第三章ASPENPLUS的物性数据库及其应用

合集下载

化工模拟软件aspen plus第3章 物性方法

化工模拟软件aspen plus第3章 物性方法

BK-10
Braun K-10
石油
SOLIDS
Ideal Gas/ Raoult's law/Henry's law /solid 冶金
activity coefficients
CHAO-SEA Chao-Seader corresponding states model 石油
GRAYSON Grayson-Streed corresponding states model 石油
Electrolyte NRTL
ENRTL-HF
Electrolyte NRTL
ENRTL-HG
Electrolyte NRTL
NRTL
NRTL
NRTL-HOC
NRTL
NRTL-NTH
NRTL
NRTL-RK
NRTL
NRTL-2
NRTL (using dataset 2)
基于UNIFAC的物性方法
UNIFAC
其他物性方法
SR-POLAR
Schwartzentruber-Renon
3.2 Aspen Plus中的主要物性模型
活度系数模型
方法
液相活度系数
基于Pitzer的物性方法
PITZER
Pitzer
PITZ-HG
Pitzer
B-PITZER
Bromley-Pitzer
基于NRTL的物性方法
ELECNRTL
Wilson (using dataset 2)
WILS-HF
Wilson
WILS-GLR
Wilson (ideal gas and liquid enthalpy reference state)

Aspenplus化工物性数据和相平衡数据的查询与估算PPT教学课件

Aspenplus化工物性数据和相平衡数据的查询与估算PPT教学课件
等; • ⑷化学反应与热化学数据,如反应热、生成热、燃烧热、反应速率常数、活化能、
化学平衡常数等; • ⑸与温度相关的传递性质,如等张比容、液体粘度、液体导热系数、表面张力、扩
散系数等。 • 混合物的物性数据往往需要在纯物质物性数据的基础上由合适的混合规则计算得到。
⑵-⑸类数据必须知道系统的温度、压 力,然后通过计算(函数关系式)或插值 (列表函数)才能得到。
11
第11页/共45页
1.1 化工物性数据的查询
•1 . 1 . 2 从包溶A括液S P9的E0计N0种算P离L。U子关S 化软键合件参数物数据的有库参:中数水最组查,合主分找用热要的于,的物电无纯性解限组参质分数物。性主数要据纯库组,分包数含据库18的00内种容以是上在纯 • AS稀PE释N状P态LU下S的软吉件自布带斯的生数成据自库由不称能断为,更系以新统及扩数无展据和库改,进其的中,含因有此大从量一纯个物版质本和到混下合一物 的 • 物系性包的斯统数括热自限以数据大化由稀向据,约学能释上库可2数和状兼4是被据热5态容A0方,容下。个S便P关关的组E地键联N水分查数系合P(询L据数相大U、是。S热多调的焓对容数用一、于,个如起是。部熵给该版果模无分、出数本使拟机,吉的据的用结物并布一库A更果)与S可新的AP的不SEPN数同EPN据。LPU库LS进U某S行一个模起参拟同数计时值算被可,安能可装改能。变会。引
16
第16页/共45页
1.2 纯物质的物性估算 • 1.2.2 与温度相关的热力学性质 • 理想气体热容:PCES用用多项式(式1-3)、Benson 方法和Joback 方法估算,温度 范围280-1100K,误差< 2%; • 临界温度以下纯组分液体热容和液体焓:PCES用DIPPR、PPDS、IK-CAPE、 NIST等关联式计算; • 液体摩尔体积: PCES用带有RKTZRA参数的Rackett模型方程(式1-5)估算; • 液体蒸汽压: 数据库组分用扩展Antoine方程(式1-6)进行估算,非数据库组分采用 Riedel、Li-Ma、Mani三种方法估计; • 汽化潜热: 数据库组分用Clausius-Clapeyron 方程和Watson方程(式1-7)估算,非数 据库组分用Veter e、Gan i、Du cros 、Li-Ma等化合物官能团贡献方法进行估算, Vetere 方法的平均误差为1 .6 % ,Li-Ma方法平均误差为1 .05 % 。

ASPENPLUS10.0物性方法和模型

ASPENPLUS10.0物性方法和模型
具有相似的分子间相互作用 但是分子大小非常不同的系统在较高的压力下不相混合 对于二元系统 这些经常出现在轻组分的临界点的附近 Rowlinson and Swinton, 1982
例子有 l 甲烷和己烷或庚烷二元系统 van der Kooi, 1981;Davenport and Rowlinson, 1963;
15
l 吉布斯能的偏差
( ) ∫ Gm − Gmig
=

v ∞
p

RT V
dV

RT
ln
V V ig
+
RT (Zm
− 1)
16
l 摩尔体积 求解p T Vm 得到Vm 对于一个给定的状态方程 逸度根据方程13计算 混合物其它的热力学性质能由偏差函 数计算 l 汽相焓
H
v m
=
H
ig m
+
(H
v m

