计算物理论文材料

计算物理论文材料
计算物理论文材料

计算物理学与应用学科“十二五”发展规划

(2011-2015)

一、学科简介

计算物理学与应用是隶属于物理学一级学科的一个二级学科,学科代码“140.75”。相关的学科有“原子与分子物理”、“无线电物理”、“计算数学”等,是兰州城市学院重点学科(B级),也是理工科学科群中特色鲜明的优势学科。

二、研究方向

计算物理学与应用学科目前开展三个研究方向,其主要研究任务是:(一)研究方向1:纳米材料的计算机模拟;学科带头人:郑小平教授

1. 研究意义和研究目标

计算机模拟是计算机技术的一个重要应用领域,具有高效、快捷、经济等多方面的优点。用计算机模拟研究材料是集计算机科学、计算数学、材料科学、表面科学、物理化学于一体的一门新兴的交叉学科,用Kinetic M onte Carlo算法模拟薄膜生长是计算材料科学的一个研究热点。

在薄膜生长过程中如果引入少量的表面活性剂时,薄膜生长会表现出与没有表面活化剂时完全相反的特征,对于这种反常效应,传统的DLA理论已经不能解释其微观机理。虽然近年来提出的RLA理论对这种反常效应给出了比较满意的解释,但是DLA与RLA这两个模型完全不同,揭示的规律正好相反。在DLA模型中,成核受到扩散作用的限制;而在RLA模型中,形核主要受到交换作用的限制,目前对薄膜生长的微观机理尚存在许多质疑。

本科研方向以扩散理论为基础,以DLA模型为原型,吸收RLA理论的部分合理成份,结合实验上AFM、STM观察的最新发现,建立以“基本微观过程”为核心的新模型,模型中考虑了许多新的微观机制,如“连带作用”、“亚稳态”、“非最低能量选择”、“近似交换”和“完全交换”等,并利用新模型,通过Kinetic Monte Carlo方法对正常效应、反常效应的实验现象进行模拟计算。

(二)研究方向2:地球物理材料的计算机模拟;学科带头人:刘子江副教授(博士)

1. 研究意义

地球是目前太阳系中唯一适合人类生存的一颗行星。生活在地球上的人类,无时不感受到地球为我们提供创造物质文明的可贵自然资源和得以免遭太阳或其它恒星发射来的带电粒子流辐照伤害的地磁场外层空间保护屏障

的恩赐,也不时会感受到由火山、地震、泥石流等自然灾害对安全、财产、甚至生命可能造成的威胁。究其原因,上述自然现象无一不与地球深部物质尤其是地核物质的组分、物质、状态,以及由此诱发的物质运动密切相关。它给我们的一个重要启示是:深化对地球深部物质的性质及其运动规律的认识,有助于提高人类改善生活质量,增强人类改造世界、造福人类自身的能力。另外,组成地球的主要物质,还在国民经济中具有非常实际的应用价值,钙钛矿还是陶瓷制作、人造骨头和牙根的医用材料、以及高频绝缘如CaSiO

3

体、树脂制品和整形外科的填充材料等;CaCO

广泛应用于工业、医用移植和

3

生物光电子学领域等等。所以今后六年主要研究深部地球物理材料在高压下的性质,简单地说就是凝聚态物理的高压物理。

2. 研究目标

(1)地球物理材料的结构;

(2)地球物理材料的相变;

(3)地球物理材料的状态方程;

(4)地球物理材料的弹性性质;

(5)地球物理材料的高压熔化;

(6)地球物理材料的热力学特性;

(7)地球物理材料的电子结构和光学性质。

(三)研究方向3:计算微波和电磁场计算技术;学科带头人:姬五胜教授本研究方向确立科研攻关方向为:波概念迭代法的研究和在微波电路中的应用

1.研究意义

波概念迭代法(WCIP)是一种基于波概念的新的迭代方法。它是在平面不连续性问题的背景下发展起来的,能够较好的解决微波电路不连续性所造成的散射问题,特别是在障碍物尺寸与波长相近时。WCIP通过电场和电流密

度引入入射波和反射波,并在第次和次的入射波和反射波之间建立起转换的递归关系式。当存储的各次叠加波收敛时停止循环,最后可得到空气和介质交界面上的电流密度和电场。在迭代过程中,WCIP以快速傅立叶变换实现波在空域和谱域之间的转换,这使得WCIP既提供了对电路描述的多功能性,又保证了多层结构的可靠表述。较之有限元法、矩量法、FDTD等常用数值分析方法,WCIP通过定义有效的周期性关系来减少计算的复杂度和内存的使用量;同时,由于波在空域与谱域之间转换的过程中运用了二维快速傅里叶变换,使得整个迭代过程的计算速度大大提高。因此这种方法对不同结构的微波多层电路有很强的适用性,有着广泛的应用意义。

2. 研究目标:(1)深入研究波概念迭代法的理论原理和迭代过程。主要包括激励源设置,空域散射矩阵的计算,谱域反射系数的计算,2D-FFT和2D-IFFT对散射波在空域和谱域之间的搬移过程,参考面上电磁场参数、导纳矩阵、散射参数的提取等。

(2)通过分析研究,编写能够适用于多层电路结构的波概念迭代法通用程序。

(3)开发波概念迭代法在多层电路方面的新应用。

三、学术团队

“计算物理学与应用”学科自2006年被学校确定为重点学科(B类),经过三年的建设,已拥有三个稳定的研究方向,形成了较为稳定的科研团队。本学科现有科研人员24人,有教授6人,副教授4人,其中博士8人(含在读3人),硕士12人。科研队伍职称结构、学历结构较为合理,且比较年轻。

(一)研究方向一:纳米材料的计算机模拟

学科带头人:郑小平教授,博士后,硕导

成员:王恩涌教授、王培煜博士,田东斌(博士,在读)、董向成等

(二)学科方向二:地球物理材料的计算机模拟

学科带头人:刘子江副教授,博士

成员:吴学勇、熊旭军、魏秀芳(硕士)、张正荣(在读博士)、郭中华(硕士)、

陈丽(硕士)、周玲(硕士)、陈建宏(在读博士)等

(3)学科方向三:计算微波和电磁场计算技术

学科带头人:姬五胜教授,博士,硕导

成员:雒向东教授(博士)、施树春教授、赵海阔、张妍(硕士)、赵宇杰(硕士)、赵彦敏(硕士)、石蕊(硕士)、李慧芳(硕士)等四、研究平台

(一)计算材料科学与计算机模拟的研究平台

材料计算与设计(Materials Computation Design) 是指以计算机为手段,通过理论与计算预报新材料的固有性质、结构与组分、使用性能以及合成与加工进行综合研究的一门新学科,其目的在于使人们能主动地对材料结构与功能的优化与控制,以便按需要制备新材料。由于现代科学的深入发展,以及计算机能力的空前提高,材料计算与设计已成为现代材料科学中最活跃的一个重要分支。

