第四章分子对称性与群论初步
中科大结构化学-第四章 分子对称性与群论基础-1
* 群元素:数、矩阵、对称操作、算符 * 阶:群元素的数目 * “乘法”:元素间的某种结合规则,须满足结合律。 * 乘积元素的逆:(AB)-1 = B-1A-1 (B-1A-1)(AB) =B-1 (A-1A)B=E * 交换群: 如果所有的群元素间的乘法全都对易 (即 AB=BA, AC=CA, …. ),则 称为阿贝尔群(Abelian群)或交换群。 * 交换群的一个特例是循环群(群的所有元素可由某个元素的自身乘 积产生)。 例如: C3群:
σ σ' ϕ
ˆ σ
ˆ σ'
ˆ2 C∞ϕ
§4.2 一、 定义
群的基本知识
考虑一组元素的集合G{A,B,C,D,E,…},元素之间可以定义结 合规则(“乘法”),若满足以下条件,则称该组元素的集合构成一个群: (1)封闭性 若A和B是该集合的任意两个元素,则它们的积AB也一定是该集合的 元素。 (2)结合性 结合规则满足结合律: (AB)C=A(BC) (3)恒等元素 该集合必须含有一个元素 E,对于该集合中的任何元素 A,都有: AE=EA=A (4)逆元素 对于该集合的任何元素 A,一定有一个逆元素A-1,它也是该集合的一 个元素,使得: AA-1= A-1A = E 。
ˆ 120 o − − − C3 ˆ ˆ ˆ 240 o − − − C3 C3 = C32 ˆ ˆ ˆ ˆ3 ˆ 240 o − − − C3 C3 C3 = C3 = E
ˆ1 ˆ ˆ2 ˆ3 ˆn ˆ C n : C n = C n , C n , Cn , ......, Cn = E
主旋转轴:阶次最高的旋转轴。
F1 F3
B F2 F3 F1
B F2
对称元素:与一定的对称操作相联系的几何元素(对称轴、对称面、 对称中心) 。
分子对称性和群论初步
Cn轴产生n个旋转操作的周期均为n。
(2)对称轴 (Cn )和旋转操作 (Cn )
对称元素: 旋转轴C2 对称操作: 旋转
H2O中的C2
H2O2中的C2
NH3中的C3轴
SF6中的C4轴
Fe(C5H5)2中的C5轴
C6H6中的C6轴
N2中的C∞轴
(3)对称面 s 和反映操作 s
对称面
相当于一个镜面,把分子图形分成两个完全相等的对称 部分,两部分之间互为镜中映象;对称面所相应的对称 操作是镜面的一个反映,在对称面的反映操作下,分子 图形相等的两部分互相交换位置,相同性质的点(同类 原子)彼此置换。显然,反映操作的周期为2,即:
ˆ ˆ =E s
操作定义
Cn旋转轴能生成n个旋转操作,记为:
2 ˆ ˆ n, Cn , C
…
, ˆn=E ˆ C Cn
n 1 n
ˆk 若取逆时针方向的旋转为正操作,表示为 C n,则顺 k ˆ 时 针 旋 转 为 逆 操 作 , 表 示 为C n ,不难理 (nk )。 ˆk ˆ 解C n =C n
操作的周期
S8
2.5 假轴向群 Sn群
Sn:有一个 n重象转轴,须考虑 n的奇偶性。 n为偶数时, 群中有n个元素,n为奇数时,Sn不独立存在。 只有S4是独立的点群。例如:1,3,5,7-四甲基环辛四烯, 有一个S4映转轴,没有其它独立对称元素。
S2 S4
2.6 六方群
1). Td群
若一个四面体骨架的分子,存在4个C3轴,3个C2轴,同时每 个C2轴还处在两个互相垂直的平面sd的交线上,这两个平面还 平分另外2个C2轴(共有6个这样的平面)则该分子属Td对称性。 对称操作为{E,3C2,8C3,6S4,6sd}共有24阶。 四 面 体 CH4 、 CCl4 对 称 性 属 Td 群 , 一 些 含 氧 酸 根 SO42- 、 PO43-等亦是。在CH4分子中,每个C-H键方向存在1个C3轴,2 个氢原子连线中点与中心C原子间是C2轴,还有6个sd平面。
04章分子的对称和群
Cnv 是 S2n
是 Ci
否 S2n?
