121-1任意角的三角函数(1)

合集下载

2019 2020高中数学第1章三角函数121任意角的三角函数第2课时三角函数线及其应用教案新人教A版

2019 2020高中数学第1章三角函数121任意角的三角函数第2课时三角函数线及其应用教案新人教A版

三角函数线及其应用课时第21.有向线段(1)定义:带有方向的线段.OMMP. (2)表示:用大写字母表示,如有向线段,2.三角函数线PPPMxM. ,过垂直于作轴,垂足为作图:①(1)α的终边与单位圆交于AxT. α0)作的终边或其反向延长线于点轴的垂线,交②过(1,(2)图示:MPOMAT,分别叫做角α、结论:有向线段(3)的正弦线、余弦线、正切线,统称为三、角函数线.思考:当角的终边落在坐标轴上时,正弦线、余弦线、正切线变得怎样?xy轴上当角的终边落在轴上时,正弦线、正切线分别变成了一个点;终边落在提示:时,余弦线变成了一个点,正切线不存在.π8π1.角和角有相同的( )77A.正弦线 B.余弦线.不能确定D .正切线C.π8πC [角和角的终边互为反向线,所以正切线相同.]772.如图,在单位圆中角α的正弦线、正切线完全正确的是( )OMAT′.正弦线′,正切线 A OMAT′.正弦线′,正切线 B MPAT,正切线C.正弦线MPAT′,正切线′D.正弦线MPAT,C,正切线为正确.C [α为第三象限角,故正弦线为]3.若角α的余弦线长度为0,则它的正弦线的长度为.y轴上,正弦线与单位圆的交点为(0,0的余弦线长度为时,α的终边落在1 [若角α1)或(0,-1),所以正弦线长度为1.]】作出下列各角的正弦线、余弦线、正切线.【例1ππ10π17.(3)-;(2);(1)364 [解]如图.MPOMAT为正切线.其中为正弦线,为余弦线,三角函数线的画法x轴的垂(1)作正弦线、余弦线时,首先找到角的终边与单位圆的交点,然后过此交点作线,得到垂足,从而得正弦线和余弦线.xA)的终边(α作正切线时,应从(1,0)点引为第一或第四象限角轴的垂线,交α(2)ATT.于点,即可得到正切线或α终边的反向延长线(α为第二或第三象限角)π5 1.作出-的正弦线、余弦线和正切线.8 ]如图:[解π5????MP-=,sin??8π5????OM-,cos=??8π5????AT-. =tan??8) >cos β,那么下列结论成立的是( 【例2】 (1)已知cos αβsin α>sin .若Aα、β是第一象限角,则α>tan β是第二象限角,则B.若α、βtanα>sin βC.若α、β是第三象限角,则sin>tan β.若α、β是第四象限角,则tan αDππ4π2π4π22π4 的大小.,tan和tan和(2)利用三角函数线比较sin和sin,coscos553533在规定象限内画观察正弦线或正、β的余弦线出α→思路点拨:(1) 切线判断大小满足cos α>cos β2π4π观察图形,(2)作出和的正弦线、余弦线和正切线→比较大小35 错误;A,故βsin <αsin 时,βcos >αcos 可知,(1)由图[ D)1(图(1)由图(2)可知,cos α>cos β时,tan α<tan β,故B错误;图(2)由图(3)可知,cos α>cos β时,sin α<sin β,C错误;图(3)由图(4)可知,cos α>cos β时,tan α>tan β,D正确.]图(4)2π2π2π4π4πMPOMATMPOM′,=′,tan=,=′cos==解:如图,(2)sin,cos,333554πAT′.=tan 5.MPMP′|,符号皆正,| 显然|′|>2π4π∴sin>sin;352π4πOMOM′|,符号皆负,∴cos>cos;|<| |352π4πATAT′|,符号皆负,∴tan<tan|>||.35(1)利用三角函数线比较大小的步骤:①角的位置要“对号入座”;②比较三角函数线的长度;③确定有向线段的正负.(2)利用三角函数线比较函数值大小的关键及注意点:①关键:在单位圆中作出所要比较的角的三角函数线.②注意点:比较大小,既要注意三角函数线的长短,又要注意方向.2π2π2πabc=tan,则( =cos, 2.已知sin=,)777abcacb<..<B<<A babcac<.D<.C<<D[由如图的三角函数线知:2π2ππATMP>,因为=<,784MPOM,>所以.2π2π2π所以cos<sin<tan,777bac.]所以<<πππ3π3.设<α<,试比较角α的正弦线、余弦线和正切线的长度.如果<α<,4224上述长度关系又如何?ππMPOMAT,,余弦线为,正切线为α<时,角α的正弦线为[解] 如图所示,当<42π3πATMPOMMPOM′,′时,角α显然在长度上,的正弦线为>′,余弦线为><;当<α24ATATMPOM′.′>′>′正切线为′,显然在长度上,]探究问题[aaa (|α≥|≤1)的不等式?,sin α≤1.利用三角函数线如何解答形如sinaaa(|,sin α≤|≤1)的不等式:提示:对形如sin α≥图①yOMaay轴的垂线交单位圆于两作),过点(0画出如图①所示的单位圆;在,轴上截取=PPOPOPOPOP′上的角的集合;图中阴影部分即为和点和和′;写出终边在′,并作射线aa的角α的范围.α的角α的范围,其余部分即为满足不等式sin ≥sin 满足不等式α≤aaa|≤1)的不等式?≤α(|.利用三角函数线如何解答形如2cos α≥,cosaaa|≤1)的不等式:≤cos α对形如提示:cos ≥,α(|图②.xaaxOM轴的垂线交单位圆于两,0)=,过点画出如图②所示的单位圆;在(轴上截取作OPOPPPOPOP′上的角的集合;图中阴影部分即为满′,作射线′;写出终边在点和和和aa cos α的角α≥足不等式cos α≤的范围.的角α的范围,其余部分即为满足不等式3】利用三角函数线确定满足下列条件的角α的取值范围.【例132. αα|≤(1)cos α>-≤;(3)|sin ;(2)tan 223的写出角α确定对应确定角α的终→思路点拨:→――方程的解边所在区域取值范围[解] (1)如图,由余弦线知角α的取值范围是3π3π???kkk?Z,<α<2π2+π-∈. α???44??(2)如图,由正切线知角α的取值范围是ππ???kkk?Zπ+∈π,α≤. α???62??111(3)由|sin α|≤,得-≤sin α≤.222如图,由正弦线知角α的取值范围是ππ???kkk?∈,π+Zπ-α≤≤.α???66??2”,求α的取值范围.的不等式改为“cos α< 1.将本例(1)2[解]如图,由余弦线知角α的取值范围是π7π???kkk?Z<2,π2+π+∈<α. α???44??132.将本例(3)的不等式改为“-≤sin θ<”,求α的取值范围. 22π117π3π2π????-=-,sin且-≤sin θ=]由三角函数线可知sin=sin,sin=[解??62633223,故θ的取值集合是< 2ππ2π7π????kkkk????k+22π2,+π+π,2π- (.∈Z)∪????6633yx-1的定义域..利用本例的方法,求函数=2sin 3x-1≥0,2sin ]要使函数有意义,只需解[1x≥.即sin 2π5π??kk??k++,2π2π∈Z). (由正弦线可知定义域为??66利用单位圆中的三角函数线解不等式的方法(1)首先作出单位圆,然后根据各问题的约束条件,利用三角函数线画出角α满足条件的终边的位置.(2)角的终边与单位圆交点的横坐标是该角的余弦值,与单位圆交点的纵坐标是该角的正弦值.写角的范围时,抓住边界值,然后再注意角的范围的写法要求.(3)在一定范围内先找出符合条件的角,再用终边相同的角的表达式写出符合条件的提醒:所有角的集合..本节课的重点是三角函数线的画法,以及利用三角函数线解简单的不等式及比较大小1 问题,难点是对三角函数线概念的理解. .本节课应重点掌握三角函数线的以下三个问题2 ;三角函数线的画法,见类型1(1) ;利用三角函数线比较大小,见类型2(2)3.利用三角函数线解简单不等式,见类型(3).三角函数线是三角函数的几何表示,它们都是有向线段,线段的方向表示三角函数值3的正负,与坐标轴同向为正,异向为负,线段的长度是三角函数的绝对值,这是本节重中之 重. .利用三角函数线解三角不等式的方法41.下列判断中错误的是( )A .α一定时,单位圆中的正弦线一定B .在单位圆中,有相同正弦线的角相等C .α和α+π有相同的正切线D .具有相同正切线的两个角的终边在同一条直线上π5πB [A正确;B 错误,如与有相同正弦线;C 正确,因为α与π+α的终边互为反66向延长线;D 正确.]πOMMP 分别是角α=的余弦线和正弦线,那么下列结论正确的是( 2.如果, )5MPOMMPOM <0<.B0<<.A .MPOMMPOM 0>>>>0 DC ..ππOM 的余弦线和正弦线满足α=[角β=的余弦线与正弦线相等,结合图象可知角D 54MP 0.]>>baba,则cos 4 ,3.若.=sin 4,的大小关系为=ππ35ba<,<< [因为424 ,如图4弧度角的正弦线和余弦线()画出ba.]<cos 4,即观察可知sin 4<的集合.α的终边范围,并由此写出角α.在单位圆中画出适合下列条件的角413. α≤-(1)sin α;≥(2)cos 223yOBABOA=(1)作直线[α的终边在如图①所交单位圆于解,两点,连接],,则角2π2???kkk?∈Zπ,≤π≤απ+2+2.α)含边界,角的取值集合为α(示的阴影区域内???33??图①图②1xCDOCOD,则角α=-(2)作直线交单位圆于,两点,连接,的终边在如图②所示的2.24???kkk?∈,Zπ≤α≤+2π2π+π.阴影区域内(α的取值集合为,角含边界)α???33??。