H
ig m
)
f i v = ϕiv yi P (8)
校正因子ϕiv是逸度系数 对于在中压下一个汽相 ϕiv接近于1 相同的方程可应用到液 相
f i l = ϕil xi P 9
Kohn, 1961) l 乙烷和C数为18-26的正构烷烃二元系统(Peters et al., 1986) l 二氧化碳和C数为7-20的正构烷烃二元系统(Fall et al., 1985) 不互溶的化合物分子大小差别越大 液-液和液-液-汽平衡越可能涉及重组分的固化 例如 乙烷和五环或六环烷烃则显示这个特性 碳原子数差别的增大将引起液-液分离消失 例如 在乙烷和碳原子数大于26的正构烷烃混合物中 相对固体-流体 汽或液 平衡来说 液-液分离变成了亚稳平衡(Peters et al., 1986) 状态方程方法不能处理固体

Aspen plus软件介绍

Aspen plus软件介绍

ASPEN PLUS——工艺流程模拟软件blueski推荐 [2008-9-29]出处:来自网上作者:不详Aspen Plus介绍(物性数据库)•A spen Plus ---生产装置设计、稳态模拟和优化的大型通用流程模拟系统•A spen Plus是大型通用流程模拟系统,源于美国能源部七十年代后期在麻省理工学院(MIT)组织的会战,开发新型第三代流程模拟软件。

该项目称为“过程工程的先进系统”(Advanced System for Process Engineering,简称ASPEN),并于1981年底完成。

1982年为了将其商品化,成立了AspenTech公司,并称之为Aspen Plus。

该软件经过20多年来不断地改进、扩充和提高,已先后推出了十多个版本,成为举世公认的标准大型流程模拟软件,应用案例数以百万计。

全球各大化工、石化、炼油等过程工业制造企业及著名的工程公司都是Aspen Plus的用户。

它以严格的机理模型和先进的技术赢得广大用户的信赖,它具有以下特性:1.ASPEN PLUS有一个公认的跟踪记录,在一个工艺过程的制造的整个生命周期中提供巨大的经济效益,制造生命周期包括从研究与开发经过工程到生产。

2.ASPEN PLUS使用最新的软件工程技术通过它的Microsoft Windows图形界面和交互式客户-服务器模拟结构使得工程生产力最大。

3.ASPEN PLUS拥有精确模拟范围广泛的实际应用所需的工程能力,这些实际应用包括从炼油到非理想化学系统到含电解质和固体的工艺过程。

4.ASPEN PLUS是AspenTech的集成聪明制造系统技术的一个核心部分,该技术能在你公司的整个过程工程基本设施范围内捕获过程专业知识并充分利用。

5.在实际应用中,ASPEN PLUS可以帮助工程师解决快速闪蒸计算、设计一个新的工艺过程、查找一个原油加工装置的故障或者优化一个乙烯全装置的操作等工程和操作的关键问。

物性估算在ASPENPLUS软件中的应用

物性估算在ASPENPLUS软件中的应用

2007年第38卷第1期《浙江化工》文章编号:1006-4184(2007)01-0009-03物性估算在ASPENPLUS软件中的应用戚一文,方云进(华东理工大学国家化学工程重点实验室,上海200237)摘要:利用AspenPlus软件提供的物性估算功能,计算发酵液中低浓度1,3-丙二醇分离的中间产物2-甲基-1,3-二噁烷(2MD)的物性,从而模拟分离过程,确定工艺条件,得到理想的产物结果。

关键词:AspenPlus;物性估算;模拟;1,3-丙二醇AspenPlus是一款功能十分强大的工艺模拟软件,对有机化工、无机化工、电化学、石油化工等各领域的各种单元操作均可模拟。

其自带的各种物质的物性数据库较全,可满足绝大多数的工艺过程的模拟要求。

但在实际的工艺模拟计算过程中,有时也会遇到在AspenPlus自带的物性数据库中查不到的物质,使模拟过程无法正常进行下去。

此时,利用AspenPlus软件提供的物性估算功能,可以很好地解决此类问题。

以下以发酵液中低浓度1,3-丙二醇分离项目[1,2]中的重要的中间产物2-甲基-1,3-二噁烷[3](2MD)的物性估算为例,说明AspenPlus软件物性估算功能的使用。

为了成功估算2MD的物性,首先要向AspenPlus软件提供必要的基本物性数据,包括分子结构、常压沸点、分子量、各种试验测得的物性等。

以上这些物性中,仅分子结构是物性估算中所必需的,依据分子结构,AspenPlus软件可计算出常压沸点和分子量,从而进一步计算所需的其它各种物性。

12MD物性的输入2-甲基-1,3-二噁烷(2MD)是1,3-丙二醇分离项目中的中间产物,由于AspenPlus软件自带的物性数据库中查不到2MD,使模拟分离、确定工艺条件的过程中遇到困难,所以采用物性估算的功能对2MD计算。

其分子结构如下:已知的其它物数据:分子量102.13;沸点(1atm):110°C;密度(25°C):0.98kg/m3;粘度(25°C):0.603cp;标准生成热(25°C):-363.02kJ/mol;标准熵(25°C):303J/(mol・K);表面张力(25°C):24.93dyn/cm。