郑小平教授主持的纳米材料计算机模拟研究,以扩散理论为基础,以D LA模型为原型,吸收RLA理论的部分合理成份,结合实验上AFM、STM观察的最新发现,建立以“基本微观过程”为核心的新模型,模型中考虑了许多新的微观机制,如“连带作用”、“亚稳态”、“非最低能量选择”、“近似交换”和“完全交换”等,并利用新模型,通过Kinetic Monte Carlo方法对正常效应、反常效应的实验现象进行模拟计算。该研究对薄膜生长的微观机理提供理论依据,也对探索薄膜生长的科学实验和最佳工艺条件提供了重要的理论依据。

刘子江博士主持的地球物理材料在高压下的性质,模拟和计算地球物理材料的结构、相变、状态方程、弹性性质、高压熔化、热力学特性电子结构和光学性质。这些研究深化对地球深部物质的性质及其运动规律的认识,有助于提高人类改善生活质量,增强人类改造世界、造福人类自身的能力。对地球物理材料如CaSiO

钙钛矿的研究,有助于这些材料在工业、医用移植和

3

生物光电子学领域的应用。

(二)计算微波与计算电磁学研究平台

计算微波和计算电磁学涉及微波技术和电磁学的各个领域,与电磁场工程、微波技术、电磁场理论互相联系、互相依赖。计算微波与计算电磁学能够解决实际电磁场工程、微波工程中越来越复杂的电磁场问题的建模与仿

真、优化设计,为电磁场理论研究提供数值及解析算法的方法和手段。计算电磁学已成为对复杂体系的电磁规律、电磁性质进行研究的重要手段,为电磁理论研究开辟新的研究途径,推动了微波工程、电磁场工程的发展。

姬五胜教授主持的波概念迭代法(WCIP)的研究及其在微波电路中的应用,深入研究波概念迭代法的理论原理和迭代过程。主要包括激励源设置,空域散射矩阵的计算,谱域反射系数的计算,2D-FFT和2D-IFFT对散射波在空域和谱域之间的搬移过程,参考面上电磁场参数、导纳矩阵、散射参数的提取等,能够较好的解决微波电路不连续性所造成的散射问题,特别是在障碍物尺寸与波长相近时。WCIP通过定义有效的周期性关系来减少计算的复杂度和内存的使用量;同时,由于波在空域与谱域之间转换的过程中运用了二维快速傅里叶变换,使得整个迭代过程的计算速度大大提高。通过分析研究,开发能够适用于多层电路结构的波概念迭代法通用程序,拓展波概念迭代法在多层电路方面的新应用。

五、计算物理学与应用学科的发展规划

在未来6年,计算物理学与应用学科发展的方向是:找准学科定位,认清自身学科优势,瞄准国家战略需求、甘肃省经济社会的发展需求及学校教学科研的服务需求,以前沿性创新课题和应用项目为载体和纽带,在创新研究中,进一步凝聚学术团队,推进学科交叉,凝练学科发展方向,培育新的增长点,为学科建设和硕士学位点的申报打下坚实的基础。争取在高水平的科研项目(尤其是服务甘肃经济社会的应用项目)、高质量的学术论文、高层次的科研奖励方面有较大的突破。争取在2012年使“计算物理学与应用”学科成为兰州城市学院A级重点学科。

具体发展目标:

2010-2012年,夯实基础研究,为学科发展打下良好的基础。保质保量完成2007-2009年已申报成功课题,以课题带动科研攻关,使科研团队规模进一步壮大。“计算物理学”重点学科要找准更高突破口,学科带头人申报国家级课题3项,团队成员申报省、厅级课题4-6项,争取在国家级课题上有较大突破,进一步凝练学科方向,形成稳定的学科团队。在2012年末,学院被SCI、EI收录论文的数量有较明显增长,争取在甘肃省高校科技进步

奖的获奖上有增长。

2013-2015年,不断凝练学科方向,凝聚稳定的科研团队,提升学科优势。在完成2010-2012年成功申报课题的基础上,立足甘肃经济社会发展需求,在新计算技术、计算方法在物理学、电子学新领域中的应用等方面积极申报应用性项目(横向课题),不断扩大学科在省内的影响力。申报国家级课题3项,申报甘肃省科技支撑计划、兰州市科技发展计划等地方项目3-4项,“计算物理学”学科申报国家科技攻关计划、国家科技支撑计划1-2项。学院发表高质量论文期刊的影响因子有新的突破,争取有新计算方法及应用的专著问世,争取在甘肃省科技进步奖、甘肃省自然科学奖的获奖上有突破。

六、存在的问题

1、学科团队已经形成,学科带头人已经发挥作用,但是科研基础较好的研究人员偏少,年轻研究人员的研究能力有待进一步提高,在同一个研究方向开展研究的凝聚力不强,影响了整体科研实力。

2、资金短缺,学校对研究所没有一次性的大幅度投入;研究所缺乏高级仿真软件和仿真平台以及相关实验仪器支撑,从而影响和制约学科建设进程和质量。

第一性原理计算方法论文

第一性原理计算的理论方法 随着科技的发展,计算机性能也得到了飞速的提高,人们对物理理论的认识也更加的深入,利用计算机模拟对材料进行设计已经成为现代科学研究不可缺少的研究手段。这主要是因为在许多情况下计算机模拟比实验更快、更省,还得意于计算机模拟可以预测一些当前实验水平难以达到的情况。然而在众多的模拟方法中,第一性原理计算凭借其独特的精度和无需经验参数而得到众多研究人员的青睐,成为计算材料学的重要基础和核心计算。本章将介绍第一性原理计算的理论基础,研究方法和ABINIT 软件包。 1.1第一性原理 第一性原理计算(简称从头计算,the abinitio calculation),指从所要研究的材料的原子组分出发,运用量子力学及其它物理规律,通过自洽计算来确定指定材料的几何结构、电子结构、热力学性质和光学性质等材料物性的方法。基本思想是将多原子构成的实际体系理解成为只有电子和原子核组成的多粒子系统,运用量子力学等最基本的物理原理最大限度的对问题进行”非经验”处理。第一性原理计算就只需要用到五个最基本的物理常量即(b o k c h e m ....)和元素周期表中各组分元素的电子结构,就可以合理地预测材料的许多物理性质。用第一性原理计算的晶胞大小和实验值相比误差只有几个百分点,其他性质也和实验结果比较吻合,体现了该理论的正确性。 第一性原理计算按照如下三个基本假设把问题简化: 1.利用Born-Oppenheimer 绝热近似把包含原子核和电子的多粒子问题转化为多电子问题。 2.利用密度泛函理论的单电子近似把多电子薛定谔方程简化为比较容易求解的单电子方程。 3.利用自洽迭代法求解单电子方程得到系统基态和其他性质。 以下我将简单介绍这些第一性原理计算的理论基础和实现方法:绝热近似、密度泛函理论、局域密度近似(LDA)和广义梯度近似(GGA)、平面波及赝势方法、密度泛函的微扰理论、热力学计算方法和第一性原理计算程序包ABINIT 。 1.2量子力学与Born-Oppenheimer 近似 固体是由原子核和核外的电子组成的,在原子核与电子之间,电子与电子之间,原子核与原子核之间都存在着相互作用。从物理学的角度来看,固体是一个多体的量子力学体系,相应的体系哈密顿量可以写成如下形式: ),(),(R r E R r H H ψψ= (1-1) 其中r,R 分别代表所有电子坐标的集合、所有原子核坐标的集合。在不计外场作用下,体系的哈密顿量日包括体系所有粒子(原子核和电子)的动能和粒子之间的相互作用能,即 N e N e H H H H -++= (1-2) 其中,以是电子部分的哈密顿量,形式为:

《材料物理》 课程教学大纲

《材料物理》课程教学大纲 一、课程名称(中英文) 中文名称:材料物理 英文名称:Physics of Materials 二、课程代码及性质 课程代码:0801142 课程性质:专业基础课、专业必修课 三、学时与学分 总学时:40(理论学时:40学时;实践学时:0学时) 学分:2.5 四、先修课程 大学物理、材料科学基础 五、授课对象 本课程面向材料科学与工程专业、功能材料专业学生开设。 六、课程教学目的(对学生知识、能力、素质培养的贡献和作用) 本课程的教学目的: 1、掌握材料物理(能带论、晶格振动、材料磁性)的基本理论,具备解决和分析问题的能力; 2、掌握功能材料的物理(电学、热学、磁学、光学)现象与本质规律,培养学生开发新型功能材料的能力; 3、了解功能材料的发展趋势和动态,培养学生学习新知识的能力。

七、教学重点与难点: 教学重点: 影响材料物理性质的基本理论。晶体结合、能带论、晶格振动与热学性质、

材料的磁性 教学难点: 能带论、材料的磁性、材料的介电性、超导电性 八、教学方法与手段: 教学方法: (1)以课堂讲授为主,阐述该课程的基本内容,保证主要教学内容的完成; (2)从材料的物理性质及物理现象为引导、探讨产生光、电、磁的材料物理本质,掌握重要的理论。。 教学手段: (1)运用现代教学工具,在课堂上通过PPT讲授方式,实现图文并茂,形象直观; (2)强调研究思路的创新过程,注重理论与实践相结合。每一个基本理论学习介绍后再增加介绍其带来新功能材料与器件的研究突破,引导学生的学习兴趣。 九、教学内容与学时安排 (1)总体安排 教学内容与学时的总体安排,如表2所示。 (2)具体内容 各章节的具体内容如下: 绪论(2h) 第一章晶体结构(4h) 1.1 晶格的周期性 1.2晶格的对称性 1.3 倒格子 1.4 准晶 第二章晶体结合 (4h) 2.1晶体结合的普遍描述 2.2 晶体结合的基本类型及特性

计算方法-论文

浅论拉格朗日与牛顿插值法 一、课程简介 计算方法是一种以计算机为工具,研究和解决有精确解而计算公式无法用手工完成和理论上有解而没有计算公式的数学问题的数值近似解的方法。在实际中,数学与科学技术一向有着密切关系并相互影响,科学技术各领域的问题通过建立数学模型和数学产生密切的联系,并以各种形式应用于科学与工程领域。而所建立的这些数学模型,在许多情况下,要获得精确解是十分困难的,甚至是不可能的,这就使得研究各种数学问题的近似解变的非常重要了,计算方法就是这样一门课程,一门专门用来研究各种数学问题的近似解的一门课程。计算方法的一般步骤四:实际问题抽象出实际问题的物理模型,再有物理模型具体出数学模型,根据相关的数值方法利用计算机计算出结果。从一般的过程可以看出,计算方法应该具有数学类课程的抽象性和严谨性的理论特性和实验课程的实用性和实验性的技术特征等。 随着计算机的飞速发展,数值计算方法已深入到计算物理、计算力学、计算化学、计算生物学、计算机经济学等各个领域,并且在航天航空、地质勘探、桥梁设计、天气预报和字形字样设计等实际问题领域得到广泛的应用。 二、主要内容 《计算方法》这门课程可以分为三大块:数值逼近,数值代数,常微分方程。 1.数值逼近模块 这模块的知识点主要分布在第一章到第三章。 第一章:数值计算中的误差。主要的知识点是绝对误差和绝对误差限、相对误差和相对误差限、有效数字等概念的引入和计算绝对误差和绝对误差限、相对误差 和相对误差限及有效数字的方法。 第二章:插值法。在这一章中,主要的就是拉格朗日插值法与牛顿插值法的讲述。拉格朗日插值法中核心就是去求插值结点的插值基函数,牛顿插值法中核心就 是计算插值结点的差商,还有就是截断误差的说明。 第三章:曲线拟合的最小二乘法。重点是最小二乘法的法则和法方程组列写,如何利用法方程组去求一个多项式各项的系数。最小二乘法是与插值方法是有区别 的,它不要求过所有的结点,只要靠近这些点,尽可能的表现出这些点的趋势就行 了。 2.数值代数模块 这一部分内容主要在第四章至第七章。 第四章:数值积分。主要说的是插值型的数值积分的公式和积分系数。刚开始讲了牛顿-柯特斯插值求积公式,包括梯形公式、Simpson公式、Cotes公式-系数、 代数精度和截断误差。然后就是复合的牛顿-柯特斯求积公式,包括复合的梯形公式、复合的Simpson公式、各个复合公式的收敛阶和它们各自的截断误差。最后讲的是 龙贝格算法的计算思想和公式的讲述。

