《电子衍射》PPT课件

合集下载

电子衍射原理概述(ppt 58页)

电子衍射原理概述(ppt 58页)

法这个有效的工具。
g 在


g

hkl


程1中 d hkl
,,我由于们这首两先个规条定件爱,瓦使爱尔瓦德尔球德的球半本径身为已置1 于例,易又
空间中去了,在倒易空间中任一 hkl 矢量就是正空间中(hkl)晶面
代表,如果能记录到各 g hkl 量的排列方式.就可以通过坐标变换,
推测出正空间中各衍射晶面问的相对方位,这就是电子衍射分析要
将它们叉乘,则有
g 和g h1k1l1
h2k2l2
uvg w h 1 k1 l1g h 2k2 l2
uk1 l2k2 l1,vl1 h 2 l2h 1,w h 1 k2h 2k1
若取 g h 1 k 1 l 1 1 ,g 1 h 2 k 2 l 2 0 1 , 则 2 u0 v 0 w 0
的指数应是



1、 1 10 、 0 1 1 0 、 1 1、 2 0、 0 2 00 、 0 0、 2 0 2 0 0 。
再来看[011]晶带的标准零层倒易截面,
1. 1.满足晶带定理的条件是衍射晶面的k和l两个指数必须相等
和符号相反;
. 2.如果同时再考虑结构消光条件,则指数h必须是偶数。因此
只有同时又满足 F的0(hkl)晶面组才能得到衍射束。考虑到这
一点.我们可以把结构振幅绝对值的平方
F作2为“权重”加到
相应的倒易阵点上去,此时倒易点阵中各个阵点将不再是被为等同
的,“权重”的大小表明各阵点所对应的晶面组发生衍射时的衍射
束强度。所以,凡“权重”为零,即F=0的那些阵点,都应当从倒
易点阵中抹去,仅留下可能得到衍射束的阵点;只要这种F0 的

【材料课件】10电子衍射

【材料课件】10电子衍射

7
衍射花样的分类
1)斑点花样:平行入射束与单晶作用产生斑 点状花样;主要用于确定第二象、孪晶、有序化、 调幅结构、取向关系、成象衍射条件;
2)菊池线花样:平行入射束经单晶非弹性散 射失去很少能量,随之又遭到弹性散射而产生线 状花样;主要用于衬度分析、结构分析、相变分 析以及晶体的精确取向、布拉格位置偏移矢量、 电子波长的测定等;
有效相机常数 选区电子衍射 磁转角
2019/12/22
HNU-ZLP
18
有效相机常数
同一晶面的衍射束是平行的(如hkl的衍射束 方向均为),所以同一晶面的衍射束将在物镜 背焦面上聚焦成一点,所有满足衍射条件的晶 面将在物镜的背焦面上形成一幅由透射斑点和 衍射斑点组成的衍射花样,该衍射花样与厄瓦 尔德球倒易截面相似。
为正时, s矢量为正,反之为负;
精确符合布拉格条件时, =0, s=0
2019/12/22
HNU-ZLP
12
2019/12/22
HNU-ZLP
13
2019/12/22
HNU-ZLP
14
入射束 厄瓦尔德球
试样
2
倒易点 阵
底板
2019/12/22
电子衍射H花N样U形-Z成LP示意图
高阶劳厄斑点可以给出晶体更多的信息,如可 消除180度不唯一性和测定晶体厚度。
2019/12/22
HNU-ZLP
33
2019/12/22
HNU-ZLP
34
超点阵斑点
当晶体内部的原子或离子产生有规律的位移或不同种原子产 生有序排列时,将引起其电子衍射结果的变化,即可以使本 来消光的斑点出现,这种额外的斑点称为超点阵斑点。
光阑选区衍射(Le Pool方式) 用位于物镜象平面 上的选区光阑限制微区大小。先在明场象上找到感 兴趣的微区,将其移到荧光屏中心,再用选区光阑 套住微区而将其余部分挡掉。理论上,这种选区的 极限0.5m。