否 i?
否 C1
否 Cn
一些化学中重要的点群
点群 对 称 元 素(未包括恒等元素)
举例
Cs 仅有一个对称面 C1 无对称性 Cn 仅有一根n-重旋转轴 Cnv n-重旋转轴和通过该轴的镜面 Cnh n-重旋转轴和一个水平镜面 C∞v 无对称中心的线性分子 Dn n-重旋转轴和垂直该轴的n根C2轴 Dnh Dn的对称元素、再加一个水平镜面 D∞h 有对称中心的线性分子
ONCl, HOCl
SiFClBrI
H2O2, PPh3 H2O, NH3 反-N2F2 CO,HCN Cr(C2O4)33- BF3,PtCl42- H2, Cl2
Dnd Dn的对称元素、再加一套平分每一C2轴的垂直镜面 Sn 有唯一对称元素(Sn映轴) Td 正四面体分子或离子,4C3、3C2、3S4和6d
B2Cl4,交错C2H6
S4N4F4 CH4, ClO4-
Oh 正八面体分子或离子,3C4、4C3、6C2、6d、3h、i SF6
Ih 正二十面体,6C5、10C3、15C2及15σ
B12H122-
分子点群的分类:5 类 1. 无轴群—无Cn轴或Sn轴的群
如 C1,
H
C
F
Br
Cl
Ci,
H
Cl
F
F
Cl
第四章 分子对称性与点群
本章重点
掌握分子轨道理论及其应用; 掌握对称操作与对称元素的概念; 了解常见无机分子(离子)所属的点群; 掌握运用对称性知识判断分子的偶极矩和旋光性的 方法
2.1 对称元素与对称操作
如果分子各部分能够进行互换,而分子的取向没有产生可 以辨认的改变,这种分子就被说成是具有对称性。
分子的对称性和群论初步
H3BO3分
子
C3h C31, C32 , C33 E, h , S31, S35
属6阶群 S31 hC31,S32 C32,S33 h S34 C31,S35 hC32,S36 E
Cnh Cnk (k 1,n 1), E, h , hCnl (l 1,l 1)
非全同:不能通过平移或转动等第一类对称操 作使两个图形叠合。
2.旋光异构体:一对等同而非全同的分子构成 的一对对映体。
3.手性分子:没有第二类对称元素的分子。
R(右,顺时针方向转)和 S(左,逆时针旋转) 外消旋体:等量的R和S异构体混合物一定无旋光
性方向相反
4.对称性和旋光性的关系
✓ 若分子具有反轴Ι(先旋转360°/n,再反演)的对 称性,一定无旋光性;若分子不具有反轴的对称性, 则可能出现旋光性。
元的数目有限的群称为有限群,数目无限的群 称为无限群。
点群:一个有限分子的对称操作群 ☞“点”的含义 ✔这些对称操作都是点操作,操作时分子中至少
有一个点不动。 ✔分子的对称元素至少通过一个公共点。
2.2 群的乘法表
※顺序
乘法表由行和列组成,在行坐标x和列坐标y的 交点上找到的元是yx,即先操作x,后操作y。每一 行和每一列都是元的重新排列。
C6轴: C6轴包括C2 和C3 的全部对称操作。
1.3 反演操作和对称中心 i
反演操作: 将分子的各点移到对称中心连线的延长线上,
且两边的距离相等。若分子能恢复原状,即反演操 作。
✔对称因素:对称中心 i ✔特点:延长线,等距
除位于对称中心的原子外,其余均成对出现
若对称中心位置在原点 (0,0,0)处,反演操作i的表 示矩阵为:
✓ 一重反轴=对称中心,二重反轴=镜面,独立的反 轴只有I4 。则具有这三种对称操作的无旋光性, 不具有这3种对称元素的分子都可能有旋光性。
结构化学李炳瑞多媒体版 第四章 分子对称性与群论初步 (2)
