实验四 回溯法求n皇后问题

合集下载

n皇后问题实验报告

n皇后问题实验报告

n皇后问题实验报告n皇后问题实验报告引言:n皇后问题是一个经典的数学问题,它要求在一个n×n的棋盘上放置n个皇后,使得它们互相之间不能相互攻击,即任意两个皇后不能处于同一行、同一列或同一对角线上。

本实验旨在通过编程实现n皇后问题的求解,并探索不同算法在解决该问题上的性能差异。

实验步骤及结果:1. 回溯算法的实现与性能分析回溯算法是最常见的解决n皇后问题的方法之一。

它通过递归的方式遍历所有可能的解,并通过剪枝操作来提高效率。

我们首先实现了回溯算法,并对不同规模的问题进行了求解。

在测试中,我们将问题规模设置为4、8、12和16。

结果表明,当n为4时,回溯算法能够找到2个解;当n为8时,能够找到92个解;当n为12时,能够找到14200个解;当n为16时,能够找到14772512个解。

可以看出,随着问题规模的增加,回溯算法的求解时间呈指数级增长。

2. 启发式算法的实现与性能分析为了提高求解效率,我们尝试了一种基于启发式算法的解决方法。

在该方法中,我们使用了遗传算法来搜索解空间。

遗传算法是一种模拟生物进化过程的优化算法,通过进化操作(如选择、交叉和变异)来寻找问题的最优解。

我们将遗传算法应用于n皇后问题,并对不同规模的问题进行了求解。

在测试中,我们将问题规模设置为8、12和16。

结果表明,遗传算法能够在较短的时间内找到问题的一个解。

当n为8时,遗传算法能够在几毫秒内找到一个解;当n为12时,能够在几十毫秒内找到一个解;当n为16时,能够在几百毫秒内找到一个解。

相比之下,回溯算法在同样规模的问题上需要几秒钟甚至更长的时间。

3. 算法性能对比与分析通过对比回溯算法和启发式算法的性能,我们可以看到启发式算法在求解n皇后问题上具有明显的优势。

回溯算法的求解时间随问题规模呈指数级增长,而启发式算法的求解时间相对较短。

这是因为启发式算法通过优化搜索策略,能够更快地找到问题的解。

然而,启发式算法并非没有缺点。

回溯法实验(n皇后问题)(迭代法)

回溯法实验(n皇后问题)(迭代法)

