知原 … I 2 1n
级数发散 (2) u = Lt: >二而 f L 发散.由比较审敛法知原级数 ・
1 > n2 n n2 n Sf”
222
一• 《高等数学》(第七版)下册习咫全解
高等数学第12章课后习题答案(科学出版社).
![高等数学第12章课后习题答案(科学出版社).](https://img.taocdn.com/s3/m/59b840c928ea81c758f5785c.png)
习题 12.11. 判断下列方程是几阶微分方程:;)1(2y x dxdy +=;042)2(2=+-⎪⎭⎫⎝⎛x dx dy dx dy x;052)3(322=+⎪⎭⎫⎝⎛-xy dx dy dx y d x 2334(4)2()1xy x y x y x '''++=+.解 (1)是一阶线性微分方程; (2)是一阶非线性微分方程; (3)是二阶非线性微分方程; (4)是二阶非线性微分方程.2. 指出下列各题中的函数是否为所给微分方程的解:(1)2xy y '=,25y x =; (2)0y y ''+=,3sin 4cos y x x =-; (3)20y y y '''-+=,2e x y x =; (4)2()0xy x y yy ''''++=,y x =. 解 (1)是; (2)是; (3)不是; (4)不是二阶非线性微分方程.3. 验证函数x C x y sin )(2+=(C 为任意常数)是方程0sin 2cot =--x x x y dxdy的通解, 并求满足初始条件0|2==πx y 的特解.解 要验证一个函数是否是方程的通解,只要将函数代入方程,看是否恒等,再看函数式中所含的独立的任意常数的个数是否与方程的阶数相同.将x C x y sin )(2+=求一阶导数,得dxdy,cos )(sin 22x C x x x ++= 把y 和dxdy代入方程左边得 x x x y dxdysin 2cot --x x x x C x x C x x x sin 2cot sin )(cos )(sin 222-+-++=.0≡ 因方程两边恒等,且y 中含有一个任意常数,故x C x y sin )(2+=是题设方程的通解. 将初始条件02==πx y 代入通解x C x y sin )(2+=中,得C +=402π .42π-=C 从而所求特解为 .s i n422x x y ⎪⎪⎭⎫⎝⎛-=π 4.写出由下列条件确定的曲线所满足的微分方程.(1) 一曲线通过原点,并且它在(,)x y 处的切线斜率等于2x y +; (2) 一曲线通过点(2,3),它在两坐标轴间的任一切线段均被切点所平分.解:由题意,2y x y '=+,00x y==解:设该曲线的方程为()y f x =,(,)x y 为其上任意一点,该点处的切线斜率为y ',过该点的切线方程为()Y y y X x '-=-。
高等数学科学出版社下册课后答案第十二章 微分方程 习题简答
![高等数学科学出版社下册课后答案第十二章 微分方程 习题简答](https://img.taocdn.com/s3/m/7592b3db195f312b3169a59e.png)
习题 12.11. (1) 是一阶线性微分方程; (2) 是一阶非线性微分方程; (3) 是二阶非线性微分方程; (4)是二阶非线性微分方程.2. (1) 是; (2)是; (3)不是; (4)不是二阶非线性微分方程.3. 验证略,所求特解为 .s i n422x x y ⎪⎪⎭⎫⎝⎛-=π 4.(1) 2y x y '=+,00x y==(2)xy y '-=以及初值条件23x y ==。
习 题 12-21.( 1) C x y =+-1010; (2); C x y +=a r c s i n a r c s i n (3) C e e y x =-+)1)(1(; (4) C x y +-=sin 1C x a a y+--=)1ln(1;2.(1) 2)(arctan 21x y =; (2)0)cos 2(cos =-y x ; (3) )4(412--=x y ; (4) y e xcos 221=+;(5) 0322=+-y y x ; (6) )2(ln 222+=x x y ; 3. (物体冷却的数学模型))20(--=T k dtdT. 4. ).310107(265.45335h h gt +-⨯=π5. 6分钟后,车间内2CO 的百分比降低到%.056.0习题12-31. (1) x C x y sin e )(-+=;(2) x x C y 2cos 2cos -=;(3) 1sin esin -+=-t C s t; (4) 2e 2x C y -+=; (5) )2()2(3-+-=x C x y ;(6))||(ln 12C y yx +=2. (1) 412e e 22++-=x y xx; (2) 11332e 2--=x x x y ; (3) x x y sec =; (4) )cos 1(1x xy --π=; (5) 1e5sin cos =+xx y ; (6).ln 1ln 21⎪⎭⎫ ⎝⎛+=x x y 3.⎰-=dx dx d e y ϕ⎥⎥⎦⎤⎢⎢⎣⎡+⎰⎰C dx e dxd x dx dx d ϕϕϕ)(⎰+=-])([)()(C d e x e x x ϕϕϕϕ.1)()(x Ce x ϕϕ-+-= 4. ,62320⎪⎪⎭⎫⎝⎛-=T t t m F x .0T t ≤≤5 ..224⎪⎭⎫⎝⎛+=C x x y 6. yx ⎥⎦⎤⎢⎣⎡-2)(l n 2x a C .1= 习题12-41. (1) Cxy x =-331; (2) x sin y +y cos x =C ; (3) xe y -y 2=C ;(4) .132C yx y =+- (5)不是全微分方程;(6) 不是全微分方程.2. (1) y x +1, x -y =ln(x +y )+C ; (2) 21y , C x y x =+22.(3) 21y , Cxy y x =--3122; (4) 221y x +为, x 2+y 2=Ce 2x ; (5) 21x , x ln x +y 2=Cx ; (6) 2y x , 032=-x y x .3. (1)2212yx e Cy x =; (2) C y y x y x =++||ln 3113322.4. (1)21ln 2x C x y +-=; (2) x C x x y cos 1tan ++=. 习 题12-51、(1)21c x c e y x ++=(2)21212x y x x c e c =--++(3)12ln y C x C =+ (4)12arcsin()xy c e c =+(5).3231C x x C y +⎪⎪⎭⎫ ⎝⎛+=(6)221121()c y c x c -=+ 2、(1).4521cos 412-++=x x e y x (2) .133++=x x y (3)x y 11+= (4)11y x=-(5) ).4tan(π+=x y3、 .212+=x y 4、2)1()(-=x x f5 、.2⎪⎪⎭⎫ ⎝⎛+==-a xa x e e a a x ach y 这曲线叫做悬链线.习题12-61. (1) 线性相关(2) 线性无关(3) 线性无关(4) 线性无关2. 略.3. (1) y x x x x e C e C e xe -+++=2202x x x e C e C xe -++=221,其中.101C C += (2) ;22x x xe e y y y -=-'-''(3) .342x x x xe e e y ++=- 4. .33221x C x C y ++=习题12-71.(1) y =C 1e -x+C 2e-2x;(2)=C 1e 0x +C 2e-2/3x=C 1+C 2e-2/3x ;(3) y =C 1cos2x +C 2sin2x .(4)x =(C 1+C 2t) e 5t/2;(5) .321x x e C e C y +=-(6).)(221x e x C C y -+=(7)).2sin 2cos (21x C x C e y x +=-(8))3sin 3cos (212x C x C e y x +=.(9) y =C 1cosx +C 2sinx +C 3e x +C 4e -x;(10)).2sin 2cos (4321x C x C e x C C y x +++=(11)w ⎪⎪⎭⎫⎝⎛+=x C x C ex 2sin 2cos 212βββ.2sin 2cos 432⎪⎪⎭⎫⎝⎛++-x C x C ex βββ(12) .sin )(cos )(54321x x C C x x C C C y ++++= (13) x x xxe C e C e C eC y --+++=432221.sin cos 65x C x C ++(14) y =C 1+C 2x +(C 3+C 4x)e x. 2. ϕ(x)=1/2(cosx +sinx +e x).3. ,04852)4(=+'-''+'''-y y y y y .2sin 2cos )(4321x C x C e x C C y x +++=4.略.习题12-81. (1) ;30*x e b y =(2) ;)(210*x e b x b x y -+=(3) .)(21202*x e b x b x b x y -++=(4) *(c o s 2s i n 2).xy x e a xb x =+2.(1).31*+-=x y (2)*y **21y y +=.3)221(22++-=x e x x x 3. (1) .)121(2221x x x e x x e C e C y -++=(2) y .21s i n c o s 21x e x x C x C +++=(3) y *y Y +=.81)(2321x x e e x C x C C +++=-(4) .cos 2sin cos 21x x x C x C y -+=(5).2sin 942cos 31sin cos 21x x x x C x C y +-+=4. y =-1/16 sin2x +1/8 x(1+sin2x) 5..32cos cos 3sin )(++-=x x x x y 6. .221x x x xe e C e C y ++=7.y .1)(ln ln 321xx x C C -++=8. y .2123321x x C x C C -++= 9. .)1(41)1()1ln(2141x x x y +++⎥⎦⎤⎢⎣⎡++-=本章复习题A1.(1)二;(2);(3)ln(ln )xy x x e=+;(4)''2'50y y y -+=;(5)2()x Ax B x e -+. 2. (1) A (2) (A)(3)(C )(4) (B )(5)(C ) 3. (1));(12x x e Ce xy +=(2)3221Cy y x += (3)C x xy +=2;(4)x Ce x y tan 1tan -+-=(5)13423++=x Cx y (6)22)1(1-=-x C y (7)31)1(tan x e C y -=- (8)221ln xCx y +-=(9)C x e x x +=+2)1(;(10)C xy x =-4. (1)322142224181C x C x C x e y x +++-=; (2)2212C x C e xe y x x ++-= (3)21|)cos(|ln C C x y ++-= (4))sin cos (e 212x C x C y x+=x x x2cos e 412-5. (1))1(ln 222+=x x y (2))2sin 22(cos x x e y x +=- (3)x x x y 2sin 31sin 31cos +--= (4)2135672--+=-x e e y x x . 6. 2231()()4f x x x=- 7. 可知当敌舰行245个单位距离时,将被鱼雷击中。
高等数学(经济类)课后习题及答案第十二章 微分方程答案
![高等数学(经济类)课后习题及答案第十二章 微分方程答案](https://img.taocdn.com/s3/m/87d7a4cd5a8102d277a22faa.png)
习题12—1(A )1. 指出下列各微分方程的阶数:(1)y y x 3='; (2)0d 2d )(3=--y x x x y ; (3)y y x y x '='+''+2)2(; (4)22()yy y y ''''''=-;(5)(5)(3)242cos y yy y x ''+-+=; (6)232d d 2d d P P tt t t+=; (7)0222)4(=+'-''+'''-y y y y y;答案:(1)一阶;(2)一阶;(3)二阶;(4)三阶;(5)五阶;(6)二阶;(7)四阶. 2. 验证下列各函数是否为所给微分方程的解. 如果是解,请指出是通解,还是特解?(1)函数3y x =,微分方程y y x 3=';(2)函数sin 3y C x =,微分方程90y y ''+=;(3)由C x y xy =++22确定的函数)(x y y =,微分方程(1)()0y dx x y dy +++=; (4)函数xy λe =(其中λ是给定的实数),微分方程0=+'''y y .解:(1)因为23y x '=,左式233=xy x x y '==⋅=右式,所以函数3y x =是微分方程y y x 3='解.又因为函数3y x =不包含任意常数,所以是特解.(2)因为9sin39y C x y ''=-=-,即90y y ''+=,所以函数sin 3y C x =是微分方程90y y ''+=解,但是由于sin 3y C x =中只有一个任意常数,又因为微分方程是二阶的,所以sin 3y C x =既不是微分方程90y y ''+=的通解,也不是特解,只是解.(3)等式C x y xy =++22两边同时对x 求导,有d d 10d d y y y x y x x+++=,整理得(1)()0y dx x y dy +++=,所以由C x y xy =++22确定的函数)(x y y =是(1)()0y dx x y dy +++=的解,又C x y xy =++22中含有一个任意常数,而(1)()0y dx x y dy +++=是一阶微分方程,所以Cx y xy =++22是(1)()0y dx x y dy +++=通解.(4)因为x y λe =,则有3e xy λλ'''=,所以33ee (1)e xx x y y λλλλλ'''+=+=+.当1λ=-时,3(1)e 0x y y λλ'''+=+=,则x y λe =是微分方程0=+'''y y 的解,并且是特解;当1λ≠-时,3(1)e0xy y λλ'''+=+≠,则x y λe =不是微分方程0=+'''y y 的解.3. 若函数e xy α=是微分方程0y y ''''-=的解,求的α值.解:由e x y α=得,e x y αα'=,3e xy αα'''=,将它们代入微分方程0y y ''''-=,得32e e (1)=0x x x y y e ααααααα''''-=-=-,所以1α=-,0或1.4.验证下列所给的各函数是微分方程的通解,并求满足初始条件的特解.(1)函数21y Cx =+,微分方程22xy y '=-,初始条件(1)2y =; (2)函数22x y C +=,微分方程0yy x '+=,初始条件1)1(=y ;(3)函数12()xy C C x e =+,微分方程20y y y '''-+=,初始条件(0)0y =,(0)1y '=.解:(1)因为2y Cx '=,所以222(1)222xy x Cx Cx y '=⋅=+-=-.又2Cx y =中含有一个任意常数,22xy y '=-是一阶微分方程,所以函数21y Cx =+是微分方程22xy y '=-的通解.由(1)2y =,可得1C =,所以微分方程22xy y '=-满足初始条件(1)2y =的特解是2+1y x =.(2)对隐函数22x y C +=的两边求关于x 的导数,得220x yy '+=,即0yy x '+=.又22x y C +=中含有一个任意常数,0yy x '+=是一阶微分方程,所以隐函数22x y C +=是微分方程0yy x '+=的通解.由1)1(=y ,可得2C =,所以微分方程0yy x '+=满足初始条件1)1(=y 的特解是222x y +=.(3)因为212()e x y C C C x '=++,212(2)e xy C C C x ''=++,所以2y y y '''-+21221212(2222)e 0x C C C x C C C x C C x =++---++=.