材料物理

选择题 1.下列缺陷属于线缺陷的是位错属于面缺陷的是堆垛层错 2在特定应力循环次数时不发生断裂的前提下,材料所能承受的最大应力称为疲劳强度 3固溶强化对材料性质的影响描述错误的是合金的电导率高于纯金属 4制约超导技术获得应用的关键性能指标是临界温度 5下列电子器件中,半导体热电仪不是利用半导体p-n节制成的6在交变电场的作用下,实际电介质电容器的电流超前电压的相位小于90度 7不具备亚铁磁性的是ZnO·Fe2O3 8马氏体相变不属于扩散型相变9过共析钢中奥氏体降温时析出的渗碳体属于重构型相变 10具有统计性和球对称性的是径向分布函数 11表面存在裂纹的脆性材料可以采用弯曲试验来测定材料的力学性能 12下列说法中对冷加工的优点描述错误的是冷加工会增加电导率与耐腐蚀性 13半导体最大用途是制成p-n结14下列物性参数中,不是用来描述电介质材料的介电性能的是压电系数 15热释电材料不具备的物理性能是铁电性 16原子磁矩的空间有序分布使磁矩互相抵消,宏观自发磁化强度为零,描述的是反铁磁体 17一定是二级相变的是铁磁相变 18描述非晶态金属和合金的结构模型中,较好的是无序密堆硬球模型。 19属于强磁性的是亚铁磁性 20关于材料影响铁磁性的因素,说法正确的是温度升高使得Ms Br Hc均降低 21不属于半导体的敏感效应的是巴克豪森效应 22关于影像材料到典型的因素正确的是一般情况下固溶体的电阻率高于组元的电阻率 23下面利用压电材料热释电性能的是红外探测器 24关于铁磁性和铁电性,不正确的是都以存在畴结构为充分条件 25不属于静载压入法的是肖氏硬度 26关于高温蠕变性能,不正确的是蠕变发生机理与应力水平无关 填空题 1共晶体系具有最低共同熔点 2复合材料通常有颗粒增强纤维增强层片增强三种形式 3解释金属材料导电现象的理论经历了经典自由电子论量子自由电子论能带理论三个发展阶段 4外电场作用下,电介质内部产生的感应偶极距的现象,称为电介质的极化,介电常数反映了电介质材料在电场中极化的特性。 5电介质的漏导电流包含两部分体积电流和表面电流 6对固体进行击穿试验时,总是在气体或液体环境媒质中,击穿往往发生在击穿强度比较低的气体或液体环境媒质中,这种现象称为边缘效应 7铁电畴在外电场的作用下,总是趋向与外电场方向一致,称为畴转向 8在磁场中磁化时,铁磁体的尺寸或者体积发生变化的现象称为磁致伸缩 9序参量在高对称相等于零,在低对称相不等于零。 10对于发生扩散的相变,新相的 长大过程可以粗分为界面控制 和扩散控制两类 11根据杂质原子在晶体中占据 方式可以将杂质缺陷分为两 类:替位式杂质缺陷和填隙杂 质缺陷 12材料在低温下发生塑性形变 的主要原因是位错的滑移,在 高温下发生的蠕变主要原因 是位错的攀移。 13置于外磁场中的超导体会表 现出完全的抗磁性,如果将 放在磁性材料的上方,超导 体就会悬浮起来,这种现象 称为迈斯纳效应。 14P-n结具有单向导电性,正偏 时呈导通状态;反偏时呈截止状 态 15材料的电极化强度时电介质 单位体积内的电偶极距的矢 量和,它反映了电介质在电 场作用下的极化强度 16铁电材料或者压电材料中是 否存在对称中心?否 17物质的磁性材料来源于材料 的电子结构。电子磁矩的相互 作用,决定了磁性材料的类型 和磁性能 18非晶态固体的基本特征是长 程无序短程有序 19利用异质结制备太阳能电池 时,朝向太阳光一侧的半导体的 禁带宽度大一些。 20大多数警惕的自发极化随着 温度的增加而下降,热释电常数 为负值 21矫顽场强与温度和频率有关, 通常温度增加,矫顽场强下降, 频率增加,矫顽场强增大 22设立方磁晶各向异性常数为 K1=-5.48,K2=-2.47,则 [100],[110],[111]轴中的易磁化 轴是[111],难磁化轴是[100] 23磁各向异性一般包括应力的 各向异性形状各向异性磁晶 各向异性等 24压电功能材料一般利用压电 材料的压电功能,热释电功 能,铁电功能,电致伸缩功能 或电光功能 判断题 1螺型位错的特点是其滑移方向 和伯格斯矢量都与位错线垂直 错 2激光实质上就是一种自发辐射 所产生的相干光源,具有单色 性、相干性、方向性和高亮度的 特点。错 3电介质的介电常数越大,极化 能力越强对 4对于介质损耗较高的固体电介 质材料,在高频下的主要击穿形 式就是电击穿错 5在有序-无序相变中,短程有序 度越高。长程有序度就越高错 6带负电的负离子空位和被它束 缚的价电子所形成的色心就是F 心错 7固溶体合金中,溶剂原子和溶 质原子的尺寸差别越大,固溶强 化的效果越差错 8如果处于高能级上的电子数小 于处于低能级上的电子数,受激 辐射就会超过光吸收所产生的 自发辐射,产生激光错 9任何电介质在外电场作用下都 会发生尺寸变化,即产生应变。 应变大小与所加电压成正比,这 种现象叫做电致伸缩错 10马氏体相变中普遍存在热滞 现象对 11位错攀移要比滑移困难得多 对 12离子晶体中,成为正电中心的 点缺陷有负离子空位和正填隙 离子对 13离子晶体中,成为负点中心的 点缺陷有正离子空位和负填隙 离子对 14离子晶体中的消脱基缺陷有 数目相同的正负离子空位对 15肖脱基缺陷存在的可能性要 比福伦科尔缺陷的可能性大得 多对 16时效强化的合金可以在高温 下使用错 17共晶反应的一个特征是具有 很低的熔点对 18二氧化硅氧化钠玻璃可以再 远低于二氧化硅熔点的温度下 制造是利用了共晶反应对 19共析反应是指从一个液相转 变成两个固相的反应错 20共晶反应是指从一个液相转 变成两个固相的反应对 21由于掺杂数量很少,所以非本 征半导体中由于掺杂原子而形 成的载流子称为少数载流子错 22光致发光现象可以在金属中 产生错 23余晖时间短的荧光材料适合 做夜光材料错 24.180°畴壁比90°畴壁要厚 错 25钛酸钡晶体在120°,0°, -90°都具有发生铁电相变,因此 它的居里温度有三个错 26电致伸缩效应在任何电介质 中都存在对 27压电体在外电场作用下只有 压电效应而无电致伸缩错 28计算院子的总自旋磁矩时,需 考虑原子中所有的电子贡献错 次化工小的方向是易磁化方向, 磁化功大的方向是难磁化方向 对 29在特定的外界条件下,一个体 系的演化方向应符合该体系的 特定热力学函数的自发变化趋 势对 30马氏体相变只能发生钢铁材 料中错 31晶界是马氏体形核的有利位 置错 32序参量在高对称相等于0,在 低对称相则不等于0 对 33选参量不连续变化的相变称 为一级相变对 34一般,非均匀形核的形核功低 于均匀形核的形核功对 35对于发生扩散的相变,长大过 程可粗分为界面控制盒扩散控 制两类对 36扩散控制的长大速率取决于 靠近界面的原子迁移过程对 37非晶模型可以用来描述非晶 锗或硅膜的结构错 38非晶态金属和合金的结构适 合用于无序密堆积硬球模型来 描述对 39无规则网络结构模型用于描 述非晶硅和非晶锗对 40原子磁矩不为零的必要条件 是存在未排满的电子层对 41量子自由电子理论和能带理 论均认为电子随能量的分布服 从FD分布对 42由于晶格热震动的加剧,金属 盒半导体的电阻率均随温度的 升高而增大错 43直流电位差计法和四点探针 法测量电阻率均可以消除接触 电阻的影响对 44凡是铁电体一定同时具具备 压电效应和热释电效应对 45硬度数值的物理意义取决于 所采用的硬度试验方法对 46对于高温力学性能,所需温度 高低仅具有相对的意义对 概念题 1弗伦科尔缺陷:原子脱离正常 格点位置后,形成填隙原子,这 样的热缺陷称为弗伦科尔缺陷 2弥散强化:是指将多相组织混 合在一起所获得的材料强化效 应。 3热击穿:当固体电介质在电场 作用下,由电导和介质损耗产生 的热量超过试样通过传导,对流 和辐射散发的热量时,试样中的 热平衡就被破坏,试样温度不断 上升,最终造成永久性的热破 坏,这就是热击穿。 4电畴:由自发极化方向形同的 晶胞所组成的小区域被称为电 畴 5铁磁性:有些物质放入外磁场 时:感应出和磁场方向相同的磁 化强度,磁化率大于零,但其数 值很大,约为10的一次方到10 的六次方,这些物质的磁化曲线 M-H时非线性的复杂函数,反复 磁化时出现磁滞现象,这就是物 质的铁磁性。 6点缺陷:在一个或几个院子的 微观区域内,原子的排列偏离理 想周期结构而形成空位,填隙原 子,杂质原子等的缺陷。 7超导现象:某些金属合金或者 化合物,在冷却到绝对零度附近 某一特定温度时,材料的电阻变 为零,电流可以在材料中无限地 流动,这种现象称为超导现象。 8压电效应:由于机械力的作用 而使介质发生极化的现象称为 正压电效应。如果把外电场加载 这种晶体上,改变其极化状态, 在晶体的某些方向上也将产生 形变,这就是逆压电效应。二者 统称压电效应。 9磁致伸缩:在磁场中磁化时, 铁磁体的尺寸或者体积发生变 化的现象称为磁致伸缩。 10对称残缺:在结构相变时,晶 体的对称性发生变化。高对称相 的某些对称元素在低对称相时 不再存在,即失去了某些对称元 素,这成为对称性残缺。 11极化:沿电场方向产生电偶极 距或者电偶极矩改变,是材料对 外电场的响应。 12蠕变:一定应力下随时间演唱 产生的缓慢变形,一般在高温下 进行。 简答题 1,简述本征半导体的导电机理 答:本征半导体的禁带宽度较 小,具有足够热能的电子能够越 过禁带,从价带被激发到导带, 成为自由电子。被激发的电子原 来占据的价带能级上则留下一 个空位,称为空穴。电子和空穴 都是携带电荷的载流子。在半导 体材料上加上电压,导带上的电 子朝正极移动,价带上的空穴则 向负极移动,电子和空穴两种载 流子丁香移动形成电流。 3,比较铁磁体和亚铁磁体两种 磁性材料的异同 相同点:都具有长程磁有序结 构,都属于强磁性物质,具有自 发极化,有磁畴和磁滞现象,存 在居里点,在居里点以上顺磁 性。 不同点:磁性不同,铁磁体强于 亚铁磁体。磁有序结构不同,铁 磁体的相邻原子磁矩平行排列, 而亚铁磁体的相邻原子磁矩反 平行排列,但磁矩大小不等。 4,说明非晶态固体与晶态固体 的最基本区别并指出非晶态固 体的结构特征 非晶态固体与晶态固体的本质 区别:①非晶态固体中原子的取 向和位置不具有长程有序而是 短程有序②非晶态固体属于热 力学亚稳态。 非晶态结构特征:有序的缺乏和 亚稳定性。 5,什么是加工硬化,简述加工 硬化的原理 通过使金属发生塑形变形的方 式,可以使其屈服强度增加,这 就是加工硬化。 加工樱花是由位增殖引起的。材