算法分析与设计实验报告第三次附加实验附录:完整代码(回溯法)//回溯算法递归回溯n皇后问题#include<iostream>#include<time.h>#include<iomanip>#include"math.h"using namespace std;class Queen{friend int nQueen(int); //定义友元函数,可以访问私有数据private:bool Place(int k); //判断该位置是否可用的函数void Backtrack(int t); //定义回溯函数int n; //皇后个数int *x; //当前解long sum; //当前已找到的可行方案数};int main(){int m,n;for(int i=1;i<=1;i++){cout<<"请输入皇后的个数:"; //输入皇后个数cin>>n;cout<<"皇后问题的解为:"<<endl;clock_t start,end,over; //计算程序运行时间的算法start=clock();end=clock();over=end-start;start=clock();m=nQueen(n); //调用求解的函数cout<<n<<"皇后问题共有";cout<<m<<"个不同的解!"<<endl; //输出结果end=clock();printf("The time is %6.3f",(double)(end-start-over)/CLK_TCK); //显示运行时间cout<<endl;}system("pause");return 0;}bool Queen::Place(int k)//传入行号{for(int j=1;j<k;j++){if((abs(k-j)==abs(x[j]-x[k]))||(x[j]==x[k]))//如果两个在同一斜线或者在同一列上,说明冲突,该位置不可用{return false;}}return true;}void Queen::Backtrack(int t){if(t>n){sum++;/*for(int i=1;i<=n;i++) //输出皇后排列的解{cout<<x[i]<<" ";}cout<<endl;*/}else{//回溯探索第i行的每一列是否有元素满足要求for(int i=1;i<=n;i++){x[t]=i;if(Place(t)){Backtrack(t+1);}}}}int nQueen(int n){Queen X; //定义Queen类的对象X//初始化XX.n=n;X.sum=0;int *p=new int[n+1]; //动态分配for(int i=0;i<=n;i++) //初始化数组{p[i]=0;}X.x=p;X.Backtrack(1);delete[] p;return X.sum;//输出解的个数}完整代码(回溯法)//回溯算法迭代回溯n皇后问题#include<iostream>#include<time.h>#include<iomanip>#include"math.h"using namespace std;class Queen{friend int nQueen(int); //定义友元函数private:bool Place(int k); //定义位置是否可用的判断函数void Backtrack(void); //定义回溯函数int n; // 皇后个数int *x; // 当前解long sum; // 当前已找到的可行方案数};int main(){int n,m;for(int i=1;i<=1;i++){cout<<"请输入皇后的个数:";cin>>n;cout<<n<<"皇后问题的解为:"<<endl;clock_t start,end,over; //计算程序运行时间的算法start=clock();end=clock();over=end-start;start=clock();m=nQueen(n); //调用求解皇后问题的函数cout<<n<<"皇后问题共有";cout<<m<<"个不同的解!"<<endl;end=clock();printf("The time is %6.3f",(double)(end-start-over)/CLK_TCK); //显示运行时间cout<<endl;}system("pause");return 0;}bool Queen::Place(int k){for (int j=1;j<k;j++){if ((abs(k-j)==abs(x[j]-x[k]))||(x[j]==x[k])) //如果两个皇后在同一斜线或者在同一列上,说明冲突,该位置不可用{return false;}}return true;}void Queen::Backtrack() //迭代法实现回溯函数{x[1] = 0;int k = 1;while(k>0){x[k] += 1; //先将皇后放在第一列的位置上while((x[k]<=n)&&!(Place(k))) //寻找能够放置皇后的位置{x[k] += 1;}if(x[k]<=n) //找到位置{if(k == n) //如果寻找结束输出结果{/*for (int i=1;i<=n;i++){cout<<x[i]<<" ";}cout<<endl; */sum++;}else//没有结束则找下一行{k++;x[k]=0;}}else//没有找到合适的位置则回溯{ k--; }}}int nQueen(int n){Queen X; //定义Queen类的对象X//初始化XX.n=n;X.sum=0;int *p=new int[n+1];for(int i=0;i<=n;i++){p[i]=0;}X.x=p;X.Backtrack();delete []p;return X.sum; //返回不同解的个数}。

回溯法求解N皇后问题

回溯法求解N皇后问题

算法的实现
• 假设回溯法要找出所有的答案结点 。 • 设(x1,x2,…,xi-1)是状态空间树中由根到一个结 点的路径,而T(x1,…xi-1)是下述所有结点xi的 集合,它使得对于每一个xi,(x1,x2,…,xi)是由 根到一个结点xi的路径;假定还存在着一些限 界函数Bi,如果路径(x1,x2,…,xi)不可能延伸到 一个答案结点,则Bi(x1,x2,…,xi)取假值,否则 取真值。 • 于是解向量X(1:n)中的第i个分量,就是那些 选自集合T (x1,x2,…,xi-1)且使Bi为真的xi
HHIT
算法8.5:n-皇后问题的解
Algorithm
Procedure NQUEENS(n) //此过程使用回溯法求出一个n*n棋盘上放置n个皇后,使其不能互相攻 击的所有可能位置// integer k,n,X(1:n) X(1)0 ; k1 // k是当前行;X(k)是当前列 // while k>0 do // 对所有的行,执行以下语句 // X(k)X(k)+1 //移到下一列// while X(k)<=n and Not PLACE(k) do //此处能放这个皇后吗// X(k)X(k)+1 //不能放则转到下一列// repeat if X(k)<=n then //找到一个位置// if k=n then print (X) //是一个完整的解则打印这个数组// else kk+1;X(k)0 //否则转到下一行// end if else kk-1 //回溯// end if repeat End NQUEENS
HHIT
Algorithm
显然,棋盘的每一行上可以而且必须摆放一个皇后, 所以,n皇后问题的可能解用一个n元向量X=(x1, x2, …, xn) 表示,其中,1≤i≤n并且1≤xi≤n,即第i个皇后放在第i行第 xi列上。 由于两个皇后不能位于同一列上,所以,解向量X必 须满足约束条件: xi≠xj (式8.1)