又因为函数12()x y C C x e =+中含有两个独立的任意常数,而20y y y '''-+=是二阶微分方程,所以12()xy C C x e =+是微分方程20y y y '''-+=的通解.由初始条件(0)0y =,(0)1y '=,有12101C C C =⎧⎨+=⎩,,得01=C ,12=C ,所以微分方程20y y y '''-+=满足初始条件(0)0y =,(0)1y '=的特解是e xy x =.习题12—1(B )1.给定微分方程21y x '=+, (1)求过点(1,3)的积分曲线方程;(2)求出与直线13+=x y 相切的积分曲线方程.解:易验证2y x x C =++是微分方程21y x '=+的通解.(1)由曲线2y x x C =++过点(1,3),有311C =++,得1C =,所求积分曲线为21y x x =++.(2)若曲线2y x x C =++与直线13+=x y 相切,则有213x +=(斜率相等),得1x =. 当1=x 时,4=y ,所以切点为(1,4),将其代入2y x x C =++,有411C =++,得2C =,所求曲线为22y x x =++.2.将积分方程2()()sin cos xf t dt xf x x x x π=--⎰(其中)(x f 是连续函数)转化为微分方程,给出初始条件,并求函数)(x f . 解:将2()()sin cos xf t dt xf x x x x π=--⎰两边同时对x 求导,有()()()sin cos sin f x f x xf x x x x x '=+--+, 即()cos f x x '=,这就是所求的微分方程,容易得到其通解为()cos sin f x xdx x C ==+⎰.将2x π=代入到原方程2()()sin cos x f t dt xf x x x x π=--⎰中,有0()12f π=-,得初始条件为()12f π=,所以有11C =+,得0C =,所求函数为()sin f x x =.习题12—2(A )1. 求下列可分离变量的微分方程的通解:(1)32yy x '=; (2)e yy x -'=;(3)y '=; (4)2(3)0ydx x x dy +-=.解:(1)分离变量32d 4d y y x x =,两边积分32d 4d y y x x =⎰⎰,整理得通解为24y x C =+.(2)分离变量e d d yy x x =,两边积分e d d y y x x =⎰⎰,整理得通解为21e 2y x C =+,或写作2ln()2x y C =+.(3)分离变量d y y =,两边积分d y y =⎰,整理得通解为1ln y C =,进而原方程通解为:y Ce =(4)分离变量有2d d 3y x y x x =--,整理得d 111()d 33y x y x x=---,两边积分d 111()d 33y x y x x ==---⎰⎰,整理得通解为11ln (ln 3ln )d 3y x x x C =---+,进而原方程通解为:3(3)x y Cx -=.2. 求下列齐次方程的通解:(1)2xy x y '=+; (2)(2)x y y y '-=;(3)22()d d 0x y x xy y -+=; (4)d (1ln)d 0yx y y x x-+=. 解:(1)将方程改写为2y y x '=+,令u xy=,则x u x u x y y d d d d +==',于是原方程化为d 2d u u xu x +=+,即2d d x u x =,积分得2ln ln u x C =+,即2ln yCx x=,所以原方程通解为2ln y x Cx =.(2)将方程改写为2d d -=y x y x ,令v yx =则y vy v y x d d d d +=,于是原方程化为2d d -=+v y v yv ,即y y v d 2d -=,积分得C y v ln ln 2+-=,即2ln yCy x =,所以原方程通解为2lny Cy x =.(3)将方程改写为d d y y x x x y =-,令u xy=,则x u x u x y d d d d +=,于是原方程化为d 1d u u x u x u +=-,即d d xu u x=-,积分得2ln 22u C x =-+,即222ln y C x x =-,所以原方程通解为2y 2x =2(ln )C x -.(4)将方程改写为(1ln )dy y y dx x x =+,令y u x =,则xu x u x y y d d d d +==',于是原方程化为(1ln )du u xu u dx +=+,即ln du dxu u x=,积分得1ln ln ln u x C =+,即ln u Cx =(其中1)C C e =±,所以原方程通解为lnyCx x=,或写作e Cx y x =. 3. 求下列一阶线性微分方程的通解:(1)2y xy x '-=; (2)d 2e d x yy x+=; (3)sin cos e x y y x -'+=; (4)2(2cos )d (+1)d 0xy x x x y -+=.解:(1)法一:相应齐次方程为0y xy '-=,即d d y x x y =,积分得211ln 2y x C =+,即22e x y C =(其中1)C C e =±.令22()ex y u x =,代入原方程,有222222ee e2x x x u xu xu x '+-=,即222ex u x -'=,得2222()2ed 2e x x u x x x C --==-+⎰,所以原方程通解为222222(2e )e e 2x x x y C C -=-+=-.法二:()P x x =-、()2Q x x =,方程通解为 ()d ()d [()e d ]e P x xP x x y Q x x C -⎰⎰=+⎰d d (2e d )e x x x xx x C -⎰⎰=+⎰2222(2ed )e x x x x C -=+⎰2222(2e)e x x C -=-+22e 2x C =-.(2)()1P x =、()2e xQ x =,方程通解为 ()d ()d d d [()e d ]e (2e e d )e P x xP x x x xx y Q x x C x C --⎰⎰⎰⎰=+=+⎰⎰22(2e d )e (e )e e e x x x x x x x C C C ---=+=+=+⎰.(3)()cos P x x =、sin ()exQ x -=,方程通解为()d ()d cos d cos d sin [()e d ]e (e e d )e P x xP x x x x x x x y Q x x C x C ---⎰⎰⎰⎰=+=+⎰⎰sin sin (d )e ()e x x x C x C --=+=+⎰.(4)方程化为222cos 11x x y y x x '+=++,则有22()1x P x x =+、2cos ()1xQ x x =+,方程通解为 2222d d ()d ()d 112cos [()e d ]e (e d )e 1xxxx P x xP x xx x x y Q x x C x C x --++⎰⎰⎰⎰=+=++⎰⎰221sin (cos d )+1+1x Cx x C x x +=+=⎰. 4.求下微分方程满足所给初始条件的特解: (1)d 1d 2y x x y -=,(3)1y =; (2)sec y xy x y x '+=,2)1(π=y ; (3)2e xy y x '-=,(0)2y =; (4)ln ln xy x y x '+=,(e)1y =.解:(1)这是可分离变量方程,分离变量为2d (1)d y y x x =-,积分得22(1)2x y C -=-+,即方程通解为22(1)2x y C -+=.由(3)1y =,有3C =,方程特解为22(1)32x y -+=. (2)这是齐次方程secy y y x x '+=,令u xy=,则x u xu x y d d d d +=,于是原方程化为d sec d u u xu u x ++=,即d cos d xu u x=-,积分得1sin ln u x C =-+,即方程的通解为sin eyxx C =(其中1)C C e =±.由2)1(π=y ,可得1C e=,所以方程特解为sin 1e yx x -=.(3)这是一阶线性方程,2()1()e xP x Q x x =-=、,因此,方程通解为d d 2(e e d )e (e d )e [(1)e )]e x xx x x x x y x x C x x C x C -⎰⎰=+=+=-+⎰⎰. 由(0)2y =,有21C =-+,得3=C ,方程特解为xx x y 2e )1(2e 3-+=.(4)原方程可化为11ln y y x x x '+=,这是一阶线性方程,1()ln P x x x =、1()Q x x=,方程通解为11d d 2ln ln 1111[e d ]e (ln )ln 2ln 2ln x x x x x xC y x C x C x x x x-⎰⎰=+=+=+⎰.由(e)1y =,有1121C =+,得12C =,所以方程特解为11(ln )2ln y x x =+.习题12—2(B )1.求下列伯努利微分方程的通解: (1)yx xy y =-'; (2)2xy y y =-'. 解:(1)1-=n ,令21y y z n==-(21=-n ),则原方程化为x n xz n x z )1()1(d d -=--,即x xz xz22d d =-,该方程通解为 222222d 2d (2e d )e (2e d )e (e )e e 1x x x xx x x x x z x x C x x C C C ---⎰⎰=+=+=-=-⎰⎰.所以,原方程通解为1e 22-=x C y . (2)2=n ,令yyz n11==-(11-=-n ), 则原方程化为x n z n x z )1()1(d d -=--,即x z xz-=+d d ,该方程通解为 1e e )e e (e )d e (e )d e (d d +-=+-=-=⎰+⎰-=----⎰⎰x C x C x x C C x x z x x x x x x xx .所以,原方程通解为1e 1+-=-x C yx . 2.用适当的变量代换求下列微分方程的通解: (1)22x y x y +=+'; (2)1+-='y x y ;(3))ln (ln y x y y y x +=+'; (4)xy x y y xy 22tan 2+='.解:(1)令u x y =+2,则x u x x y d d 2d d =+,于是u x u=d d ,分离变量有x uu d d =,积分得C x u +=2,原方程通解为C x x y +=+22. (2)令1x y u -+=,则x u x y d d d d 1=-,于是u x u =-d d 1,即u xu-=1d d ,分离变量得x u u u u d )1(d -=-,或x u u d d )111(2-=-+,积分得x C u u -=-+)1ln (2,所以原方程通解为x C y x y x -=+--++-)11ln 1(2.(3)令u xy =,则x u x y xy d d d d =+,于是u x u x u ln d d =,分离变量得xxu u u d ln d =,积分得Cx u ln ln ln =,即Cx u e =,所以原方程通解为Cxxy e 1=.(4)u x y =2,即xu y =2,则x u x u y y d d 2+=',原方程化为u x xu xu x xu tan d d 2+=+,分离变量有xxu u d d cot =,该方程通解为Cx u ln sin ln =,即Cx u =sin ,所以原方程通解为Cx xy =2sin .3.求微分方程(0(0)ydx x dy y -=>的通解.解:将方程改写为222)(1d d yxy x y y x x y x ++=++=这是以)(y x x =为未知函数的齐次方程,为此令yv x =,则y v y v y x d d d d +=,于是方程化为21d d v yvy +=,分离变量有yyv v d 1d 2=+,积分得C y v v ln ln )1ln(2+=++,即Cy v v =++21,进而原方程通解为Cx Cy 211+=. 4.求微分方程2d d yx yx y +=的通解. 解:方程改写为y y x y x +=d d ,即y yxy x =-d d ,这是一阶线性微分方程,通解为 2d d )d ()d e(ey Cy y C y y y C x yy yy+=+=⎰+⎰=⎰⎰-.5.设函数)(x f 连续,且不恒为零,若⎰⎰+=120d )(2d )()(t t tf t t f x f x ,求函数)(x f .解:方程两边同时对x 求导,有)()(x f x f =',分离变量有x ffd d =,得通解为x C x fe )(=.记a t t tf =⎰12d )(,则a t t f x f x2d )()(0+=⎰,令0=x ,得初始条件a f 2)0(=.用0=x 代入到x C x f e )(=之中,有a C 2=,所以x a x f e 2)(=.由)e 21e (2)d e e(2d e 4d )(102221021221022102t t t t a t t a t t at t tf a -=-===⎰⎰⎰)1e ()e 21e (22210222+=-=a a t , 得1e 12+=a ,所以1e e 2)(2+=x x f .6.设连续函数)(x f 满足1)(d )()(12-=+⎰x f t tt f t f x ,求函数)(x f . 解:方程1)(d )()(12-=+⎰x f t t t f t f x 两边同时对x 求导,有)()()(2x f xx f x f '=+,令)(x f y =,则方程可以改写为y x y y x +=2d d ,即y yxy x =-d d ,这是一阶线性微分方程,通解为 )()d ()d e(ed d y C y y C y y y C x yy yy+=+=⎰+⎰=⎰⎰-.用1=x 代入到方程1)(d )()(12-=+⎰x f t tt f t f x 之中,得初始条件1)1(=f ,于是11+=C ,故0=C ,于是2y x =,即所以函数为x x f =)((注:根据初始条件1)1(=f ,所以不能取x x f -=)().习题12—3(A )1. 求下列各微分方程的通解:(1)2+1y x ''=; (2)2cos e x y x '''=+; (3)20y xy '''-=; (4)2e xy y '''-=;(5)201y y y'''+=-. 解:(1)2311(1)3y x dx x x C '=+=++⎰, 342112111()d 3122y x x C x x x C x C =++=+++⎰.(2)2211(cos e )d sin e 22x xy x x x C ''=+=++⎰, 2211211(sin e 2)d cos e 224x x y x C x x C x C '=++=-+++⎰, 2121(cos e 2)d 4x y x C x C x =-+++⎰221231sin e 8x x C x C x C =-++++. (3)方程不显含y ,令)(x p y =',则p y '='',于是d 20d pxp x-=,分离变量为d 2d p x x p =,积分得2ln p x C =+,即213p C x =(其中13)C C e =±,于是原方程降阶为213y C x '=,原方程通解为23121d 3C x C x x C y +==⎰.(4)方程不显含y ,令)(x p y =',则p y '='',于是2e xp p '-=,这是一阶线性微分方程,其通解为d d 2111(e e d )e (e d )e (e )e x x x x x x xp x C x C C -⎰⎰=+=+=+⎰⎰,于是原方程降阶为21e e x x y C '=+,所以原方程的通解为221121(e e )d e e 2x x xx y C x C C =+=++⎰. (5)方程不显含x ,令()y q y '=,则y qq '''=,于是2d 0d 1q q q y y +=-,即d 0d 1q q y y+=-,这是可分离变量的方程,先分离变量d d 1q y q y=--,再两边积分,并整理可得1(1)q C y =-.