高中数学第一章三角函数1.2.1任意角的三角函数(1)课时提升作业1新人教A版必修4

高中数学第一章三角函数1.2.1任意角的三角函数(1)课时提升作业1新人教A版必修4

任意角的三角函数(一)(15分钟30分)一、选择题(每小题4分,共12分)1。

求值sin750°=( )A。

- B. — C.D。

【解析】选C.sin 750°= sin(2×360°+ 30°)=sin 30°=。

2.(2015·晋江高一检测)如果角θ的终边经过点(,-1),那么cosθ的值是( )A.—B。

- C. D.【解析】选C。

点(,-1)到原点的距离r==2,所以cosθ=.【延伸探究】将本题中点的坐标改为(—1,),求sinθ-cosθ。

【解析】点(-1,)到原点的距离r==2,所以sinθ=,cosθ=-,所以sinθ-cosθ=—=。

3.(2015·北京高一检测)已知α∈(0,2π),且sinα<0,cosα〉0,则角α的取值范围是( )A。

B.C. D.【解析】选D。

因为sinα〈0,cosα〉0,所以角α是第四象限角,又α∈(0,2π),所以α∈.二、填空题(每小题4分,共8分)4。

求值:cosπ+tan=______【解析】cosπ=cos=cos=,tan=tan=tan=,所以cosπ+tan=+.答案:+5.(2015·南通高一检测)若角135°的终边上有一点(—4,a),则a的值是________.【解析】因为角135°的终边与单位圆交点的坐标为,所以tan 135°==-1,又因为点(—4,a)在角135°的终边上,所以tan 135°=,所以=-1,所以a=4.答案:4【补偿训练】如果角α的终边过点P(2sin 30°,—2cos 30°),则cosα的值等于________。

【解析】2sin 30°=1,—2cos 30°=—,所以r=2,所以cosα=.答案:三、解答题6.(10分)判断下列各式的符号.(1)sinα·cosα(其中α是第二象限角)。

1.2.1任意角的三角函数课件高中数学人教A版必修4第一章

1.2.1任意角的三角函数课件高中数学人教A版必修4第一章

反思与感悟
利用诱导公式一可把负角的三角函数
化为0到2π间的三角函数,也可把大于2π的角的三
角函数化为0到2π间的三角函数,即实现了“负化
正,大化小”.同时要熟记特殊角的三角函数值.
明目标、知重点
跟踪训练3
求下列各式的值:
23π
(1)cos- 3 +tan



17π
4 ;
π

π

原式=cos3+-4×2π+tan4+2×2π
角为自变量,以比值为函数值的函数, 角的概念推广
后,这样的三角函数的定义明显不再适用,如何对三角
函数重新定义,这一节我们就来一起研究这个问题.
明目标、知重点
探究点一 锐角三角函数的定义
思考1 如图, Rt△ABC中,∠C=90°,若已知
a=3,b=4,c=5,试求sin A,cos B,sin B,
反思与感悟
准确确定三角函数值中角所在象限是基
础,准确记忆三角函数在各象限的符号是解决这类问
题的关键.可以利用口诀“一全正、二正弦、三正切、
四余弦”来记忆.
明目标、知重点
跟踪训练2
已知cos θ·tan θ<0,那角θ是( C )
A.第一或第二象限角
B.第二或第三象限角
C.第三或第四象限角
D.第一或第四象限角
明目标、知重点

; 叫做α的正切,记作

②终边定义法:
设角α终边上任意一点的坐标为(x,y),它与原点的距离为r,则



2
2


x
+y

有sin α=
,cos α=
,tan α=

高中数学第三章三角函数3.2任意角的三角函数3.2.1任意角三角函数的定义一课件湘教版必修2

高中数学第三章三角函数3.2任意角的三角函数3.2.1任意角三角函数的定义一课件湘教版必修2
没有意义.
2.三角函数在各个象限的符号
3.三角函数的定义域 三角函数 sin α,cos α
tan α,sec α
cot α,csc α
定义域 R
{α|α≠kπ+π2,k∈Z} {α|α≠kπ,k∈Z}
要点一 三角函数定义的应用 例 1 已知角 α 的终边在直线 y=-3x 上,求 10 sin α+co3s α 的值.
解 由题意知,cos α≠0. 设角α的终边上任一点为P(k,-3k)(k≠0),则
x=k,y=-3k,r= k2+-3k2= 10|k|.
(1)当 k>0 时,r= 10k,α 是第四象限角,
sin
α=yr= -130kk=-3
10 10 ,
1 cos
α=xr=
1k0k=
10,
∴10sin α+co3s α=10×-3 1010+3 10
规律方法 在解决有关角的终边在直线上的问题时,应注意
到角的终边为射线,所以应分两种情况处理,取射线上异于原
点 的 任 意 一 点 坐 标 (a,b), 则 对 应 角 的 正 弦 值 为 sin α =
b ,cos α= a2+b2
a ,tan
a2+b2
α=ba.
跟踪演练 1 已知角 θ 的顶点为坐标原点,始边为 x 轴的正半
答 锐角A的正弦,余弦,正切依次为:
sin A=ac,cos A=bc,tan A=ab.
[预习导引]
1.三角函数的定义
(1)正弦、余弦、正切
如图,在α的终边上任取一点P(x,y),设OP=r
y
x
y
(r≠0).定义:sin α= r ,cos α=r ,tan α= x ,