第三章ASPENPLUS的物性数据库及其应用课件

第三章ASPENPLUS的物性数据库及其应用课件
10、你要做多大的事情,就该承受多大的压力。*** 11、自己要先看得起自己,别人才会看得起你。**** 12、这一秒不放弃,下一秒就会有希望。*** 13、无论才能知识多么卓著,如果缺乏热情,则无异纸上画饼充饥,无补于事。*** 14、我只是自己不放过自己而已,现在我不会再逼自己眷恋了。****
3.1 ASPEN PLUS的物性方法和模型
类别
详细内容
热力学性质模型
状态方程模型 活度系数模型 蒸汽压和液体逸度模型 汽化热模型 摩尔体积和密度模型 热容模型 溶解度关联模型 其它
传递性质模型
粘度模型 导热系数模型 扩散系数模型 表面张力模型
非常规固体性质模型
一般焓和密度模型 煤和焦碳的焓和密度模型
液体活度系数性质方法
NRTL UNIFAC UNIQUAC VAN LAAR WILSON
理想气体定律 Redlich-Kwong Redlich-Kwong-Soave Nothnagel Hayden-O Connell HF状态方程
液体活度系数模型
汽相状态方程
如何选择热力学方法
热力学模型选择方法
物性的查询
运行tool中的检索参数结果
参数的输入
参数回归
已知实验数据(如蒸汽压) 演示 已知平衡数据(T-XY)回归wilson参数 2参数模型,回归Aij,Aji,Bij,Bji 演示
物性推算(1)
输入化合物组份 输入已知的物性
物性推算(2)
结构输入 结果
for aqueous organics, NRTL for alcohols, Wilson for alcohols and phenols, Wilson for alcohols, ketones, and ethers Wilson or Margules for C4-C18 hydrocarbons, Wilson for aromatics Wilson or Margules

AspenPlus应用基础

AspenPlus应用基础

流程图中黏贴表单
显示出流程流股参数
显示出PFD参数
更多选项
OLE 操作步骤 (对象连接与嵌入)
复制
黏贴链接
符号
状态
表输入未完成 表输入完成 表中没有输入。是可选项。
对于该表有计算结果。
对于该表有计算结果,但有计算错误。 对于该表有计算结果,但有计算警告。 对于该表有计算结果,但自从生成结果后输入已经改变。
运行类型
连接流股 Connecting Streams
1. 选流股类别: 共有三种流股 物流 Material Streams 热流 Heat Streams 功流 Work Streams 选择所需的类别。 流股连接点: 选好流股类别后,将光标 移到绘图区,单 元模块上的流股连接点处出现箭头标识,红 色标识表示必需连接的流股,蓝色标识表示 根据需要选择连接的流股。
亨利组分henrycomponents选用物性计算方法和模型物性选择帮物性选择帮助程序原油组分计算选项选用物性计算方法帮助程序基于组成基于流程aspenplus不同领域推荐采用的物性数据库不同领域推荐采用的物性数据库aspenplus不同领域推荐采用的物性数据库不同领域推荐采用的物性数据库aspenplus不同领域推荐采用的物性数据库不同领域推荐采用的物性数据库aspenplus不同领域推荐采用的物性数据库不同领域推荐采用的物性数据库aspenplus不同领域推荐采用的物性数据库不同领域推荐采用的物性数据库aspenplus不同领域推荐采用的物性数据库不同领域推荐采用的物性数据库输入外部流股信息
选用物性计算方法和模型
物性选择帮助程序
原油组分计算选项
选用物性计算方法帮助程序
基于组成 基于流程
ASPEN PLUS不同领域 推荐采用的物性数据库

第3章Aspen物性方法资料

第3章Aspen物性方法资料

BWR-LS
BWR Lee-Starling
LK-PLOCK
Lee-Kesler-Plöcker
基于PR方程的物性方法
PR-BM
Peng-Robinson with Boston-Mathias alpha function
PRWS
Peng-Robinson with Wong-Sandler mixing rules
UNIFAC
UNIF-DMD
Dortmund-modified UNIFAC
UNIF-HOC
UNIFAC
UNIF-LBY
Lyngby-modified UNIFAC
UNIF-LL
UNIFAC for liquid-liquid systems
汽相逸度系数
Redlich-Kwong-Soave Redlich-Kwong-Soave Redlich-Kwong-Soave
RKSMHV2
Redlich-Kwong-Soave with modified Huron-Vidal mixing rules
RK-ASPEN
Redlich-Kwong-ASPEN
RK-SOAVE
Redlich-Kwong-Soave
RKS-BM
Redlich-Kwong-Soave with Boston-Mathias alpha function
第3章 物性方法
物性方法
3.1 Aspen Plus数据库 3.2 Aspen Plus中的主要物性模型 3.3 物性方法的选择 3.4 定义物性集 3.5 物性分析 3.6 物性估算 3.7 物性数据回归 3.8 电解质组分
3.1 Aspen Plus数据库

aspenplus教程(上)

aspenplus教程(上)
输入压力>0,表 示设备的操作压力, 压力≤0时,表示设 备的压降
输入模块参数
REACTOR模块
2.3 输入数据
完成后单击 NEXT按钮
本题输入 反应器压降为0.1 热负荷为0
定义反应
2.3 输入数据
在Blocks∣REACTOR∣Setup∣Reactions页面,点击左下角的New
出现Edit
• Lee方程、PR方程、RK方程
活度系数模 型
• Pitzer、NRTL、UNIFAC、UNIQUAC、VANLAAR、 WILSON
特殊模型
• AMINES、BK-10、STEAM-TA
3.2 Aspen Plus中的主要物性模型