计算方法论文

****学校课程考查论文 课程名称:《计算方法》 学院: 专业: 班级: 姓名: 学号: 论文题目:《我对拉格朗日公式的认识》成绩:

我对拉格朗日公式的认识 一、问题背景 (一)背景 在生产和科研中出现的函数是多种多样的,常常会遇到这样的情况:在某个实际问题中,虽然可以断定所考虑的函数在区间[a,b]上存在且连续,但却难以找出它的解析表达式,只能通过实验和观测得到在有限个点的函数值(即一张函数表)。显然,要利用这张函数表来分析函数的性态,甚至直接求出其他一些点的函数值可能是非常困难的。在有些情况 下,虽然可以写出函数的解析表达式,但由于结构相当复杂,使用起来很不方便。插值法是解决此类问题的一种比较古老的、然而却是目前常用的方法。 许多实际问题中都用函数来表示某种内在联系或规律,而不少函数都只能通过实验和观测来了解。如对实践中的某个物理量进行观测,在若干个不同的地方得到相应的观测值,拉格朗日插值法可以找到一个多项式,其恰好在各个观测的点取到观测到的值。这样的多项式称为拉格朗日插值多项式。 (二)相关数学知识 插值法利用函数f (x)在某区间中若干点的函数值,作出适当的特定函数,在这些点上取已知值,在区间的其他点上用这特定函数的值作为函数f (x)的近似值。如果这特定函数是多项式,就称它为插值多项式。 在多项式插值中,最常见、最基本的问题是:一次数不超过n次的代

数多项式P n(x)=a0+a1x+…+a n x (1) 使P n(x i)=y i (2) 其中,a0,a1,…a n为实数;x i,y i意义同前。 插值多项式的存在唯一性:若节点x0,x1,x2…x n互不相同,则(2)式满足插值条件式的n次多项式(1)存在且唯一。 可以写出n+1个n次多项式。容易看出,这组多项式仅与节点的取法有关,我们称之为n次插值基函数。 二、方法综述 某多项式函数,已知给定的k+1个取值点:(x0,y1)…(x k,y k),其中x i对应着自变量的位置,而y i对应着函数在这个位置的取值。 假设任意两个不同的x j都互不相同,那么应用拉格朗日插值公式所得到的拉格朗日插值多项式为: 其中每个为拉格朗日基本多项式(或称插值基函数),其表达式为: (x)+(x)+…+(x) 拉格朗日基本多项式l j(x)的特点是在x j上取值为1,在其它的点x i,i≠j上取值为0。 当n=1时,即得线性插值公式L1(x)=y0+y1又叫线性插值;

材料物理

1. 一圆杆的直径为 2.5 mm 、长度为25cm 并受到4500N 的轴向拉力,若直径拉细至2.4mm , 且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。 解:根据题意可得下表 由计算结果可知:真应力大于名义应力,真应变小于名义应变。 2. 一试样长40cm,宽10cm,厚1cm ,受到应力为1000N 拉力,其杨氏模量为 3.5×109 N/m 2 , 解: 3. 一材料在室温时的杨氏模量为3.5×108 N/m 2 ,泊松比为0.35,计算其剪切模量和体积模 量。 解:根据 可知: 4. 一陶瓷含体积百分比为95%的Al 2O 3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算 其上限和下限弹性模量。若该陶瓷含有5 %的气孔,再估算其上限和下限弹性模量。 解:令E 1=380GPa,E 2=84GPa,V 1=0.95,V 2=0.05。则有 拉伸前后圆杆相关参数表 0816 .04.25.2ln ln ln 22 001====A A l l T ε真应变) (91710 909.44500 60MPa A F =?==-σ名义应力0851 .010 0=-=?=A A l l ε名义应变10524.46A T ?-)(0114.0105.3101014010009 40000cm E A l F l E l l =?????=??= ?= ?=?-σ ε)21(3)1(2μμ-=+=B G E ) (130)(103.1) 35.01(2105.3)1(288 MPa Pa E G ≈?=+?=+=μ剪切模量) (390)(109.3) 7.01(3105.3)21(388 MPa Pa E B ≈?=-?=-=μ体积模量

论文二重极限计算方法

包头师范学院 本科毕业论文 题目:二重极限的计算方法 学生姓名:王伟 学院:数学科学学院 专业:数学与应用数学 班级:应数一班 指导教师:李国明老师 二〇一四年四月