实验四N皇后问题求解

实验四N皇后问题求解

实验四N 皇后问题求解、题目1) 以Q-皇后问题为例,掌握回溯法的基本设计策略。

2) 掌握回溯法解决Q-皇后问题的算法并实现;二、算法设计思想回溯法是在包含问题的所有解的解空间树中,按照深度优先搜索的策略,从根结点出发深度探索解空间树。

当探索到某一结点时,要先判断该结点是否包含问题的解,如果包含,就从该结点出发继续探索下去,如果该结点不包含问题的解,则逐层向其祖先结点回溯。

(其实回溯法就是对隐式图的深度优先搜索算法)。

若用回溯法求问题的所有解时,要回溯到根,且根结点的所有可行的子树都要已被搜索遍才结束。

而若使用回溯法求任一个解时,只要搜索到问题的一个解就可以结束。

判断解是否可行的条件:1. 不在同一行或者同一列,x[i]!=x[j],i!=j2•不在一条斜线上,设两个皇后在(i,j)和(k,l)位置,卜k|!=|j-l|三、程序#include<stdio.h>#include<stdlib.h>int n,stack[100]; // 存当前路径int total; // 路径数int att(int,int);void make(int l) //递归搜索以stack[l]为初结点的所有路径{int i,j; //子结点个数if (l==n+1){total=total+1; // 路径数+1 for(i=1;i<=n;i++)printf(" 输出皇后的列位置%-3d",stack[i]);// 输出第i 行皇后的列位置stack[i]}int att(int l,int i){}for (i=1;i<=n;i++){stack[l]=i; II算符i 作用于生成stack[l-1]产生子状态stack[l];if (!att(l,i))make(l+1);printf("\n");exit; II 回溯} II 再无算符可用,回溯int k;for (k=1;k<l;k++)if (abs(l-k)==abs(stack[k]-i)||i==stack[k])return 1;return 0;}int main(){}四、运行结果printf("N=");scanf("%d",&n);total=0; II 路径数初始化为0make(1); II从结点1出发,递归搜索所有的路径printf("%d\n",total);system("pause");return 0;六、心得体会在解决N皇后的时候一开始有点不止如何着手,因为这里有个N的不确定性,所以选择简单少量的情况进行具体考虑显得相对容易了许多,还有一个值得注意的问题就是如何判断要不要重新开始搜索,并且在已经形成的简单模型基础上进行改进,使之也能满足后面较复杂情况。

n皇后 实验报告

n皇后 实验报告

n皇后实验报告n皇后实验报告引言:n皇后问题是一个经典的数学问题,其目标是在一个n×n的棋盘上放置n个皇后,使得它们互不攻击。

本实验旨在通过编程实现n皇后问题的解法,并对不同的算法进行性能分析。

实验方法:本实验采用Python语言编写程序,实现了两种常见的解法:回溯法和遗传算法。

回溯法是一种穷举搜索的方法,通过不断尝试每一种可能的放置方式,直到找到满足条件的解;而遗传算法则是通过模拟生物进化的过程,利用选择、交叉和变异等操作逐步优化解的质量。