Aspen Plus提供了含有常用的热力学模型的物性方法。
ASPEN-PLUS教程
第1章 绪论
作者:毕欣欣 孙兰义
绪论
• 1.1 化工过程模拟
化工过程模拟简介 化工过程模拟的功能 化工过程模拟系统的构成
• 1.2 Aspen Plus软件
Aspen Plus简介 Aspen Plus的主要功能
1.1 化工过程模拟
• 化工过程模拟简介
• 实质:使用计算机程序定量计算一个化学过程中的 特性方程
物性方法
3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 Aspen Plus数据库 Aspen Plus中的主要物性模型 物性方法的选择 定义物性集 物性分析 物性估算 物性数据回归 电解质组分
3.1 Aspen Plus数据库
• 是Aspen Plus的一部分,适用于每一个程序的运行, 包括PURECOMP、SOLIDS、AQUEOUS、INORGANIC、 系统数据库 BINARY等数据库

ASPEN_PLUS

ASPEN_PLUS

物性方法和模型描述
热力学性质 传递性质 焓、熵、吉布斯自由能、逸度系数、体积等 粘度、热导率、表面张力、扩散系数等 用户可以修改现有的物性方法或建立新的物性方法
状态方程物性方法 与煤相关应用 逸度系数物性方法 专用系统物性方法
方法分类
理想物性方法
推荐的物性方法 SOLIDS
常用推荐方法
煤的粉碎,研磨
Aspen Plus 讲 义
ASPEN PLUS简介 ASPEN PLUS 安装方法及界面介绍
通过实例介绍如何建立模拟模型
模型分析工具使用的基础
ASPEN PLUS 简 介
流程模拟——使用计算机程序定量模拟一个化学过程的 特性方程。 基于序贯模块法的大型通用稳态过程模拟软件。 Advanced System for Process Engineering(ASPEN) 1976~1981年由MIT主持、能源部资助、55个高校和公司 参与开发。 1982年为了将其商品化,成立了AspenTech公 司,并称之为Aspen Plus。 经过20多年不断地改进、扩充和提高,已先后推出了十多 个版本,成为举世公认的标准大型流程模拟软件。
•SCFRAC 简算法多塔精馏 •PETROFRAC 石油炼制分 馏塔
单元操作模型及其主要功能
固体处理器 用户模型 流控制器
•USER 有限进出流股
•MULT 乘法器
•DUPL复制器 •CLCHNG 流股复类器 •SELECT 物流选择器
•USER2 无限进出流股
•HIERARCHY 分层结构
•ANALYZER 物流分析器
ASPEN PLUS的优势
可以模拟电解质系统
许多公司已经用Aspen Plus模拟电解质过程,如酸水汽提、苛性 盐水结晶与蒸发、硝酸生产、湿法冶金、胺净化气体和盐酸回收 等。 Aspen Plus提供Pitzer活度系数模型和陈氏模型计算物质的活度 系数,包括强弱电解质、盐类和含有机化合物的电解质系统。这 些模型已广泛地在工业中应用,计算结果准确可靠。 电解质系统有三个电解质物性参数数据库:水数据库包括纯物质 的各种离子和分子溶质的性质;固体和Barin数据库包括盐类组 分性质; 模拟电解质过程的功能在整套Aspen Plus都可以应用。用户可以 用数据回归系统(DRS)确定电解质物性模型参数。所有Aspen Plus的单元操作模型均可处理电解质系统 。例如,Aspen Plus闪 蒸和分馏模型可以处理有化学反应过程的电解质系统。

Aspen功能简介

Aspen功能简介

Aspen功能简介Aspen Plus介绍(物性数据库)•Aspen Plus ---生产装置设计、稳态模拟和优化的大型通用流程模拟系统•Aspen Plus是大型通用流程模拟系统,源于美国能源部七十年代后期在麻省理工学院(MIT)组织的会战,开发新型第三代流程模拟软件。

该项目称为“过程工程的先进系统”(Advanced System for Process Engineering,简称ASPEN),并于1981年底完成。

1982年为了将其商品化,成立了AspenTech公司,并称之为AspenPlus。

该软件经过20多年来不断地改进、扩充和提高,已先后推出了十多个版本,成为举世公认的标准大型流程模拟软件,应用案例数以百万计。

全球各大化工、石化、炼油等过程工业制造企业及著名的工程公司都是Aspen Plus的用户。

它以严格的机理模型和先进的技术赢得广大用户的信赖,它具有以下特性:1.ASPEN PLUS有一个公认的跟踪记录,在一个工艺过程的制造的整个生命周期中提供巨大的经济效益,制造生命周期包括从研究与开发经过工程到生产。

