单片机驱动继电器电路详解
单片机驱动继电器介绍
![单片机驱动继电器介绍](https://img.taocdn.com/s3/m/5688fd1fc281e53a5802ffd9.png)
单片机驱动继电器介绍2009-07-30 16:28随着微电子技术的发展,单片机在家用电器中的应用越来越广泛。
单片机需要根据一定的控制规律控制家用电器中的一些功率部件工作。
这些部件是实现家用电器功能的重要部件。
例如洗衣机中的洗涤电机和脱水电机;电热炉中的加热元件(硅碳棒或电热丝等);电冰箱和空调器中的压缩电机;在微波炉中的磁控管;在电磁炉中的变换电路,在半导体冰箱中的热电堆管等。
单片机是微电子器件,它的输入信号功率很小,要直接驱动大功率部件是不可能的,要实现其控制作用,需要中间的变换电路,这种电路就是中间驱动电路接口。
本文主要介绍常用的单片机电机驱动电路接口。
电机的控制是家用电器中一种普遍的应用技术,用单片机去控制家用电器中的电机,使之具有一定的状态和性能,必须有适当的接口电路。
一方面,电机是大功率执行元件,另一方面,它是感性负载。
在家电的控制中,应给予考虑。
例如洗衣机和电冰箱及空调器等家用电器中都是由电机拖动工作,而且这些电机的工作状态是不一样的。
空调器和电冰箱的电机用于带动压缩机工作,所以它工作在间歇状态;洗衣机中的电机则工作在正反转状态;而电风扇的电机则工作在长期运行工作状态或调速工作状态。
要用单片机进行控制必须采用不同的驱动电路和接口电路。
1 电机控制的基本元件和电路1.1 双向光电耦合器双向光电耦合器和一般光电耦合器不同。
一般光电耦合器由发光二极管和光敏三极管组成,所以输出级光敏三极管中的电流是单向的。
在双向光电耦合器中,输入级是发光二极管,输出级是光敏双向管,在导通时,流过的双向电流达100毫安,压降小于3伏,导通时最小维持电流为100微安。
在截止时,其阻断电压为直流250伏,当维持电流小于100微安时,双向管从导通变为截止。
当阻断电压大于250伏,或发光二极管发光时,则双向管导通。
为了降低双向光电耦合器的误触发率,通常在光电耦合器的输出端加阻容吸收电路。
双向光电耦合器又称为双向晶闸管驱动器,专门用于驱动双向晶闸管。
8050和8550 单片机低电平驱动12v继电器电路
![8050和8550 单片机低电平驱动12v继电器电路](https://img.taocdn.com/s3/m/60b698143d1ec5da50e2524de518964bcf84d2ae.png)
8050和8550 单片机低电平驱动12v继电器电路摘要:1.8050 和8550 单片机的概述2.低电平驱动12V 继电器电路的原理3.8050 和8550 单片机在低电平驱动12V 继电器电路中的应用4.结论正文:一、8050 和8550 单片机的概述8050 和8550 是两种常见的单片机,它们分别属于MCS-51 和MCS-52 系列。
这两种单片机都具有丰富的外设资源和可编程I/O 口,适用于各种自动化控制和嵌入式系统应用。
二、低电平驱动12V 继电器电路的原理低电平驱动12V继电器电路是一种利用单片机的某个I/O口输出低电平信号,从而控制12V继电器开关的电路。
在这种电路中,单片机的I/O口需要连接到继电器的控制端,通常是继电器的常开触点。
当单片机的I/O口输出低电平时,继电器会被触发,其常开触点会闭合,从而控制外部电路的通断。
三、8050 和8550 单片机在低电平驱动12V 继电器电路中的应用在低电平驱动12V 继电器电路中,8050 和8550 单片机可以通过编程实现对继电器的控制。
具体来说,需要配置单片机的某个I/O 口为输出模式,并通过编写程序使该I/O 口输出低电平信号。
以下是一个简单的示例:1.使用8050 单片机假设我们使用8050 单片机控制一个12V 继电器,其控制端为继电器的常开触点。
我们需要将8050 单片机的P1.0 端口配置为输出模式,并通过编写程序使该端口输出低电平信号。
具体实现如下:```ORG 00H ; 设置程序起始地址为00HMOV A, #00H ; 将立即数00H 赋值给寄存器AMOV P1, A ; 将寄存器A 的内容赋值给P1 端口```上述程序将使8050 单片机的P1.0 端口输出低电平信号,从而控制12V 继电器的开关。
2.使用8550 单片机类似地,我们可以使用8550 单片机控制一个12V 继电器。
假设我们使用8550 单片机的P1.0 端口输出低电平信号,具体实现如下:```ORG 00H ; 设置程序起始地址为00HMOV A, #00H ; 将立即数00H 赋值给寄存器AMOV P1, A ; 将寄存器A 的内容赋值给P1 端口```上述程序将使8550 单片机的P1.0 端口输出低电平信号,从而控制12V 继电器的开关。