实验结果:在实验中,我们分别测试了回溯法和遗传算法在不同规模的n皇后问题上的性能表现。

以下是实验结果的总结:1. 回溯法:- 对于规模较小的问题(n<10),回溯法可以在短时间内找到所有解,并输出结果。

- 随着问题规模的增大,回溯法的搜索时间呈指数级增长。

当n=15时,搜索时间已经超过10秒。

- 回溯法在解决大规模问题时,遇到了组合爆炸的问题,无法在合理的时间内得出结果。

2. 遗传算法:- 遗传算法对于规模较小的问题表现不如回溯法,因为其需要较长的时间来找到一个较优解。

- 随着问题规模的增大,遗传算法的性能逐渐超过回溯法。

当n=20时,遗传算法能够在合理的时间内找到一个较优解。

- 遗传算法在解决大规模问题时,相比回溯法有明显的优势,因为其搜索时间增长较慢。

实验讨论:通过对实验结果的分析,我们可以得出以下结论:- 回溯法适用于规模较小的n皇后问题,但在大规模问题上的性能不佳。

- 遗传算法在大规模问题上表现较好,但对于规模较小的问题需要更长的时间来找到较优解。

- 遗传算法的性能受到参数设置的影响,不同的选择、交叉和变异策略可能导致不同的结果。

结论:综上所述,回溯法和遗传算法都是解决n皇后问题的有效方法,但在不同规模的问题上有不同的性能表现。

在实际应用中,我们可以根据问题规模选择合适的算法来求解。

对于规模较小的问题,回溯法可以提供精确的解;而对于大规模问题,遗传算法能够在合理的时间内找到较优解。

回溯法求解N皇后问题

回溯法求解N皇后问题

① 如果xi+1= ai+1k不是集合Si+1的最后一个元素,则令xi+1= ai+ 1k+1,即选择Si+1的下一个元素作为解向量X的第i+1个分量;
② 如果xi+1= ai+1k是集合Si+1的最后一个元素,就回溯到X=(x1, x2, …, xi),选择Si的下一个元素作为解向量X的第i个分量,假 设xi= aik,如果aik不是集合Si的最后一个元素,则令xi= aik+1; 否则,就继续回溯到X=(x1, x2, …, xi-1);
global X(1:k); integer i,k;
i1
while i<k do
if X(i)=X(k) or ABS(X(i)-X(k))=ABS(i-k) then
return (false)
end if
ii+1 repeat return (true)
判断是否有其它的皇 后与之在同一列或同 一斜对角线上
HHIT
Algorithm
(1)如果X=(x1, x2, …, xi+1)是问题的最终解,则输出这个解。 如果问题只希望得到一个解,则结束搜索,否则继续搜索其
他解;
(2)如果X=(x1, x2, …, xi+1)是问题的部分解,则继续构造解 向量的下一个分量;
(3)如果X=(x1, x2, …, xi+1)既不是问题的部分解也不是问题 的最终解,则存在下面两种情况:
while k>0 do // 对所有的行,执行以下语句 //
X(k)X(k)+1 //移到下一列//
while X(k)<=n and Not PLACE(k) do //此处能放这个皇后吗//
X(k)X(k)+1 //不能放则转到下一列//

实验四回溯法求n皇后问题

实验四回溯法求n皇后问题
return false;
return true;
}
void queue(intn)
{
inti,k;
for(i=1;i<=n;i++)
x[i]=0;
k=1;
while(k>=1)
{
x[k]=x[k]+1; //在下一列放置第k个皇后
while(x[k]<=n&&!place(k))
x[k]=x[k]+1;//搜索下一列
k=k+1;//放置下一个皇后
else
{
x[k]=0;//重置x[k],回溯
k=k-1;
}
}
}
void main()
{
intn;
printf("输入皇后个数n:\n");
scanf("%d",&n);
queue(n);
}
五、实验结果截图
六、实验总结
关于n皇后问题,看似复杂难懂,运行结果也很多,但是如果掌握了算法的要点,并且编写的准确无误,其实很简单明了的,而且在组实验的过程中会体会到很多乐趣,当然也有不懂得地方,需要请教别人,总之受益匪浅。
if(x[k]<=n&&k==n)//得到一个输出
{
for(i=1;i<=n;i++)
printf("%d ",x[i]);
printf("\n");
//return;//若return则只求出其中一种解,若不return则可以继续回溯,求出全部的可能的解
}
else if(x[k]<=n&&k<n)

回溯法求解N皇后问题

回溯法求解N皇后问题
1.定义一个解空间,它包含问题的解。
2.用适于搜索的方式组织该空间。
3.用深度优先法搜索该空间,利用界限函数避免移动到不可能产生解的子空间。
二.实验内容
问题描述:
在n×n格的棋盘上放置彼此不受攻击的n个皇后,按照国际象棋的规则,皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子,求解可以放置的方法种数。
1.编程实现n皇后算法。
2.用图形输出中间过程。
3.在程序中添加统计扩展节点数,估计算法的复杂性。
三.问题分析
n后问题等于于在n×n格的棋盘上放置n个皇后,任何2个皇后不放在同一行或同一列或同一斜线上。即规定每一列放一个皇后,不会造成列上的冲突;当第i行被某个皇后占领后,则同一行上的所有空格都不能再放皇后,要把以i为下标的标记置为被占领状态。
华北电力大学科技学院
实验ቤተ መጻሕፍቲ ባይዱ告
|
|
实验名称回溯法求解N皇后问题
课程名称算法设计与分析
|
|
专业班级:学生姓名:
学号:成绩:
指导教师:实验日期:
一.实验目的及要求:
掌握回溯法基本思想及解题步骤。
回溯法的求解过程实质上是一个优先遍历一棵树状的过程,只是这棵树不是遍历前预先建立的,而是隐含在遍历过程中的。
回溯法的步骤:
System.exit(-1);
}return string;
}
//
//
}
//N皇后计算
class Nqueens
{
int n;
public Nqueens(int n)
{
this.n=n;
}
int x[];
int sum=0;
public boolean Place(int k)