2.ASPEN PLUS使用最新的软件工程技术通过它的Microsoft Windows 图形界面和交互式客户-服务器模拟结构使得工程生产力最大。

着非常重要的促进作用。

自动的把流程模型与工程知识数据库、投资分析,产品优化和其它许多商业流程结合。

Aspen Plus包括数据,物性,单元操作模型,内置缺省值,报告及为满足其它特殊工业应用所开发的功能。

比如像电解质模拟,Aspen Plus 主要的功能如下:Windows交互性界面:界面包括工艺流程图形视图,输入数据浏览视图,独特的"NEXT"专家向导系统,来引导用户进行完整的、一致的流程的定义。

图形向导:帮助用户很容易地把模拟结果创建成图形显示。

EO模型:方程模型有着先进参数管理和整个模拟的灵敏分析或者是模拟特定部分的分析。

物性估算模型aspenplus入门

物性估算模型aspenplus入门
第 6 页
关联式参数
物性 ANTOIN 蒸汽压关联式参数 理想气体热容关联式参数 WASTON 关联式参数 RACKETT 液体容积方程关联式 CAVETT 综合方程参数 CAVETT 综合关联式参数 SEALCHASD-HILDEBRNUD 方程参数 标准液体容积方程参数 水溶解度方程参数 AUDRADE 液体年度关联式参数 代号 PLXANT CPIG DHVLWT RKTZRA DHLCAT PLCAVT VLCVT1 VLSTD WATSOL MULAND 参数个数 9 11 5 1 1 4 1 3 5 5
物性估算模型 ASPEN PLUS 入门
汤吉海 2006 年 8 月
第三章
ASPEN PLUS 的物性数据库及其应用
3. 1 基础物性数据库 3. 2 物性预测模型 3. 3 物性估算系统 3. 4 实验数据处理系统(模型参数回归)
第 2 页
3.1 基础物性数据库
A SPEN PLU S 物性数据库的数据包括离子种类 、二元交互参数、离子反应所需数据等。共 含 5000 个纯组分、 40000 个二元交互参 数、 5000 个二元混合物及与 250000 多个混 合物实验数据的 D ETH ERM 数据库接口和与 I nhouse (内部)数据库接口。 系统数据库 用户数据库
第 7 页
功能团参数
物性 UNIFAC 方程功能团的 Q 参数 UNIFAC 方程功能团的 P 参数 UNIFAC 方程功能团的相互作用参数 代号 GMUFQ GMUFP GMUFB
第 8 页
3.2 ASPEN PLUS 的物性方法和模型
类别 详细内容 状态方程模型 活度系数模型 蒸汽压和液体逸度模型 汽化热模型 摩尔体积和密度模型 热容模型 溶解度关联模型 其它 粘度模型 导热系数模型 扩散系数模型 表面张力模型 一般焓和密度模型 煤和焦碳的焓和密度模型

Aspen功能使用简介

Aspen功能使用简介

Aspen Plus介绍(物性数据库)•Aspen Plus---生产装置设计、稳态模拟和优化的大型通用流程模拟系统•Aspen Plus是大型通用流程模拟系统,源于美国能源部七十年代后期在麻省理工学院〔MIT〕组织的会战,开发新型第三代流程模拟软件。

该项目称为“过程工程的先进系统〞(Advanced System for Process Engineering,简称ASPEN〕,并于1981年底完成。

1982年为了将其商品化,成立了AspenTech公司,并称之为Aspen Plus。

该软件经过20多年来不断地改良、扩大和提高,已先后推出了十多个版本,成为举世公认的标准大型流程模拟软件,应用案例数以百万计。

全球各大化工、石化、炼油等过程工业制造企业与著名的工程公司都是Aspen Plus的用户。

它以严格的机理模型和先进的技术赢得广阔用户的信赖,它具有以下特性:1.ASPEN PLUS有一个公认的跟踪记录,在一个工艺过程的制造的整个生命周期中提供巨大的经济效益,制造生命周期包括从研究与开发经过工程到生产。

2.ASPEN PLUS使用最新的软件工程技术通过它的Microsoft Windows图形界面和交互式客户-服务器模拟结构使得工程生产力最大。

3.ASPEN PLUS拥有准确模拟围广泛的实际应用所需的工程能力,这些实际应用包括从炼油到非理想化学系统到含电解质和固体的工艺过程。

4.ASPEN PLUS是AspenTech的集成聪明制造系统技术的一个核心局部,该技术能在你公司的整个过程工程根本设施围捕获过程专业知识并充分利用。

5.在实际应用中,ASPEN PLUS可以帮助工程师解决快速闪蒸计算、设计一个新的工艺过程、查找一个原油加工装置的故障或者优化一个乙烯全装置的操作等工程和操作的关键问。