《电子衍射原理》课件

《电子衍射原理》课件

透射电子显微镜技术
透射电子显微镜技术是一种利用透射 电镜观察物质内部微细结构的方法, 具有高分辨率和高放大倍数的特点。 随着科技的不断进步,透射电子显微 镜技术的应用范围越来越广泛,在材 料科学、生物学、医学等领域得到广 泛应用。
VS
例如,在材料科学领域,透射电子显 微镜技术可用于研究材料的晶体结构 和相变行为,为新材料的开发和优化 提供有力支持。在生物学领域,透射 电子显微镜技术可用于研究细胞器和 生物大分子的结构和功能,为生命科 学和医学研究提供新的视角。
电子显微镜的放大倍数较高,能够观察到非常细微的结构细节,是研究物质结构和 形貌的重要工具之一。
电子源
电子源是电子显微镜中的核心部件之一,它能够产生用于观察和成像的 电子束。
电子源通常由加热阴极、栅极和加速电极等部分组成,通过加热阴极使 得电子逸出并经过栅极和加速电极的调制和加速,形成用于成像的电子
电子衍射可以揭示细胞内部的超微 结构,有助于理解细胞的生理和病 理过程。
在表面科学中的应用
表面晶体结构
电子衍射可以用于研究固体表面 的晶体结构和化学组成,对表面 改性和催化等应用具有指导意义

表面应力分析
通过电子衍射可以分析表面应力 状态,有助于理解表面行为的物
理机制。
表面吸附和反应
电子衍射可以研究表面吸附分子 的结构和反应活性,对表面化学 和工业催化等领域有重要意义。
05
电子衍射的发展前景
高能电子衍射技术
高能电子衍射技术是一种利用高能电子束进行物质结构分析的方法,具有高分辨 率和高灵敏度的特点。随着科技的不断进步,高能电子衍射技术的应用范围越来 越广泛,在材料科学、生物学、医学等领域发挥着重要作用。
例如,在材料科学领域,高能电子衍射技术可用于研究材料的微观结构和晶体取 向,为新材料的开发和优化提供有力支持。在生物学领域,高能电子衍射技术可 用于研究生物大分子的结构和功能,为药物设计和疾病治疗提供新的思路。

电子衍射分析方法原理及应用ppt课件

电子衍射分析方法原理及应用ppt课件

5种二维布拉菲点阵与倒易点阵的图示
(1)二维点阵基矢与其倒易点阵基矢之间的关系
若以二维点阵中任意阵点为坐标原点,建立二维 正交坐标系,则二维基矢a与b可表达为: a = axi + ayj b = bxi + byj - - - - - - - (9) 二维倒易基矢也可以表达为: a* = a*xi + a*yj b* = b*xi + b*yj - - - - - - - (10) 将(9) (10)式,代入(8)的矢量点积坐标表达式得: a*xax+a*yay=b*xbx+b*yby=1 a*xbx+a*yby=b*xax+b*yay=0 - - - - - (11) 解(11)式得:
(2) Rd= λL的矢量表达式的推导
当入射电子束的加速电压一定时,电子波长 λ值恒 定,则令 λL=C(C为常数,称为相机常数) 由(4)式Rd= λL知 Rd=C - - - - (5) 由倒易点阵与点阵平面距离间的关系: g=1/d (g为(HKL)面倒易矢量,g为g的模) ∴ R=Cg - - - - - -(6) 因为电子衍射2θ很小,R与g近乎平行,故(6)式可演变 为矢量形式: R = Cg - - - - - -(7) R为透射斑到衍射斑的连接矢量,称为衍射斑点矢量。 由式(7)可知,R与g相比只是放大了C倍,所以从图 中可知单晶电子衍射花样是所有与反射球相交的倒易点 的放大像。
2、二维点阵和二维点阵的倒易点阵
低能电子衍射来自于样品表面的原子的相干 散射,故可将样品表面视为二维点阵。 上图所示单晶表面原子排列规则就可用二维点 阵描述。与三维点阵的排列规则可用14种布拉菲 点阵表达相似,二维点阵的排列可用5种二维布拉 菲点阵表达。(如后图所示) 对于由点阵矢量a与b定义的二维点阵,若由 点阵基矢a*与b*定义的二维点阵满足: a*· a = b*· b=1 a*· b = b*· a=0 - - - - - - - (8) 则称a*与b*定义的点阵是a与b定义的点阵的倒易 点阵。

第六章电子衍射ppt课件

第六章电子衍射ppt课件
θ角最大可接近90 °。
• ② 略微偏离布格条件的电子束也能发生衍射。 • 薄晶体的倒易点被拉长为倒易杆,增加了倒易阵点和爱瓦
尔德球相交截的机会,结果使略微偏离布格条件的电子束 也能发生衍射。
第六章 电 子 衍 射
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
• 上式就是晶带定律。
• (hkl)的倒易矢量g必定垂
直于[uvw]。
第六章 电 子 衍 射
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
第六章 电 子 衍 射
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
RLgKg
• 这就是电子衍射的基本公式。 • Lλ称为电子衍射的相机常数,L
称为相机长度。
第六章 电 子 衍 射
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
• 在衍射中,相对于某一特定晶带轴[uvw]的零层倒易截面 内各倒易阵点的指数的两个约束条件:
• ①、各倒易阵点和晶带轴指数间必须满足晶带定 理。
• ② 、只有不产生消光的晶面(即|F|2≠0)才能 在零层倒易面上出现倒易阵点。
• 根据上述条件,可以作出一系列的标准零层倒易截面。
第六章 电 子 衍 射