单片机继电器的工作原理
![单片机继电器的工作原理](https://img.taocdn.com/s3/m/bac660210a1c59eef8c75fbfc77da26924c5967f.png)
单片机继电器的工作原理单片机继电器的工作原理主要是通过单片机控制继电器的开关,从而实现电路的开闭。
下面将从继电器的结构、原理以及单片机控制的角度来详细解释。
一、继电器的结构和原理:继电器是一种电控开关装置,由线圈、铁芯、接点和外壳组成。
其工作原理是通过电流通过线圈产生磁场,使铁芯产生磁化,从而吸引或释放接点,实现电路的开闭。
具体来说,继电器的结构和原理包括以下几个方面:1. 线圈:线圈是继电器的控制部分,通常由绝缘线材制成,可以根据实际需求进行绕制。
当线圈通过电流时,会产生磁场,从而使铁芯受到吸引力。
2. 铁芯:铁芯是继电器的动作部分,通常是由磁导材料制成,铁芯的磁导率比空气高,可以增强磁场的作用。
当线圈通电时,铁芯受到磁场的吸引力,会向线圈移动,从而影响接点的状态。
3. 接点:接点是继电器的主要开闭部分,通过铁芯的移动,可以实现接点的吸合或分离。
接点通常由铜材制成,具有良好的导电性和耐磨性。
接点的状态可以分为常开接点(NO)、常闭接点(NC)和公共接点(COM)。
4. 外壳:外壳是继电器的保护部分,通常由绝缘材料制成,可以防止继电器内部零部件受到损坏。
同时,外壳还具有保护用户安全的功能,防止电流泄露。
在未通电时,继电器的线圈中没有电流通过,对应的线圈产生的磁场也就没有了,铁芯处于非磁化状态,接点处于初始状态,即常闭接点(NC)闭合,常开接点(NO)断开。
当线圈通过电流时,线圈产生磁场,使得铁芯受到吸引力,向线圈方向运动,同时改变接点的状态。
如果是NC接点,则断开;如果是NO接点,则闭合。
继电器的工作就是通过控制线圈的通断来控制接点的状态,从而实现电路的开闭。
二、单片机控制继电器的原理:单片机作为一种集成电路,可以通过外部引脚与继电器进行连接,从而实现对继电器的控制。
单片机控制继电器可以通过以下几个步骤完成:1. 连接线路:首先,需要将单片机的输出引脚与继电器的线圈进行连接。
线圈一端连接到单片机的输出引脚,另一端连接到电源的正极(通常是Vcc)。
单片机光耦继电器驱动电路
![单片机光耦继电器驱动电路](https://img.taocdn.com/s3/m/3b5093a9192e45361166f506.png)
单片机光耦继电器驱动电路大部分电路转载于网络用PNP 管驱动继电器电路分析与验证 :元件参数三极管:9012 继电器:DC12V ,66.7mA ,180Ω。
电路一:不好有不少的设计采用这样的电路来驱动继电器,样能合理的,经过细致分析后会发现Q1根本就不能完全饱合的。
估且我们不算R 的阻值为多大,假设我们现在使Q 1基最大,取R 1=0; 压为0时,Q 1e b 极的电压为0.7样e c 极电压也为0.7V ,而9012的管子在ec 极电压应为0.2V 。
很显然该管工作在非完全饱合状态;继电器上最也只能获得11.3V 的电压。
要想管子完全饱合,基要足够大,那么基极需要电压为-0.7V 以下。
1电路二:好端电压为0时Q 1基极电压为(12-0.7=11.3V ),改变R 1的大小便可改变基,当基足够大时,三极管饱合。
为了验证以上的分析,我们搭了一个电路,R1取4.7K ,此时基为2.4ma ,测得Q1ec 电压为0.2V,继电器两端电压为11.8V 。
注意:R1的取值不能太小,要保证基在 合,这个可以通过电压和电阻算出来。
第一种电路能工作因为继电器有较宽的电用这种方式。
正确的电路电路二,正确 的连接方式,大小合适的基极电阻才能保证设计的合理和稳定性。
最后注明一下,本次实验采用的12V 继电器,因此该电路的控 上一样。
224V 继电器的驱动电路V5V 。
继电器串联RC 电路:这种形式主要应用于继电器的额定工作电压低电压的电路中。
当电路闭合时,继电器线圈由于自感现象会产生电动势阻碍线圈的增大,从而延长了吸合时。
电路闭合,电容C 两端电压不能突变可视为短路,这样就将比继电器线圈额定工作电压高电压加到线圈上,从 而加快了线圈增吸合稳定之后电容C 不起作用,电阻R 作用。
基极和发射极的电阻的:在没有正电压下,保证基极的电压为 零止三极管的受外部的干为了保证可靠性。
具体的阻值的大小倒不绝对10K 、100K 都可以的起到下拉的作用非常很小的。
单片机怎么驱动继电器
![单片机怎么驱动继电器](https://img.taocdn.com/s3/m/6856567d0a1c59eef8c75fbfc77da26925c596cb.png)