n 2h 2 1 1 2 px = =T = × 2m 2m 4l 2 n 2h 2 = 8 ml 2
量子力学处理微观体系的一般步骤: 量子力学处理微观体系的一般步骤: 根据体系的物理条件,写出势能函数, ①根据体系的物理条件,写出势能函数,进 而写出Schrödinger方程; Schrödinger方程 而写出Schrödinger方程; 解方程, ②解方程,由边界条件和品优波函数条件确 定归一化因子及E 求得ψ 定归一化因子及En,求得ψn ③描绘ψn, ψn*ψn 图 ,讨论 描绘ψ ; 用力学量算符作用于ψ ④用力学量算符作用于ψn,求各个对应状态各 种力学量的数值,了解体系的性质; 种力学量的数值,了解体系的性质; 联系实际问题,应用所得结果。 ⑤联系实际问题,应用所得结果。
当n=2时,体系处于第一激发态 。 时
当n=3时,体系处于第二激发态。 时 体系处于第二激发态。
讨 论
( 3)波函数可以有正负变化 , 但概率密度总是非负的 . ) 波函数可以有正负变化,但概率密度总是非负的. 概率密度为零的点或面(边界处除外)称为节点或节面, 概率密度为零的点或面(边界处除外)称为节点或节面,一 般说来,节点或节面越多的状态,波长越短,频率越高, 般说来,节点或节面越多的状态,波长越短,频率越高,能 量越高. 量越高.
π4 4
C
C
4/9E1
♠花菁燃料的吸收光谱
[R2N¨-(CH=CH-)r ¨ = - CH=N+R2] = l l 定域键 l
1/9E1
3l 离域键
•势箱总长l=248r+565pm,共有 +2+2个π电子,基态时需占 势箱总长l 势箱总长 ,共有2r+ + 个 电子,基态时需占r+2个分子轨 个分子轨 当电子由第( 道,当电子由第(r+2)个轨道跃迁到第(r+3)个轨道时,需吸收光的频率为 )个轨道跃迁到第( )个轨道时, c/ν h/8ml c/ 8ml h ν=△E/h h/8ml2)[(r+3)2-(r+2)2]=(h/8ml2)(2r+5), 由λ=c/ν,λ=8ml2c/(2r+5)h △E/h=(h/8ml
结构化学:第四章 分子对称性和群论基础 (3)
1.对称操作和对称元素 2.对称操作群及对称元素的组合 3.分子的点群 4.分子的偶极矩和极化率 5.分子的手性和旋光性 6.群的表示
4.4. 分子的偶极矩和极化率
Dipole Moment: µ = qr
r
q
-q
分子的对称性可以判断偶极矩是否存在。
1. 只有分子的电荷中心不重合,才有偶极矩。 2. 偶极矩方向是由正电中心指向负电中心。
矢量表达式:
µx α xx α xy α xz Ex
µ y = α yx α yy α yz Ey
µz
α
zx
α zy
α zz Ez
极化率的计算-由折光率算极化率
α
=
3ε 0 (n2
N A(n2
−1)M + 2)d
293K时水n=1.3330;ε0=8.854×10-12J-1·C2·m2
分子的对称性
分子有无偶极矩
分子偶极矩的大小
分子的结构性质
分子的偶极矩和分子结构
例如:Pauling 用µ/er值作为键的离子性的判据
分子 CO
µ/(1030C·m)
0.39
r/(10-10m) 1.1283
µ/er 0.02
强共价键
共 离 HF
价 子 HCl 性性 增 减 HBr
强 弱 HI
6.37
但是,现代科学中一直有一个未解之谜:为什么组成我们机体的重 要物质——蛋白质都是由L-氨基酸构成?而构成核糖核酸的糖又都是D 型?大自然这种倾向性选择的根源何在——它是纯粹的偶然因素还是有 着更深刻的原因?