所以1d (1)d yC y x=-,解得12e 1C x y C =+,这就是原方程的通解. 2. 求下列各微分方程满足初始条件的特解: (1)311y x '''=+,(1)1y =,(1)1y '=,1(1)2y ''=;(2)2y y x '''-=,(0)1y =,(0)0y '=; (3)2eyy ''=,(0)0y =,(0)1y '=.解:(1)13211(1)d 2y x x C x x ''=+=-++⎰,由1(1)2y ''=,得10C =,所以212y x x''=-+; 222111()d 222y x x x C x x '=-+=++⎰,由(1)1y '=,得02=C ,所以21122y x x '=+; 2331111()d ln 2226y x x x x C x =+=++⎰,由1)1(=y ,得356C =,所以方程满足初始条件的特解为3115ln 266y x x =++. (2)方程不显含y ,令)(x p y =',则p y '='',原方程化为2p p x '-=,此方程通解为d d 1111(2e d )e (2e d )e (2e 2e )e e 22x xx x x x x x p x x C x x C C x C x ----⎰⎰=+=+=--=--⎰⎰,即1e 22xy C x '=--,由(0)0y '=,得12C =,从而2(e 1)x y x '=--,此方程通解为222(e 1)d 2e 2x x y x x x x C =--=--+⎰,由(0)1y =,得21C =-,所以方程满足初始条件的特解为22e 21x y x x =---.(3)方程不显含x ,令()y q y '=,则y qq '''=,于是2e y qq '=,分离变量有2d e d yq q y =,积分得221e yp C =+,即y '=由1)0(='y ,可知道0>'y ,所以y '=再由(0)0y =,(0)1y '=,得01=C ,所以e y y '=.分离变量有e d d yy x -=,积分得2e y x C --=+,由0)0(=y ,得21C =-,于是e 1y x --=-,化简为ln (1)y x =--,这就是方程满足初始条件的特解.习题12—3(B )1. 求下列各微分方程的通解: (1)()e n ax b yx =+(a ,b 为常数); (2)0ln=''-''xy y y x ;(3)2)(y y '=''. 解:(1)由于1e d e axax x a =⎰,11d 1t t x x x t +=+⎰,故原方程的通解为 1121211e [()(1)(1)]axb n n n n n n y b n b n b x C x C x C x C a-+---=+++-++++++.(2)方程不显含y ,令)(x p y =',则p y '='',于是x p p p x ln=',即xpx p p ln =',这是齐次方程,令u x p =,则x u x u x p p d d d d +==',原方程化为u u xux u ln d d =+,分离变量有x x u u u d )1(ln d =-,积分得x C u 1ln )1ln(ln =-,即11e +==x C u xp ,原方程降阶为11e +='x C x y ,原方程通解为⎰⎰+++-==x x C x x y x C x C x C )d e e (1d e 11111112111)1(e 11C C x C x C +-=+. (3)方程既不显含y ,也不显含x .(方法1)令)(x p y =',则p y '='',则2p p =',分离变量有x ppd d 2=,积分得11C x p -=-,即xC p -=11,原方程降阶为x C y -='11,所以原方程的通解为)ln(d 121x C C x C xy --=-=⎰.(方法2)令()y q y '=,则y qq '''=,于是2d d q qq y =,分离变量有2d d q q q y=,积分得2ln q y C =-,即原方程降阶为2e d d C y xy-=,分离变量为x y y C d d e 2=-,积分得12e C x y C -=--,化简为)ln(12x C C y --=,这就是原方程的通解.2. 求下列各微分方程满足初始条件的特解: (1)2)(1y y '+='',(0)1y =,(0)0y '=;(2)3()y y y ''''=+,(0)0y =,(0)1y '=;(3))(22y y y y '-'='',(0)1y =,(0)2y '=.解:(1)按不显含y 的方程求解,(注:本题按不显含x 方程求解困难).令)(x p y =',则p y '='',于是21p p +=',分离变量有x ppd 1d 2=+,积分得1arctan C x p +=,即1arctan C x y +=',由(0)0y '=,得01=C ,于是x y tan =',积分得2tan d ln cos y x x C x ==-⎰,由(0)1y =,得12=C ,所以方程满足初始条件的特解为1ln cos y x =-.(2)令()y q y '=,则y qq '''=,得3d d qqq q y=+,因为0q =不满足初始条件(0)1y '=,所以0q ≠,分离变量有2d d 1qy q =+,积分得1arctan q y C =-,即1tan ()y q y C '==-. 由初始条件(0)0y =,(0)1y '=,有11tan (0C =+),得14C π=,故tan ()4y y π'=-. 分离变量d d tan ()4y x y π=-,积分并整理得2sin ()e 4xy C π-=.再由初始条件(0)0y =,得22C =-arcsin 24x y =+π. (3)这是不含x 的二阶可降阶微分方程,令()y q y '=,则y qq '''=,则方程化为22()yqq q q '=-.因为0q =不满足初始条件2)0(='y ,所以0q ≠,分离变量有d d 21q yq y=-,积分得21ln(1)ln q C y -=,解得211y q C y '==+.由初始条件(0)1y =,(0)2y '=,有121+=C ,得11=C ,故12+='y y ,分离变量有x y y d 1d 2=+,积分得1arctan C x y +=,再由初始条件1)0(=y ,得42π=C ,所以原方程满足初始条件的特解为4arctan π+=x y ,即xxx y tan 1tan 1)4tan(-+=+=π.习题12—4(A )1.指出下列各对函数在其定义区间内的线性相关性:(1)3x 与2x ; (2)e x 与e xx ; (3)e x-与2ex-; (4)x e 与5e x;(5)sin x 与x 2sin ; (6)x x cos sin 与x 2sin ; (7)e sec x x 与e tan xx ; (8)x ln 与ln x μ(0μ>).解:(1)因为233x xx =不恒为常数,所以3x 与2x 在区间)(∞+-∞,内线性无关. (2)因为e ex x x x =不恒为常数,所以e x与e x x 在区间)(∞+-∞,内线性无关. (3)因为2e e e x xx ---=不恒为常数,所以e x -与2e x -在区间)(∞+-∞,内线性无关. (4)因为5e 5ex x =恒为常数,所以xe 与5e x 在区间)(∞+-∞,内线性相关. (5)因为sin 22cos sin xx x=不恒为常数,所以sin x 与x 2sin 在区间)(∞+-∞,内线性无关. (6)因为sin 22sin cos xx x=恒为常数,所以x x cos sin 与x 2sin 在区间)(∞+-∞,内线性相关.(7)因为e tan sin e sec x x xx x=不恒为常数,所以e sec x x 与e tan x x 在区间)(∞+-∞,内线性无关.(8)因为ln 0ln x xμμ=>恒为常数,所以x ln 与ln x μ在区间)0(∞+,内线性相关. 2.验证函数21e x y =,22e xy x =是微分方程440y y y '''-+=的两个线性无关的解,并写出该方程的通解.解:因为21e xy =,所以22112e =4e x xy y '''=,,因此 222111444e 8e 4e 0xx x y y y '''-+=-+=,所以21e xy =是440y y y '''-+=的解;同理,22e xy x =是440y y y '''-+=的解.又因为2221e exx y x x y ==不恒为常数,所以函数21e x y =,22e x y x =是微分方程440y y y '''-+=的两个线性无关的解.因此二阶线性齐次微分方程440y y y '''-+=通解为2112212()e x y C y C y C C x =+=+.3.通过观察给出微分方程0y y ''+=的两个线性无关的特解,并写出该方程的通解. 解:0y y ''+=是二阶线性齐次微分方程,改写为y y ''=-,二阶导数与自身呈相反数的函数有1sin y x =,2cos y x =,它们是0y y ''+=的两个解,又21cos cot sin y x x y x==不恒为常数,于是1sin y x =,2cos y x =线性无关,所以方程0y y ''+=的通解为12sin cos y C x C x =+.4.写出下列各二阶常系数线性齐次微分方程的通解:(1)320y y y '''-+=; (2)10250y y y '''-+=;(3)2100y y y '''-+=; (4)02d d 22=-x tx.解:(1)特征方程为2320r r -+=,即(1)(2)0r r --=,特征根为11=r 、22r =(不相等实根),所以方程320y y y '''-+=的通解是212e e x x y C C =+.(2)特征方程为210250r r -+=,即2(5)0r -=,特征根为125r r ==(两个相等实根),所以方程10250y y y '''-+=的通解是512()e xy C C x =+.(3)特征方程为22100r r -+=,由二次代数方程求根公式,得特征根为21322b y i a -===±(一对共轭复根),所以方程2100y y y '''-+=的通解是12(cos3sin 3)e xy C x C x =+. (4)特征方程为022=-r ,特征根为21=r 、22-=r (不同实根),所以方程02d d 22=-x tx的通解是ttC C x 2221e e -+=(注意t 是自变量,x 是因变量).5.求下列各微分方程满足初始条件的特解:(1)22d d 340d d y yy t t+-=,(0)2y =,(0)3y '=-; (2)20y y y '''-+=,(0)1y =,(0)2y '=; (3)450y y y '''-+=,(0)1y =,(0)0y '=.解:(1)特征方程为2340r r +-=,即(1)(4)0r r -+=,特征根为11=r 、24r =-,所以方程22d d 340d d y yy t t +-=的通解是412e e t t y C C -=+,且412e 4e t t dy C C dt-=-. 由初始条件(0)2y =,(0)3y '=-,有1212243C C C C +=⎧⎨-=-⎩,,得1211C C =⎧⎨=⎩,,所以方程满足初始条件(0)2y =,(0)3y '=-的特解是4e e t ty -=+.(2)特征方程为2210r r -+=,即2(1)0r -=,特征根为121r r ==,所以方程20y y y '''-+=的通解是12()e x y C C x =+,且212()e x y C C C x '=++.由初始条件(0)1y =,(0)2y '=,有12112C C C =⎧⎨+=⎩,,得1211C C =⎧⎨=⎩,,所以方程满足初始条件(0)1y =,(0)1y '=-的特解是(1)e x y x =+.(3)特征方程为2450r r -+=,由二次代数方程求根公式,得特征根为2r i ==±,所以方程450y y y '''-+=的通解是212(cos sin )e x y C x C x =+,且21221[(2)cos (2)sin ]e xy C C x C C x '=++-.由初始条件(0)1y =,(0)0y '=,有112120C C C =⎧⎨+=⎩,,得1212C C =⎧⎨=-⎩,,所以方程满足初始条件(0)1y =,(0)0y '=的特解是2(cos 2sin )e xy x x =-. 6.求下列各二阶常系数线性非齐次微分方程的通解:(1)x y y +=+''1; (2)xy y y -=+'+''e 22; (3)223y y y x x '''+-=+-; (4)xx y y e 4=-''.解:(1)相应齐次方程为0=+''y y ,特征方程012=+r ,特征根为i r i r -==21、,相应齐次方程通解为x C x C Y sin cos 21+=.这里x x f +=1)(,01==λ、n 不是特征根,因此设b ax y +=*,将其代入到原方程之中,有x b ax +=+1,比较系数得11==b a 、,于是原方程的一个特解为x y +=1*.原方程的通解为x x C x C y Y y +++=+=1sin cos 21*.(2)相应齐次方程为02=+'+''y y y ,特征方程0122=++r r ,即0)1(2=+r ,特征根为121-==r r ,相应齐次方程通解为xx C C Y -+=e )(21.这里xx f -=e 2)(,10-==λ、n 是二重特征根,因此设x x ax a x y --=⋅=e e 22*,将其代入到原方程之中,化简有22=a ,得1=a ,于是原方程的一个特解为xx y -=e 2*,原方程的通解为212()exx y C C x x e --=++.(3)相应齐次方程为02=-'+''y y y ,特征方程0122=-+r r ,即0)1)(12(=+-r r ,特征根为2/1121=-=r r 、,相应齐次方程通解为2/21e e x x C C Y +=-.这里2()3f x x x =+-,02==λ、n 不是特征根,因此设c bx ax y ++=2*,代入到原方程之中,有224(2)()3a ax b ax bx c x x ++-++=+-,比较系数有12143a a b a b c -=-⎧⎪-=⎨⎪+-=⎩,,,得112a b c ===、、,于是原方程的一个特解为*22y x x =++.所以,原方程的通解为*/2212e e 2x x y Y y C C x x -=+=++++.(4)相应齐次方程为0=-''y y ,特征方程012=-r ,特征根为1121-==r r 、,相应齐次方程通解为xx C C Y -+=e e 21.这里xx x f e 4)(=,x x P n 4)(=,11==λ、n 是单重特征根,因此设x x bx ax b ax x y e )(e )(2*+=+=,将其代入到原方程之中,化简有x b ax a 4)2(22=++,比较系数得11-==b a 、,于是原方程的一个特解为x x x y e )(2*-=,所以原方程的通解为*y Y y +=x x x x x C C e )(e e 221-++=-.7.求下列各二阶常系数线性非齐次微分方程满足初始条件的特解: (1)261y y x '''-=-,(0)1y =,(0)3y '=;(2)xy y e 54=+'',(0)0y =,(0)1y '=;解:(1)相应齐次方程为20y y '''-=,特征方程220r r -=,特征根为10r =、22r =,相应齐次方程通解为212e xY C C =+.这里()61f x x =-,1n =、0λ=是单重特征根,因此设*2()y x ax b ax bx =+=+,代入到原方程之中,有42261ax a b x -+-=-,得32a =-,1b =-,于是原方程的一个特解为*232y x x =--. 所以,原方程的通解为*22123e 2x y Y y C C x x =+=+--. 222e 31x y C x '=--,由初始条件(0)1y =,(0)3y '=,有1221213C C C +=⎧⎨-=⎩,,得11C =-、22C =,所以方程261y y x '''-=-满足初始条件(0)1y =,(0)3y '=的特解为2232e 12x y x x =---.(2)相应齐次方程为04=+''y y ,特征方程042=+r ,特征根为i r i r 2221-==、,相应齐次方程通解为x C x C Y 2sin 2cos 21+=.