单片机怎么驱动继电器用ULN和三极管驱动比较理想,光耦效率不高。
ULN2003通常做驱动用。
如果用NPN三极管,那么继电器一端接电源,出来了接NPN的集电极,发射极接地,基极接控制信号。
注意:单片机的IO口驱动能力不够,加一片ULN2003来驱动继电器,一个ULN2003可以驱动7个继电器,ULN2803可以驱动8个。
驱动电流最大为500mA。
单片机控制继电器,继电器控制家用电器,这个继电器什么要求吗?1. 具体的要看你这个家电的功率多少。
先确定一下继电器开关上的电流大小。
打个比方吧。
你如果要控制100W的家用电器,那个这个家电的工作电流是100W/220V=0.45A。
所以只要是开关上能承受220V强电,电流大于0.45A的继电器就行了,但是帐绝对不能这么算。
因为很多家用电器启动时的瞬间电流非常大。
所以你要留有余量,如果有可能看看这个系统上的保险丝是多大的。
如果保险丝是1A的话,(否则瞬间大电流要烧掉保险丝的)那么你选开关上能承受220V/1A 以上的继电器就行了。
一般5A的继电器应该可以用了。
2. 再说线圈上的电压大小,一般单片机输出的高电平是5V,电流单个I/O口能达到25mA已经算比较大的了。
线圈电压是5vDC.开关上要承受220v强电的继电器比较少。
所以一般只能选线圈上12v或者24v的继电器,比如说选线圈电压12v吧,你就需要一个12v的电源。
当然也可以用220v市电降压然后整流滤波变成12v直流电,供继电器使用。
注意:一定要隔离市电。
比如说用隔离变压器降压或者降压整流以后用光耦隔离。
(否则可能烧坏继电器或者单片机的)。
那单片机用的5v电源怎么办呢?很简单的12v直流用7805(线性稳压源)稳压,出来以后就是5V直流了。
注意:一般继电器线圈的工作电流大约是100mA以上,所以单片机不能直接驱动继电器的。
3. 再说驱动部分,刚才说了不能直接驱动,现在的办法只能是用驱动电路了。
推荐使用两种方法驱动:(1)利用三极管(9013就行了)放大电流驱动。
单片机能直接驱动继电器吗?三极管驱动继电器的电路怎么设计
![单片机能直接驱动继电器吗?三极管驱动继电器的电路怎么设计](https://img.taocdn.com/s3/m/0b13e135905f804d2b160b4e767f5acfa1c783be.png)
单片机能直接驱动继电器吗?三极管驱动继电器的电路怎么设计电磁继电器是一种可控型的开关器件,主要由线圈、铁芯和触点构成。
其工作原理非常容易理解,线圈通电流过一定的电流后,会在产生磁场,利用电磁效应使得触点动作。
单片机的输出电流有限,不宜直接驱动继电器,而通常使用三极管来驱动继电器,那么三极管驱动继电器的电路该如何设计呢?需要注意哪些地方?下面来分析一下。
1.NPN三极管驱动继电器的工作原理NPN三极管可以用来驱动继电器,三极管工作在截止状态和饱和状态。
电路如图1所示。
1 - NPN三极管驱动继电器原理基极上出现高电平时,NPN三极管导通,继电器线圈得电触点动作;基极上出现低电平时,NPN三极管截止,继电器线圈失电触点复位;电阻的作用基极上的电阻叫做限流电阻,防止电流过大把三极管烧坏,起到保护三极管的作用;下拉电阻的作用是防止三极管误触发引起继电器误动作,在单片机初始化的过程中,GPIO端口输出状态可能不确定,这种情况下下拉电阻将基极下拉至确定的低电平放置了三极管的误导通。
二极管的作用图中的二极管叫做续流二极管,反向并联在线圈的两端。
我们知道继电器线圈呈现感性负载特性,在线圈失电的瞬间,线圈会阻碍电流的变化,使得线圈两端会产生反向的电动势,这个电位可能会比较大,导致三极管CE极之间的电压比较高超过其耐压值从而使三极管被击穿,而这个二极管就为反向电动势提供了一条泄放通道,保护了三极管,使其不被击穿。
2.PNP三极管驱动继电器的工作原理PNP三极管也可以用来继电器,接电路原理图与NPN三极管稍有区别,其电路如图2所示。
2 - PNP三极管驱动继电器原理基极的电阻也起到限流作用,保护三极管。
PNP三极管是通过电阻将基极上拉至VCC,这个电阻叫做上拉电阻,在单片机的GPIO的输出状态不确定的时候,将基极电平置为高电平,不让PNP三极管误导通。
3.继电器为什么都接在集电极通过以上两个电路可以看出,继电器都接在了三极管集电极。
单片机光耦继电器驱动电路
![单片机光耦继电器驱动电路](https://img.taocdn.com/s3/m/b43bd07df705cc1754270969.png)
单片机光耦继电器驱动电路大部分电路转载于网络用PNP管驱动继电器电路分析与验证 :元件参数三极管:9012 继电器:DC12V,66.7mA,180Ω。