许多科学家都关注着自然界这一类对称性破缺. 1937年,Jahn与 Teller指出,非线型分子不能稳定地处于电子简并态,分子会通过降低 对称性的畸变解除这种简并. 例如,MnF3中Mn3+周围虽然有6个F-配位 ,却不是标准的正八面体,而是形成键长为0.179、0.191、0.209 nm的3 种Mn-F键. 在线型分子中,类似地也有Renner-Teller效应. 1956年,李政 道、杨振宁提出弱相互作用下宇称不守恒假说,同年由吴健雄等证实. 到了21世纪, 物理学提出了五大理论难题,其中之一就是对称性破缺问题.
北师大结构化学第4章分子对称性和群论
北师大结构化学第4章分子对称性和群论第4章分子对称性和群论是北师大结构化学课程的重要内容。
本章主要介绍了分子对称性和群论的基本概念,分子对称元素的分类,分子对称性的测定方法,以及如何利用群论分析分子的物理性质等内容。
首先,我们来介绍一下分子对称性的概念。
分子对称性是指分子在空间中具有对称性的特征。
对称性可以分为轴对称性和面对称性两种。
轴对称性是指分子围绕一个轴线旋转180°后能够重合,而面对称性是指分子能够分成两部分,在一个平面上旋转180°后能够重合。
根据分子对称元素的类型,分子可以分为三类:单反射面分子,具有一个反射面;多反射面分子,具有两个或更多的反射面;旋转反射面分子,具有一个旋转反射面。
这些分子对称元素的存在与否决定了分子的对称性。
测定分子对称性的方法有很多种,其中比较常用的是Infrared (IR)光谱法和微波光谱法。
IR光谱法是利用分子中特定的振动频率和对称性之间的关系来判断分子的对称性;微波光谱法则是利用分子的自由度和对称性之间的关系来判断分子的对称性。
利用群论分析分子的物理性质是分子对称性研究的一个重要方面。
群论是数学的一个分支,用来研究对称性和变换的关系。
在化学领域,群论应用广泛,可以用来描述分子中原子的位置和分子的振动等性质。
通过分子的对称群分析,可以确定分子的光谱活性、电子转移、化学反应的速率等一系列物理性质。
在分子对称性和群论的学习中,还需要了解一些基本的概念,如对称操作、置换、等价、置换群、分类、标识号等。
这些概念在群论分析中起到了重要的作用,可以帮助我们理解分子的对称性和群论的原理。
总的来说,第4章分子对称性和群论是北师大结构化学课程中的一章重要内容。
通过学习这一章,我们可以了解到分子对称性的基本概念和分类,以及如何利用群论分析分子的物理性质。
这对我们理解分子结构和性质,以及在化学研究中的应用具有重要意义。
分子对称性和群论基础
0 1
0 0
0 0 1
Cl
H
H
二氯乙烷
C2H4Cl2
H
H
Cl
iˆ2n Eˆ, iˆ2n1 iˆ
in
E
(n为偶数 )
i (n为奇数)
4.1. 对称操作和对称元素
4. 旋转反演操作和反轴
In反轴 Iˆn iˆCˆn
例如,Iˆ31 iˆCˆ31 ; Iˆ32 Cˆ32 ; Iˆ33 iˆ ; Iˆ34 Cˆ31 ; Iˆ35 iˆCˆ32 ; Iˆ36 Eˆ
➢ 平衡构型取决于分子的能态, 据此了解、预测分子的性质。
例:
H C N 基态
C
H
N Excited State
键长、键角有变化
4.1. 对称操作和对称元素
对称操作:
使分子处于等价构型的某种运动。 不改变物体内部任何两点间的距离而使物体复原的操作。
复原就是经过操作后,物体中每一点都放在周围环境与原先相似的相当 点上,无法区别是操作前的物体还是操作后的物体。
4.1. 对称操作和对称元素 5. 旋转反映操作和映轴(象转轴)Sn