电子衍射原理 ppt课件

电子衍射原理  ppt课件
• 如果要使晶带中某一晶面(或几个晶面)产生衍射,必须把晶体倾斜,使晶 带轴稍为偏离电子束的轴线方向,此时零层倒易截面上倒易阵点就有可能和 爱瓦尔德球面相交,即产生衍射,如图(b)所示。
ppt课件
六、偏离矢量与倒易阵点扩展
• 在电子衍射操作时,即使晶带轴和电子束的轴 线严格保持重合(即对称入射)时,仍可使g 矢量端点不在爱瓦尔德球面上的晶面产生衍射 ,即入射束与晶面的夹角和精确的布拉格角θB (θB=sin-12dhkl )存在某偏差Δθ时,衍射强 度变弱但不一定为零,此时衍射方向的变化并 不明显
ppt课件
二、布拉格定律 布拉格方程一般形式

B
θ Qθ
d
ST
R
SR RT n
SR RT 2d sin
A ’ B’
2d sin n
ppt课件
二、布拉格定律 衍射角θ的解释
2d sin
sin
2d
通常透射电镜的加速电压为100-200KV, 电子波的波长λ在10-2-10-3nm左右 常见晶体的晶面间距d 在1nm左右 •所以Sinθ很小,也就是入射角θ很小.
• 散射强度高导致电子透射能力有限,要求试样薄,这就使试样 制备工作较X射线复杂;在精度方面也远比X射线低。
ppt课件
一、电子衍射原理 透射电镜
电子束
透射电镜的最大特点是既可以得到 电子显微像又可以得到电子衍射花 样。晶体样品的微观组织特征和微 区晶体学性质可以在同一台仪器中 得到反映。
电镜中的电子衍射,其衍射几何与X 射线完全相同,都遵循布拉格方程所 规定的衍射条件和几何关系. 衍射 方向可以由爱瓦尔德球作图求出.因 此,许多问题可用与X射线衍射相类 似的方法处理.

第十章 电子衍射 ppt课件

第十章 电子衍射  ppt课件

ppt课件
16
举例:
画出体心立方晶系[001]晶带轴的标准零 层倒易截面。
ppt课件
17
正、倒点阵对应关系
正空间 倒空间
简单立方 简单立方
四方
四方
面心立方 体心立方
体心立方 面心立方
六方
六方
菱形
菱形
ppt课件
18
FCC晶体标准电子衍射花样
ppt课件
19
fcc晶体的[001]电子衍射谱
ppt课件
ppt课件
35
已知相机常数和样品晶体结构
1)测量R1、R2、R3、R4… 2)根据R=λL/d,求出相应的晶面
间距d1、d2、d3、d4… 3)因晶体结构已知,故可根据d查
出相应的晶面族指数{hkl}
(八步校核法)
4)测定各衍射斑点之间的夹角φ
5)决定离中心斑点最近的衍射斑 点的指数
单晶
多晶
非晶
准晶(quasicrystals)
电子衍射的原理和X射线衍射相似,是以满足(或基本满足)
Bragg方程作为产生衍射的必要条件。两种衍射技术得到的衍
射花样在几何特征上也大致相似。
ppt课件
3
电子衍射花样特征
电子束照射 单晶体: 一般为斑点花样; 多晶体: 同心圆环状花样; 织构样品:弧状花样; 无定形试样(准晶、非晶):弥散环。
20
BCC晶体标准电子衍射花样
ppt课件
21
bcc晶体的[001]电子衍射谱
ppt课件
22
二、电子衍射基本公式
衍射花样:把倒易阵点的图像进行
空间转换并在正空间中记录下来, 记录下来的图像称为衍射花样。