这里x x f e 5)(=,10==λ、n 不是特征根,因此设xa y e *=,代入到原方程之中,有x x x a a e 5e 4e =+,得1=a 于是原方程的一个特解为xy e *=.所以,原方程的通解为xx C x C y Y y e 2sin 2cos 21*++=+=.122sin 22cos 2e x y C x C x '=-++,由初始条件(0)0y =,(0)1y '=,有1210211C C +=⎧⎨+=⎩,,得11C =-、20C =,所以方程xy y e 54=+''满足初始条件(0)0y =,(0)1y '=的特解为e cos x y x =-.8. 求常系数线性非齐次微分方程2e xy +y =x+'''的通解.解:相应齐次方程为0='+''y y ,特征方程02=+r r ,特征根为1021-==r r 、,相应齐次方程通解为x12Y C C e -=+.这里x x x f e 2)(+=,将其分为)()()(21x f x f x f +=,x x f 2)(1=、xx f e )(2=.对x y y 2='+'',这里01==λ、n 是单重特征根,因此设bx ax b ax x y +=+=2*1)(, 代入到x y y 2='+''之中,有x b ax a 2)2(2=++,比较系数得21-==b a 、,于是方程x y y 2='+''的一个特解为x x y 22*1-=;对xy y e ='+'',不难观察得一个特解2/e *2xy =.于是,原方程的一个特解为2/e 22*2*1*xx x y y y +-=+=.所以,原方程的通解为*y Y y +=2/e 2e221x xx x C C +-++=-..习题12—4(B )1.若)(1x y ϕ=,)(2x y ϕ=是二阶线性非齐次微分方程)()()(x f y x Q y x P y =+'+''的两个解,证明)()(12x x y ϕϕ-=是相应线性齐次微分方程0)()(=+'+''y x Q y x P y 的解. 证:因为)()(12x x y ϕϕ-=,所以212121()()[()()]()[()()]()[()()]y P x y Q x y x x P x x x Q x x x φφφφφφ'''++''''''=-+-+-)]()()()()([)]()()()()([111222x x Q x x P x x x Q x x P x ϕϕϕϕϕϕ+'+''-+'+''= ()()0f x f x =-=.所以)()(12x x y ϕϕ-=是相应线性齐次微分方程0)()(=+'+''y x Q y x P y 的解.2.已知函数x x x x y 21e e )(+=,x x x x y -+=e e )(2,xx x x x y -++=e e e )(23都是微分方程)()()(x f y x Q y x P y =+'+''的解,写出该方程的通解.解:)()()(x f y x Q y x P y =+'+''是二阶非齐次线性微分方程,由函数xx x x y 21e e )(+=,x x x x y -+=e e )(2,x x x x x y -++=e e e )(23都是它的解,根据上题,则x x y y y y 22313e e =-=--、是相应齐次线性微分方程0)()(=+'+''y x Q y x P y 的两个解,而它们之比不恒等于常数,于是它们是线性无关的解,所以0)()(=+'+''y x Q y x P y 的通解为212x xY C e C e -=+,根据二阶非齐次线性微分方程解的结构,得方程)()()(x f y x Q y x P y =+'+''的通解是 22112C e e x x x x y Y y C e e x -=+=+++.3.若二阶常系数线性齐次微分方程的两个特解是2/21e ,e x x y y ==,写出该微分微分方程及其通解.解:由二阶常系数线性齐次微分方程的两个特解是2/21e ,e x x y y ==,则该二阶常系数线性齐次微分方程的特征根是21121==r r 、,于是特征方程是0)21)(1(=--r r ,即01322=+-r r ,所以微分方程为032=+'-''y y y ,通解为2/21e C e x x C y +=.4.若二阶常系数线性齐次微分方程有一个特解xx y 21e -=,写出该微分微分方程及其通解.解:由二阶常系数线性齐次微分方程有一个特解xx y 21e -=,则该二阶常系数线性齐次微分方程有一个特征根2-=r ,并且是二重根,于是特征方程是0)2(2=+r ,即0442=++r r , 所以微分方程为044=+'+''y y y ,通解为xx C y 221)e C (-+=.5.求下列各常系数线性非齐次微分方程的通解:(1)x x y y cos 4=+''; (2)xy y -=''+''e .解: (1)相应齐次方程为0=+''y y ,特征方程为012=+r ,特征根为i r i r -==21、,应齐次方程通解为x C x C Y sin cos 21+=.这里x x x f cos 4)(=,最高多项式次数1=n ,i i =+βα是单重特征根,为此设*22[()cos +()sin ]=()cos +()sin y x ax b x cx d x ax bx x cx dx x =++++,代入到原方程之中,有x x x c b ax x d a cx cos 4sin )224(cos )224(=+--+++,比较系数有⎪⎪⎩⎪⎪⎨⎧=-=-=+=,,,,022*******b c a d a c 得,⎪⎪⎩⎪⎪⎨⎧====,,,,0110d c b a 于是原方程的一个特解为x x x x y sin cos 2*+=. 所以,原方程的通解是x x x x x C x C y sin cos sin cos 221+++=.(2) 相应齐次方程为0=''+'''y y ,特征方程为023=+r r ,特征根为、021==r r ,13-=r 应齐次方程通解为x C x C C Y -++=e 321.对原方程xy y -=''+''e ,这里10-==λ,n 是单重特征根,为此设xax y -=e *,代入到原方程之中,有x x x x a x a ---=-+-e e )2(e)3(,即x x a --=e e ,得1=a ,于是原方程x y y -=''+''e 的一个特解为x x y -=e *.所以,原方程的通解是*y Y y +=xx x C x C C --+++=e e 321.6.求下列各二阶常系数线性非齐次微分方程满足初始条件的特解: (1)x y y sin =+'',(0)1y =,(0)0y '=;(2)x y y xcos e 5='-'',(0)0y =,(0)2y '=.解:(1)相应齐次方程为0=+''y y ,特征方程为012=+r ,特征根为i r i r -==21、,应齐次方程通解为x C x C Y sin cos 21+=.对原方程x y y sin =+'',这里多项式最高次数i i n =+=βα,0是单重特征根,为此设x bx x ax y sin cos *+=,代入到原方程之中,有x x b x a sin cos 2sin 2=+-,比较系数有0212==-b a 、,得021=-=b a 、,于是原方程的一个特解为x x y cos 2*-=.所以,原方程的通解是x xx C x C y Y y cos 2sin cos 21*-+=+=. x xx C x C y sin 2cos )21(sin 21+-+-=',由初始条件(0)1y =,(0)0y '=,得21121==C C 、,所以方程满足初始条件的特解为x x x y sin 21cos )21(+-=. (2)相应齐次方程为0='-''y y ,特征方程为02=-r r ,特征根为1021==r r 、,应齐次方程通解为xC C Y e 21+=.对原方程x y y xcos e 5='-'',这里多项式最高次数i i n +=+=10βα,不是特征根,为此设*(cos sin )x y e a x b x =+,代入到原方程之中,有]sin )2(cos )2[(e x b a x a b x--+-x x cos e 5=,比较系数有⎩⎨⎧=--=-,,0252b a a b 得⎩⎨⎧=-=,,21b a 于是原方程的一个特解为)cos sin 2(e *x x y x -=,原方程的通解是)cos sin 2(e e 21*x x C C y Y y x x -++=+=.)cos sin 3(e e 2x x C y xx++=',由初始条件(0)0y =,(0)2y '=,有⎩⎨⎧=+=-+,,2101221C C C 得1021==C C 、,所以原方程满足初始条件的特解是x x x y e )cos sin 21(-+=.7.若连续函数()y f x =满足0()e ()()d xxf x t x f t t =+-⎰,求()y f x =的表达式.解:0()e ()d ()d xx xf x tf t t x f t t =+-⎰⎰,0()e ()d xxf x f t t '=-⎰,()e ()x f x f x ''=-,于是函数()y f x =满足微分方程e x f f ''+=,初始条件是(0)(0)1f f '==.e xf f ''+=是二阶常系数线性非齐次微分方程,相应齐次方程是0f f ''+=,特征方程为012=+r ,特征根为i r i r -==21、,应齐次方程通解为12cos sin Y C x C x =+.对原方程e xf f ''+=,这里10==λ,n 不是特征根,为此设*e xf a =,代入到原方程之中,得21=a ,于是原方程的一个特解为*1e 2x f =. 所以,原方程的通解是*121()cos sin e 2xf x Y f C x C x =+=++. 因为121()sin cos e 2xf x C x C x '=-++,由初始条件(0)(0)1f f '==,有12112112C C ⎧+=⎪⎪⎨⎪+=⎪⎩,,得2121==C C ,所以所求函数是1()(cos sin e )2xf x x x =++.8. 证明:若()f x 满足方程()(1)f x f x '=-,则必满足方程()()0f x f x ''+=,并求方程()(1)f x f x '=-的解.解:先证()f x 必满足方程()()0f x f x ''+=.由于()(1)f x f x '=-,则求导可得()(1)(1)[1(1)]()f x f x f x f x '''=--=---=-, 故证明了()f x 必满足方程()()0f x f x ''+=. 下面求解方程()(1)f x f x '=-.由于方程()()0f x f x ''+=的通解为12()cos sin f x C x C x =+,且()(1)f x f x '=-, 所以1212sin cos cos(1)sin (1)C x C x C x C x -+=-+-,令0x =可得212cos1sin1C C C =+,则112cos1(1sin1)1sin1cos1C C C +==-,从而方程()(1)f x f x '=-的解为11sin1()(cos sin )cos1f x C x x +=+.习题12—5(A )1. 设在冷库中存储的某种新鲜水果500吨,放置一段时间之后开始腐烂,腐烂率是未腐烂数量的0.001倍,设腐烂的数量为y 吨,则显然它是时间t 的函数,求此函数的表达式. 解:由题意知0.001(500)dyy dt=⨯-, 分离变量得,0.001500dydt y=-,两边积分,并整理得0.001500e t y C -=-(C 为任意常数),再结合(0)0y =,容易求出500C =,所以水果腐烂数量与时间的函数关系式为0.001500(1e )t y -=-.2. 已知某商品的需求量Q (单位:kg )对价格P (单位:元)的弹性为ln 2EQP EP=-,且当0P =时,需求量600Q =Kg. (1)求该商品对价格的需求函数()Q P ;(2)求当价格1P =元时,市场对该商品的需求量; (3)当+P →∞时,需求量是否趋于稳定? 解:(1)由已知条件知,ln 2EQ P dQP EP Q dP=⋅=-, 分离变量得ln 2dQdP Q=-, 所以有()2P Q P C -=(C 为任意常数).再由(0)600Q =得,600C =,所以()6002P Q P -=⨯.(2)由(1)可知,当1P =元时,1(1)6002300Q -=⨯=(kg ).(3)由()6002PQ P -=⨯可知,当+P →∞时,0Q →,即随着商品价格的无限增大,。
高等数学第12章微分方程习题
![高等数学第12章微分方程习题](https://img.taocdn.com/s3/m/46fd089fddccda38366bafd8.png)
(2) dy = 1 + y2 ; dx y + x2 y
(3) xdy + ydx = sin xdx ;
(4) ( y2 − 6x) dy + 2 y = 0 ; dx
(5) dx − xdy = x5 ydy ; 解 (1) 方程可化为
2
dy
=
( y )2 x
,
dx y −1
x
所以方程为一阶齐次方程.
将此解代入微分方程中, 得 A = − 1 , B = 0 . 该非齐次微分方程的通解为 2
(9) 特征方程为
y
=
C1
cos
x
+
C2
sin
x
−
x 2
cos
x
.
r2 + 2r + a = 0 ,
其根为 r1,2 = −1 ± 1 − a . 当 a < 1时, 方程的通解为
y = C1e(−1+ 1−a )x + C2e(−1− 1−a )x ; 当 a = 1时, 方程的通解为
求解此线性方程, 得
∫ y
=
e−∫
1 x ln
dx
x[
1
+
ln
x
e∫
1 x ln
dx
x dx
+
C]
=
x
+
C
.
ln x
ln x
(4) 方程化为
d( x2 ) + d( y2 ) + 1
2
2 1+ ( x )2
ydx − xdy y2
=0,
y
d( x2 ) + d( y2 ) + 1 d( x ) = 0 ,
高数第十二章习题答案
![高数第十二章习题答案](https://img.taocdn.com/s3/m/c5b88ef74693daef5ef73d13.png)
y 2 x 2 0 ( y y 2 x 2 Cx 2 )
2
2. x y x xy y
( y x tan(ln x C ) )
3.
( xy y ) cos 2
y
y 1 2y y x0 sin C ln x 2 ( x 2 ) x x
3 x2
D. 是特解
4. y 3 xy, y Ce 2 A. 是解
( C ) C. 是通解 D. 是特解
B. 不是解
四、求下列可分离变量的微分方程解: 1. ( xy x)dx ( y x y )dy 0 ( y 1 C ( x 1) )
2 2 2 2
2. y e
2
( D ) C. 是通解 D. 是特解
B. 不是解
2. y y 0, y 3sin x 4 cos x ( B ) A. 是解 B. 不是解
2 x
C. 是通解 ( B ) C. 是通解
D. 是特解
3. y 2 y y 0, y x e A. 是解 B. 不是解
2
二、指出下列微分方程的阶,同时指出它是线性的,还是非线性的: 1. x( y) 2 yy x 1 (一n x
2
(二阶线性微分方程)
1 y2 dy 3. dx 1 x 2 (一阶非线性微分方程)
4. (7 x 3 y ) dx ( x y ) dy 0 (一阶非线性微分方程) 三、指出下列各题中的函数是否为所给微分方程的解,如果是解,是通解,还是特解? 1. xy 2 y, y 5 x A. 是解
x y
5. (e
e x )dx (e x y e y )dy 0 ( (e x 1)(e y 1) C )
高二数学下:第12章《圆锥曲线》测试(沪教版)
![高二数学下:第12章《圆锥曲线》测试(沪教版)](https://img.taocdn.com/s3/m/ede5b20380eb6294dc886ccd.png)
中项,则椭圆的方程为 _____________________________ .
12.若直线 mx ny 3 0 与圆 x 2 y 2 3 没有公共点,则 m, n 满足的关系式为
.
以( m, n) 为点 P 的坐标,过点 P 的一条直线与椭圆 x 2 y2 1的公共点有
个.
