一阶线性微分方程及伯努利介绍
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一阶线性微分方程及伯
努利介绍
Company number:【0089WT-8898YT-W8CCB-BUUT-202108】
第三节 一阶线性微分方程
内容要点
一、一阶线性微分方程
形如
)()(x Q y x P dx
dy =+ 的方程称为一阶线性微分方程. 其中函数)(x P 、)(x Q 是某一区间I 上的连续函数. 当,0)(≡x Q 方程成为
0)(=+y x P dx
dy 这个方程称为一阶齐次线性方程. 相应地,方程称为一阶非齐次线性方程.
方程的通解
.)(⎰-=dx x P Ce y
其中C 为任意常数.
求解一阶非齐次线性微分方程的常数变易法:即在求出对应齐次方程的通解后,将通解中的常数C 变易为待定函数)(x u ,并设一阶非齐次方程通解为
一阶非齐次线性方程的通解为
[]
⎰-⎰+=⎰dx x P dx x P e C dx e x Q y )()()( 二、伯努利方程:形如
n y x Q y x P dx
dy )()(=+ 的方程称为伯努利方程,其中n 为常数,且1,0≠n .
伯努利方程是一类非线性方程,但是通过适当的变换,就可以把它化为线性的. 事实上,在方程两端除以n y ,得
或 ),()()(1111x Q y x P y n
n n =+'⋅--- 于是,令n y z -=1,就得到关于变量z 的一阶线性方程
)()1()()1(x Q n z x P n dx
dz -=-+. 利用线性方程的求解方法求出通解后,再回代原变量,便可得到伯努利方程的通解
雅各布.伯努利(Jacob Bermoulli ,1654~1705)
伯努利瑞士数学、力学、天文学家。1654年12月27日生于瑞士巴塞尔;1705年8月16日卒于巴塞尔。
雅各布.伯努利出生于一商人世家。他的祖父是一位药商,1662年移居巴塞尔。他的父亲接过兴隆的药材生意,并成了市议会的一名成员和地方行政官。他的母亲是市议员兼银行家的女儿。雅格布在1684年一位富商的女儿结婚,他的儿子尼古拉,伯努得是艺术家,巴塞尔市议会的议员和艺术行会会长。
雅格布毕业于巴塞尔大学,1671年获艺术硕士学位。这里的艺术是指“自由艺术”,它包括算术、几何、天文学、数理音乐的基础,以及方法、修辞和雄辩术等七大门类。遵照他父亲的愿望,他又于1676年得硕士学位。同时他对数学有着浓厚的兴趣,但是他在数学上的兴趣遭到父亲的反对,他违背父亲的意愿,自学了数学和天文学。1676年,他到日内瓦做家庭教师。从1677年起,他开始在这里写内容丰富的《沉思录》。1678年雅格布进行了他第一次学习旅行,他到过法国、荷兰、英国和德国,与数学家们建立了广泛的通信联系。然后他又在法国度过了两年时光,这期间他开始研究数学问题。起初他还不知道牛顿和莱布尼兹的工作,他首先熟悉了笛卡尔的《几何学》、活利斯的《无穷的算术》以及巴罗的《几何学讲义》。他后来逐渐地熟悉了莱布尼兹的工作。1681-1682年间,他做了第二次学习旅行,接触了许多数学家和科学家。通过访问和阅读文献,丰富了他的知识,拓宽了个人的兴趣。这次旅行,他在科学上
的直接收获就是发表了还不够完备的有关慧星的理论以及受到人们高度评价的重力理论。回到巴塞尔后,从1683年起,雅格布做了一些关于科技问题的文章,并且也继续研究数学着作。1687年,雅格布在《教师学报》上发表了他的“用两相互垂直的直线将三角形的面积四等分方法”。1684年之后,雅格布转向诡辩逻辑的研究。1685年出版了他最早的关于概率论的文章。由于受到活利斯以及巴罗的涉及到数学、光学、天文学的那些资料的影响,他又转向了微分几何学。在这同时,他的弟弟约翰.伯努利一直跟其学习数学。1687年雅格布成为巴塞尔科学院的国外院士,直到1705年去世。在这段时间里,他一直与莱布尼兹保持着通信联系。1699年,雅格布被选为巴黎科学院的国外院士,1701年被柏林科学协会(即后来的柏林科学院)接受为会员
雅各布.伯努利是在17-18世纪期间,欧洲大陆在数学方面做过特殊贡献的伯努利家庭的重要成员之一,他在数学上的贡献涉及微积分、解析几何、概率论以及变分法等领域。