电镜中的电子衍射及分析实例课件.ppt

电镜中的电子衍射及分析实例课件.ppt
把晶体视为若干个单胞组成,且单胞
间的散射也会发生干涉作用。
设晶体在x,y,z方向的边长分别为
t1,t2,t3,
(P25,图2-10,2-11)
s=0, 强度最大;s=±1/t,强度为0.
苏玉长
图2-10 计算晶体尺寸效应单胞示意图
苏玉长
图2-11 沿 方向 或
苏玉长
分布图
各种晶形相应的倒易点宽化的情况
概述
电镜中的电子衍射,其衍射几何与X射线完 全相同,都遵循布拉格方程所规定的衍射 条件和几何关系. 衍射方向可以由厄瓦尔 德球(反射球)作图求出.因此,许多问题可 用与X射线衍射相类似的方法处理.
苏玉长
• 电子衍射与X射线衍射相比的优点
•电子衍射能在同一试样上将形貌观察与结构分析 结合起来。 •电子波长短,单晶的电子衍射花样婉如晶体的倒 易点阵的一个二维截面在底片上放大投影,从底片 上的电子衍射花样可以直观地辨认出一些晶体的结 构和有关取向关系,使晶体结构的研究比X射线简 单。 •物质对电子散射主要是核散射,因此散射强,约 为X射线一万倍,曝光时间短。
A:以入射束与反射面的交点为原点,作半径 为1/l的球,与衍射束交于O*.
B:在反射球上过O*点画晶体的倒易点阵; C:只要倒易点落在反射球上,,即可能产生 衍射.
苏玉长
入射束 厄瓦尔德球 试样
2q
倒易点阵
底板 图2-8 电子衍射花样形成示意图
苏玉长
K-K0=g r/f=tg2q≈sin2q≈2sinq = l/d r=fl/d , r=flg R=Mr, R=Mfl/d=Ll/d L=Mf, 称为相机常数 衍射花样相当于倒易点阵被反射球所截 的二维倒易面的放大投影. 从几何观点看,倒易点阵是晶体点阵 的另一种表达式,但从衍射观点看,有 些倒易点阵也是衍射点阵。

第4章 电子衍射PPT课件

第4章 电子衍射PPT课件
第4章 电子衍射
透射电镜的最大特点是既可 以得到电子显微像又可以得到电 子衍射花样。晶体样品的微观组 织特征和微区晶体学性质可以在 同一台仪器中得到反映。
电子束 试样
物镜 物镜后焦面
微区晶体学性质 电子衍射花样
物镜像平面
微观组织
电子衍射实验得出:
多晶体
单晶体
非晶体 菊 池 线
问题的提出
这些点、环、线对携带着晶 体结构信息,对这些点、环、线 对等怎样进行分析,需要对电子 衍射基本知识有所了解。
倒易矢量g和衍射晶面间距的关系
ghkl= 1/dhkl
把倒易矢量 g 的端点叫倒易点, 倒易点的分布叫倒易点阵, 倒易点阵所在的空间叫倒易空间。
倒空间的3个基矢量
倒易空间的三个基本矢量记为a*, b*, c*。为了 与倒易空间相区别,把晶体实际所在的点阵叫做正 点阵,它所在的空间叫正空间,正空间的三个基本
可以用倒易矢量g来表示。
g
ha
*
kb *
lc
*
a*, b*, c*为倒空间的基矢量,hkl为倒易点 的坐标,即相应的衍射晶面指数。
倒易矢量g的重要性质:
1.ghkl垂直于(hkl)晶面。平行与(hkl)晶面的 法线N(hkl). 2.ghkl的长度为(hkl)晶面间距的倒数。g =1/dhkl 3.ghkl矢量端点的坐标就是与正空间对应的衍射晶
K =Lλ=20.08 mm. Å
R2
R3
R1
Rd L D=K/R
测得: R1=5mm, d1=4.02 Å R2=10mm, d2=2.01 Å R3=12.5mm,d3=1.61 Å
把布拉格方程变形为 Sinθ= (1/d) / (2/λ)

透射电子显微镜的电子衍射PPT课件

透射电子显微镜的电子衍射PPT课件
矢量和是否满足R4。
➢ 试定 R1点指数(110) R2点指数(211)则R4为(321),不符合d值
所限定的指数(310),需调整;
➢ R2点指数调为 (211) ,则R4为(301),R3为(121) ➢ 校核夹角:(110)与 (211)夹角为73.22°, (110)与(301)夹角47.87°
因为
(R / M iM p )d fo

Rd foM iM p
定义L'=ƒoMiMp
为“有效相机长度”,则有 Rd=λL'=K'
其中K'=λL'称为“有效相机常数”。式中L'并不直接对应于样品
. 至照相底片的实际距离。
4
2. 选区电子衍射: 定义:对样品中感兴趣的微区进行电子衍射,以获得该微区电子衍射图 的方法。又称微区衍射,通过移动安置在中间镜上的选区光阑实现。 原理:
的晶面间距d1、d2、d3、d4.。。。把这些d值叫做计算值。
Ri(mm) di(nm) R1 R2 R3 R4
.
12
R3 R1 R4 φ R2φ1
③ 计算d值与标准d值比较; ④ 尝试标出两个基矢量(h1k1l1)和(h2k2l2); ⑤ 由矢量运算求得其它斑点,反复验算夹角;
.
13
矢量关系: 2g(hkl)=g(2h,2k,2l), 3g(hkl)=g(3h,3k,3l). g (h1,k1,l1)- g(h2,k2,l2) = g(h1-h2, k1-k2, l1-l2) g (h1,k1,l1)+g(h2,k2,l2) =g(h1+h2, k1+k2, l1+l2)
cos
h1h2 k1k2 l1l2
h12 k12 l12 h22 k22 l22