任意角的三角函数1

任意角的三角函数1

π
0
−1
3π 2

sinα cosα tanα
0
1
3 2 1 2
1
−1
0
1
0
不存在
0
不存在01来自300
已知角 α 终边上一点 P( − 3 ,y),且 sin α = 2 y, 例4 4 求 cos α、tan α 的值。
2 解: 由已知得 r = ( − 3 )+ y 2 = 3 + y 2
y y ∴ sin α = = ,又 sin α = 2 y r 4 3 + y2
x
x cot α = x . cot 叫做α的余切,记作: ④比值 叫做 的余切,记作: α 即 y y
r sec α 即 sec α = r . 记作: 记作 正割, ⑤比值 x 叫做α的正割, : x
r csc α 即 csc α = r . 叫做α的余割, 记作: ⑥比值 叫做 的余割, 记作: y y
任意角的三角函数定义
是任意角, 的终 设α是任意角,α的终 是任意角 边上任意一点 P(x , y) (除端点外 , 除端点外) 除端点外 它与原点的 距离为r,则 距离为 ,
r=
x + y
2
2
=
x 2 + y 2 > 0.
定 义:
y y 叫做α的正弦, 记作: ①比值 叫做 的正弦, 记作: α 即 sin α = . sin r r
x. x cos 记作: 记作: α 即 cos α = 余弦, ②比值 叫做α的余弦, r r
y y 叫做α的正切, 记作: ③比值 叫做 的正切, 记作: α 即 tan α = . tan x x

2020版高中数学人教A版必修4 导学案 《任意角三角函数一》(含答案解析)学生版

2020版高中数学人教A版必修4 导学案 《任意角三角函数一》(含答案解析)学生版

思考 1 角α的正弦、余弦、正切分别等于什么?
思考 2 对确定的锐角α,sin α,cos α,tan α的值是否随 P 点在终边上的位置的改变 而改变?
思考 3 在思考 1 中,当取|OP|=1 时,sin α,cos α,tan α的值怎样表示?
梳理
(1)单位圆
在直角坐标系中,我们称以原点 O 为圆心,以单位长度为半径的圆为单位圆.
位圆上点的坐标或坐标的比值为函数值的函数,统称为三角函数.
知识点二 正弦、余弦、正切函数的定义域 思考 对于任意角α,sin α,cos α,tan α都有意义吗? 梳理 三角函数的定义域
知识点三 正弦、余弦、正切函数值在各象限的符号 思考 根据三角函数的定义,你能判断正弦、余弦、正切函数的值在各象限的符号吗?
四、探究与拓展
14.已知角θ的终边上有一点 P(x,-1)(x≠0),且 tan θ=-x,则 sin θ+cos θ=
.
1
1
15.已知
=-
,且 lg(cos α)有意义.
|sin α| sin α
(1)试判断角α所在的象限;
3 ,m
(2)若角α的终边与单位圆相交于点 M 5 ,求 m 的值及 sin α的值.
C.第三象限角
D.第四象限角


sin ,cos
4.已知角α的终边上一点的坐标为
3
3 ,则角α的最小正值为( )
5π A.
6
2π B.
3
4π C.
3
11π D.
6
3 5.已知角α的终边经过点 P(3,4t),且 sin(2kπ+α)=- (k∈Z),则 t 等于( )
5
9 A.-

苏教版高中数学必修第一册7.2.1任意角的三角函数【授课课件】

苏教版高中数学必修第一册7.2.1任意角的三角函数【授课课件】

股定理得-122+y2=1,y<0,
7.2.1 任意角的三角函数
1
2
3
4
必备知识·情境导学探新知 关键能力·合作探究释疑难 学习效果·课堂评估夯基础 课时分层作业
解得 y=- 23, 所以 P-12,- 23.因此 sin α=-123=- 23, cos α=-112=-12,tan α=--2213= 3.
第7章 三角函数
7.2 三角函数概念 7.2.1 任意角的三角函数
7.2.1 任意角的三角函数
1
2
3
4
必备知识·情境导学探新知 关键能力·合作探究释疑难 学习效果·课堂评估夯基础 课时分层作业
1.理解三角函数的定义,会使用定义 求三角函数值.(重点、易错点) 2.会判断给定角的三角函数值的符 号.(重点) 3.会利用三角函数线比较两个同名三 角函数值的大小.(难点)
当 α 的终边在第四象限时,在 α 终边上取一点 P′(1,- 3),则 r=2,
所以 sin α=- 23,cos α=12,tan α=- 3.
7.2.1 任意角的三角函数
1
2
3
4
必备知识·情境导学探新知 关键能力·合作探究释疑难 学习效果·课堂评估夯基础 课时分层作业
2.将本例(1)的条件“在直线 y=-2x 上”,改为“过点 P(- 3a,4a)(a≠0)”,求 2sin α+cos α.
[解] 当 α 的终边在第二象限时,在 α 终边上取一点 P(-1,2),
则 r= -12+22= 5,
所以
sin
α=
2 =2 5
5
5,cos
α=-51=-
55,tan
α=-21=-2.

三角函数公式(最全)

三角函数公式(最全)
1、正弦定理
正弦定理变形可得:
五、其他公式
2、余弦定理
对于如图所示的边长为a、b、c而相应角为α、β、γ的△ABC, 有:
3、降幂公式
sin²α=[1-cos(2α)]/2 cos²α=[1+cos(2α)]/2 tan²α=[1-cos(2α)]/[1+cos(2α)]
4、三角和
sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+ cosα·cosβ·sinγ-sinα·sinβ·sinγ
ln(1+x)=x-x2/2+x3/3-…+(-1)k-1xk/k, x∈(-1,1)
sin x = x-x3/3!+x5/5!-…+(-1)k-1x2k-1/(2k-1)!+…, x∈R
cos x = 1-x2/2!+x4/4!-…+(-1)kx2k/(2k)!+…, x∈R
arcsin x = x + x3/(2*3) + (1*3)x5/(2*4*5) + (1*3*5)x7/(2* 4*6*7)…+(2k+1)!!*x2k+1/(2k!!*(2k+1))+…, x∈(-1,1)(!!表 示双阶乘)
1
一、定义公式
三角函数公式
锐角三角函数 任意角三角函数
正弦(sin) 余弦(cos) 正切(tan或tg) 余切(cot或ctg) 正割(sec) 余割(csc) 正弦(sin) 余弦(cos) 正切(tan或tg) 余切(cot或ctg) 正割(sec) 余割(csc)
1、倒数关系
二、函数关系

湖南省长沙市一中高中数学 《1.2.1任意角的三角函数(一)》教案 新人教A版必修4

湖南省长沙市一中高中数学 《1.2.1任意角的三角函数(一)》教案 新人教A版必修4

4-1.2.1任意角的三角函数〔1〕教学目的:知识目标:1.掌握任意角的三角函数的定义;2.角α终边上一点,会求角α的各三角函数值;3.记住三角函数的定义域、值域,诱导公式〔一〕。

能力目标:〔1〕理解并掌握任意角的三角函数的定义;〔2〕树立映射观点,正确理解三角函数是以实数为自变量的函数;〔3〕通过对定义域,三角函数值的符号,诱导公式一的推导,提高学生分析、探究、解决问题的能力。

德育目标: 〔1〕使学生认识到事物之间是有联系的,三角函数就是角度〔自变量〕与比值〔函数值〕的一种联系方式;〔2〕学习转化的思想,培养学生严谨治学、一丝不苟的科学精神;教学重点:任意角的正弦、余弦、正切的定义〔包括这三种三角函数的定义域和函数值在各象限的符号〕,以及这三种函数的第一组诱导公式。

公式一是本小节的另一个重点。

教学难点:利用与单位圆有关的有向线段,将任意角α的正弦、余弦、正切函数值分别用他们的集合形式表示出来.教学过程:一、复习引入:初中锐角的三角函数是如何定义的?在Rt △ABC 中,设A 对边为a ,B 对边为b ,C 对边为c ,锐角A 的正弦、余弦、正切依次为,,a b a sinA cosA tanA c c b=== . 角推广后,这样的三角函数的定义不再适用,我们必须对三角函数重新定义。