73
13.设点 P是双曲线 x 2 y 2 1 上一点,焦点 F( 2,0),点 A( 3,2),使 | PA|+ 1 | PF| 有最小
. 17 8
用心 爱心
专心
∵ m (1, 2 ) ,∴ 2(m 1) 2 17 ( 2 2,1) ,∴ b ( , 2
48
18.( 12 分) [ 解析 ] :( I )当 y p 时, x p
2
8
又抛物线 y 2 2 px 的准线方程为 x
p
2
由抛物线定义得,所求距离为
p
p 5p
()
8
28
(3) 设直线 PA的斜率为 k PA ,直线 PB的斜率为 k PB
A. y 3x
5.椭圆 x 2 y2 12 3
是|PF 2| 的
B. y
3x
C. y
3 x
3
1的焦点为 F1 和 F2,点 P 在椭圆上,如果线段
3
D. y
x
3
PF1 中点在 y 轴上,那么 |PF1|
()
A.7 倍
B. 5 倍
C. 4 倍
D. 3 倍
6.以原点为圆心,且截直线 3 x 4 y 15 0 所得弦长为 8 的圆的方程是
3
2
值时,则点 P 的坐标是 ________________________________ .
高等数学课后习题及参考答案(第十二章)
![高等数学课后习题及参考答案(第十二章)](https://img.taocdn.com/s3/m/3852c3e8ee06eff9aff80776.png)
高等数学课后习题及参考答案(第十二章)习题12-11. 试说出下列各微分方程的阶数:(1)x (y ')2-2yy '+x =0;解 一阶.(2)x 2y '-xy '+y =0;解 一阶.(3)xy '''+2y '+x 2y =0;解 三阶.(4)(7x -6y )dx +(x +y )dy =0;解 一阶.(5)022=++C Q dt dQ R dtQ d L ; 解 二阶.(6)θρθρ2sin =+d d . 解 一阶.2. 指出下列各题中的函数是否为所给微分方程的解:(1)xy '=2y , y =5x 2;解 y '=10x .因为xy '=10x 2=2(5x 2)=2y , 所以y =5x 2是所给微分方程的解.(2)y '+y =0, y =3sin x -4cos x ;解 y '=3cos x +4sin x .因为y '+y =3cos x +4sin x +3sin x -4cos x =7sin x -cos x ≠0,所以y =3sin x -4cos x 不是所给微分方程的解.(3)y ''-2y '+y =0, y =x 2e x ;解 y '=2xe x +x 2e x , y ''=2e x +2xe x +2xe x +x 2e x =2e x +4xe x +x 2e x .因为y ''-2y '+y =2e x +4xe x +x 2e x -2(2xe x +x 2e x )+x 2e x =2e x ≠0,所以y =x 2e x 不是所给微分方程的解.(4)y ''-(λ1+λ2)y '+λ1λ2y =0, x x e C e C y 2121λλ+=.解 x x e C e C y 212211λλλλ+=', x x e C e C y 21222211λλλλ+=''.因为y y y 2121)(λλλλ+'+-'')())((2121212121221121222211x x x x x x e C e C e C e C e C e C λλλλλλλλλλλλλλ++++-+= =0,所以x x e C e C y 2121λλ+=是所给微分方程的解.3. 在下列各题中, 验证所给二元方程所确定的函数为所给微分方程的解:(1)(x -2y )y '=2x -y , x 2-xy +y 2=C ;解 将x 2-xy +y 2=C 的两边对x 求导得2x -y -xy '+2y y '=0,即 (x -2y )y '=2x -y ,所以由x 2-xy +y 2=C 所确定的函数是所给微分方程的解.(2)(xy -x )y ''+xy '2+yy '-2y '=0, y =ln(xy ).解 将y =ln(xy )的两边对x 求导得y yx y '+='11, 即x xy y y -='. 再次求导得)(1)()()1()(2222y y y y y x x xy x xy y y y x x xy y x y y x xy y y '+'-'-⋅-=-+-'-=--'+--'=''. 注意到由y y x y '+='11可得1-'='y x y yx , 所以 )2(1])1([12y y y y x xxy y y y y y x x xy y '+'-'-⋅-='+'-'-'-⋅-='', 从而 (xy -x )y ''+xy '2+yy '-2y '=0,即由y =ln(xy )所确定的函数是所给微分方程的解.4. 在下列各题中, 确定函数关系式中所含的参数, 使函数满足所给的初始条件:(1)x 2-y 2=C , y |x =0=5;解 由y |x =0=0得02-52=C , C =-25, 故x 2-y 2=-25.(2)y =(C 1+C 2x )e 2x , y |x =0=0, y '|x =0=1;解 y '=C 2e 2x +2(C 1+C 2x )e 2x .由y |x =0=0, y '|x =0=1得⎩⎨⎧=+=10121C C C , 解之得C 1=0, C 2=1, 故y =xe 2x .(3)y =C 1sin(x -C 2), y |x =π=1, y '|x =π=0.解 y '=C 1cos(x -C 2).由y |x =π=1, y '|x =π=0得⎩⎨⎧=-=-0)cos(1)sin(2121C C C C ππ, 即⎩⎨⎧=-=0cos 1sin 2121C C C C , 解之得C 1=1, 22π=C , 故)2sin(π-=x y , 即y =-cos x . 5. 写出由下列条件确定的曲线所满足的微分方程:(1)曲线在点(x , y )处的切线的斜率等于该点横坐标的平方;解 设曲线为y =y (x ), 则曲线上点(x , y )处的切线斜率为y ', 由条件y '=x 2, 这便是所求微分方程.(2)曲线上点P (x , y )处的法线与x 轴的交点为Q , 且线段PQ 被y 轴平分. 解 设曲线为y =y (x ), 则曲线上点P (x , y )处的法线斜率为y '-1, 由条件第PQ 中点的横坐标为0, 所以Q 点的坐标为(-x , 0), 从而有y x x y '-=+-10, 即yy '+2x =0. 6. 用微分方程表示一物理命题: 某种气体的气压P 对于温度T 的变化率与气压成正比, 所温度的平方成反比.解 2TP k dT dP =, 其中k 为比例系数. 习题12-21. 求下列微分方程的通解:(1)xy '-y ln y =0;解 分离变量得dx xdy y y 1ln 1=, 两边积分得⎰⎰=dx xdy y y 1ln 1, 即 ln(ln y )=ln x +ln C ,故通解为y =e Cx .(2)3x 2+5x -5y '=0;解 分离变量得5dy =(3x 2+5x )dx ,两边积分得⎰⎰+=dx x x dy )53(52,即 123255C x x y ++=, 故通解为C x x y ++=232151, 其中151C C =为任意常数.(3)2211y y x -='-;解 分离变量得2211x dx y dy -=-, 两边积分得⎰⎰-=-2211x dx y dy 即 arcsin y =arcsin x +C ,故通解为y =sin(arcsin x +C ).(4)y '-xy '=a (y 2+y ');解 方程变形为(1-x -a )y '=ay 2,分离变量得dx x a a dy y--=112, 两边积分得⎰⎰--=dx x a a dy y112, 即 1)1ln(1C x a a y----=-, 故通解为)1ln(1x a a C y --+=, 其中C =aC 1为任意常数. (5)sec 2x tan ydx +sec 2y tan xdy =0;解 分离变量得dx xx y y y tan sec tan sec 22-=, 两边积分得⎰⎰-=dx xx y y y tan sec tan sec 22, 即 ln(tan y )=-ln(tan x )+ln C ,故通解为tan x tan y =C .(6)y x dxdy +=10; 解 分离变量得10-y dy =10x dx ,两边积分得⎰⎰=-dx dy x y 1010,即 10ln 10ln 1010ln 10C x y +=--, 或 10-y =10x +C ,故通解为y =-lg(C -10x ).(7)(e x +y -e x )dx +(e x +y +e y )dy =0;解 方程变形为e y (e x +1)dy =e x (1-e y )dx ,分离变量得dx e e dy e e xx y y +=-11, 两边积分得⎰⎰+=-dx eedy e ex x y y 11, 即 -ln(e y )=ln(e x +1)-ln C ,故通解为(e x +1)(e y -1)=C .(8)cos x sin ydx +sin x cos ydy =0;解 分离变量得dx xx dy y y sin cos sin cos -=, 两边积分得⎰⎰-=dx xx dy y y sin cos sin cos , 即 ln(sin y )=-ln(sin x )+ln C ,故通解为sin x sin y =C .(9)0)1(32=++x dxdy y ; 解 分离变量得(y +1)2dy =-x 3dx ,两边积分得⎰⎰-=+dx x dy y 32)1(,即 14341)1(31C x y +-=+, 故通解为4(y +1)3+3x 4=C (C =12C 1).(10)ydx +(x 2-4x )dy =0.解 分离变量得dx xx dy y )411(4-+=, 两边积分得⎰⎰-+=dx xx dy y )411(4, 即 ln y 4=ln x -ln(4-x )+ln C ,故通解为y 4(4-x )=Cx .2. 求下列微分方程满足所给初始条件的特解:(1)y '=e 2x -y , y |x =0=0;解 分离变量得e y dy =e 2x dx ,两边积分得⎰⎰=dx e dy e x y 2,即 C e e x y +=221, 或 )21ln(2C e y x +=. 由y |x =0=0得0)21ln(=+C , 21=C , 所以特解)2121ln(2+=x e y . (2)cos x sin ydy =cos y sin xdx , 4|0π==x y ; 解 分离变量得tan y dy =tan x dx ,两边积分得⎰⎰=xdx ydy tan tan ,即 -ln(cos y )=-ln(cos x )-ln C ,或 cos y =C cos x .由4|0π==x y 得C C ==0cos 4cos π, 21=C , 所以特解为x y cos cos 2=.(3)y 'sin x =y ln y , e y x ==2π;解 分离变量得dx xdy y y sin 1ln 1=, 两边积分得⎰⎰=dx xdy y y sin 1ln 1, 即 C x y ln )2ln(tan )ln(ln +=,或2tan x C e y =. 由e y x ==2π得4tan πC ee =, C =1, 所以特解为2tan x e y =.(4)cos ydx +(1+e -x )sin ydy =0, 4|0π==x y ; 解 分离变量得dx e e dy y y xx +=-1cos sin , 两边积分得⎰⎰+=-dx e e dy y y xx 1cos sin , 即 ln|cos y |=ln(e x +1)+ln |C |,或 cos y =C (e x +1).由4|0π==x y 得)1(4cos 4+=ππe C , 42=C , 所以特解为)1(42cos +=x e y . (5)xdy +2ydx =0, y |x =2=1.解 分离变量得dx xdy y 21-=, 两边积分得⎰⎰-=dx xdy y 21, 即 ln y =-2ln x +ln C ,或 y =Cx -2.由y |x =2=1得C ⋅2-2=1, C =4, 所以特解为24xy =.3. 有一盛满了水的圆锥形漏漏斗, 高为10cm , 顶角为60︒, 漏斗下面有面积为0. 5cm 2的孔, 求水面高度变化的规律及流完所需的时间.解 设t 时该已流出的水的体积为V , 高度为x , 则由水力学有x dtdV )9802(5.062.0⨯⨯⨯=, 即dt x dV )9802(5.062.0⨯⨯⨯=. 又因为330tan x x r =︒=, 故 dx x dx r V 223ππ-=-=, 从而 dx x dt x 23)9802(5.062.0π-=⨯⨯⨯, 即 dx x dt 2398025.062.03⨯⨯⨯=π,因此 C x t +⨯⨯⨯-=2598025.062.032π. 又因为当t =0时, x =10, 所以251098025.062.053⨯⨯⨯⨯=πC ,故水从小孔流出的规律为 645.90305.0)10(98025.062.0532252525+-=-⨯⨯⨯⨯=x x t π. 令x =0, 得水流完所需时间约为10s .4. 质量为1g (克)的质点受外力作用作直线运动, 这外力和时间成正比, 和质点运动的速度成反比. 在t =10s 时, 速度等于50cm/s , 外力为4g cm/s 2, 问从运动开始经过了一分钟后的速度是多少?解 已知v t k F =, 并且法t =10s 时, v =50cm/s , F =4g cm/s 2, 故50104k =, 从而k =20, 因此vt F 20=. 又由牛顿定律, F =ma , 即vt dt dv 201=⋅, 故v dv =20t d t . 这就是速度与时间应满足的微分方程. 解之得C t v +=221021, 即C t v 2202+=.由初始条件有C +⨯=⨯2210105021, C =250. 因此 500202+=t v .当t =60s 时, cm/s 3.26950060202=+⨯=v .5. 镭的衰变有如下的规律: 镭的衰变速度与它的现存量R 成正比. 由经验材料得知, 镭经过1600年后, 只余原始量R 0的一半. 试求镭的量R 与时间t 的函数关系.解 由题设知,R dt dR λ-=, 即dt RdR λ-=, 两边积分得ln R =-λt +C 1,从而 )( 1C t e C Ce R ==-λ.因为当t =0时, R =R 0, 故R 0=Ce 0=C , 即R =R 0e -λt .又由于当t =1600时, 021R R =, 故λ16000021-=e R R , 从而16002ln =λ. 因此 t t e R e R R 000433.0010002ln 0--==.6. 一曲线通过点(2, 3), 它在两坐标轴间的任一切线线段均被切点所平分, 求这曲线方程.解 设切点为P (x , y ), 则切线在x 轴, y 轴的截距分别为2x , 2y , 切线斜率为xy x y -=--2002, 故曲线满足微分方程: xy dx dy -=, 即dx x dy y 11-=, 从而 ln y +ln x =ln C , xy =C .因为曲线经过点(2, 3), 所以C =2⨯3=6, 曲线方程为xy =6.7. 小船从河边点O 处出发驶向对岸(两岸为平行直线). 设船速为a , 船行方向始终与河岸垂直, 又设河宽为h , 河中任一点处的水流速度与该点到两岸距离的乘积成正比(比例系数为k ). 求小船的航行路线.解 建立坐标系如图. 设t 时刻船的位置为(x , y ), 此时水速为)(y h ky dt dx v -==, 故dx =ky (h -y )dt .又由已知, y =at , 代入上式得dx =kat (h -at )dt ,积分得C t ka kaht x +-=3223121. 由初始条件x |t =0=0, 得C =0, 故3223121t ka kaht x -=. 因此船运动路线的函数方程为⎪⎩⎪⎨⎧=-=ayy t ka kaht x 3223121, 从而一般方程为)312(32y y h a k x -=.习题12-31. 