TEM电子衍射.ppt

TEM电子衍射.ppt
bcc: a=0.7848, 未找到物质 fcc: a=0.430 物质:VN(0.428),
FeO(0.431), TiC(0.432), SiC(0.435) hcp: a=0.418, 未找到物质
考虑是钒钢,所以判断是VN。 如有能谱成分分析,则更加确定。
4、标定电子衍射谱,属于fccVN的 [123]晶带轴。
bcc 2.49 85.4 0.316 -301 1-65
fcc 2.52 82.4 0.577 11-1 -33-1
hcp 2.52 81.9 0.594 01-2 -30-4
1、测量R1=10mm, R2=25.18mm, =83, 计算d1= L /R1=0.248nm (L =2.48), R2/ R1=2.52 2、查表 3、由d1= 0.248nm,及各结构的d1 /a 值,计算a值,并查找物质:
光学金相
TEM照片
高碳马氏体呈片状,互不平行,以大角度相交。TEM中
发现高碳马氏体片中存在大量精细的孪晶亚结构。孪 晶厚度约50~900Å。
小角晶界位错
Ti合金的位错网络
弗兰克——瑞德位错源
超点阵位错
Ni-18.4Cr-2.6Al合金,750 ° C时效 28天,200MPa蠕变 试验。表明’ 强化相粒子对位错运动的阻碍作用。
光学金相
TEM照片
低碳马氏体,呈细条状平行成排的分布在原奥氏体晶粒 内,TEM中平行的马氏体条清晰可见,内部有位错亚 结构,位错交织缠结,呈现胞状分布的特征。
虽然物镜背焦面上第一幅衍射花样可由受到入射 束辐照的全部样品区域内晶体的衍射所产生,但是其 中只有选区光栏以内物点散射的电子束可以通过选区 光栏孔径进入下面透镜系统,从而实现了选区形貌观 察和电子衍射结构分析的微区对应,这种方法称为选 区电子衍射,最小分析区域为0.5m。

电子衍射环分析 ppt课件

电子衍射环分析  ppt课件

式中:R——透射斑到衍射斑的连接矢量,可称衍射斑点矢量。
此式可视为电子衍射基本公式的矢量表达式。
由式(8-6)可知,R与g相比,只是放大了C倍(C为相机常数)。这 就表明,单晶电子衍射花样是所有与反射球相交的倒易点(构成的 图形)的放大像。
ppt课件
7
注意:放大像中去除了权重为零的那些倒易点,而倒易点的权重即指 倒易点相应的(HKL)面衍射线之F2值。
H3=H1+H2、K3=K1+K2和L3=L1+L3。
ppt课件
20
单晶电子衍射花样的标定
立方晶系多晶体电子衍射标定时应用的关系式: R21:R22:…:R2n=N1:N2:…:Nn 在立方晶系单晶电子衍射标定时仍适用, 此时R=R。
单晶电子衍射花样标定的主要方法为: 尝试核算法 标准花样对照法
ppt课件
27
2. 标准花样对照法
预先制作各种晶体点阵主要晶带的倒易平面(图),称为标准花样。 通过与标准花样对照,实现电子衍射花样斑点指数及晶带轴标定的方
法即为标准花样对照法。 标准花样对照法标定过程简单,不需烦琐计算。但一般文献资料中给
出的标准花样(见本书附录)数量有限,往往不能满足标定工作的需要。 而根据实际需要,利用计算机自行制作标准花样,可以解决这一问题
ppt课件
11
多晶电子衍射花样的标定
对于同一物相、同一衍射花样各圆环而言,(C2/a2)为常数,故按 式(8-7),有
R12:R22:…:Rn2=N1:N2:…:Nn
(8-8)
此即指各衍射圆环半径平方(由小到大)顺序比等于各圆环对应衍
射晶面N值顺序比。
立方晶系不同结构类型晶体系统消光规律不同,故产生衍射各晶面 的N值顺序比也各不相同[参见表6-1,表中之m即此处之N(有关电 子衍射分析的文献中习惯以N表示H2+K2+L2,此处遵从习惯)]。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档