例:CH4
Sn是非真旋转操作,为非真轴
Sˆn ˆhCˆn 复合对称操作,复合对称元素
S1 h ; S2 i ; S3 C3 h ; S4独立,包含C2 ; S5 C5 h ; S6 C3 i
4.1. 对称操作和对称元素
Iˆ41 iˆCˆ41 ; Iˆ42 Cˆ21 ; Iˆ43 iˆCˆ43 ; Iˆ44 Eˆ
Iˆ61 ˆCˆ32 ; Iˆ62 Cˆ31 ; Iˆ63 ˆ ; Iˆ64 Cˆ32 ; Iˆ65 ˆCˆ31 ; Iˆ66 Eˆ
n为奇,2n个操作,Cn+i
结构化学第四章
h: 垂直于主轴的对称面。 d: 包含主轴且平分垂直于主轴的两个相 邻C2轴夹角的平面。
C2 [Re2Cl8]2σd
试找出分子中的镜面
反映的矩阵表示:
1 0 0 ˆ xy 0 1 0 0 0 1 1 0 0 ˆ yz 0 1 0 0 0 1 1 0 0 ˆ zx 0 1 0 0 0 1
1.封闭性 若A G, B G, 则必有AB C, C G
C2v{C2z , xz , yz , E}
[ x, y , z ] [ x, y , z ] [ x, y , z ] [ x, y , z ] [ x, y , z ] C
z 2 xz yz
3
ˆ1 C3 ˆ C1
vc
va
ˆ1 C3 ˆ C2
3 a v b v c v
ˆ ˆ va ˆ ˆ vb ˆ ˆ vc
ˆ C ˆ E b ˆv ˆc v ˆ va
3 2 3
ˆ2 C3 ˆ C2
ˆ E ˆ1 C3 c ˆv ˆ va ˆb v
3
ˆ va c ˆv ˆb v
k
,
其中
旋转轴 1 作用在空间点
上,可得到另一个点
1
C2(z), C2(x), C2(y)
2、镜面与反映操作
分子中若存在一个平面,将
分子两半部互相反映而能使分子
复原,则该平面就是镜面σ,这 种操作就是反映.
对称面的正逆操作相同,即:
ˆ
ˆ
E ˆ ˆ ˆ
按与主轴的关系:
一个分子具有的全部对称元素构成一个完整的 对称元素系,和该对称元素系对应的全部对称操作 形成一个对称操作群,群是按照一定规律相互联系 着的一些元(又称元素)的集合,这些元可以是操作、 数字、 矩阵或算符等。在本章中群的元均指对称操 作或对称操作的矩阵。 连续做两个对称操作即和这两个元的乘法对应。 若对称操作A,B,C,…的集合G={A,B,C,…}同时满足 下列四个条件,这时G形成一个群。
结构化学基础课件 第四章 分子的对称性
②第二步,进行右上角的乘法, 分子进行 反映,N和H1保持不变,H2与H3互换位置,
再绕 轴旋转120度,则N还是不变,H2到H1 位置,H1到H2位置,H3回到原位置,两个操 作的净结果,相当于一个 镜面反映……可
写出右上角的九个结果。
③同理也可写出左下角的九个结果。旋转操 作和反映操作相乘,得到的是反映操作;两 个旋转操作相乘和两个反映操作相乘得到的 是旋转操作。
学时安排 学时----- 4学时
第四章.分子的对称性
对称 是一种很常见的现象。在自然界
我们可观察到五瓣对称的梅花、桃花,六瓣 的水仙花、雪花、松树叶沿枝干两侧对称, 槐树叶、榕树叶又是另一种对称……在人工 建筑中,北京的古皇城是中轴线对称。在化 学中,我们研究的分子、晶体等也有各种对 称性,有时会感觉这个分子对称性比那个分 子高,如何表达、衡量各种对称?数学中定 义了对称元素来描述这些对称。
I1 S2 i
S1
I
2
I2 S1
S2 I1 i
I3
S
6
C3
i
S3
I
6
C3
I4 S4