电路一:不好有不少的设计采用这样的电路来驱动继电器,虽然同样能工作,但实际上这样做是不合理的,经过细致分析后会发现Q1根本就不能完全饱合的。
估且我们不算R1的阻值为多大,假设我们现在使Q1基极电流最大,取R1=0;当控制信号电压为0时,Q1eb极的电压为0.7V,同样ec极电压也为0.7V,而9012的管子在完全饱合的情况下ec极电压应为0.2V。
很显然该管工作在非完全饱合状态;继电器上最大限度也只能获得11.3V的电压。
要想管子完全饱合,基极电流要足够大,那么基极需要电压为-0.7V以下。
电路二:好再来看看该电路当控制端电压为0时,Q1基极电压为(12-0.7=11.3V),改变R1的大小便可改变基极电流,当基极电流足够大时,三极管饱合。
为了验证以上的分析,我们搭了一个电路,R1取4.7K,此时基极电流为2.4ma,测得Q1ec电压为0.2V,继电器两端电压为11.8V。
注意:R1的取值不能太小,要保证基极电流在安全范围,也不能太大,要保证三极管能完全饱合,这个可以通过电压和电阻算出来。
第一种电路能工作,那是因为继电器有较宽的电压范围,有时它欠电压也能勉强工作,但状况是不稳定的,因此我们在设计时不建议采用这种方式。
正确的电路应该是电路二,正确的连接方式,大小合适的基极电阻才能保证设计的合理和稳定性。
最后注明一下,本次实验采用的12V继电器,因此该电路的控制极不能直接用单片机IO口驱动,否则会关不断。
若选用5V继电器则可以,原理同上一样。
24V继电器的驱动电路说明:VCC是5V。
继电器串联RC电路:这种形式主要应用于继电器的额定工作电压低于电源电压的电路中。
当电路闭合时,继电器线圈由于自感现象会产生电动势阻碍线圈中电流的增大,从而延长了吸合时间,串联上RC电路后则可以缩短吸合时间。
用单片机驱动电磁式继电器的方法
![用单片机驱动电磁式继电器的方法](https://img.taocdn.com/s3/m/de059c9fe45c3b3566ec8b3a.png)
、继电器驱动原理
下图2是S51增强型单片机实验板上HK4100F继电器驱动电路 原理图,三极管T5的基极B接到单片机的P3.6,三极管的发射极E接到继电器 线圈的一端,线圈的另一端接到+5V电源VCCt;继电器线圈两端并接一个二 极管IN4148,用于吸收释放继电器线圈断电时产生的反向电动势,防止反向电 势击穿三极管T5及干扰其他电路;R3和发光二极管LED9组成一个继电器状态 指示电路,当继电器吸合的时候,LED9点亮,这样就可以直观的看到继电器状 态了。
过一定的电流,从而产生电磁效应,衔铁就会在电磁力吸引的作用下克服返回弹 簧的拉力吸向铁芯,从而带动衔铁的动触点与静触点(常开触点)吸合。当线圈 断电后,电磁的吸力也随之消失,衔铁就会在弹簧的反作用力返回原来的位置, 使动触点与原来的静触点(常闭触点)吸合。这样吸合、释放,从而达到了在电 路中的接通、切断的开关目的。
在各种自动控制设备中,都存在一个低压的自动控制电路与高压电气电路的互相 连接问题,一方面要使低压的电子电路的控制信号能够控制高压电气电路的执行 元件,如电动机、电磁铁、电灯等;另一方面又要为电子线路的电气电路提供良 好的电隔离,以保护电子电路和人身的安全,电磁式继电器便能完成这一桥梁作 用。
电磁继电器是在在输入电路内电流的作用下,由机械部件的相对运动产生预定响
或关闭。图(b)所示的电路则根本不能工作,不论80C51的I/O输出高电平(5V)
或低电平,三级管T都将导通,而且极有可能损坏80C51的I/O口。
2、当AT89S51单片机的P3.6引脚输出高电平时,三极管T5截止,继电器线圈两端没有电位差,继电器衔铁释放,同时状态指示的发光二极 管也熄灭,继电器的常开触点释放,相当于开关断开。注:在三极管截止的瞬间, 由于线圈中的电流不能突变为零,继电器线圈两端会产生一个较高电压的感应电 动势,线圈产生的感应电动势则可以通过二极管IN4148释放,从而保护了三极
单片机驱动继电器
![单片机驱动继电器](https://img.taocdn.com/s3/m/c1691e7e02768e9951e73874.png)
手把手教你使用PIC单片机驱动继电器嵌入式 2009-02-10 14:56:14 阅读1069 评论1 字号:大中小订阅在现代自动控制设备中,都存在一个电子电路(弱电)与电气电路(强电)的互相连接问题,一方面要使电子电路的控制信号能够控制电气电路的执行元件(如电动机、电磁铁、电灯等),另一方面又要为电子线路的电气电路提供良好的电隔离,以保护电子电路和人身的安全。
继电器便能完成这一桥梁作用。
继电器的工作原理与分类继电器是一种电子控制器件,它具有控制系统(又称输入回路)和被控制系统(又称输出回路),通常应用于自动控制电路中,它实际上是用较小的电流去控制较大电流的一种“自动开关”。