求下列齐次方程的通解:(1)022=---'x y y y x ;解 原方程变为1)(2--=x y x y dx dy . 令xy u =, 则原方程化为 12-+=+u u dx du x u , 即dx x du u 1112=-, 两边积分得C x u u ln ln )1ln(2+=-+, 即Cx u u =-+12, 将xy u =代入上式得原方程的通解Cx x y x y =-+1)(2, 即222Cx x y y =-+. (2)xy y dx dy xln =; 解 原方程变为x y x y dx dy ln =.令xy u =, 则原方程化为 u u dxdu x u ln =+, 即dx x du u u 1)1(ln 1=-, 两边积分得ln(ln u -1)=ln x +ln C , 即u =e Cx +1, 将xy u =代入上式得原方程的通解 y =xe Cx +1.(3)(x 2+y 2)dx -xydy =0;解 这是齐次方程. 令xy u =, 即y =xu , 则原方程化为 (x 2+x 2u 2)dx -x 2u (udx +xdu )=0, 即dx xudu 1=, 两边积分得u 2=ln x 2+C , 将xy u =代入上式得原方程的通解 y 2=x 2(ln x 2+C ).(4)(x 3+y 3)dx -3xy 2dy =0;解 这是齐次方程. 令xy u =, 即y =xu , 则原方程化为 (x 3+x 3u 3)dx -3x 3u 2(udx +xdu )=0, 即dx x du u u 121332=-, 两边积分得C x u ln ln )21ln(213+=--, 即2312xC u -=, 将xy u =代入上式得原方程的通解 x 3-2y 3=Cx .(5)0ch 3)ch 3sh 2(=-+dy xy x dx x y y x y x ; 解 原方程变为x y x y dx dy +=th 32.令xy u =, 则原方程化为 u u dx du x u +=+th 32, 即dx xdu u u 2sh ch 3=, 两边积分得3ln(sh u )=2ln x +ln C , 即sh 3u =Cx 2, 将xy u =代入上式得原方程的通解 22sh Cx x y =. (6)0)1(2)21(=-++dy yx e dx e y xy x . 解 原方程变为yx yxe e y x dy dx 21)1(2+-=. 令yx u =, 则原方程化为 u u e e u dy du y u 21)1(2+-=+, 即uu e e u dy du y 212++-=, 分离变量得dy y du e u e uu 1221-=++, 两边积分得ln(u +2e u )=-ln y +ln C , 即y (u +2e u )=C , 将yx u =代入上式得原方程的通解 C e yx y y x =+)2(, 即C ye x y x=+2. 2. 求下列齐次方程满足所给初始条件的特解:(1)(y 2-3x 2)dy +2xydx =0, y |x =0=1;解 这是齐次方程. 令x y u =, 即y =xu , 则原方程化为(x 2u 2-3x 2)(udx +xdu )+2x 2udx =0,即 dx x du u u u 1332=--, 或dx x du u u u 1)11113(=-+++- 两边积分得-3ln |u |+ln|u +1|+ln|u -1|=ln|x |+ln|C |, 即u 2-1=Cxu 3, 将xy u =代入上式得原方程的通解 y 2-x 2=Cy 3.由y |x =0=1得C =1, 故所求特解为y 2-x 2=y 3.(2)xy y x y +=', y |x =1=2; 解 令xy u =, 则原方程化为 u u dx du x u +=+1, 即dx xudu 1=, 两边积分得C x u +=ln 212, 将xy u =代入上式得原方程的通解 y 2=2x 2(ln x +C ).由y |x =1=2得C =2, 故所求特解为y 2=2x 2(ln x +2).(3)(x 2+2xy -y 2)dx +(y 2+2xy -x 2)dy =0, y |x =1=1.解 这是齐次方程. 令xy u =, 即y =xu , 则原方程化为 (x 2+2x 2u -x 2u 2)dx +(x 2u 2+2x 2u -x 2)(udx +xdu )=0,即 dx x du u u u u u 1112232-=+++-+, 或 dx xdu u u u 1)1211(2=+-+, 两边积分得ln|u +1|-ln(u 2+1)=ln|x |+ln|C |, 即u +1=Cx (u 2+1), 将xy u =代入上式得原方程的通解 x +y =C (x 2+y 2).由y |x =1=1得C =1, 故所求特解为x +y =(x 2+y 2).3. 设有连结点O (0, 0)和A (1, 1)的一段向上凸的曲线弧A O, 对于A O 上任一点P (x , y ), 曲线弧P O 与直线段OP 所围图形的面积为x 2, 求曲线弧A O 的方程.解 设曲线弧A O的方程为y =y (x ). 由题意得 20)(21)(x x xy dx x y x=-⎰, 两边求导得x x y x x y x y 2)(21)(21)(='--, 即 4-='xy y . 令xy u =, 则有 4-=+u dx du x u , 即dx xdu u 41-=, 两边积分得u =-4ln x +C . 将xy u =代入上式得方程的通解 y =-4x ln x +Cx .由于A (1, 1)在曲线上, 即y (1)=1, 因而C =1, 从则所求方程为y =-4x ln x +x .习题12-41. 求下列微分方程的通解:(1)x e y dx dy -=+; 解 )()()(C x e C dx e e e C dx e e e y x x x x dx x dx +=+⋅=+⎰⋅⎰=-----⎰⎰. (2)xy '+y =x 2+3x +2;解 原方程变为xx y x y 231++=+'.])23([11C dx e x x e y dx x dx x +⎰⋅++⎰=⎰- ])23([1])23([12C dx x x xC xdx x x x +++=+++=⎰⎰ xC x x C x x x x +++=+++=22331)22331(1223. (3)y '+y cos x =e -sin x ;解 )(cos sin cos C dx e e e y xdx x dx +⎰⋅⎰=⎰--)()(sin sin sin sin C x e C dx e e e x x x x +=+⋅=---⎰.(4)y '+y tan x =sin 2x ;解 )2sin (tan tan C dx e x e y xdx xdx +⎰⋅⎰=⎰-)2sin (cos ln cos ln C dx e x e x x +⋅=⎰-⎰+⋅=)cos 1cos sin 2(cos C dx xx x x =cos x (-2cos x +C )=C cos x -2cos 2x .(5)(x 2-1)y '+2xy -cos x =0;解 原方程变形为1cos 1222-=-+'x x y x x y . )1cos (1221222C dx e x x e y dx x xdx x x +⎰⋅-⎰=⎰--- )(sin 11])1(1cos[112222C x x C dx x x x x +-=+-⋅--=⎰. (6)23=+ρθρd d ; 解 )2(33C d e e d d +⎰⋅⎰=⎰-θρθθ)2(33C d e e +=⎰-θθθθθθ33332)32(--+=+=Ce C e e .(7)x xy dx dy 42=+; 解 )4(22C dx e x e y xdx xdx +⎰⋅⎰=⎰-)4(22C dx e x e x x +⋅=⎰-2222)2(x x x Ce C e e --+=+=.(8)y ln ydx +(x -ln y )dy =0;解 原方程变形为yx y y dy dx 1ln 1=+. )1(ln 1ln 1C dy e y e x dy y y dy y y +⎰⋅⎰=⎰- )ln 1(ln 1C ydy yy +⋅=⎰ yC y C y y ln ln 21)ln 21(ln 12+=+=. (9)3)2(2)2(-+=-x y dxdy x ; 解 原方程变形为2)2(221-=--x y x dx dy . ])2(2[21221C dx e x e y dx x dx x +⎰⋅-⎰=⎰--- ⎰+-⋅--=]21)2(2)[2(2C dx x x x =(x -2)[(x -2)2+C ]=(x -2)3+C (x -2).(10)02)6(2=+-y dxdy x y . 解 原方程变形为y x y dy dx 213-=-. ])21([33C dy e y e x dy y dy y +⎰⋅-⎰=⎰- )121(33C dy yy y +⋅-=⎰32321)21(Cy y C y y +=+=. 2. 求下列微分方程满足所给初始条件的特解:(1)x x y dxdy sec tan =-, y |x =0=0; 解 )sec (tan tan C dx e x e y xdx xdx +⎰⋅⎰=⎰-)(cos 1)cos sec (cos 1C x xC xdx x x +=+⋅=⎰. 由y |x =0=0, 得C =0, 故所求特解为y =x sec x .(2)xx x y dx dy sin =+, y |x =π=1; 解 )sin (11C dx e x x e y dx x dx x +⎰⋅⎰=⎰- )cos (1)sin (1C x xC xdx x x x +-=+⋅=⎰. 由y |x =π=1, 得C =π-1, 故所求特解为)cos 1(1x xy --=π. (3)x e x y dx dy cos 5cot =+, 4|2-==πx y ; 解 )5(cot cos cot C dx e e e y xdx x xdx +⎰⋅⎰=⎰- )5(sin 1)sin 5(sin 1cos cos C e xC xdx e x x x +-=+⋅=⎰. 由4|2-==πx y , 得C =1, 故所求特解为)15(sin 1cos +-=x e x y . (4)83=+y dxdy , y |x =0=2; 解 )8(33C dx e e y dx dx +⎰⋅⎰=⎰-x x x x x Ce C e e C dx e e 3333338)38()8(---+=+=+=⎰. 由y |x =0=2, 得32-=C , 故所求特解为)4(323x e y --=.(5)13232=-+y xx dx dy , y |x =1=0. 解 )1(32323232C dx e e y dx x x dx x x +⎰⋅⎰=⎰--- )21()1(22221131313C e e x C dx e x e x x x x x +=+=--⎰. 由y |x =1=0, 得eC 21-=, 故所求特解为)1(211132--=x e x y . 3. 求一曲线的方程, 这曲线通过原点, 并且它在点(x , y )处的切线斜率等于2x +y .解 由题意知y '=2x +y , 并且y |x =0=0.由通解公式得)2()2(C dx xe e C dx xe e y x x dx dx +=+⎰⎰=⎰⎰--=e x (-2xe -x -2e -x +C )=Ce x -2x -2.由y |x =0=0, 得C =2, 故所求曲线的方程为y =2(e x -x -1).4. 设有一质量为m 的质点作直线运动, 从速度等于零的时刻起, 有一个与运动方向一至、大小与时间成正比(比例系数为k 1)的力作用于它, 此外还受一与速度成正比(比例系数为k 2)的阻力作用. 求质点运动的速度与时间的函数关系.解 由牛顿定律F =ma , 得v k t k dtdv m 21-=, 即t m k v m k dt dv 12=+. 由通解公式得)()(222211C dt e t m k e C dt e t m k ev t m k t m k dt m k dt m k +⋅=+⎰⋅⎰=⎰⎰-- )(22222121C e k m k te k k e t m kt m k t m k +-=-. 由题意, 当t =0时v =0, 于是得221k m k C =. 因此)(22122121222k m k e k m k te k k e v t m k t m k t m k +-=- 即 )1(222121t m k e k m k t k k v ---=. 5. 设有一个由电阻R =10Ω、电感L =2h(亨)和电源电压E =20sin5t V (伏)串联组成的电路. 开关K 合上后, 电路中有电源通过. 求电流i 与时间t 的函数关系. 解 由回路电压定律知01025sin 20=--i dt di t , 即t i dtdi 5sin 105=+. 由通解公式得t dt dt Ce t t C dt e t e i 5555cos 5sin )5sin 10(--+-=+⎰⋅⎰=⎰.因为当t =0时i =0, 所以C =1. 因此)45sin(25cos 5sin 55π-+=+-=--t e e t t i t t (A).6. 设曲dy x x xf dx x yf L])(2[)(2-+⎰在右半平面(x >0)内与路径无关, 其中f (x )可导, 且f (1)=1, 求f (x ).解 因为当x >0时, 所给积分与路径无关, 所以])(2[)]([2x x xf xx yf y -∂∂=∂∂, 即 f (x )=2f (x )+2xf '(x )-2x ,或 1)(21)(=+'x f xx f . 因此 x C x C dx x x C dx e e x f dx x dx x +=+=+⎰⋅⎰=⎰⎰-32)(1)1()(2121. 由f (1)=1可得31=C , 故x x x f 3132)(+=. 7. 求下列伯努利方程的通解:(1))sin (cos 2x x y y dxdy -=+; 解 原方程可变形为x x ydx dy y sin cos 112-=+, 即x x y dx y d cos sin )(11-=---. ])cos sin ([1C dx e x x e y dx dx +⎰⋅-⎰=--⎰x Ce C dx e x x e x x x sin ])sin (cos [-=+-=⎰-, 原方程的通解为x Ce yx sin 1-=. (2)23xy xy dxdy =-; 解 原方程可变形为x y x dxdy y =-1312, 即x xy dx y d -=+--113)(. ])([331C dx e x e y xdx xdx +⎰⋅-⎰=⎰--)(222323C dx xe e x x +-=⎰- 31)31(222232323-=+-=--x x x Ce C e e , 原方程的通解为311223-=-x Ce y . (3)4)21(3131y x y dx dy -=+; 解 原方程可变形为 )21(31131134x y dx dy y -=+, 即12)(33-=---x y dx y d . ])12([3C dx e x e y dx dx +⎰⋅-⎰=--⎰x x x Ce x C dx e x e +--=+-=⎰-12])12([, 原方程的通解为1213--=x Ce yx .(4)5xy y dxdy =-; 解 原方程可变形为 x ydx dy y =-4511, 即x y dx y d 44)(44-=+--. ])4([444C dx e x e y dx dx +⎰⋅-⎰=⎰--)4(44C dx xe e x +-=⎰-x Ce x 441-++-=, 原方程的通解为x Ce x y44411-++-=.(5)xdy -[y +xy 3(1+ln x )]dx =0.解 原方程可变形为)ln 1(11123x yx dx dy y +=⋅-⋅, 即)ln 1(22)(22x y x dx y d +-=+--. ])ln 1(2[222C dx e x e y dx x dx x +⎰⋅+-⎰=⎰-- ])ln 1(2[122C dx x x x++-=⎰ x x x x C 94ln 322--=, 原方程的通解为x x x x C y 94ln 32122--=. 