Aspen Plus功能Aspen Plus AspenTech工程套装软件(AES)的一个成员,它是一套非常完整产品,特别对整个工厂、企业工程流程工程实践和优化和自动化有着非常重要的促进作用。

aspenplus自带数据包目录和应用[新版]

aspenplus自带数据包目录和应用[新版]

aspen plus 自带数据包目录和使用C:\Program Files\AspenTech\Aspen Plus \Gui 内电解质举例Filename Electrolyte System----------- ---------------------------------------------------------eh2ohc.bkp H2O - HCL (as Henry-comps) using ELECNRTLehno3.bkp H2O - HNO3 using ELECNRTLenaoh.bkp H2O - NAOH using ELECNRTLeso4br.bkp H2O - H2SO4 - HBR using ELECNRTLehbr.bkp H2O - HBR using ELECNRTLehi.bkp H2O - HI using ELECNRTLeh2so4.bkp H2O - H2SO4 using ELECNRTLehclmg.bkp H2O - HCL - MGCL2 using ELECNRTLenaohs.bkp H2O - NAOH - SO2 using ELECNRTLeso4cl.bkp H2O - H2SO4 - HCL using ELECNRTLecauts.bkp H2O - NAOH - NACL - NA2SO4 -NA2SO4.10H2O -NA2SO4.NAOH - NA2SO4.NAOH.NACL using ELECNRTL ekoh.bkp H2O - KOH using ELECNRTLecaust.bkp H2O - NAOH - NACL - NA2SO4 using ELECNRTLehcl.bkp H2O - HCL (as solvent) using ELECNRTLehclff.bkp H2O - HCL (as Henry-comp, based on Fritz & Fuget)using ELECNRTLehclle.bkp H2O - HCL (as solvent, recommend for LLE) using ELECNRTL eamp.bkp H2O - amp - H2S - CO2 using ELECNRTLedea.bkp H2O - DEA - H2S - CO2 using ELECNRTLedga.bkp H2O - DGA - H2S - CO2 using ELECNRTLemdea.bkp H2O - MDEA - CO2 - H2S using ELECNRTLpmdea.bkp H2O - MDEA - CO2 - H2S (based on the 1997 paper of Posey & Rochelle) using ELECNRTLemea.bkp H2O - MEA - H2S - CO2 using ELECNRTLehotde.bkp H2O - DEA - K2CO3 - H2S - CO2 using ELECNRTLecl2.bkp H2O - CL2 - HCL using ELECNRTLenh3co.bkp H2O - NH3 - CO2 using ELECNRTLenh3so.bkp H2O - NH3 - SO2 using ELECNRTLesouro.bkp H2O - NH3 - H2S - CO2 - NAOH using ELECNRTLenh3h2.bkp H2O - NH3 - H2S using ELECNRTLehotca.bkp H2O - K2CO3 - CO2 - KHCO3 using ELECNRTL withoutsalt precipitationenh3hc.bkp H2O - NH3 - HCN using ELECNRTLebrine.bkp H2O - CO2 - H2S - NACL using ELECNRTLebrinx.bkp H2O - CO2 - H2S - NACL using ELECNRTL (extendedTemperature range)eclscr.bkp H2O - CL2 - CO2 - HCL - NAOH - NACL -NA2CO3 using ELECNRTLekohx.bkp H2O - KOH (high concentration) using ELECNRTLehf.bkp H2O - HF using ELECNRTLehotcb.bkp H2O - K2CO3 - CO2 - KHCO3 using ELECNRTL withsalt precipitationenh3po.bkp H2O - NH3 - H3PO4 - H2S using ELECNRTLesour.bkp H2O - NH3 - H2S - CO2 using ELECNRTLbrine.bkp H2O - CO2 - H2S - NACL using SYSOP15caust.bkp H2O - NAOH - NACL - NA2SO4 using SYSOP15Mcausts.bkp H2O - NAOH - NACL - NA2SO4 -NA2SO4.10H2O -NA2SO4.NAOH - NA2SO4.NAOH.NACL using SYSOP15Mdea.bkp H2O - DEA - H2S - CO2 using SYSOP15Mdga.bkp H2O - DGA - H2S - CO2 using SYSOP15Mflue_g.bkp H2O - N2 - O2 - CO2 - CO - SO2 - SO3 - NO - NO2 - HCL -HF - HNO3 - HNO2 - H2SO4 - H2SEO3 - HGCL2 - HG2CL2 - HG -C - SE - SEO2 - HG(OH)2 - CASO4*2H2O - CAF2 - CAO - CA(OH)2using ELECNRTLhna2co.bkp H2O - NA2CO3 - NA2CO3*10H2O - NA2CO3*7H2O - NA2CO3*H2O using ELECNRTLh2ohbr.bkp H2O - HBR using SYSOP15h2ohcl.bkp H2O - HCL using SYSOP15h2ohf.bkp H2O - HF using SYSOP15h2ohi.bkp H2O - HI using SYSOP15hotca.bkp H2O - K2CO3 - CO2 using SYSOP15hotcb.bkp H2O - K2CO3 - CO2 - KHCO3 using SYSOP15hotdea.bkp H2O - DEA - K2CO3 - H2S - CO2 using SYSOP15Mkdea.bkp H2O - DEA - H2S - CO2 using SYSOP15M with kinetic consideration kmdea.bkp H2O - MDEA - H2S - CO2 using SYSOP15M with kinetic consideration kmea.bkp H2O - MEA - H2S - CO2 using SYSOP15M with kinetic consideration keamp.bkp H2O - amp - H2S - CO2 using ELECNRTL with kinetic consideration kedea.bkp H2O - DEA - H2S - CO2 using ELECNRTL with kinetic consideration kedga.bkp H2O - DGA - H2S - CO2 using ELECNRTL with kinetic consideration kemdea.bkp H2O - MDEA - H2S - CO2 using ELECNRTL with kinetic consideration kemea.bkp H2O - MEA - H2S - CO2 using ELECNRTL with kinetic consideration mcl2.bkp H2O - CL2 using SYSOP15mdea.bkp H2O - MDEA - H2S - CO2 using SYSOP15Mmea.bkp H2O - MEA - H2S - CO2 using SYSOP15Mmh2so4.bkp H2O - H2SO4 using SYSOP15Mmhbr.bkp H2O - HBR using SYSOP15Mmhcl.bkp H2O - HCL using SYSOP15Mmhcl1.bkp H2O - HCL using SYSOP15Mmhclmg.bkp H2O - HCL - MGCL2 using SYSOP15Mmhf.bkp H2O - HF using SYSOP15Mmhf2.bkp H2O - HF (to 100% HF) using ENRTL-HF which considers HF vapor phase associationmhno3.bkp H2O - HNO3 using SYSOP15Mmnaoh.bkp H2O - NAOH using SYSOP15M (H5O3- is used instead of OH-) mnaoh1.bkp H2O - NAOH using SYSOP15Mmso4br.bkp H2O - H2SO4 - HBR using SYSOP15Mmso4cl.bkp H2O - H2SO4 - HCL using SYSOP15Mnaohso.bkp H2O - NAOH - SO2 using SYSOP15nh3co2.bkp H2O - NH3 - CO2 using SYSOP15nh3h2s.bkp H2O - NH3 - H2S using SYSOP15nh3h2o.bkp H2O - NH3 (as a solvent to 100%) using ELECNRTLnh3hcn.bkp H2O - HCN using SYSOP15nh3po4.bkp H2O - NH3 - H2S - H3PO4 using SYSOP15nh3so2.bkp H2O - NH3 - SO2 using SYSOP15pitz_1.bkp H2O - NAHCO3 - NA2SO4 - NACL - NAOH - NA2CO3*10H2O - NA2SO4*10H2O - NA2CO3*NAHCO3*2H2O - NA2CO3*7H2O -NA2CO3*H2O - KHCO3 - K2CO3 - K2SO4 - KHSO4 - KCL -KOH - K2CO3*1.5H2O - CACL2 - CASO4 - CA(OH)2 -CACL2*6H2O - CASO4*2H2O - CACL2*4H2O - MGCL2 - MGSO4 -MGCL2*6H2O - MGCL2*7H2O - MGCL2*H2O - MGSO4*6H2O - HCL -H2SO4 using PITZERpitz_2.bkp H2O - NACL - KCL - CACL2 - CACL2*4H2O - CACL2*6H2O -BACL2 - BACL2*2H2O using PITZERpitz_3.bkp H2O - NA2SO4 - NACL - NA2CO3*10H2O - NA2CA(SO4)2 -NA4CA(SO4)3*2H2O - NANO3 - K2SO4 - KCL - KNO3 -K2CA(SO4)2*H2O - CACL2 - CACL2*6H2O - CASO4*2H2O -2(CASO4)*H2O - CACL2*4H2O - CA(NO3)2 - CA(NO3)2*4H2Ousing PITZERpitz_4.bkp H2O - NACL - NA2SO4 - KCL - K2SO4 - CACL2 - CASO4 -MGCL2 - MGSO4 - CACL2*6H2O - MGCL2*6H2O - MGCL2*8H2O -MGCL2*12H2O - KMGCL3*6H2O - MG2CACL6*12H2O - NA2SO4*10H2O -MGSO4*6H2O - MGSO4*7H2O - K2MG(SO4)2*6H2O using PITZERpnh3co.bkp H2O - NH3 - CO2 using SYSOP16pnh3h2.bkp H2O - NH3 - H2S using SYSOP16pnh3so.bkp H2O - NH3 - SO2 using SYSOP16psour.bkp H2O - NH3 - H2S - CO2 using SYSOP16sour.bkp H2O - NH3 - H2S - CO2 using SYSOP15souroh.bkp H2O - NH3 - H2S - CO2 - NAOH using SYSOP15。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
型的集合
ASEPN PLUS的物性计算模型分类
类别 热力学性质模型
传递性质模型 非常规固体性质模型
详细内容
状态方程模型 活度系数模型 蒸汽压和液体逸度模型 汽化热模型 摩尔体积和密度模型 热容模型 溶解度关联模型 其它
粘度模型 导热系数模型 扩散系数模型 表面张力模型
一般焓和密度模型 煤和焦碳的焓和密度模型
Nothnagel Hayden-O Connell HF状态方程
活度系数模型与状态方程方法的比较
状态方程模型
活度系数模型
描绘非理想状态有一定局限性 能描绘高度非理想液体
需要较少的二元参数
要求许多二元参数
参数随温度适当外推
二元参数与温度密切相关