二、讲解新课:1.三角函数定义在直角坐标系中,设α是一个任意角,α终边上任意一点P 〔除了原点〕的坐标为(,)x y ,它与原点的距离为(0)r r ==>,那么〔1〕比值y r叫做α的正弦,记作sin α,即sin y r α=; 〔2〕比值x r 叫做α的余弦,记作cos α,即cos x rα=; 〔3〕比值y x叫做α的正切,记作tan α,即tan y x α=; 〔4〕比值x y 叫做α的余切,记作cot α,即cot x y α=; 说明:①α的始边与x 轴的非负半轴重合,α的终边没有说明α一定是正角或负角,以及α的大小,只说明与α的终边相同的角所在的位置;②根据相似三角形的知识,对于确定的角α,四个比值不以点(,)P x y 在α的终边上的位置的改变而改变大小; ③当()2k k Z παπ=+∈时,α的终边在y 轴上,终边上任意一点的横坐标x 都等于0, 所以tan y x α=无意义;同理当()k k Z απ=∈时,yx =αcot 无意义;④除以上两种情况外,对于确定的值α,比值y r 、x r 、y x 、x y分别是一个确定的实数, 正弦、余弦、正切、余切是以角为自变量,比值为函数值的函数,以上四种函数统称为三角函数。

数学课件:1-2-0-1 任意角的三角函数的定义

数学课件:1-2-0-1 任意角的三角函数的定义

规律总结:已知 α 的大小,判断 sinα、cosα、tanα 的符 号的步骤: ①确定 α 所在象限; ②由 α 所在象限确定 sinα、 cosα、 tanα 的符号.
3.诱导公式(一)的应用 求下列各式的值. 25 15 (1)cos 3 π+tan(- 4 π); (2)sin810° +tan765° -cos360° . [分析] 利用诱导公式 (一),将任意角的三角函数转化为
定义域
三角函数值 的正负 sinA>0,
A∈____
cosA>0 tanA____0
a b [答案] c c
>
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修4
科目一考试网 / 科目一模拟考试2016 科目四考试网 / 科目四模拟考试 驾校一点通365网 / 驾校一点通2016科目一 科目四 驾驶员理论考试网 / 2016科目一考试 科目四考试
(2) 原 式 = sin(2×360°+ 90° ) + tan(2×360°+ 45° )- cos(360° +0° )=1+1-1=1.
规律总结:利用诱导公式(一)求三角函数值: (1)解此类问题的方法是先借助于终边相同的角的诱导公 式把已知角化归到[0,2π)之间, 然后利用公式化简求值. 在问题 的解答过程中,重在体现数学上的化归(转化)思想; (2)要熟记特殊角的三角函数值,这是解题的基础.
函数 ,分别记作y=sinx,y=cosx,y=tanx.
[破疑点]由于角的集合与实数集之间建立了一一对应关 系,三角函数可以看作是以实数为自变量的函数,即实数→ 角(其弧度数等于这个实数)→三角函数值(实数),其关系如下 图所示:
(5)定义域:如表所示, 三角函数 正弦函数 余弦函数 正切函数 解析式 y=sinx y=cosx y=tanx 定义域 R R

任意角的三角函数一

任意角的三角函数一

任意角的三角函数学习目标 :1. 掌握任意角的正弦、余弦、正切的定义;2. 理解任意角的三角函数不同的定义方法;3. 已知角α终边上一点,会求角α的各三角函数值.学习重点: 任意角的正弦、余弦、正切的定义。

学习难点: 任意角的三角函数不同的定义方法;已知角α终边上一点,会求角α的各三角函数值.知识链接:1:用弧度制写出终边在下列位置的角的集合.(1)坐标轴上; (2)第二象限.2:锐角的三角函数如何定义?如图,设锐角α的顶点与原点O 重合,始边与x 轴的正半轴重合,那么它的终边在第一象限.在α的终边上任取一点(,)P a b,它与原点的距离0r =. 过P 作x 轴的垂线,垂足为M ,则线段OM 的长度为a ,线段MP 的长度为b . 则sin MP b OP rα==;cos α= = ; t a n MP OM α== . 新课导学:1.任意角的三角函数的定义问题1: 将点取在使线段OP 的长1r =的特殊位置上,这样就可以得到用直角坐标系内的点的坐标表示锐角三角函数为:sin MP OP α== ;cos OM OPα== ; tan MP OM α== . 问题2:上述锐角α的三角函数值可以用终边上一点的坐标表示. 那么,角的概念推广以后,我们应该如何推广到任意角呢?显然,我们只需在角的终边上找到一个点,使这个点到原点的距离为 ,然后就可以类似锐角三角函数求得该角的三角函数值.新知:在直角坐标系中,我们称以原点O 为圆心,以单位长度为半径的圆.问题3:如何利用单位圆定义任意角的三角函数的定义?如图,设α是一个任意角,它的终边与单位圆交于点(,)P x y ,那么:(1) 叫做α的正弦(sine),记做sin α;(2) 叫做α的余弦(cossine),记做cos α;(3)_______叫做α的正切(tangent),记做tan α.即:sin y α=,cos x α=,tan (0)y x xα=≠.试试:角34π与单位圆的交点坐标为 ,则3s i n 4π= ,3cos 4π= ,3tan 4π= . 反思: ①当()2k k Z παπ=+∈时,α的终边在 轴上,终边上任意一点的横坐标x 都等于 ,所以 无意义.② 如果知道角终边上一点,而这个点不是终边与单位圆的交点,该如何求它的三角函数值呢?在直角坐标系中,设α是一个任意角,α终边上任意一点P (除了原点)的坐标为(,)x y ,它与原点的距离为(0)r r >,则:sin y rα=;cos α= ; tan α= . 典例解析: 例1、 求35π角的正弦、余弦和正切值.变式练习: 求56π角的正弦、余弦和正切值。

【同步练习】必修四 1.2.1 任意角的三角函数-高一数学人教版(必修4)(解析版)

【同步练习】必修四 1.2.1 任意角的三角函数-高一数学人教版(必修4)(解析版)