摘要 函数极限是高等数学中非常重要的内容。关于一元函数的极限及求法,各种高等数学教材中都有详细的例题和说明。二元函数极限是在一元函数极限的基础上发展起来的,二者之间既有联系又有区别。本文在二元函数定义基础上通过求对数,变量代换等方式总结了解决二重极限问题的几种方法,并给出相关例题及解题步骤,及二重极限不存在的几种证明方法。 关键词:二重极限变量代换等不存在的证明二元函数连续性

Abstract The limit function is a very important contents of advanced mathematics. The limit of a function and method, all kinds of advanced mathematics textbooks are detailed examples and explanation. The limit function of two variables is the basis for the development in the limit of one variable function on it, there are both connections and differences in the two yuan on the basis of the definition of the logarithm function between the two, variable substitution, summarizes several methods to solve the problem of double limit, and gives some examples and solving steps. Several proof method and double limit does not exist. keywords: Double limit variable substitution, etc. There is no proof Dual function of continuity

材料物理性能部分课后习题

课后习题 第一章 1.德拜热容的成功之处是什么? 答:德拜热容的成功之处是在低温下,德拜热容理论很好的描述了晶体热容,CV.M∝T的三次方 2.何为德拜温度?有什么物理意义? 答:HD=hνMAX/k 德拜温度是反映晶体点阵内原子间结合力的一个物理量 德拜温度反映了原子间结合力,德拜温度越高,原子间结合力越强 3.试用双原子模型说明固体热膨胀的物理本质 答:如图,U1(T1)、U2(T2)、U3(T3)为不同温度时的能量,当原子热振动通过平衡位置r0时,全部能量转化为动能,偏离平衡位置时,动能又逐渐转化为势能;到达振幅最大值时动能降为零,势能打到最大。由势能曲线的不对称可以看到,随温度升高,势能由U1(T1)、U2(T2)向U3(T3)变化,振幅增加,振动中心就由r0',r0''向r0'''右移,导致双原子间距增大,产生热膨胀

第二章 1.300K1×10-6Ω·m4000K时电阻率增加5% 由于晶格缺陷和杂质引起的电阻率。 解:按题意:p(300k) = 10∧-6 则: p(400k) = (10∧-6)* (1+0.05) ----(1) 在400K温度下马西森法则成立,则: p(400k) = p(镍400k) + p(杂400k) ----(2) 又: p(镍400k) = p(镍300k) * [1+ α* 100] ----(3) 其中参数: α为镍的温度系数约= 0.007 ; p(镍 300k)(室温) = 7*10∧-6 Ω.cm) 将(1)和(3)代入(2)可算出杂质引起的电阻率p(杂400k)。 2.为什么金属的电阻因温度升高而增大,而半导体的电阻却因温度的升高而减小? 对金属材料,尽管温度对有效电子数和电子平均速率几乎没有影响,然而温度升高会使离子振动加剧,热振动振幅加大,原子的无序度增加,周期势场的涨落也加大。这些因素都使电子运动的自由称减小,散射几率增加而导致电阻率增大 而对半导体当温度升高时,满带中有少量电子有可能被激发

数值计算方法设计论文

课程设计(论文) 题目: 三次样条插值问题 学院: ___ 理学院 _ 专业: __ _ 数学与应用数学 班级:数学08-2班 学生姓名: 魏建波 学生学号: 080524010219 指导教师:李文宇 2010年12月17日

课程设计任务书

目录 摘要……………………………………………………………………… 一、前言………………………………………………………………… (一)Lagrange插值的起源和发展过程……………………………………… (二)本文所要达到的目的……………………………………………………… 二、插值函数…………………………………………………………… (一)函数插值的基本思想…………………………………………………… (二)Lagrange插值的构造方法……………………………………………… 三、MATLAB程序………………………………………………………… (一)Lagrange程序…………………………………………………………… (二)龙格程序………………………………………………………………… 四、理论证明…………………………………………………………… 五、综述……………………………………………………………………谢辞………………………………………………………………………参考文献…………………………………………………………………

摘要

前言 要求:500字以上,宋体小四,行距20磅,主要内容写该算法的产生及发展、应用领域等。 题目 整体要求:报告页数,正文在8页以上 字体:宋体小四(行距20磅) 内容:1、理论依据 2、问题描述 3、问题分析 4、求解计算(程序) 5、结论 注:(1)页码编号从正文页开始 (2)标题可根据情况自己适当改动 示例见下: 2判别…………………… 2.1 判……………… 2.1.1 判别……………… 所谓的判别分析,………………………………………………方法[3]。 2.1.2 判………………………… 常用的有四种判别方法:…………………………………………………步判别法[6]。 1. 马氏………………

《材料物理性能》课后习题答案

《材料物理性能》 第一章材料的力学性能 1-1一圆杆的直径为2.5 mm 、长度为25cm 并受到4500N 的轴向拉力,若直径拉细至 2.4mm ,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。 解: 由计算结果可知:真应力大于名义应力,真应变小于名义应变。 1-5一陶瓷含体积百分比为95%的Al 2O 3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。若该陶瓷含有5 %的气孔,再估算其上限和下限弹性模量。 解:令E 1=380GPa,E 2=84GPa,V 1=0.95,V 2=0.05。则有 当该陶瓷含有5%的气孔时,将P=0.05代入经验计算公式E=E 0(1-1.9P+0.9P 2) 可得,其上、下限弹性模量分别变为331.3 GPa 和293.1 GPa 。 1-6试分别画出应力松弛和应变蠕变与时间的关系示意图,并算出t = 0,t = ∞ 和 0816 .04.25.2ln ln ln 22 001====A A l l T ε真应变) (91710909.44500 60MPa A F =?==-σ名义应力0851 .010 0=-=?=A A l l ε名义应变) (99510524.445006MPa A F T =?== -σ真应力) (2.36505.08495.03802211GPa V E V E E H =?+?=+=上限弹性模量) (1.323)84 05.038095.0()(1 12211GPa E V E V E L =+=+=--下限弹性模量

小学生数学计算方法研究课题研究论文

小学生数学计算方法研究课题研究论文 【摘要】在小学数学教材中计算所占的比重很大,学生计算能力的高低直接影响着学生学习的质量,因为数学中有些概念的引入需要通过计算来进行;数学中解决实际问题的解题思路、步骤、结果也要通过计算来落实,可见学生的计算能力是至关重要的。所以提高学生的计算能力,就要从小学生日常训练入手,认真、严格的训练,这样才有助于培养学生的数学素养,有助于培养学生解决问题的能力,有助于树立学生认真、细致、耐心、不畏困难的品质。 【关键词】兴趣;计算;培养;速度;正确率 一、培养学生的计算兴趣。 小学数学新教材常常通过让学生亲身经历,从学生喜闻乐见的生活情境出发,使学生体会到数学就在身边中,生活需要数学,也离不开数学。因此,我们在教学中把教材内容与现实生活结合起来,唤起和激发学生的学习兴趣。常使用的方法有: 1、提高学习兴趣 小学生的天性告诉我们,将计算教学与生动活泼的数学情境有机结合起来,计算教学才能体现其旺盛的生命力。所以在计算教学的练习中,我经常组织学生开展游戏和竞赛,来调动学生们的积极性。组织系列活动形式:班级小组竞赛;学校组织以年组为单位个人口算、速算简算能力竞赛;学校组织以班级单位的计算能力检测。 2、借助生活经验,探索计算的策略,激发学生的计算兴趣。