故在电路中起着自动调节、安全保护、转换电路等作用。
在大多数的情况下,继电器就是一个电磁铁,这个电磁铁的衔铁可以闭合或断开一个或数个接触点。
当电磁铁的绕组中有电流通过时,衔铁被电磁铁吸引,因而就改变了触点的状态。
继电器一般可以分为电磁式继电器、热敏干簧继电器、固态继电器等。
增强型PIC实验板上配置的继电器如图1所示。
图1电磁式继电器一般由铁芯、线圈、衔铁、触点簧片等组成的。
只要在线圈两端加上一定的电压,线圈中就会流过一定的电流,从而产生电磁效应,衔铁就会在电磁力吸引的作用下克服返回弹簧的拉力吸向铁芯,从而带动衔铁的动触点与静触点(常开触点)吸合。
当线圈断电后,电磁的吸力也随之消失,衔铁就会在弹簧的反作用力返回原来的位置,使动触点与原来的静触点(常闭触点)吸合。
这样吸合、释放,从而达到了在电路中的导通、切断的目的。
对于继电器的“常开、常闭”触点,可以这样来区分:继电器线圈未通电时处于断开状态的静触点,称为“常开触点”;处于接通状态的静触点称为“常闭触点”。
热敏干簧继电器是一种利用热敏磁性材料检测和控制温度的新型热敏开关。
它由感温磁环、恒磁环、干簧管、导热安装片、塑料衬底及其他一些附件组成。
热敏干簧继电器不用线圈励磁,而由恒磁环产生的磁力驱动开关动作。
51单片机控制继电器
![51单片机控制继电器](https://img.taocdn.com/s3/m/d4458aea0129bd64783e0912a216147917117eb1.png)
引言:51单片机是一种广泛应用于嵌入式系统的微控制器,具有低功耗、易编程、性能稳定等特点。
而继电器则是一种常用的电气开关设备,可以实现对电路的远程控制。
本文将探讨如何使用51单片机控制继电器,介绍电路连接方式、编程实现方法以及常见应用案例。
概述:51单片机控制继电器是一种常见的嵌入式系统应用。
通过合理的电路连接和编程实现,可以实现对继电器的远程控制,从而控制电路的通断状态。
本文将从五个方面对51单片机控制继电器进行详细介绍。
正文:一、电路连接方式1.电源连接a.正确选择电源电压和电源类型b.连接稳压电路2.51单片机引脚连接a.确定控制继电器的引脚b.连接引脚到51单片机3.继电器连接方式a.根据继电器类型选择合适的连接方式b.连接继电器到电路二、编程实现方法1.了解51单片机的编程语言a.学习C语言b.掌握51单片机的特定指令2.基本控制指令a.设置引脚输入输出状态b.控制引脚高低电平3.继电器控制程序设计a.编写继电器控制函数b.调用函数实现对继电器的控制4.通信接口实现a.添加通信模块b.编程实现通信接口5.控制逻辑设计a.利用条件语句实现控制逻辑b.调试程序并提高效率三、常见应用案例1.家居自动化a.控制电灯开关b.控制窗帘的打开和关闭2.工业控制a.控制机器设备的启停b.监控温度、湿度等参数3.安防系统a.控制门禁系统b.控制报警器的开启4.智能农业a.控制灌溉系统b.控制温室内环境5.物联网应用a.控制智能家电b.实现远程监控和控制总结:51单片机控制继电器是一种常见的嵌入式系统应用,通过适当的电路连接和编程实现,可以实现对继电器的远程控制。
本文从电路连接方式、编程实现方法和常见应用案例等方面进行了详细介绍,希望能对读者在实际应用中提供一定的帮助和指导。
同时,读者在使用过程中应注意安全问题,合理使用继电器,确保电路的稳定运行。
引言:51单片机作为一种常用的微控制器,具有体积小、功耗低、性能稳定等特点,被广泛应用于各种控制系统中。
驱动继电器电路详解
![驱动继电器电路详解](https://img.taocdn.com/s3/m/0226a09c09a1284ac850ad02de80d4d8d05a011d.png)
5V
想一想?
5V
在实际应用中,三极管这样驱动继电器的电路有什么弊端吗?
问题所在
1
3
4
继电器线圈并反向二极管的作用
1
2
请多多指教,谢谢!
THANK FOR YOU WATCHING
演讲人姓名
演讲时间
单片机驱动继电器 电路详解
单击添加副标题
单击此处添加文本具体内容,简明扼要地阐述你的观点
51单片机驱动继电器电路
5V
1
2
继电器的参数
主要技术参数 触点参数: 触点形式:1C(SPDT) 触点负载: 3A 220V AC/30V DC 阻 抗: ≤100mΩ 额定电流: 3A 电气寿命:≥10万次 机械寿命:≥1000万次 线圈参数: 阻值(士10%): 120Ω 线圈功耗:0.2W 额定电压:DC 5V 吸合电压:DC 3.75V 释放电压:DC 0.5V 工作温度:-25℃~+70℃ 绝缘电阻:≥100MΩ 线圈与触点间耐压:4000VAC/1分钟 触点与触点间耐压:750VAC/1分钟
PNP
1