第一章 三角函数1.2.1 任意角的三角函数一、选择题1.已知sin α+cos α=–15,α∈(0,π),则tan α的值为A .–43或–34B .–43C .–34D .34【答案】C【解析】∵sin α+cos α=–15,α∈(0,π),∴α为钝角,结合sin 2α+cos 2α=1,∴sin α=35,cos α=–45,则tan α=sin cos αα=–34,故选C . 2.若点5π5πsin cos 66⎛⎫ ⎪⎝⎭,在角α的终边上,则sin α的值为A .12-B .12C .3D 3 【答案】C【解析】因为点5π5πsin cos 66⎛⎫ ⎪⎝⎭,在角α的终边上,即点132⎛- ⎝⎭,在角α的终边上,则3sin α=,故选C .3.若角α的终边过点P (3,–4),则cos α等于A .35B .34-C .45-D .45【答案】A【解析】∵角α的终边过点P (3,–4),∴r =5,∴cos α=35,故选A .4.如果角θ的终边经过点(3,–4),那么sin θ的值是A .35B .35-C .45D .45-【答案】D【解析】∵角θ的终边经过点(3,–4),∴x =3,y =–4,r 22x y +,∴sin θ=y r=–45,故选D .5.若sinαtanα<0,且costanαα<0,则角α是A.第一象限B.第二象限C.第三象限D.第四象限【答案】C【解析】∵sinαtanα<0,可知α是第二或第三象限角,又costanαα<0,可知α是第三或第四象限角.∴角α是第三象限角.故选C.6.已知点P(x,3)是角θ终边上一点,且cosθ=–45,则x的值为A.5 B.–5 C.4 D.–4 【答案】D【解析】∵P(x,3)是角θ终边上一点,且cosθ=–45,∴cosθ=29x+=–45,∴x=–4.故选D.7.若点P(sinα,tanα)在第三象限,则角α是A.第一象限角B.第二象限角C.第三象限角D.第四象限角【答案】D【解析】∵点P(sinα,tanα)在第三象限,∴sinα<0,tanα<0.∴角α是第四象限角.故选D.8.如果角α的终边过点(2sin60°,–2cos60°),则sinα的值等于A.12B.–12C.–3D.–3【答案】B【解析】角α的终边过点(2sin60°,–2cos60°),即(31-,),由任意角的三角函数的定义可知:sinα=()()221 231=-+-.故选B.9.若角120°的终边上有一点(–4,a),则a的值是A.43B.43-C.43±D.310.已知4sin5α=,并且P(–1,m)是α终边上一点,那么tanα的值等于A .43-B .34-C .34D .43【答案】A 【解析】∵4sin5α=,并且P (–1,m )是α45=,∴m =43,那么tan α=1m-= –m =–43,故选A . 11.已知sin α<0,且tan α>0,则α的终边所在的象限是A .第一象限B .第二象限C .第三象限D .第四象限【答案】C【解析】∵sin α<0,∴α的终边在第三、第四象限或在y 轴负半轴上,∵tan α>0,∴α的终边在第一或第三象限,取交集可得,α的终边所在的象限是第三象限角.故选C . 12.若角α终边经过点P (sin2π2πcos 33,),则sin α=A .12BC .12-D . 【答案】C【解析】∵角α终边经过点P (sin 2π2πcos 33,),即点P ,–12),∴x ,y =–12,r =|OP |=1,则sin α=y r=y =–12,故选C .13.已知角α的终边过点12P ⎛ ⎝⎭,,则sin α=A .12B C D . 【答案】C【解析】由题意可得,x =12,y ,r =|OP |=1,∴sin α=y r,故选C .14.已知角α的终点经过点(–3,4),则–cos α=A .35B .–35C .45D .–45【答案】A【解析】∵角α的终点经过点(–3,4),∴x =–3,y =4,r =|OP |=5,则–cos α=–35x r =,故选A . 二、填空题15.若角α的终边与单位圆交于P (–35,45),则sin α=45;cos α=___________;tan α=___________.【答案】45;35-;43- 【解析】∵角α的终边与单位圆交于P (–35,45),|OP |=223455⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭=1,∴由任意角的三角函数的定义可知:sin α=44515=,同理可得cos α=35-;tan α=445335=--;故答案为:45;35-;43-.16.已知23cos 4a x a-=-,x 是第二、三象限角,则a 的取值范围是__________.17.已知角α的终边经过点P (–2,4),则sin α–cos α的值等于__________.35【解析】∵角α的终边经过点P (–2,4),∴x =–2,y =4,r =|OP 5,∴sin α=25y r =,cos α=xr= 5,则sin α–cos α3535. 18.适合条件|sin α|=–sin α的角α是__________.【答案】[2k π–π,2k π],k ∈Z【解析】∵|sin α|=–sin α,∴–sin α≥0,∴sin α≤0,由正弦曲线可以得到α∈[2k π–π,2k π],k ∈Z ,故答案为:[2k π–π,2k π],k ∈Z .19.若角α的终边经过点(–1,–2),则tan α=___________.【答案】2【解析】∵角α的终边经过点(–1,–2),∴由三角函数定义得tan α=21--=2.故答案为:2. 20.已知角θ的终边经过点P (x ,2),且1cos 3θ=,则x =___________.2 【解析】∵角θ的终边经过点P (x ,2),且21cos 34x θ==+,解得x 22.21.若sinθ<0,cosθ>0,则θ在第___________象限.【答案】四【解析】由sinθ<0,可知θ为第三、第四象限角或终边在y轴负半轴上的角.由cosθ<0,可知θ为第一、第四象限角或终边在x轴正半轴上的角.取交集可得,θ在第四象限.故答案为:四.三、解答题22.已知点P(3m,–2m)(m<0)在角α的终边上,求sinα,cosα,tanα.【解析】因为点P(3m,–2m)(m<0)在角α的终边上,所以x=3m,y=–2m,r=–13m,sinα=21313yr==,cosα=31313xr=-=-,tanα=32yx=-.23.确定下列各式的符号:(1)sin 103°·cos 220°;(2)cos 6°·tan 6.24.已知角α的终边在直线y=2x上,分别求出sinα,cosα及tanα的值.【解析】当角α的终边在第一象限时,在角α的终边上任意取一点P(1,2),则x=1,y=2,r=|OP5,∴sinα=255yr==cosα=55xr=,tanα=yx=2;当角α的终边在第三象限时,在角α的终边上任意取一点P(–1,–2),则x=–1,y=–2,r=|OP|=5,∴sinα=yr=5=25,cosα=xr=5=5,tanα=yx=2.25.已知角α的终边上一点P (m )(m ≠0),且sin α=4,求cos α,tan α的值.【解析】设P (x ,y ).由题设知x=y=m ,所以r 2=|OP|2=(2+m 2(O 为原点),,所以sin α=mr =4,所以=,3+m 2=8,解得当r=,x=所以cos =,tan当m=r=,x=y=所以cos =,tan26.已知角α终边上一点P (m ,1),cos α=–13.(1)求实数m 的值; (2)求tan α的值.【解析】(1)角α终边上一点P (m ,1),∴x =m ,y =1,r =|OP∴cos α=–13,解得m =.(2)由(1)可知tan α=1m。

高中数学必修4-1-2-1任意角的三角函数(第一课时)-教材分析

高中数学必修4-1-2-1任意角的三角函数(第一课时)-教材分析

1.2.1任意角的三角函数教材分析
一、教学内容解析
这是一堂关于任意角的三角函数的概念课.
在初中,学生已学过锐角三角函数,知道直角三角形中锐角的三角函数等于相应边长的比值.随着本章将角的概念推广,以及引入弧度制后,这里相应地也要将锐角三角函数推广为任意角的三角函数.认识它需要借助单位圆、角的终边以及二者的交点这些几何图形的直观帮助,这中间体现了数形结合的思想.所以它不仅是三角函数内容的核心概念,同时在高中数学中还占有重要的地位.本节课将围绕任意角三角函数的概念展开,任意角三角函数的定义是这节课的重点,能够利用单位圆认识该定义是解决教学的重点。

二、教学目标解析
1.借助单位圆理解任意角三角函数(正弦、余弦、正切)的定义:
2.在借助单位圆认识任意角三角函数的定义的过程中,体会数形结合的思想,并利用这一思想解决有关定义应用的问题.
三、教学问题诊断分析
1.学生在理解用终边上任意一点的坐标来表示锐角三角函数时可能会出现障碍,原因是学生在此之前都是研究直角三角形中锐角的三角函数,并习惯了直观地用有关边长的比值来表示锐角三角函数.要克服这一困难,关键是帮助学生建立终边上点的坐标的比值与直角三角形有关边长的比值的联系.
2.学生在将用单位圆定义锐角三角函数推广到定义任意角的三角函数时,还可能会出现障碍,主要原因还是受初中锐角三角函数定义的影响,仍然局限在直角三角形中思考问题.要帮助学生克服这一困难,就要让学生知道,借助单位圆,用终边与单位圆交点的坐标来表示三角函数,就是为了很好地解决在直角三角形中不能定义任意角的三角函数的问题,用单位圆统一定义三角函数,不仅没有改变初中锐角三角函数定义的本质,同时还能定义任意角的三角函数.。