数学课程标准明确指出:“要重视从学生的生活实践经验和已有的知识中学习数学,理解数学。”计算教学同样也不例外,在计算教学中让学生结合已有的知识,借助生活经验去探索计算的策略,往往还会有事半功倍的效果。教学算理常常是我们感到头痛的事情,我们不妨可以借助学生已有的生活经验来帮助理解。 二、激发学生学习动机,培养学生口算、笔算和简算能力。 教学实践证明,一个学生对口算、笔算和简算教学有了强烈的学习动机,他就会表现出浓厚的兴趣,学习热情高涨,专心致志,同时也有克服困难的坚强毅力,从而使其口算、笔算和简算的能力得到了较大的提高,收到了良好的学习效果。因此,在数学计算教学中只有极大地激发学生学习的动机,才能充分调动学生学习口算、笔算和简算的积极性,才能培养学生口算、笔算和简算的能力,才能提高学生的计算质量。 1、培养口算能力 单一的口算训练只会让学生觉得枯燥,这样就不可能保证口算的质量。在教学中,根据小学生好玩、好动的这一特点,我们把部分练习创设成了游戏,。 2、培养笔算能力 笔算教学没有生动的情节,比较枯燥乏味,特别是练习课。如果老师仅以单调的形式和简单机械的重复练习,只会让学生感到笔算更加枯燥以至产生厌恶心理,影响教学效果。因此,教学中应采取多种练习方式以激发学生的学习动机。 3、培养简算能力 在数学教学中适当地给学生营造一个有趣情境,不仅可以吸引学生的注意力,还能使学生带着炽热的追求和疑问进入新知识的学习,在不知不觉中获得知

材料物理

1.热容:在不发生相变和化学反应是时,材料温度升高1K时所需要的能量(Q)。 2.热导率:当温度垂直梯度为1℃/m时,单位时间内通过单位水平截面积所传递的 热量。 3.应力松弛:在持续外力作用下,发生形变着的物体,在总的形变值保持不变的情 况下,由于徐变形变渐增,弹性形变相应减小,由此使物体的内部应力随时间延续而逐渐减小的过程。 4.应变松弛:固体材料在恒定载荷下,形变随时间延续而缓慢增加的不平衡过程, 或材料受力后内部原子有不平衡的过程,也叫蠕变。或徐变。 5.黏弹性:自然界中实际存在的材料,其形变一般介于理想弹性固体和理想弹性液 体之间,既具有固体的弹性又具有液体的黏性。 6.光频支振动:相邻原子振动相反,形成一个范围很小,频率很高的振动。 7.声频支振动:如果振动着的质点中包含频率甚低的格波,质点彼此间的位相差不 大,则格波类似于弹性体中的应变波。 8.载流子迁移率:载流子(电子和空穴)在单位电场作用下的平均漂移速度,即载 流子在电场作用下运动速度的快慢的量度。 9.晶格热振动:晶体点阵中的质点(原子或离子)总是围绕着平衡位置做微小振动。 10.光的色散:材料的折射率随入射光的频率的减小(或波长的增加)而减小的性质。 11.磁化强度:单位体积的磁矩表征物质被磁化的强度。 12.极化强度:单位体积电介质中所有点偶极矩的矢量和。 13.介电强度:试样被击穿时, 单位厚度承受的最大电压, 表示为伏特每单位厚度。 14.光电效应:某些物质受到光照时,引起物质电性发生变化,这种光致电变的现象 叫光电效应。 15.压减效应:在含碱玻璃中加入二价金属氧化物,尤其是重金属氧化物,可使玻璃 电导率降低。 16.双碱效应:当碱金属离子总浓度较大时(占玻璃组成25%~30%),在碱金属离子 总浓度相同情况下,含两种碱比含一种碱的电导率要小,比例恰当时,可降到很低。

论文计算方法

2001—2010年粮食产量数据分析 摘要: 本文搜集了近十年的粮食产量数据,应用最小二乘法原理建立了粮食产量与粮食播种面积的数学模型。通过对模型的分析得出粮食产量变化的原因,提出保障粮食安全的一些措施,并预测了下一年的粮食产量。 关键词: 粮食产量数据;数据拟合;最小二乘法 通过上网及查阅文献,收集了近十年的粮食产量数据,应用最小二乘法原理对数据进行了处理,建立了粮食产量与粮食播种面积之间的数学模型。通过分析模型找出了影响粮食产量的主要因素,针对这些因素提出了一些保障我国粮食安全的措施。其中,本文中所用的最小二乘法原理以及数据拟合方法参考文献[1]和[4].本文数据来源于《中国农业统计年鉴》、国家统计局统计、国家发改委和科技部相关网站。 1.有关数据 2. 模型的设定及预测 2.1 模型的建立 根据上述表格中的数据,作出2001-2010年粮食产量与粮食播种面积变化图

形(如下所示): 40000 420004400046000480005000052000 54000560002001200220032004200520062007200820092010时间(年) 粮食产量(万吨) 14 14.51515.51616.517 17.5 18播种面积(亿亩) 对比上图中两条曲线的走势可以看出粮食产量大致随着粮食播种面积的变化而变化,尤其是在2003年粮食播种面积大幅度减少的同时粮食产量也明显下降。为了进一步研究这两种量之间的关系,下面建立粮食产量与粮食播种面积之间的散点图。 2001—2010年播种面积与粮食产量散点图(如下) 40000 4500050000550006000014.5 15 15.5 16 16.5 17 粮食播种面积(亿亩) 粮食产量(万吨) 根据散点图可以看出粮食产量随着粮食播种面积的增加而增加,这两种量有一定的正相关性,因此可以把粮食播种面积作为自变量x ,粮食产量作为因变量 y ,初步构造线性函数 bx a y +=

材料物理性能

材料物理性能 第一章 考点1. 电子理论的发展经历了三个阶段,即古典电子理论、量子自由电子理论和能带理论。古典电子理论假设金属中的价电子完全自由,并且服从经典力学规律; 量子自由电子理论也认为金属中的价电子是自由的,但认为它们服从量子力学规律;能带理论则考虑到点阵周期场的作用。 考点2. 费米电子 在T = 0K时,大块金属中的自由电子从低能级排起,直到全部价电子均占据了相应的能级为止。具有能量为EF(0)以下的所有能级都被占满,而在EF(0)之上的能级都空着,EF(0)称为费米能,是由费米提出的,相应的能级称为费米能级。 考点3. 四个量子数 1、主量子数n 2、角量子数l 3、磁量子数m 4、自旋量子数ms 考点4. 思考题 1、过渡族金属物理性能的特殊性与电子能带结构有何联系? 过渡族金属的 d 带不满,且能级低而密,可容纳较多的电子,夺取较高的 s 带中的电子,降低费米能级。 第二章 考点5. 载流子 载流子可以是电子、空穴,也可以是离子、离子空位。材料所具有的载流子种类不同,其导电性能也有较大的差异,金属与合金的载流子为电子,半导体的载流子为电子和空穴,离子类导电的载流子为离子、离子空位。而超导体的导电性能则来自于库柏电子对的贡献。 考点6. 杂质可以分为两类 一种是作为电子供体提供导带电子的发射杂质,称为“施主”;另一种是作为电子受体提供价带空穴的收集杂质,称为“受主”。 掺入施主杂质后在热激发下半导体中电子浓度增加(n>p),电子为多数载流子,简称“多子”,空穴为少数载流子,简称“少子”。这时以电子导电为主,故称为n型半导体。施主杂质有时也就称为n型杂质。 在掺入受主的半导体中由于受主电离(p>n),空穴为多子,电子为少子,因而以空穴导电为主,故称为p型半导体。受主杂质也称为p型杂质。 考点7. 我们把只有本征激发过程的半导体称为本征半导体。 考点8. 在同一种半导体材料中往往同时存在两种类型的杂质,这时半导体的导电类型主要取决于掺 杂浓度高的杂质。 随着温度的升高本征载流子的浓度将迅速增加,而杂质提供的载流子浓度却不随温度而改变。因此,在高温时即使是杂质半导体也是本征激发占主导地位,呈现出本征半导体的特征(n≈p)。一般半导体在常温下靠本征激发提供的载流子甚少