1.5A
25
200
60 ~ 300
注释: PCM是集电极最大允许耗散功率。 ICM是集电极最大允许电流。 BV(CEO)是三极管基极开路时,集电极-发射极反向击穿电压。 fT是特征频率。 hFE是放大倍数。
三极管驱动继电器的参数
从上面的继电器线圈参数得知,继电器工作吸合电流为0.2W/5V=40mA或5V/120Ω≈40mA。 三极管的选择: 功率PCM:大于5V*继电器电流 (5*40 mA = 0.2W)的两倍; 最大集电极电流(ICM):大于继电器吸合电流的两倍以上; 耐压BV(CEO):大于继电器工作电压5V,可选10V以上; 直流放大倍数:取100。 三极管可选:PCM(0.4W↑),ICM(80mA↑),BV (10V↑) 三极管基极输入电流:继电器的吸合电流/放大倍数=基极电流(40mA/100 =4mA),为工作稳定,实际基极电流应为计算值的2倍以上。 基极电阻:(5V-0.7V)/基极电流=电阻值(4.7V/8mA =3.3KΩ)。
用单片机 控制继电器
![用单片机 控制继电器](https://img.taocdn.com/s3/m/2d96acb3b9f67c1cfad6195f312b3169a451ea88.png)
用单片机控制继电器在现代电子控制系统中,单片机与继电器的结合应用十分广泛。
单片机作为控制核心,能够精确地控制继电器的开关动作,从而实现对各种电气设备的自动化控制。
单片机,也被称为微控制器,是一种集成在单个芯片上的微型计算机。
它具有体积小、功耗低、性能强等优点,能够完成复杂的计算和逻辑控制任务。
而继电器则是一种电气开关,通过电磁力来控制触点的闭合和断开,从而实现电路的通断控制。
要实现用单片机控制继电器,首先需要了解单片机的引脚功能和编程方法。
通常,单片机的引脚可以分为数字输入引脚、数字输出引脚、模拟输入引脚和模拟输出引脚等。
对于控制继电器,我们主要使用数字输出引脚。
在硬件连接方面,一般将单片机的数字输出引脚通过一个驱动电路与继电器的控制端相连。
这个驱动电路的作用是将单片机输出的低电平信号转换为能够驱动继电器工作的电流和电压。
常见的驱动电路有三极管驱动电路和继电器驱动芯片等。
以三极管驱动电路为例,其原理是利用三极管的开关特性来控制继电器。
当单片机的数字输出引脚输出高电平时,三极管导通,继电器线圈得电,触点闭合;当单片机输出低电平时,三极管截止,继电器线圈失电,触点断开。
在软件编程方面,需要根据所使用的单片机型号和开发环境来编写控制程序。
一般来说,程序的主要任务是设置单片机的引脚为输出模式,并在需要的时候输出高电平或低电平来控制继电器的开关。
例如,使用 C 语言在常见的 51 单片机上进行编程,首先需要包含相关的头文件,如`reg51h`。
然后定义控制继电器的引脚,如`sbit relay_pin = P1^0;`接下来,在主函数中进行初始化设置,将引脚设置为输出模式,如`relay_pin = 1;`表示将引脚设置为高电平输出。
为了实现更复杂的控制逻辑,可以使用定时器、中断等功能。
比如,通过定时器设定一定的时间间隔,让继电器按照一定的频率开关;或者在接收到外部中断信号时,改变继电器的状态。
在实际应用中,用单片机控制继电器有着广泛的用途。
实例讲解 单片机控制继电器原理
![实例讲解 单片机控制继电器原理](https://img.taocdn.com/s3/m/0f3f3108be23482fb5da4c3f.png)
实例讲解单片机控制继电器原理
单片机是一个弱电器件,一般情况下它们大都工作在5V甚至更低.驱动电流在mA级以下.而要把它用于一些大功率场合,比如控制电动机,显然是不行的.所以,就要有一个环节来衔接,这个环节就是所谓的功率驱动.继电器驱动就是一个典型的、简单的功率驱动环节。
首先看看继电器的驱动
这是典型的继电器驱动电路图,这样的图在网络上随处可以搜到,并且标准教科书上一般也是这样的电路图
为什么要明白这个图的原理?
单片机是一个弱电器件,一般情况下它们大都工作在5V甚至更低.驱动电流在mA级以下.而要把它用于一些大功率场合,比如控制电动机,显然是不行的. 所以,就要有一个环节来衔接,这个环节就是所谓的功率驱动.继电器驱动就是一个典型的、简单的功率驱动环节.在这里,继电器驱动含有两个意思:一是对继电器进行驱动,因为继电器本身对于单片机来说就是一个功率器件;还有就是继电器去驱动其他负载,比如继电器可以驱动中间继电器,可以直接驱动接触器,所以, 继电器驱动就是单片机与其他大功率负载接口.这个很重要,因为,一直让我们的电气工程师(我指的是那些没有学习过相应的电子技术的)感到迷惑不解的是:一个小小的芯片,怎么会有如此强大的威力来控制像电动机这样强大的东西?
怎么样理解这个电路图?