人教版高中数学必修4-1.2《任意角的三角函数(第1课时)》教学设计

人教版高中数学必修4-1.2《任意角的三角函数(第1课时)》教学设计

1.2任意角的三角函数(第1课时)(名师:李伟)一、教学目标(一)核心素养通过这节课学习,了解三角函数的概念.并且通过日常生活中的摩天轮实例,在直观想象、数学抽象,数学建模中感受三角函数周期性的特点.(二)学习目标1.了解任意三角函数定义产生的背景和应用;掌握任意角的正弦、余弦、正切的定义;加深对函数一般概念的理解.2.能够由三角函数的定义推导三角函数的函数值在各象限的符号.3.能够由三角函数的定义理解终边相同的角三角函数的诱导公式.(三)学习重点1.任意角的正弦、余弦、正切的定义;2.三角函数的函数值在各象限的符号.3.终边相同的角三角函数的诱导公式.(四)学习难点1.任意角的三角函数概念的建构过程.2.三角函数的定义的综合应用.二、教学设计(一)课前设计1.预习任务(1)读一读:阅读教材第11页至第15页,填空:要点1:任意角三角函数的定义定义一:如图所示,设α是一个任意角,它的终边与单位圆交于P(x,y),那么:①y 叫做α的____,记作a sin =y .②x 叫做α的____,记作a cos =x .③y x 叫做α的_____,记作a tan =y x .定义二:设α为一个任意角,在α的终边上任取一点P (异于原点),其坐标为(x ,y ),且OP =r ,则:a sin =y r ,a cos =x r ,a tan =y x .(2)写一写:正弦、余弦、正切函数值在各象限的符号①符号的图像表示:②符号的记忆口诀:三角函数正值歌:一全正、二正弦,三正切,四余弦(为正).(3)记一记:诱导公式(一) 终边相同的角的同一三角函数的值相等,即:sin(α+2k π)=αsin ,cos(α+2k π)=αcos .tan(α+2k π)=αtan ,其中k ∈Z .2.预习自测(1)sin390°=________;cos(-315°)=________;tan 8π3=________. 【答案】3 22 21-,,. (2)已知角θ的终边过点)5,12(-P ,则) (sin =θ 【答案】135. (3)确定下列各式的符号:(1)sin105°·cos230°;(2)sin 78π·tan 78π;(3)a a cos sin ⋅(α是第二象限角).。

高中数学任意角的三角函数(一)

高中数学任意角的三角函数(一)

答:在 Rt△ABC 中,∠B=90° , BC AB BC 则 sinA=AC,cosA=AC,tanA=AB.
问题二:sin30° ,sin45° ,sin60° ,cos30° ,cos45° ,cos60° 的 值分别是多少?
1 2 3 3 答: sin30° =2, sin45° =2, sin60° =2, cos30° =2, cos45° 2 1 = 2 ,cos60° =2.
(3) 三角函数值是比值,是一个实数,这个实数的大小和点 P(x,y)在终边上的位置无关,只由角 α 的终边位置确定.即三角 函数值的大小只与角有关.
2.三角函数值的符号规律 由任意角三角函数的定义以及各象限内的点的坐标的符号可 以确定三角函数值的符号,其规律可简记为“一全正,二正弦, 三正切,四余弦”.
1 点的坐标为 2,
3 . 2
【答案】
1 2,
3 2
【名师点拨】 (1)由于三角函数值的大小与点 P(x,y)在终边上的位置无关, 所以已知角 α 终边上一点 P(x,y),求三角函数值时,可直接利用 y x y 公式:sinα=r ,cosα=r ,tanα=x,其中 r= x2+y2. (2)当角的终边在直线上时,或终边上的点带参数,必要时, 要对参数进行讨论.
第一章
三角函数
1.2 任意角的三角函数
1.2.1 任意角的三角函数 第一课时 任意角的三角函数(一)
自主学习导航
梳理知识 夯实基础
1.掌握任意角的三角函数(正弦、余弦、正切)的定义. 2.能判断任意角的三角函数值的符号. 3.掌握公式一.
问题一:在初中我们已经学过锐角的三角函数,锐角的三角 函数是如何定义的?
课堂互动探究

(完整版)三角函数公式练习(答案)

(完整版)三角函数公式练习(答案)

三角函数公式练习题(答案)1.1.( )29sin6π=A .B .C .D 12-12【答案】【解析】C试题分析:由题可知,;2165sin )654sin(629sin ==+=ππππ考点:任意角的三角函数2.已知,,( )10274(sin =-πα257cos2=α=αsin A .B .C .D .5454-53-53【答案】D 【解析】试题分析:由①,7sin()sin cos 45πααα-=⇒-= 2277cos2cos sin 2525ααα=⇒-=所以②,由①②可得 ③,()()7cos sin cos sin 25αααα-+=1cos sin 5αα+=-由①③得, ,故选D3sin 5α=考点:本题考查两角和与差的三角函数,二倍角公式点评:解决本题的关键是熟练掌握两角和与差的三角函数,二倍角公式3.( )cos 690= A .B .C .D .2121-2323-【答案】C 【解析】试题分析:由,故选C ()()cos 690cos 236030cos 30cos30=⨯-=-==考点:本题考查三角函数的诱导公式点评:解决本题的关键是熟练掌握三角函数的诱导公式以及特殊角的三角函数值4.的值为π316tanA. B. C. D.33-3333-【答案】 C 【解析】试题分析tanπ=tan(6π﹣)=﹣tan=.考点:三角函数的求值,诱导公式.点评:本题考查诱导公式的应用,三角函数的化简求值.5.若,,202παβπ<<<<-1cos()43πα+=cos()42πβ-=cos()2βα+=A .B .C .D .3333-93596-【答案】C.【解析】试题分析:因为,,所以,且202παβπ<<<<-1cos()43πα+=4344παππ<+<;又因为,所以322)4sin(=+απcos(42πβ-=02<<-βπ,且.又因为,所以2244πβππ<-<3624sin(=-βπ24()4(2βπαπβα--+=+)24sin()4sin(24cos()4cos()]24()4cos[(2cos(βπαπβπαπβπαπβα-++-+=--+=+.故应选C .935363223331=⨯+⨯=考点:1、同角三角函数的基本关系;2、两角差的余弦公式.6.若角α的终边在第二象限且经过点(P -,则等于sin αA ..12- D .12【答案】A 【解析】试题分析:由已知,故选A .23sin 2,3,1==⇒=∴=-=r y r y x α考点:三角函数的概念.7.sin70Cos370- sin830Cos530的值为( )A . B . C . D .21-212323-【答案】A 【解析】试题分析:sin70Cos370- sin830Cos530()()3790sin 790cos 37cos 7sin ---=()()2130sin 377sin 37sin 7cos 37cos 7sin -=-=-=-= 考点:三角恒等变换及诱导公式;8.已知,那么=( )53)4cos(=-x πsin 2x (A ) (B ) (C ) (D )25182524±257-257【答案】C 【解析】试题分析:sin2x =cos (-2x )=2cos 2(-x )-1=2×2π4π237(1525-=-考点:二倍角公式,三角函数恒等变形9.已知,那么 ( ) 51sin()25πα+=cos α=A . B . C . D .25-15-1525【答案】C 【解析】试题分析:由=,所以选C .51sin()25πα+=sin()cos 2a a π+=考点:三角函数诱导公式的应用10.已知,则的值为( )31)2sin(=+a πa 2cos A . B . C . D .3131-9797-【答案】D 【解析】试题分析:由已知得,从而,故选D.31cos =α971921cos 22cos 2-=-=-=αα考点:诱导公式及余弦倍角公式.11.已知点()在第三象限,则角在 ( ) P ααcos ,tan αA .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】B 【解析】试题分析:由已知得,,故角在第二象限.tan 0,cos 0αα<⎧⎨<⎩α考点:三角函数的符号.12.已知是第四象限角,,则( )α125tan -=α=αsin A . B . C . D .5151-135135-【答案】D 【解析】试题分析:利用切化弦以及求解即可.,1cos sin 22=+αα125cos sin tan -==ααα又是第四象限角,,故,16925sin 1cos sin 222=∴=+αααα135sin ,0sin -=<αα选:D.考点:任意角的三角函数的定义 ωπω2sin ==T x y .13.化简得到( )2cos (4πα--2sin ()4πα-A .α2sin B .α2sin - C .α2cos D .α2cos -【答案】A 【解析】试题分析:απαπαπαπααππα2sin )22cos()4(2cos 4(sin )4(cos )4(sin )4(cos 2222=-=-=---=---考点:三角函数的诱导公式和倍角公式.14.已知,则3cos ,05ααπ=<<tan 4πα⎛⎫+= ⎪⎝⎭A.B. C. D.15171-7-【答案】D 【解析】试题分析:由可知,因此,053cos ,0>=<<απα20πα<<54sin =α,由和角公式可知,故答案34tan =α713411344tan tan 14tantan )4tan(-=⨯-+=⋅-+=+παπαπα为D 。