S4
I
4
I5 S10 C5 i
S5 I10 C5
I6 S3 C3 S6 I3 C3 i
负号代表逆操作,即沿原来的操作退回去的操作。
S4 S6
对称元 素符号
E Cn
I1n=iC1n 4.1.5.映轴和旋转反映操作
映轴S1n的基本操作为绕轴转3600/n, 接着按垂直于轴的平面进行反映,是C1n和 σ相继进行的联合操作:
S1n=σC1n
如果绕一根轴旋转2/n角度后立即对垂直于这根轴的一 平面进行反映,产生一个不可分辨的构型,那么这个轴就
第四章 分子对称性与群论基础-3
ˆˆ ˆˆ RH = HR
ˆ ˆˆ ˆ RHR −1 = H
ˆ R∈G
一般地,将满足上述条件的算符称为点群的对称算符。
下面将说明:分子的波函数构成分子点群的不可约表示的基函数,从 而分子波函数可按点群的不可约表示分类。 非简并情形:
ˆ Hψ i = ε iψ i
ˆˆ ˆ R Hψ i = ε i R ψ i
电偶极矩算符:
ˆ v ˆ Q=μ
其三个分量的对称性与笛卡尔坐标分量相同。 由非零矩阵元判断定理可得积分不为零的条件:
ˆ μx ˆ μy ˆ μz
~ x ~ y ~ z
Γx , y , z ⊗ ΓΨ2 = ΓΨ1
例如,若 Γx ⊗ ΓΨ2 = ΓΨ1 ,则跃迁是电偶极允许的,且谱带是 x 方向偏振的。
应用示例一:双原子分子(异核)的 MO 法处理
-e
单电子哈密顿算符为:
ra A
rb R B
1 2 1 1 1 ˆ h = − ∇1 − − + 2 ra rb R
单电子哈密顿算符是 C∞V 点群的对称算符:
ˆˆ ˆˆ Rh = hR
ˆ R∈G
其本征函数(分子轨道)属于点群的不可约表示:
ψ = c1ϕHale Waihona Puke + c2ϕ 2C2V
二、不可约表示基函数的正交性 例: 考虑单变量函数作为 Ci 的基函数,则:
Ag
点群的不可约表示
ˆ ˆ i f1 ( x) = f1 (i −1 x) = f1 (− x)
ˆ i f 1 ( x) = 1 ⋅ f 1 ( x)
ˆ i f 2 ( x) = −1 ⋅ f 2 ( x)
Au
所以:
三、不可约表示 基函数的构成法(投影算子) 一组普通函数 ,选组合系数:
分子的对称性和群论知识
x − x ˆ y = − y i z − z
Cl H H
−1 0 0 其变换矩阵为 i = 0 − 1 0 0 0 − 1
二氯乙烷 C2H4Cl2
H Cl H
ˆ ˆ i 2n = E, ˆ ˆ i 2n+1 = i
4.1.1恒等操作(E)和恒等元素(E) 恒等操作( )和恒等元素( ) 恒等操作 对分子施行恒等操作后,分子保持完全不动, 对分子施行恒等操作后,分子保持完全不动,即 分子中各原子的位置及其轨道方位完全不变! 分子中各原子的位置及其轨道方位完全不变! 恒等元素是所有分子几何图形都具有的! 恒等元素是所有分子几何图形都具有的! 4.1.2 旋转操作 nm)和旋转轴 n) 旋转操作(C 和旋转轴 和旋转轴(C 旋转轴是分子中一条特定的直线, 旋转轴是分子中一条特定的直线,旋转操作是把 分子图形以这条直线为轴旋转某个角度, 分子图形以这条直线为轴旋转某个角度,能产 生分子的等价图形。 生分子的等价图形。 Cnm: n为旋转 为旋转360度过程中分子复原的次数,m为 度过程中分子复原的次数, 为 为旋转 度过程中分子复原的次数 实际旋转的角度。 实际旋转的角度。 分子中可能有n个旋转轴 其中n值最大的一个称 个旋转轴, 分子中可能有 个旋转轴,其中 值最大的一个称 为主轴,其他为非主轴。 分子, 为主轴,其他为非主轴。如:BF3分子,一个 轴垂直于分子平面,三个C 面内) 有C3轴垂直于分子平面,三个 2轴(面内)