极限的几种计算方法论文

极限的几种计算方法 摘要:极限是描述函数在无限过程中的变化趋势的重要概念,本文通过典型例题,举一反三,给出几种常用的求极限方法. 关键词:极限;计算;方法 极限是数学分析中最基本、最重要的概念之一,极限是微积分的重要基础,研究函数性质的重要手段.极限的计算方法很多,并且有一定的规律和技巧性,对此,本文将根据实例进行分析、探讨,并归纳出一些计算方法. 一、 利用极限定义求极限 设{}n a 为数列, a 为定数.若对任给的正数ε ,总存在正整N ,使得当n N > ,n a a ε-<则称数列{}n a 收敛于a ,定数a 称为数列{}n a 的极限, 并记作lim n n a a →∞ =或()n a a n →→∞. 例1 证明33545 lim 232 n n n n →∞+-=- 分析: 成立.从中解n 很困 难 ,因为要找的N 不是唯一的,所以可以用“放大”不等式的方法,再解不等式,并可限定正整数n 大于某个正常数,当然“放大”和“限定”的也不是唯一的. 证明:限定7n >,从而3 30n ->,要使不等式 ()()333333 54527272232222323n n n n n n n n n n n +-+++-==<--+- 3232 2n n n ε= << 成立,

从不等式 22n ε<,解得 n >取N = 于是, N = , N ,有33 545 232 n n n +---ε< , 即 . 例2 证明 ! lim 0n n n n →∞= 证明: 由于 !!10n n n n n n n -=≤,故对0ε>,取N =+1,则当n N >时,有 !1 0n n n n ε-≤<,因此!lim 0n n n n →∞=. 二、利用两个重要极限求极限 例3 求 2lim 1x n x -→∞ ?? - ??? 分析: 此题是一道比较典型的应用第二个重要极限的问题. 解: 2 2221lim 112x x t x n x x -?--=→∞ ??????- =+ ?? ??? ?? -? ? 2 21lim 1t t e t →∞ ?? ??+=?? ?????? ?. 例4 求 2 c o s l i m 2 x x x π π → - 解: 202cos cos 2lim lim 2 x t t x t x t x π πππ-=→→ ?? + ???→←???- 0sin lim 1t t t →=-=-. 例5 求30tan sin lim x x x x →- 解: 3200tan sin tan 1cos lim lim()x x x x x x x x x →→--=?

材料物理

3、如电子占据某一能级的几率是1/4,另一能级被占据的几率为3/4,分别计算两个能级的能量比费米能级高出多少kT ? 11()ln[1]()exp[]1()1/4ln 3,()3/4ln 3F F F F f E E E kT E E f E kT f E E E kT f E E E kT =?-=--+=-=?=-=-?解:由将代入得将代入得 4、自由电子近似和近自由电子近似有哪些区别?P15 答:自由电子近似下的E-K 关系有 ()2 22222h E K K m m λ== 为抛物线。在近自由电子近似下,对应于许多K 值,这种关系仍然成立;但对于另一些K 值,能量E 与这种平方关系相差许多。特别是在某些K 值,能量E 发生突变,即在K=±n π/a 处能量E=En ±|Un|不再是准连续的,电子占满En-|Un|的能级后只能占据En+|Un|的能级,两个能级之间的能带是禁止的。 5、何谓状态密度?三维晶体中自由电子的状态密度与电子能量是何种关系? 答:自由电子的能级密度亦称为状态密度,即单位能量范围内所容纳的自由电子数。 关系:三维晶体能级为E 及其以下的能级状态总数为Z(E)=CE1/2,式中C=4πV(2m)3/2/h3 为常数,即能级密度与E 的平方根成正比。 第二章 材料的晶态结构 1、三种典型晶胞,符号,原子数,配位数,致密度。 面心立方:fcc ,4,12,74%。体心立方:bcc ,2,8,68%。密排六方:hcp ,6,12,74%。 2、如何从X 射线衍射谱中区分非晶体和晶体?P30 答:晶体的X 射线衍射强度在特定角度出现数个尖锐的衍射峰,即在满足布拉格条件2dsin =λ的角度有强衍射峰。非晶体不会在特定角度产生满足布拉格条件的衍射峰,产生的衍射峰较宽,且其衍射强度比晶体的最强衍射峰弱得多。从X 射线衍射区别可见晶体是长程有序结构,而非晶体是长程无序、短程有序结构。 3、简述薄膜形核的过程和长大的过程。 答:形核一般是气相原子在基底的表面聚集而成,包括吸附、凝结、临界核形成、稳定核形成等过程。入射到基体表面的气相原子被悬挂键吸引住。吸附的原子不能在基底表面稳定存在,自发形成固态的薄膜。吸附后的原子在基体表面上进行扩散,单个原子间通过相互碰撞,凝结成原子对和更大的原子团。在满足一定热力学条件下,先生成临界核,在此基础上加一个原子就可变为稳定核。长大指形成稳定核后薄膜的形成过程,一般经历岛状、连并、沟道、连续膜四个阶段。分散在基底表面的大量晶核长大,直至相互接触并逐渐布满整个基底表面形成连续薄膜。 第三章 晶体缺陷 1、 高温结构材料Al2O3可以用ZrO2来实现增韧,也可以用MgO 促进烧结。如加入0.3mol%ZrO2,试写出缺陷反应式和固溶分子式。 答:缺陷反应式:23223Al O Al i O ZrO Zr O O ? ''?? ?→++ 根据缺陷反应式可知,ZrO2:Zr ·Al :O ”i=2:2:1,,加入0.2mol% ZrO2时得到0.2mol%间隙氧,所以固溶分子式为:Al1.998Zr0.002O3.001。 2、试述晶体结构中点缺陷的类型。举例写出CaCl2中Ca2+置换KCl 中K+或进入到KCl 间隙中去的两种点缺陷反应表示式。 解:晶体结构中的点缺陷类型共分:间隙原子、空位和杂质原子等三种。当CaCl2中Ca2+

相关文档
最新文档