8. 验证形如yf (xy )dx +xg (xy )dy =0的微分方程, 可经变量代换v =xy 化为可分离变量的方程, 并求其通解.解 原方程可变形为)()(xy xg xy yf dx dy -=. 在代换v =xy 下原方程化为)()(22v g x v vf x v dx dv x -=-,即dx xdu v f v g v v g 1)]()([)(=-, 积分得 C x du v f v g v v g +=-⎰ln )]()([)(, 对上式求出积分后, 将v =xy 代回, 即得通解.9. 用适当的变量代换将下列方程化为可分离变量的方程, 然后求出通解:(1)2)(y x dxdy +=; 解 令u =x +y , 则原方程化为21u dx du =-, 即21ududx +=. 两边积分得x =arctan u +C .将u =x +y 代入上式得原方程的通解x =arctan(x +y )+C , 即y =-x +tan(x -C ).(2)11+-=yx dx dy ; 解 令u =x -y , 则原方程化为111+=-udx du , 即dx =-udu . 两边积分得1221C u x +-=. 将u =x +y 代入上式得原方程的通解12)(21C y x x +--=, 即(x -y )2=-2x +C (C =2C 1). (3)xy '+y =y (ln x +ln y );解 令u =xy , 则原方程化为u x u x u x udx du x x ln )1(2=+-, 即du uu dx x ln 11=. 两边积分得ln x +ln C =lnln u , 即u =e Cx .将u =xy 代入上式得原方程的通解xy =e Cx , 即Cx e x y 1=.(4)y '=y 2+2(sin x -1)y +sin 2x -2sin x -cos x +1;解 原方程变形为y '=(y +sin x -1)2-cos x .令u =y +sin x -1, 则原方程化为x u x dx du cos cos 2-=-, 即dx du u=21. 两边积分得C x u+=-1. 将u =y +sin x -1代入上式得原方程的通解C x x y +=-+-1sin 1, 即Cx x y +--=1sin 1.(5)y (xy +1)dx +x (1+xy +x 2y 2)dy =0 .解 原方程变形为)1()1(22y x xy x xy y dx dy +++-=. 令u =xy , 则原方程化为)1()1(1222u u x u u x udx du x +++-=-, 即)1(1223u u x u dx du x ++=. 分离变量得du uu u dx x )111(123++=. 两边积分得u uu C x ln 121ln 21+--=+. 将u =xy 代入上式得原方程的通解xy xyy x C x ln 121ln 221+--=+, 即 2x 2y 2ln y -2xy -1=Cx 2y 2(C =2C 1).习题12-51. 判别下列方程中哪些是全微分方程, 并求全微分方程的通解:(1)(3x 2+6xy 2)dx +(6x 2y +4y 2)dy =0;解 这里P =3x 2+6xy 2, Q =6x 2y +4y 2. 因为xQ xy y P ∂∂==∂∂12, 所以此方程是全微分方程, 其通解为C dy y y x dx x y x =++⎰⎰02202)46(3, 即 C y y x x =++3223343. (2)(a 2-2xy -y 2)dx -(x +y )2dy =0;解 这里P =a 2-2xy -y 2, Q =-(x +y )2. 因为xQ y x y P ∂∂=--=∂∂22, 所以此方程是全微分方程, 其通解为C dy y x dx a y x =+-⎰⎰0202)(, 即 a 2x -x 2y -xy 2=C .(3)e y dx +(xe y -2y )dy =0;解 这里P =e y , Q =xe y -2y . 因为xQ e y P y ∂∂==∂∂, 所以此方程是全微分方程, 其通解为C dy y xe dx e y y x =-+⎰⎰000)2(, 即 xe y -y 2=C .(4)(x cos y +cos x )y '-y sin x +sin y =0;解 原方程变形为(x cos y +cos x )dy -(y sin x +sin y )dx =0.这里P =-(y sin x +sin y ), Q =x cos y +cos x . 因为xQ x y y P ∂∂=-=∂∂sin cos , 所以此方程是全微分方程, 其通解为C dy x y x dx y x =++⎰⎰00)cos cos (0, 即 x sin y +y cos x =C .解(5)(x 2-y )dx -xdy =0;解 这里P =x 2-y , Q =-x . 因为xQ y P ∂∂=-=∂∂1, 所以此方程是全微分方程, 其通解为C xdy dx x y x =-⎰⎰002, 即 C xy x =-331. (6)y (x -2y )dx -x 2dy =0;解 这里P =y (x -2y ), Q =-x 2. 因为y x y P 4-=∂∂, x xQ 2-=∂∂, 所以此方程不是全微分方程.(7)(1+e 2θ)d ρ+2ρe 2θd θ=0;解 这里P =1+e 2θ, Q =2ρe 2θ. 因为xQ e y P ∂∂==∂∂θ22, 所以此方程是全微分方程, 其通解为C d e d =+⎰⎰θθρθρρ02022,即 ρ(e 2θ+1)=C .(8)(x 2+y 2)dx +xydy =0.解 这里P =x 2+y 2, Q =xy . 因为y y P 2=∂∂, y xQ =∂∂, 所以此方程不是全微分方程.2. 利用观察法求出下列方程的积分因子, 并求其通解:(1)(x +y )(dx -dy )=dx +dy ;解 方程两边同时乘以yx +1得 yx dy dx dy dx ++=-, 即d (x -y )=d ln(x +y ), 所以yx +1为原方程的一个积分因子, 并且原方程的通解为 x -y =ln(x +y )+C .(2)ydx -xdy +y 2xdx =0;解 方程两边同时乘以21y得 02=+-xdx y xdy ydx , 即0)2()(2=+x d y x d , 所以21y为原方程的一个积分因子, 并且原方程的通解为 C x y x =+22. (3)y 2(x -3y )dx +(1-3y 2x )dy =0;解 原方程变形为xy 2dx -3y 3dx +dy -3x 2dy =0, 两边同时乘以21y并整理得 0)33(2=+-+xdy ydx y dy xdx , 即0)(3)1()2(2=--xy d y d x d , 所以21y为原方程的一个积分因子, 并且原方程的通解为 C xy yx =--3122. (4)xdx +ydy =(x 2+y 2)dx ;解 方程两边同时乘以221y x +得022=-++dx y x ydy xdx , 即0)]ln(21[22=-+dx y x d , 所以221y x +为原方程的一个积分因子, 并且原方程的通解为 x 2+y 2=Ce 2x .(5)(x -y 2)dx +2xydy =0;解 原方程变形为xdx -y 2dx +2xydy =0, 两边同时乘以21x得 0222=-+x dx y xydy x dx , 即0)()(ln 2=+x y d x d , 所以21x为原方程的一个积分因子, 并且原方程的通解为 C xy x =+2ln , 即x ln x +y 2=Cx . (6)2ydx -3xy 2dx -xdy =0.解 方程两边同时乘以x 得2xydx -x 2dy -3x 2y 2dx =0, 即yd (x 2)-x 2dy -3x 2y 2dx =0,再除以y 2得03)(2222=--dx x ydy x x yd , 即0)(32=-x y x d 所以2yx为原方程的一个积分因子, 并且原方程的通解为 032=-x yx . 3. 验证)]()([1xy g xy f xy -是微分方程yf (xy )dx +xg (xy )dy =0的积分因子, 并求下列方程的通解: 解 方程两边乘以)]()([1xy g xy f xy -得0])()([)]()([1=+-dy xy xg dx xy yf xy g xy f xy , 这里)]()([)(xy g xy f x xy f P -=, )]()([)(xy g xy f y xy g Q -=. 因为x Q xy g xy f xy g xy f xy g xy f yP ∂∂=-'-'=∂∂2)]()([)()()()(, 所以)]()([1xy g xy f xy -是原方程的一个积分因子. (1)y (x 2y 2+2)dx +x (2-2x 2y 2)dy =0;解 这里f (xy )=x 2y 2+2, g (xy )=2-2x 2y 2 , 所以3331)]()([1y x xy g xy f xy =- 是方程的一个积分因子. 方程两边同乘以3331y x 得全微分方程 032323222232=-++dy y x y x dx y x x , 其通解为C dy y x y x dx x x y x =-++⎰⎰132221323232, 即 C yx y x =-+-)11ln (ln 31222, 或2212y x e Cy x =.(2)y (2xy +1)dx +x (1+2xy -x 3y 3)dy =0.解 这里f (x y )=2x y +1, g (x y )=1+2x y -x 3 y 3 , 所以441)]()([1yx xy g xy f xy =- 是方程的一个积分因子. 方程两边同乘以441yx 得全微分方程 02112433334=-+++dy y x y x xy dx y x xy ,其通解为C dy y x y x xy dx x x y x =-+++⎰⎰14333142112, 即 C y y x y x =++||ln 3113322. 4. 用积分因子法解下列一阶线性方程:(1)xy '+2y =4ln x ;解 原方程变为x xy x y ln 42=+', 其积分因子为 22)(x e x dx x =⎰=μ, 在方程x xy x y ln 42=+'的两边乘以x 2得 x 2y '+2xy =4x ln x , 即(x 2y )'=4x ln x , 两边积分得C x x x xdx x y x +-==⎰222ln 2ln 4, 原方程的通解为21ln 2x C x y +-=. (2)y '-tan x ⋅y =x .解 积分因子为x e x xdx cos )(tan =⎰=-μ,在方程的两边乘以cos x 得cos x ⋅y '-sin x ⋅y =x cos x , 即(cos x ⋅y )'=x cos x , 两边积分得C x x x xdx x y x ++==⋅⎰cos sin cos cos , 方程的通解为xC x x y cos 1tan ++=.习题12-61. 求下列各微分方程的通解:(1)y ''=x +sin x ;解 12cos 21)sin (C x x dx x x y +-=+='⎰, 21312sin 61)cos 21(C x C x x dx C x x y ++-=+-=⎰, 原方程的通解为213sin 61C x C x x y ++-=. (2)y '''=xe x ;解 12C e xe dx xe y x x x +-==''⎰,21122)2(C x C e xe dx C e xe y x x x x ++-=+-='⎰,3221213)22(C x C x C e xe dx C x C e xe y x x x x +++-=++-=⎰,原方程的通解为32213C x C x C e xe y x x +++-=.(3)211xy +=''; 解 12arctan 11C x dx xy +=+='⎰ x C dx xxx x dx C x y 1211arctan )(arctan ++-=+=⎰⎰ 212)1ln(21arctan C x C x x x +++-=, 原方程的通解为2121ln arctan C x C x x x y +++-=.(4)y ''=1+y '2;解 令p =y ', 则原方程化为p '=1+p 2, 即dx dp p=+211, 两边积分得arctan p =x +C 1, 即y '=p =tan(x +C 1),211|)cos(|ln )tan(C C x dx C x y ++-=+=⎰,原方程的通解为21|)cos(|ln C C x y ++-=.(5)y ''=y '+x ;解 令p =y ', 则原方程化为p '-p =x ,由一阶线性非齐次方程的通解公式得1)()(111--=+=+⎰⋅⎰=⎰⎰--x e C C dx xe e C dx e x e p x x x dx dx ,即 y '=C 1e x -x -1,于是 221121)1(C x x e C dx x e C y x x +--=--=⎰, 原方程的通解为22121C x x e C y x +--=. (6)xy ''+y '=0;解 令p =y ', 则原方程化为x p '+p =0, 即01=+'p xp , 由一阶线性齐次方程的通解公式得xC e C e C p x dx x 1ln 111==⎰=--, 即 xC y 1=', 于是 211ln C x C dx xC y +==⎰, 原方程的通解为y =C 1ln x +C 2 .(7)yy ''+'=y '2;解 令p =y ', 则dy dp p dx dy dy dp y =⋅='', 原方程化为 21p dy dp yp =+, 即dy y dp p p 112=-, 两边积分得||ln ||ln |1|ln 2112C y p +=-, 即22121y C p ±-. 当|y '|=|p |>1时, 方程变为2211y C y +±=', 即dx dy y C ±=+21)(11, 两边积分得arcsh(C 1y )=±C 1x +C 2,即原方程的通解为)(sh 1121x C C C y ±=. 当|y '|=|p |<1时, 方程变为2211y C y -±=', 即dx dy y C ±=-21)(11, 两边积分得arcsin(C 1y )=±C 1x +C 2,即原方程的通解为)(sin 1121x C C C y ±=.(8)y 3y ''-1=0;解 令p =y ', 则dydp p y ='', 原方程化为 013=-dydp p y , 即pdp =y -3dy , 两边积分得122212121C y p +-=-, 即p 2=-y -2+C 1, 故 21--±='y C y , 即dx dy y C ±=--211, 两边积分得)(12121C x C y C +±=-,即原方程的通解为C 1y 2=(C 1x +C 2)2 .(9)yy 1=''; 解 令p =y ', 则dy dp py ='', 原方程化为 y dy dp p 1=, 即dy ypdp 1=, 两边积分得122221C y p +=, 即1244C y p +=, 故 12C y y +±=', 即dx dy C y ±=+11, 两边积分得原方程的通211231]2)(32[C C y C C y x ++-+±=. (10)y ''=y '3+y '.解 令p =y ', 则dydp py ='', 原方程化为 p p dy dp p +=3, 即0)]1([2=+-p dydp p . 由p =0得y =C , 这是原方程的一个解.由0)1(2=+-p dydp 得 arctan p =y -C 1, 即y '=p =tan(y -C 1),从而 )sin(ln )tan(1112C y dy C y C x -=-=+⎰, 故原方程的通解为 12arcsin C e y C x +=+.2. 