高中数学 1.2.1任意角的三角函数的定义及应用练习(含解析)苏教版必修4-苏教版高一必修4数学试题

高中数学 1.2.1任意角的三角函数的定义及应用练习(含解析)苏教版必修4-苏教版高一必修4数学试题

1.2 任意角的三角函数1.2.1 任意角的三角函数的定义及应用在初中我们已经学了锐角三角函数,知道它们都是以锐角为自变量、边的比值为函数值的三角函数.你能用平面直角坐标系中角的终边上的点的坐标来表示锐角三角函数吗?改变终边上的点的位置,这个比值会改变吗?把角扩充为任意角,结论成立吗?一、任意角的三角函数1.单位圆:在平面直角坐标系中,以原点O 为圆心,以单位长度为半径的圆称为________.2.三角函数的定义:设角α的顶点与原点重合,始边与x 轴非负半轴重合.在平面直角坐标系中,角α终边与单位圆交于一点P (x ,y ),则r =|OP |=1.那么:(1)y 叫做________,记作sin α,即y =sin α; (2)x 叫做________,记作cos α,即x =cos α; (3)y x 叫做________,记作tan α,即y x=tan α(x ≠0).正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,我们把它们统称为________.答案:1.单位圆2.(1)α的正弦 (2)α的余弦 (3)α的正切 三角函数二、三角函数值在各个象限内的符号1.由三角函数的定义,以及各象限内的点的坐标的符号,可以确定三角函数在各象限的符号.sin α=y r,其中r >0,于是sin α的符号与y 的符号相同,即:当α是第________象限角时,sin α>0;当α是第________象限角时,sin α<0.cos α=x r,其中r >0,于是cos α的符号与x 的符号相同,即:当α是第__________象限角时,cos α>0;当α是第________象限角时,cos α<0.tan α=y x,当x 与y 同号时,它们的比值为正,当x 与y 异号时,它们的比值为负,即:当α是第________象限角时,tan α>0;当α是第 ________象限角时,tan α<0.2.根据终边所在位置总结出形象的识记口诀1:“sin α=yr :上正下负横为0;cos α=x r :左负右正纵为0;tan α=y x:交叉正负.” 形象的识记口诀2:“一全正、二正弦、三正切、四余弦.” 答案:1.一、二 三、四 一、四 二、三 一、三 二、四三、诱导公式一由定义可知,三角函数值是由角的终边的位置确定的,因此,终边相同的角的同一三角函数的值________,这样就有下面的一组公式(诱导公式一):sin(2k π+α)=sin α,cos(2k π+α)=cos α,tan(2k π+α)=tan α,k ∈Z. 答案:相等四、三角函数线1.有向线段:有向线段是规定了方向(即起点、终点)的线段,它是________、 ________的.在平面直角坐标系中,和坐标轴同向的有向线段为正,反向的为负.2.正弦线、余弦线、正切线:三角函数线是用来形象地表示三角函数值的有向线段.有向线段的________表示三角函数值的________,有向线段的________表示三角函数值的绝对值的________.三角函数线的作法如下:设角α的终边与单位圆的交点为P ,过点P 作x 轴的垂线,垂足为M ,则有向线段MP ,OM 就分别是角α的正弦线与余弦线,即MP =y =sin α,OM =x =cos α.过点A (1,0)作单位圆的切线,设这条切线与角α的终边(或终边的反向延长线)交于点T ,则有向线段AT 就是角α的正切线,即AT =tan α.3.填写下表中三角函数的定义域、值域:函数定义域值域 y =sin α y =cos α y =tan α答案:1.有长度 有正负 2.方向 正负 长度 大小 3.函 数定 义 域值 域 y =sin α R [-1,1] y =cos α R[-1,1]y =tan α⎩⎨⎧⎭⎬⎫α⎪⎪⎪α≠π2+k π,k ∈ZR任意角的三角函数的定义1.正弦、余弦、正切可分别看成是从一个角的集合到一个比值的集合的映射,它们都是以角为自变量,以比值为函数值的函数.2.三角函数值是比值,是一个实数.这个实数的大小和点P (x ,y )在终边上的位置无关,而是由角α的终边位置所决定.对于确定的角α,其终边的位置也是唯一确定的.因此,三角函数是角的函数.(1)三角函数值只与角α的终边所在的位置有关,与点P 在终边上的位置无关. (2)三角函数值是一个比值,没有单位.三角函数值的符号三角函数值在各象限的符号取决于终边所在的位置,具体说取决于x,y的符号,记忆时结合三角函数定义式记,也可用口诀只记正的“一全正、二正弦、三正切、四余弦”.三角函数线对于三角函数线,须明确以下几点:(1)当角α的终边在y轴上时,余弦线变成一个点,正切线不存在.(2)当角α的终边在x轴上时,正弦线、正切线都变成点.(3)正弦线、余弦线、正切线都是与单位圆有关的有向线段,所以作某角的三角函数线时,一定要先作单位圆.(4)线段有两个端点,在用字母表示正弦线、余弦线、正切线时,要先写起点字母,再写终点字母,不能颠倒;或者说,含原点的线段,以原点为起点,不含原点的线段,以此线段与x轴的公共点为起点.(5)三种有向线段的正负与坐标轴正负方向一致,三种有向线段的长度与三种三角函数值相同.三角函数的定义域1.由三角函数的定义式可以知道,无论角α终边落在哪里,sin α,cos α都有唯一的值与之对应,但对正切则要求α终边不能落在y轴上,否则正切将无意义.2.角和实数建立了一一对应关系,三角函数就可以看成是以实数为自变量的函数,所以就可以借助单位圆,利用终边相同的角的概念求出任意角的三角函数.基础巩固1.sin 810°+tan 765°+tan 1125°+cos 360°=________.答案:42.若α的终边过点P(2sin 30°,-2cos 30°),则sin α的值为________.答案:-3 23.若角α的终边过点P (3cos θ,-4cos θ)(θ为第二象限角),则sin α=________.答案:454.cos θ·tan θ<0,则角θ是________象限角. 答案:第三或第四5.已知点P (tan α,cos α)在第三象限,则角α的终边在第________象限. 答案:二6.角α的正弦线与余弦线长度相等,且符号相同,那么α(0<α<2π)的值为________.答案:π4或54π7.sin 1,sin 1.2,sin 1.5三者的大小关系是________. 答案:sin 1.5>sin 1.2>sin 1能力升级8.函数y =sin x +-cos x 的定义域是________.解析:∵⎩⎪⎨⎪⎧sin x ≥0,-cos x ≥0,∴⎩⎪⎨⎪⎧sin x ≥0,cos x ≤0,即角x 的终边落在第二象限内和两个半轴上.∴2k π+π2≤x ≤2k π+π,k ∈Z.答案:⎣⎢⎡⎦⎥⎤2k π+π2,2k π+π(k ∈Z)9.已知角α的终边在直线y =kx 上,若sin α=-255,cos α<0,则k =________.解析:∵sin α=-255,cos α<0,∴α的终边在第三象限.令角α的终边上一点的坐标为(a ,ka ),a <0,则r =-1+k 2·a ,sin α=-ka 1+k 2a=-255,∴k =2. 答案:210.在(0,2π)内,满足tan 2α=-tan α的α的取值X 围是________. 解析:由tan 2α=-tan α,知tan α≤0,在单位圆中作出角α的正切线,知π2<α≤π或3π2<α<2π. 答案:⎝ ⎛⎦⎥⎤π2,π∪⎝ ⎛⎭⎪⎫3π2,2π11.解不等式2+2cos x ≥0. 解析:2+2cos x ≥0⇔cos x ≥-22,利用单位圆,借助三角函数线(如图)可得出解集是⎣⎢⎡⎦⎥⎤2k π-34π,2k π+34π(k ∈Z).12.若π4<θ<π2,则下列不等式中成立的是( )A .sin θ>cos θ>tan θB .cos θ>tan θ>sin θC .sin θ>tan θ>cos θD .tan θ>sin θ>cos θ解析:作出角θ的三角函数线(如图),数形结合得AT >MP >OM ,即tan θ>sin θ>cosθ.答案:D13.函数y =sin x |sin x |+cos x |cos x |+tan x|tan x |的值域是( C )A .{-1,0,1,3}B .{-1,0,3}C .{-1,3}D .{-1,1}14.若0<α<π2,证明:(1)sin α+cos α>1; (2)sin α<α<tan α.证明:(1)在如图所示单位圆中, ∵0<α<π2,|OP |=1,∴sin α=MP ,cos α=OM . 又在△OPM 中,有 |MP |+|OM |>|OP |=1. ∴sin α+cos α>1.(2)如图所示,连接AP ,设△OAP 的面积为S △OAP ,扇形OAP 的面积为S 扇形OAP ,△OAT 的面积为S △OAT .∵S △OAP <S 扇形OAP <S △OAT , ∴12OA ·MP <12AP ︵·OA <12OA ·AT .∴MP <AP ︵<AT ,即sin α<α<tan α.15.已知f (n )=cosn π5(n ∈Z),求f (1)+f (2)+f (3)+…+f (2 014)的值.解析:角n5π(n =1,2,…,10)表示10个不同终边的角,这10条终边分成五组,每组互为反向延长线.∴f (1)+f (2)+…+f (10)=0,f (11)+f (12)+…+f (20)=0,…f (2 001)+f (2 002)+…+f (2 010)=0.∴f (1)+f (2)+…+f (2 010)=0.∴f (1)+f (2)+…+f (2 014)=f (2 011)+f (2 012)+f (2 013)+f (2 014)=cos π5+cos 2π5+cos 3π5+cos 4π5.由定义知cos π5与cos 4π5,cos 2π5与cos 3π5互为相反数,故f (1)+f (2)+…+f (2 014)=0.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