在临界区一致
在临界区不一致
常用选项集
状态方程物性方法
第三章 ASPEN PLUS物性数 据库及其应用
第三章 ASPEN PLUS的物性数据库及其应用 3.1 基础组分数据库 3.2 如何建立物性模型 3.3 性质集 3.4 物性计算与分析实例
3.1 基础组分数据库
ASPEN PLUS物性数据库的数据包括:
5千个纯组分、4万个二元交互参数、5千个
状态方程模型
1、IDEAL理想状态性质方法
用于气相和液相处于理想状态 的体系(如减压体系、低压下 的同分异构体系)
2、用于石油混合物的性质方法:BK10、 CHAO-SEA、GRAYSON
用于炼油(如原油塔、减压塔和乙烯 装置的部分工艺过程)
3、针对石油调整的状态方程性质方法: PENG-ROB、RK-SOAVE
二元混合物

离子种类、二元交互参数、离子反应所需

数据

25万多个混合物实验数据的DETHERM数 据库接口和与In-house(内部)数据库接口
据 库
用户数据库
PUREXX 数据库
包括多于5000多个组分(大多数为有机物)的参数, 这是ASPEN PLUS纯组分参数的主要数据源。
(1)与状态无关的固有属性,如分子量、临界参数、偏 心因子等;
代号 GMUFQ GMUFP GMUFB
其他组分数据库
工况研究- 丙酮回收
OVHD
FEED
COLUMN
5000 lbmol/hr 丙酮:10 mole % 水:90 mole %
BTMS
规定: 丙酮回收率为99.5 mole %
预计所需理论级 大约费用(美元)
理想方法 状态方程方法
11
7
520,000
用于气体加工、炼油及化工应用。(如气 体加工装置、原油塔及乙烯装置)
4、用于高压烃应用的状态方程性质方法: BWR-LS、LK-PLOCK、PR-BM、RKS-BM
处理高温、高压以及接近临界 点的体系(如气体管线传输或 超临界抽提)
5、灵活的和预测性的状态方程性质方法: PRMHV2、PRWS、PSRK、RK-ASPEN、 RKSMHV2、RKSWS、SR-POLAR
(2)标准状态下一定相态的属性,如25℃时的标准生成 热、标准燃烧热、标准生成自由能等;
(3)一定状态下的属性,如各温度下的热容、饱和蒸汽 压、粘度等,通常以一定的方程形式关联,将方程 参数作为基础物性数据。
(4)其他专用模型参数,如UNIFAC模型的官能团信息。
固有性质
物性 分子量 临界温度 临界压力 临界体积
390,000
活度系数模型方法
42 880,000
3.2 ASPEN PLUS的物性方法和模型
物性
术语的定义
物性:计算出的物质的物性值,例如混合物焓 物性集 (Prop-Set):访问物性的一个方法,以便能
够使用或在别处列表
物性参数:物性模型中用到的常数 物性模型:用于计算一个物性的方程式或方程组 物性方法:用于计算一个模拟中所需性质的物性模
计算高温、高压、接近临界点混合物 及在高压下的液-液分离的体系。(如 乙二醇气体干燥、甲醇脱硫及超临界 萃取)
液体活度系数性质方法
液体活度系数模型
NRTL UNIFAC UNIQUAC VAN
LAAR WILSON
汽相状态方程
理想气体定律 Redlich-Kwong
Redlich-Kwong-Soave
PENG-ROB RK-SOAVE
活度系数物性方法
NRTL UNIFAC UNIQUAC WILSON
如何选择热力学方法
选择物性方法
物系中含有水、醇、醚(NRTL、UNIFAC、 WILSON)
物系中不含水、醇、醚(RK-SOAVE、PENGROB、PSRK)
炼油系统(BK10、CHAO-SEA、GRAYSON) 纯水或纯蒸汽系统用STEAM-TABLE
注意:物性方法选择完后,如果涉及到二元交互 作用参数,要到参数表上看一下参数是否存在。
如何建立物性
选择一个物性方法 检查参数/获得其它参数
确认结果 创建流程
步骤
1. 选择物性方法 -根据下列条件选择一个物性方法: 模拟中存在的组分 模拟的操作条件 对于组分可得到的数据和参数
2 检查参数 - 确定在Aspen Plus 数据库中可用的参数
液体粘度 导热系数 表面张力
代号 API DELTA PARC
MUVDIP
MULAND KVDIP SIGDIP
关联式参数
物性 ANTOIN蒸汽压关联式参数 理想气体热容关联式参数 WASTON关联式参数 RACKETT液体容积方程关联式 CAVETT综合方程参数 CAVETT综合关联式参数 SEALCHASD-HILDEBRNUD方程参数
代号 MW TC PC VC
物性
代号
临界压缩因子 ZC
偏心因子 OMEGA
偶极距
MUP
回转半径
RGYR
标准态下的物性
物性
生成热 生成自由能
沸点 标准沸点下
的摩尔体 积
汽化热 凝固点 相对密度
代号 DHFORM DGFORM
TB
VB
DHVLB TEP SG
物性 API重度 溶解度参数 等张比容
气体粘度
标准液体容积方程参数 水溶解度方程参数 AUDRADE液体年度关联式参数
代号 PLXANT CPIG DHVLWT RKTZRA DHLCAT PLCAVT VLCVT1
VLSTD WATSOL MULAND
参数个数 9 11 5 1 1 4 1
3 5 5
功能团参数
物性 UNIFAC方程功能团的Q参数 UNIFAC方程功能团的P参数 UNIFAC方程功能团的相互作用参数
相关文档
最新文档