3O
ˆ σ
2H
3O
数学表示: 数学表示:矩阵表示
1H
σ
2H
σ
1H
x x ˆ σ ( xz) y = − y z z
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
环辛四烯衍生物中的 S4
分子中心是S4的图形符号
五、旋转反演操作与反轴
先凭借某一轴线施行旋转操作,再凭借此轴线上一 点进行反演操作,这种复合操作被称为旋转反演 操作。 Iˆn
施行反演操作所凭借的直线,称为反轴,符号为In。
映转轴和反轴可相互代 替。
CH4中的反轴I4与旋转反演操作
称为旋转操作,符号为 Cˆn
施行旋转操作所凭借的几何元素为一直线,称为旋
转轴,符号为Cn 。
n:轴次
n 2
H2O中的C2
:基转角
基转角是能使图形绕某一对称轴旋转而复原的 最小非零角度.
C2
n 2 2
H2O2
N2O
0
n
N2O中的C∞
二、反映操作与反映面
将图形中的各点移动到某一平面相反方向的等距离
处的操作被称为反映操作。 ˆ
施行反映操作所凭借的几何元素为一平面,称为反 映面,符号为σ。
对称面有三类:
σv: 包含主轴的对称面; σh :垂直主轴的对称面; σd:包含主轴、并平分与主轴垂直的二重轴之间 的夹角的对称面。
试找出分子中的旋转轴和反映面
三、反演操作与对称中心
将图形中的各点移动到某一点相反方向的等距离处
分子中的对称性
3.1 对称图形的定义
对称图形是能被不改变图形中任意两点间的距离 的操作所复原的图形。
操作:将图形中的每一点按一定的规律从一个位 置移到另一个位置。
复原:实施操作前什么地方有什么,操作后仍有 些什么,以致于无法观察图形中各点位置是否发生变 化。
旋转180度
H2O分子
图形复原
3.2 对称操作与对称元素
第四第章四章分子分对子对称称性性和与分群子论点初群步
ChaCphtaepr4te.rM4.olMecoulleacruSlayrmSmymetmryeatrnydaPnidonInt tGrrooduupction to Group Theory
4.1 对称图形的定义
生 物 界 的 对 称 性
建 筑 中 的 对 称 性
S5 C5 h
重叠型二茂
铁具有S5, 可 以由C5和与之 垂直的σ来代
替。
讨论分子结构时,独立的对称元素有: 旋转轴; 反映面; 对称中心;
轴次为4的倍数的映转轴。
试找出分子中所有的独立对称元素
乙烷重叠型
乙烷交错型
俯视图
交错型二茂铁
分子结构是有限图形, 具有宏观对称操作和宏观对称元素:
的操作被称为反演操作。 iˆ
施行反演操作所凭借的几何元素为一点,称为对称 中心,符号为i 。
四、映转操作与映转轴
先凭借某一轴线施行旋转操作,再凭借与此轴垂直 的平面进行反映操作,这种复合操作被称为映转 操作。 Sˆn
施行反演操作所凭借的直线,称为映转轴,符号为 Sn。
CH4中的映轴S4与旋转反映操作
二、n重轴的周期为n
C4的周期为4
三、映转轴和反轴的周期
1、当n为偶数,周期为n
S4的周期为4
2、当n为奇数,周期为2n S3的周期为6
3.4 独立的对称元素
说明映轴和反轴只有轴次为4的整数倍时才是独立的, 其他的均可由反映面、旋转轴、对称中心来代替。
S2 i
例如,先作二重旋转,再对垂直于该轴 的镜面作反映,等于对轴与镜面的交 点作反演.