求下列各微分方程满足所给初始条件的特解:(1)y 3 y ''+1=0, y |x =1=1, y '|x =1=0;解 令p =y ', 则dydp p y ='', 原方程化为013=+dy dp py , 即dy y pdp 31-=, 两边积分得1221C y p +=, 即y y C y 211+±='. 由y |x =1=1, y '|x =1=0得C 1=-1, 从而yy y 21-±=', 分离变量得dx dy yy =-±21, 两边积分得221C x y +=-±, 即22)(1C x y +-±=.由y |x =1=1得C 2=-1, 2)1(1--=x y , 从而原方程的通解为22x x y -=.(2)y ''-ay '2=0, y |x =0=0, y '|x =0=-1;解 令p =y ', 则原方程化为02=-ap dx dp , 即adx dp p=21, 两边积分得11C ax p+=-, 即11C ax y +-='. 由y '|x =0=-1得C 1=1, 11+-='ax y , 两边积分得 2)1ln(1C ax ay ++-=. 由y |x =0=0得C 2=0, 故所求特解为)1ln(1+-=ax ay . (3)y '''=e ax , y |x =1=y '|x =1=y ''|x =1=0;解 11C e adx e y ax ax +==''⎰. 由y ''|x =1=0得a e aC 11-=. 2211)11(C x e a e a dx e a e a y a ax a ax +-=-='⎰. 由y '|x =1=0得a a e ae a C 2211-=. dx e ae a x e a e a y a a a ax )1111(22⎰-+-= 322311211C x e a x e a x e a e a a a a ax +-+-=. 由y |x =1=0得a a a a e ae a e a e a C 32312111-+-=, 故所求特解为 322232)22()1(2a a a e a x a e a x e a e y a a a ax ----+-=. (4)y ''=e 2y , y |x =0=y '|x =0=0;解 令p =y ', 则dydp p y ='', 原方程化为 y e dydp p 2=, 即pdp =e 2y dy , 积分得p 2=e 2y +C 1, 即12C e y y +±='.由y |x =0=y '|x =0=0得C 1=-1, 故12-±='y e y , 从而dx dy e y ±=-112,积分得-arcsin e -y =±x +C 2.由y |x =0=0得22π-=C , 故 x x e y cos )2sin(=-=-π , 从而所求特解为y =-lncos x .(5)y y 3='', y |x =0=1, y '|x =0=2;解 令p =y ', 则dy dp py ='', 原方程化为 y dydp p 3=, 即dy y pdp 3=, 两边积分得12322221C y p +=, 即1232C y y +±='. 由y |x =0=1, y '|x =0=2得C 1=0,432y y =', 从而dx dy y 243=-, 两边积分得24124C x y +=, 即42)4121(C x y +=. 由y |x =0=1得C 2=4, 故原方程的特解为4)121(+=x y . (6)y ''+y '2=1, y |x =0=0, y '|x =0=0.解 令p =y ', 则dydp p y ='', 原方程化为 12=+p dydp p , 即2222=+p dy dp , 于是 1)2(211222+=+⎰⋅⎰=--⎰y dy dy e C C dy e e p ,即 121+±='-y e C y .由y |x =0=0, y '|x =0=0得C 1=-1, y e y 21--±='.故dx dy ey ±=--211, 两边积分得 22)1ln(C x e e y y +±=-+.由y |x =0=0得C 2=0, x e e y y ±=-+)1ln(2,从而得原方程的特解y =lnch x .3. 试求y ''=x 的经过点M (0, 1)且在此点与直线121+=x y 相切的积分曲线. 解 1221C x y +=', 21361C x C x y ++=. 由题意得y |x =0=1, 21|0='=x y . 由21|0='=x y 得211=C , 再由y |x =0=1得C 2=1, 因此所求曲线为 121613++=x x y . 4. 设有一质量为m 的物体, 在空中由静止开始下落, 如果空气阻力为R =c 2v 2(其中c 为常数, v 为物体运动的速度), 试求物体下落的距离s 与时间t 的函数关系.解 以t =0对应的物体位置为原点, 垂直向下的直线为s 正轴, 建立坐标系. 由题设得⎪⎩⎪⎨⎧==-===0| |0022t t v s v c mg dt dv m . 将方程分离变量得dt v c mg mdv =-22, 两边积分得1||ln C kt mgcv mg cv +=-+(其中m g c k 2=) 由v |t =0=0得C 1=0, kt mg cv mg cv =-+||ln , 即kt e mgcv mg cv =-+. 因为mg >c 2v 2, 故kt e cv mg mg cv )(-=+, 即)1()1(kt kt e mg e cv -=+,或 ktkt e e c mg dt ds +-⋅-=11, 分离变量并积分得211ln C e e ck mg s ktkt +++-=-. 由s |t =0=0得C 2=0, 故所求函数关系为ktkt e e ck mg s ++-=-11ln , 即)(ch ln 2t m g c c m s =.习题12-71. 下列函数组在其定义区间内哪些是线性无关的?(1)x , x 2;解 因为x xx =2不恒为常数, 所以x , x 2是线性无关的. (2)x , 2x ;解 因为22=xx , 所以x , 2x 是线性相关的. (3)e 2x , 3e 2x ;解 因为332=x x ee , 所以e 2x , 3e 2x 是线性相关的. (4)e -x ; e x ;解 因为x x x e ee 2=-不恒为常数, 所以e -x ; e x 是线性无关的. (5)cos2x , sin2x ;解 因为x xx 2tan 2cos 2sin =不恒为常数, 所以cos2x , sin2x 是线性无关的. (6) 2x e , 22x xe ;解 因为x e xe x x 2222=不恒为常数, 所以2x e , 22x xe 是线性无关的.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十二章 无穷级数习题 12-11.写出下列级数的前五项(1)2111n n n ∞=++∑ (2)113(2n 1)242n n ∞=-∑ (3)11(1)5n nn -∞=-∑(4)1!nn n n ∞=∑2.写出下列级数的的一般项(1)1111357++++ (2)2345612345-+-+-(3)2242462468x x x x +++(4)23453579aa a a -+-+3.根据级数收敛与发散的定义判定下列级数的收敛性(1)1n ∞=∑(2)1111133557(2n 1)(2n 1)+++++-+(3)2sinsinsin666n πππ++++4.判定下列级数的收敛性(1)23238888(1)9999nnn -+-++-+(2)11113693n+++++(3)1133n ++++(4)232333332222n n +++++(5)223311111111()()()()23232323n n++++++++5.利用柯西审敛原理判定下列级数的收敛性(1)11(1)n n n +∞=-∑ (2)11111123456+-++-+(3)1sin 2nn nx ∞=∑(4)0111()313233n n n n ∞=+-+++∑习题 12-21.用比较审敛法或极限形式的比较审敛法判定下列级数的收敛性(1)1111++++35n +(2-1) (2)22212131112131n n +++++++++++(3)1112536(n 1)(n 4)++++++(4)23sinsinsinsin2222nππππ+++++(5)11(a 0)1nn a ∞=>+∑2.用比值审敛法判定下列级数的收敛性(1)232333331222322nnn +++++⋅⋅⋅⋅(2)213nn n ∞=∑(3)12!n nn n n ∞=⋅∑(4)11tan 2n n n π∞+=∑3.用极值审敛法判定下列级数的收敛性(1)1()21nn n n ∞=+∑(2)11[ln(n 1)]nn ∞=+∑(3)211()31n n n n ∞-=-∑(4)n 1(),(n ),a ,b,a nn n nb a a ∞=→→∞∑其中a 均为正数4.判定下列级数的收敛性(1)2333332()3()()4444n n +++++(2)44441231!2!3!!n n +++++(3)11(n 2)n n n ∞=++∑(4)12sin3nn nπ∞=∑(51n n+++(6)111(a 0,b 0)2a b a b na b++++>>+++5.判定下列级数是否收敛?如果是收敛的,是绝对收敛还是条件收敛?(1)1-+(2)111(1)3n n n n∞--=-∑(3)2341111111132323232⋅-⋅+⋅-⋅+(4)1111ln 2ln 3ln 4ln 5-+-+(5)2112(1)!n n n n ∞+=-∑习题 12-31.求下列幂级数的收敛区间 (1)2323n x x x nx +++++(2)2221(1)2nnx x x n-+++-+(3)2322424624(2n)nx x x x +++++⋅⋅⋅⋅⋅⋅(4)22231323333nn x x x x n +++++⋅⋅⋅⋅(5)23232222225101n x x x n ++++++(6)211(1)21n nn x n +∞=-+∑(7)221212n n n n x ∞-=-∑ (8)1nn ∞=2.利用逐项求导或逐项积分,求下列级数的和函数(1)11n n nx∞-=∑(2)41141n n x n +∞=+∑(3)35213521n x x x x n -+++++-习题 12-41.求函数(x)cosxf =的泰勒级数,并验证它在整个数轴上收敛于这函数2.将下列函数展开成x 的幂级数,并求展开式成立的区间(1)shx 2x xe e --=(2)ln(a x)(a 0)+>(3)a x(4)2sin x(5)(1x)ln(1x)++(63.将下列函数展开成(x-1)的幂级数,并求展开式成立的区间 (1 (2)lg x4.将函数(x)cosxf =展开成(x )3π+的幂级数 5.将函数1(x)f x =展开成(x-3)的幂级数 6.将函数21(x)32f x x =++展开成(x+4)的幂级数习题12-51.利用函数的幂级数展开式求下列各数的近似值 (1)ln3(误差不超过0.0001)(20.001)(30.00001)(4)cos2。
(误差不超过0.0001)2.利用被积函数的幂级数展开式求下列定积分的近似值(1)0.540.10001 1dxx+⎰(误差不超过)(2)0.5arc0.ta01nxdxx⎰(误差不超过)3.试用幂级数求下列各微分方程的解(1),y-xy-x=1(2),,,y+xy+y=0(3),(1-x)y=x-y4.试用幂级数求下列方程满足所给初始条件的特解(1),231,2xy y x y==+=(2),0 (1x)y y1x,y0x=-+=+=5.利用欧拉公式将函数cosxe x展开成x的幂级数习题12-61.已知函数序列(x)sin(n1,2,3,)nxsn==在(,)-∞+∞上收敛于0(1)问N(,x)ε取多大,能使当n>N,(x)ns与其极限之差的绝对值小于正数(2)证明(x)ns在任一有限区间[a,b]上一致收敛2.已知级数2222221(1x)x xxx+++++在(,)-∞+∞上收敛(1)求出该级数的和(2)问(,x)Nε取多大,能使当n>N时,级数的余项rn的绝对值小于正数ε(3)分别讨论级数在区间1[0,1],[,1]2上的一致收敛性3.按定义讨论下列级数在所给区间上的一致收敛性(1)2121(1),(1x)nnnxx∞-=--∞<<+∞+∑(2)0(1x)x,01nn x∞=-<<∑4.利用威尔斯特拉斯判别法证明下列级数在所给区间上的一致收敛性(1)1cos, 2nn nxx∞=-∞<<+∞∑(2)nx∞=-∞<<+∞(3)21,0nxnx e x∞-=≤<+∞∑(4)1,10 !nxn ex n-∞=<∑(5)221(1)(1e),0n nxnxn x-∞=--≤<+∞+∑习题12-71.下列周期函数(x)f的周期为2π,试将(x)f展开成傅里叶级数,如果(x)f在[,)ππ-上的表达式为(1)2(x)3x1(x) fππ=+-≤<(2)2(x)e(x)xfππ=-≤<(3),x0,0x(a,b a) (x){bxaxfππ-≤<≤<=为常数,且>b>02.将下列函数(x)f展开成傅里叶级数(1)(x)2sin(x)3xfππ=-≤≤(2)e,x01,0x (x){xfππ-≤<≤<=3.将函数(x)cos(x)2xfππ=-≤≤展开成傅里叶级数4.设(x)f是周期为2π的周期函数,它在[,]ππ-上的表达式为,22,22(x){xxfππππππ--≤<-≤<=将(x)f展开成傅里叶级数5.将函数f(x)(0x)2xππ-=≤≤展开成正弦级数6.将函数2(x)2x(0x)fπ=≤≤分别展开成正弦级数和余弦级数7.设周期函数(x)f的周期为2π.证明(1)如果(x)f(x)fπ-=-,则(x)f的傅里叶系数022a0,0,0(k1,2,)k ka b====(2)如果(x)f(x)fπ-=,则(x)f的傅里叶系数2121a0,b0(k1,2,)k k++===习题12-81.将下列各周期函数展开成傅里叶级数(下面给出函数在一个周期内的表达式)(1)211 (x)1x(x)22 f=--≤<(2),1011,12f(x){x xx-≤<-≤<=(3)21,301,03 (x){x xxf+-≤<≤<=2.将下列函数分别展开成正弦级数和余弦级数(1)x,02l x,2 (x){lxlx l f≤<-≤≤=(2)2(x)x(0x2) f=≤≤3.设f(x)是周期为2的周期函数,它在[-1,1)上的表达式为f(x)e x-=。
试将(x)f展开成复数形式的傅里叶级数。
4.设u(t)是周期为T的周期函。
已知它的傅里叶级数的复数形式为(参阅本节例题)21(t)sin ()nti Tn h h n u e t T n T πτπτπ∞=-∞=+-∞<<+∞∑试写出u(t)的傅里叶级数的实数形式(即三角形式)总习题十二1.填空(1)对级数1nn u∞=∑,lim 0n n u →∞=是它收敛的-------条件,不是它收敛的--------条件(2)部分和数列{s }n 有界是正项级数1nn u∞=∑收敛的-------------条件(3)若级数1nn u∞=∑绝对收敛,则级数1nn u∞=∑必定---------;若级数1nn u∞=∑条件收敛,则级数1nn u∞=∑必定-------。
2.判定下列级数的收敛性(1)n ∞=(2)221(n!)2n n ∞=∑(3)21cos 32n n n n π∞=∑(4)1021lnn n ∞=∑(5)1(a 0,s 0)ns n a n ∞=>>∑3.设正向级数1nn u∞=∑和1nn v∞=∑都收敛,证明级数21(uv )nn n ∞=+∑也收敛4.设级数1n n u ∞=∑收敛,且lim 1nn n v u →∞=。
问级数1n n v ∞=∑是否也收敛?试说明理由。
5.讨论下列级数的绝对收敛性与条件收敛性(1)11(1)np n n ∞=-∑(2)111sin1(1)n n n n ππ∞++=+-∑(3)11(1)lnn n n n ∞=+-∑(4)11(n 1)!(1)nn n n ∞+=+-∑6.求下列极限(1)21111lim (1)3n k k n k n k →∞=+∑ (2)111139273lim[248(2)]nn n →∞⋅⋅7.求下列幂级数的收敛区间(1)135n n nn x n ∞=+∑(2)211(1)n nn x n ∞=+∑(3)1(x 1)nn n ∞=+∑(4)212nnn nx ∞=∑8.求下列幂级数的和函数。