要理解这个电路,其实也比较容易.那么请您按照我的思路来,应该没有问题:
首先的,里面的三极管很重要.三极管是电子电路里很重要的一个元件.怎。
单片机控制继电器驱动原理实例详解
![单片机控制继电器驱动原理实例详解](https://img.taocdn.com/s3/m/6d09d15715791711cc7931b765ce05087632750d.png)
单片机控制继电器驱动原理实例详解继电器驱动电路由3部分组成:单片机控制电路、继电器控制电路和继电器负载电路。
首先介绍单片机控制电路。
单片机通常有多个GPIO口,其中一个GPIO口可以配置为输出模式,通过该GPIO口的控制信号控制继电器的开关。
在单片机控制电路中,需要使用电平转换电路将单片机的控制信号转换为继电器驱动电路可接受的电平。
通常使用晶体管来实现电平转换,例如通过NPN型晶体管的基极接单片机的GPIO口,发射极接电源正极,而集电极接继电器控制电路。
接下来介绍继电器控制电路。
继电器控制电路是通过驱动电路来控制继电器的线圈电流,从而实现开关的操作。
一般使用光耦隔离器将单片机控制电路和继电器控制电路隔离,以提高系统的稳定性和可靠性。
光耦隔离器的输入端连接单片机的控制信号,输出端连接到继电器控制电路。
当单片机的控制信号发生变化时,光耦隔离器的阻止电流就会发生变化,从而改变继电器的线圈电流,实现继电器的开关操作。
此外,还需要使用电阻、二极管等元件来保护光耦隔离器和继电器控制电路。
最后介绍继电器负载电路。
继电器负载电路是通过继电器的常开(NO)和常闭(NC)触点来控制外部负载的通断。
当继电器吸合时,常开触点闭合,通断负载电路;当继电器断开时,常闭触点闭合,通断负载电路。
通常将外部负载电源的正极接继电器的公共端口(COM),负极接继电器的常开或常闭触点之一综上所述,单片机控制继电器驱动的原理可以概括为:通过单片机的控制信号,经过电平转换和光耦隔离器的电路转换,控制继电器的线圈电流,从而实现继电器的开关操作,最终控制外部负载的通断。
例如,我们可以通过单片机控制继电器驱动电路来实现远程控制家庭电器。
将继电器的负载电路与家庭电器相连,通过单片机控制继电器的开关状态来控制家庭电器的通断。
我们可以使用无线通信模块,将单片机控制信号通过无线信号发送给控制终端,从而实现远程控制家庭电器的功能。
总结起来,单片机控制继电器驱动的原理是通过电平转换和光耦隔离器的电路转换,实现对继电器的控制,从而实现对外部负载的通断控制。
单片机控制继电器电路
![单片机控制继电器电路](https://img.taocdn.com/s3/m/7cd743de02768e9950e73882.png)
单片机控制继电器电路毕业论文题目:单片机制作控制继电器的电路目录毕业论文引言??????????????????????????????????????????????1 摘要??????????????????????????????????????????????2 第1章、硬件部分结构功能简介:?????????????????????2 1.1单片机介绍????????????????????????????????????3 1.2 AT89S51单片机的主要性能参数和主要引脚????????3 1.3、继电器介绍???????????????????????????????????6 第2章、原理图????????????????????????????????????7 第3章、系统设计预期目标:?????????????????????????9 第4章、工作原理:?????????????????????????????????9 第5章、下面是我总结的制板“八步走”???????????????10 第6章、制板中容易出现的问题 :????????????????????11 第7章、本设计的C语言程序:???????????????????????11 第8章、总结??????????????????????????????????????13 第9章、答谢词????????????????????????????????????14 参考文献??????????????????????????????????????????14引言现代自动控制设备中,都存在一个电子电路一电气电路的互相连接问题,一方面要是电子电路的控制信号能够控制电器电路的执行元件(电动机、电磁铁、电灯等),另一方面又要为电子线路的电器电路提供良好的电隔离,以保护电子电路和人身的安全。
电子继电器便能起到这一桥梁作用。
单片机3.3V驱动继电器电路(四种电路设计原理图详解)
![单片机3.3V驱动继电器电路(四种电路设计原理图详解)](https://img.taocdn.com/s3/m/1ca71730ff00bed5b9f31da3.png)
单片机3.3V驱动继电器电路(四种电路设计原理图详解)
单片机3.3V驱动继电器电路(一)DIO输出3.3V高电平电压,上垃VCC=3.3V 输出,经ULN2803A驱动后,2输出低电平,1-VDD与2连接继电器线圈,导通后5与6吸合。
单片机3.3V驱动继电器电路(二)12V改为5V,实验证明可以驱动5V继电器工作
单片机3.3V驱动继电器电路(三)电路原理图:
SW1=1(即接3.3V电压)时,U4输出低电平(约为0),远低于MOS管的开启电压,继电器电路断开,电流为零,继电器不动作;SW1=0(即接地)时,U4输出高电平(约为3.3V),高于MOS开启电压,继电器电路闭合,由于MOS的DS极间压降仅约0.3V,故继电器可以达到动作电压,发生动作。
单片机3.3V驱动继电器电路(四)SW1=1时,由于U4内部结构,AM1测得为负值,同时三极管基极电流很小(约几十pA),基极电压低于180mV,故对继电器电路此时三极管相当于断路,继电器电流约为零,不产生动作;SW1=0时,AM1为正值,且三极管基极电流为uA级,基极电压高于0.7V,三级管导通,继电器电路构成回路且三极管ce极间压降很小(不足0.3V),继电器可以达到动作电压,产生动作。
基极电流的确定:
而