B点在B角(x,的y)在终终边边上上的的位位置置的无改关变而. 改变呢?为什么?
思考1:为了研究方便,我们把锐角放到直角坐
标系中,并使角的顶点与原点O重合,始边与x轴
的非负半轴重合.
tan 呢?
怎样定义锐角
的ysin
,cos

点B(x,y),设点B与原点的距离为r.
B(x, y)
sin
=
BC AB
点B(sxin,y)=,设AB点BCB=与原ry 点= 的ry’距’离为r.
cos
=
AC AB
=
x r=
x’ r’
OA
r’B(x, y) r y y’
α
x
xC’C’x
tan
=
BC AC
=
y x=
y’ x’
r =√ x2+y2
思锐考角2的:三对角于函确数定只的与角这 个,角上的述终三边个位比置值有是关否,随与点
设单 则r =1r, =√ x2+y2
则一般称:
sin =
y r
=y
单 位
性 定
cos =
x r
=x 圆 中

tan =
y x
y
P(x,y)
r =1
y
Ox
x
为角 的正弦、余弦和正切函数.
定统义称3角:在的直三角角坐函标数系. 中,以原点O为圆心,
以单位长度为半径的圆称为单位圆.
温故知新
轴线角
终边落在x轴上的角:
β = k∙1800 kπ (k∈Z)
900 +k·3600 y
终边落在y轴上的角:
β = 900+k∙1800 π
2
1800+k·3600
O
kπ (k∈Z)
k·3600
x
2700+k·3600
终边在坐标轴上的角:
β = k·900
kπ 2 (k∈Z)
温故知新
如图,在直角三角形ABC中,锐角的正弦、余弦
角 的正弦、余弦和正切值:
sin =
y r
=-
4 5
cos =
x r
=-
3 5
tan =
y x
=
4 3
y
O
x
P(-3,-4)
例3 角的终边上一个点P的坐标为(4a, -3a)(a≠0), 求2sin +cos 的值;
解: x =4a, y =-3a, r =√ x2+y2 25a2 =5|a|;
思考5.在弧度制中,这三个三角函数的定义域 分别是什么?
则称:
sin =
y r
=y
y
cos =
x r
=x
P(x,y) r =1
tan =
y x
正、余弦函数的定义域为R; O
x
正切函数的定义域是{ |≠
π 2
+kπ,
k∈Z }
理论迁移
例1

5π 3
的正弦、余弦和正切值.
y
解:在直角坐标系中, 作出角∠AOB=53π , 其终边OB与单位圆交于点P,
作PN⊥x轴于N,
1 ON= 2
,
√ PN=
3
2
∴sin
=
y
=-√
3
2
cos
=
x
=
1 2
5
3
NA
O
600
x
1 300
P(
1 2
,
3) 2
B
tan =
y x
=√
3
理论迁移
例2 已知角 的终边过点P(-3,-4),求角 的
正弦、余弦和正切值.
解: x =-3, y =-4, r =√ x2+y2 =5;
1
sin 2
2 31 22
3 2
21 22
0
10
cos 3 2 1 0
222
1
2 3 10
2 22
1
tan 3 1 3 无 3 1 3 0 无 0
3
3
小结
1.三角函数都是以角为自变量,在弧度制中, 三角函数的自变量与函数值都是在实数范 围内取值.
2.三角函数的定义是三角函数的理论基础, 它是我们学习后续知识的基础.
(1)当a>0: r=5a,
sin =
y r
=-
3 5
cos =
x r
=
4 5
(2)当a<0: r=-5a,
2sin +cos 2 ;
5
sin =
y r=
3 5
cos =
x r
=-
4 5
2sin +cos 2 ;
5
点我
练习: P15 1,2, 3(背)
300 450 600 900 1200 1350 1500 1800 2700 36000 0
=
y r
ry
cos
=
AC AB
=
x r
OA
α
x
Cx
tan
=
BC AC
=
y x
r =√ x2+y2
思考4:锐角三角函数的定义可不可以推广到
任意角的三角函数的定义呢?
1.2.1 任意角的三角函数 (1)
定义2:把角的顶点与原点O重合,始边与x轴的
非负半轴重合. 在角的终边上取一点P(x,y),
设点P与原点的距离为r.
和正切是怎样定义的?
sin
=
BC AB
cos
=
AC AB
B
α
A
C
tan
=
BC AC
思考1:为了研究方温便,故我知们把新锐角放到直角坐
标的t如和an系非正图中负切,呢半,是在?并轴怎直重使样角角合定三.义角怎的的形样顶?A定点B义C与中锐原,角点锐O角重的y合si的n,始正,边弦c与、osx余轴B弦,’
r =√ x2+y2
则称:
sin =
y r
cos =
x r
tan =
y x
y
P(x,y)
r
y
Ox
x
为角 的正弦、余弦和正切函数.
定义3:在直角坐标系中,以原点O为圆心, 以单位长度为半径的圆称为单位圆.
定定义义24::把设角是的一顶个点任与意原角点,O把重角合,的始顶边点与与x轴原的点 非O重负合半,轴始重边合与.x在轴角的非的负终半边轴上重取合一,点它P的(x终,边y),与
3.一个任意角的三角函数只与这个角的终边 位置有关,与点B(x,y)在终边上的位置无关.
本节课到此结束,请同学们课后再 做好复习与作业。谢谢! 作业:课本P20习题1. 2 : 2、3、4、5 《聚焦课堂》P65: 2、4、7、8
再见!
相关文档
最新文档