三、偶次轴与垂直面的组合
如果一个图形中,偶次轴和垂直于偶次轴的对称面 存在,则必存在对称中心。
即偶次轴、垂直面、对称中心三者共存。
反式二氯乙烯:
1×C2,1×σh ,i
3.4 对称元素的周期
凭借同一对称元素进行的独立对称操作的数 目被称为对称元素的周期。 一、对称面和对称中心的周期是2
σ的周期为2
对称操作:不改变图 形中任何两点的距离而能 使图形复原的操作叫做对 称操作;
实施对称操作所凭借 的几何要素叫做对称元素.
对称元素: 旋转轴 对称操作: 旋转
有限图形所具 有的对称操作和对 称元素被称为宏观 对称操作和宏观对 称元素。
分子的宏观对称操作和宏观对称元素有5种:
一、旋转操作与旋转轴
将图形中的各点绕某一轴线旋转一定角度的操作被
i • 与操作的先后顺序无关
宏观对称操作与宏观对称元素
3.3 对称元素的组合
当两个对称元素按一定的相对位置同时存 在的时候,必能导出第三个对称元素,这被称 为对称元素的组合。
对称元素的组合要服从一定的组合原则:
一、两个反映面的组合
两个夹角为α的反映面的交线,一定是一个基转角 为2α的n重旋转轴。
推论:若有一个反映面包含n重轴,必有n个反映面 包含n重轴。
NH3分子:
1C3,3σv
相邻两个反映面夹角为60度
二、两个旋转轴的组合
垂直于夹角为α的两个2重轴交点的直线,一定是一 个基转角为2α的n重旋转轴。
推论:若有一个2重轴垂直于n重轴,必有n个2重 轴垂直于n重轴。
苯分子: 1×C6,6×C2 相邻两个2重轴的夹角为 30
许多元素的集合构成群,
G={A、B、C、D、E}
群
群中元素的个数为群的阶,符号为h。
数学上符合下列四个条件的集合称为群。
群中任意两个元素乘积或一个元素自乘
的结果,必是群中的一个元素。
1、
封 A,B是G群中任意两个元素,
闭 性
AA=C,BB=D,AB=E
C,D,E都是群G的元素,
群G中的元素满足封闭性。
乘积:一种相互作用。
例例 G={0,±1,±2,…,±n}
对算术加法构成一个群。
满足群的封闭性。
群中各元素的运算满足乘法结合律。
若 A、B、C为G群中的元素
则 ABC=(AB)C=A(BC)。 2、
缔 合 性
例
G={0,±1,±2,…,±n} 对算术加法构成一个群。
满足群的缔合性
群中必有一个元素E,它同群中任意一个
元素作用的结果仍是该元素,
3、
E为单位元素。即ER=RE=R
单
位 元 素
例
G={0,±1,±2,…,±n} 对算术加法构成一个群。
单位元素:0
G群中有单位元素。
群中的每一个元素都有逆元素存在,
逆元素也是群中的元素。
讨论分子结构时,独立的对称元素有: 旋转轴; 反映面; 对称中心;
轴次为4的倍数的映转轴。
菲分子:
1C2,2σv
苯分子:
3.5 分子的对称类型——分子点群
有限图形按其对称性进行分类,把具有相同类型 和个数的对称元素的图形划为一类,称为一种对称 类型。
一种对称类型是宏观对称元素的一种组合方式。 分子的对称类型则由点群来描述。