在继电器正常工作情况下,应有:IL=(1+)Ib75mA(继电器额定电流约75mA)其中R3》》Rbe,由模电知识知,R3的主要作用是稳定晶体管的静态工作点,且能够分走一部分电流;而R2能起调节Ib大小的作用。
由此分析可计算R2、R3等的大小。
单片机光耦继电器驱动电路
![单片机光耦继电器驱动电路](https://img.taocdn.com/s3/m/d68b08f5770bf78a652954b8.png)
单片机光耦继电器驱动电路大部分电路转载于网络用PNP管驱动继电器电路分析与验证 :元件参数三极管:9012 继电器:DC12V,66.7mA,180Ω。
电路一:不好有不少的设计采用这样的电路来驱动继电器,虽然同样能工作,但实际上这样做是不合理的,经过细致分析后会发现Q1根本就不能完全饱合的。
估且我们不算R1的阻值为多大,假设我们现在使Q1基极电流最大,取R1=0;当控制信号电压为0时,Q1eb极的电压为0.7V,同样ec极电压也为0.7V,而9012的管子在完全饱合的情况下ec极电压应为0.2V。
很显然该管工作在非完全饱合状态;继电器上最大限度也只能获得11.3V的电压。
要想管子完全饱合,基极电流要足够大,那么基极需要电压为-0.7V以下。
电路二:好再来看看该电路当控制端电压为0时,Q1基极电压为(12-0.7=11.3V),改变R1的大小便可改变基极电流,当基极电流足够大时,三极管饱合。
为了验证以上的分析,我们搭了一个电路,R1取4.7K,此时基极电流为2.4ma,测得Q1ec电压为0.2V,继电器两端电压为11.8V。
注意:R1的取值不能太小,要保证基极电流在安全范围,也不能太大,要保证三极管能完全饱合,这个可以通过电压和电阻算出来。
第一种电路能工作,那是因为继电器有较宽的电压范围,有时它欠电压也能勉强工作,但状况是不稳定的,因此我们在设计时不建议采用这种方式。
正确的电路应该是电路二,正确的连接方式,大小合适的基极电阻才能保证设计的合理和稳定性。
最后注明一下,本次实验采用的12V继电器,因此该电路的控制极不能直接用单片机IO口驱动,否则会关不断。
若选用5V继电器则可以,原理同上一样。
24V继电器的驱动电路说明:VCC是5V。
继电器串联RC电路:这种形式主要应用于继电器的额定工作电压低于电源电压的电路中。
当电路闭合时,继电器线圈由于自感现象会产生电动势阻碍线圈中电流的增大,从而延长了吸合时间,串联上RC电路后则可以缩短吸合时间。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
继电器线圈并反向二极管的作用
1. 为了消除这个感生 电动势的有害影响, 在继电器线圈两端 反向并联抑制二极 管,以吸收该电动 势。 2. 自感电压与电源电 压之和对二极管来 说却是正向偏压, 使二极管导通形成 环流。感应的高电 压就会通过回路释 放掉,保证了三极 管的安全。
5V
请多多指教,谢谢!
hFE 64 ~ 202 60 ~ 1000 85 ~ 300 60 ~ 300
注释: 1. PCM是集电极最大允许耗散功率。 2. ICM是集电极最大允许电流。 3. BV(CEO)是三极管基极开路时,集电极-发射极反向击穿电压。 4. fT是特征频率。 5. hFE是放大倍数。
三极管驱动继电器的参数
LOGO
单片机驱动继电器 电路详解
LOGO
51单片机驱动继电器电路 1. 基本电路如右图。 2. 单片机的IO口输出 电流很小4到20mA, 所以要用三极管放 大来驱动继电器。 3. 如何选择元器件参 数呢?
5V
继电器的参数
主要技术参数 1. 触点参数: 触点形式:1C(SPDT) 触点负载: 3A 220V AC/30V DC 阻 抗: ≤100mΩ 额定电流: 3A 电气寿命:≥10万次 机械寿命:≥1000万次 线圈参数: 阻值(士10%): 120Ω 线圈功耗:0.2W 额定电压:DC 5V 吸合电压:DC 3.75V 释放电压:DC 0.5V 工作温度:-25℃~+70℃ 绝缘电阻:≥100MΩ 线圈与触点间耐压:4000VAC/1分钟 触点与触点间耐压:750VAC/1分钟
电路中各元器件的参数
1. 这里单片机IO口输出高 电平触发三极管导通。 经过以上的分析计算得 出:三极管可用极性是 NPN的9014或8050,电 阻选3.3K。 2. 三极管的放大倍数要求 不高,一般买的都可以, 100~500 (放大倍数分 段可选),随便买的都可 以用。 3. 电阻R1选3.3K/0.25W就 可以了,保证基极为MA级 电流就可以开关三极管 了。
从上面的继电器线圈参数得知,继电器工作吸合电流为 0.2W/5V=40mA或5V/120Ω≈40mA。 2. 三极管的选择: 1. 功率PCM:大于5V*继电器电流 (5*40 mA = 0.2W)的两倍; 2. 最大集电极电流(ICM):大于继电器吸合电流的两倍以上; 3. 耐压BV(CEO):大于继电器工作电压5V,可选10V以上; 4. 直流放大倍数:取100。 5. 三极管可选:PCM(0.4W↑),ICM(80mA↑),BV (10V↑) 3. 三极管基极输入电流:继电器的吸合电流/放大倍数=基极电流 (40mA/100 =4mA),为工作稳定,实际基极电流应为计算值的2倍 以上。 4. 基极电阻:(5V-0.7V)/基极电流=电阻值(4.7V/8mA =3.3KΩ)。 1.
5V
想一想?
在实际应用中,三极 管这样驱动继电器的 电路有什么弊端吗?
5V
问题所在
1. 当三极管由导通变 为截止时,继电器 绕组感生出一个较 大的自感电压。它 与电源电压叠加后 加到控制继电器线 圈的三极管的e、c 两极上,使发射结 (e—c)有可能被 击穿。 2. 该如何解决呢?
5V
c b e
2.
型 号 : HK4100F-DC5V-SH
常用三极管参数(参考)
型号 9012 9014 8050 8550
极性 PNP NPN NPN PNP
PCM(W) 0.625 0.625 1 1
ICM(mA) 500 100 1.5A 1.5A
BV(CEO)V 40 50 25 25
fT(MHZ) --190 200