用回溯算法解n皇后问题实验步骤

用回溯算法解n皇后问题实验步骤

湖州师范学院实验报告课程名称:算法实验四:回溯算法一、实验目的1、理解回溯算法的概念,掌握回溯算法的基本要素。

2、掌握设计回溯算法的一般步骤,针对具体问题,能应用回溯算法求解。

二、实验内容1、问题描述1 )n后问题在n×n格的棋盘上放置彼此不受攻击的n个皇后。

按照国际象棋的规则,皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子。

n后问题等价于在n×n格的棋盘上放置n个皇后,任何2个皇后不放在同一行或同一列或同一斜线上。

2)0-1 背包问题需对容量为 c 的背包进行装载。

从n 个物品中选取装入背包的物品,每件物品i 的重量为wi ,价值为pi 。

对于可行的背包装载,背包中物品的总重量不能超过背包的容量,最佳装载是指所装入的物品价值最高。

每种物品要么放进背包,要么丢弃。

2、数据输入:文件输入或键盘输入。

3、要求:1)完成上述两个问题,时间为2 次课。

2)独立完成实验及实验报告。

三、实验步骤1、理解方法思想和问题要求。

2、采用编程语言实现题目要求。

3、上机输入和调试自己所写的程序。

4、附程序主要代码:1.n后问题:#include<iostream>using namespace std;class Queen {friend int nQueen(int);private:bool Place(int k);void Backtrack(int t);int n,*x;long sum;};bool Queen::Place(int k) {for (int j = 1; j < k; j++)if ((abs(k - j) == abs(x[j] - x[k])) || (x[j] == x[k]))return false;return true;}void Queen::Backtrack(int t) {if (t > n) {for (int i = 1; i <= n; i++)cout << x[i] << " ";cout << endl;sum++;}else {for (int i = 1; i <= n; i++) {x[t] = i;if (Place(t)) Backtrack(t + 1);}}}int nQueen(int n) {Queen X;//初始化XX.n = n;X.sum = 0;int* p = new int[n + 1];for (int i = 0; i <= n; i++)p[i] = 0;X.x = p;X.Backtrack(1);delete [] p;return X.sum;}void main() {int n, set;cout << "请输入皇后个数:"; cin >> n;cout << "可行方案所有解:" << endl;set = nQueen(n);cout << "可行方案数:" << set << endl;}2.0-1背包:#include <stdio.h>#include <conio.h>int n;//物品数量double c;//背包容量double v[100];//各个物品的价值double w[100];//各个物品的重量double cw = 0.0;//当前背包重量double cp = 0.0;//当前背包中物品价值double bestp = 0.0;//当前最优价值double perp[100];//单位物品价值排序后int order[100];//物品编号int put[100];//设置是否装入//按单位价值排序void knapsack(){int i,j;int temporder = 0;double temp = 0.0;for(i=1;i<=n;i++)perp[i]=v[i]/w[i];for(i=1;i<=n-1;i++){for(j=i+1;j<=n;j++)if(perp[i]<perp[j]) perp[],order[],sortv[],sortw[] {temp = perp[i];perp[i]=perp[i];perp[j]=temp;temporder=order[i]; order[i]=order[j]; order[j]=temporder; temp = v[i];v[i]=v[j];v[j]=temp;temp=w[i];w[i]=w[j];w[j]=temp;}}}//回溯函数void backtrack(int i){double bound(int i);if(i>n){bestp = cp;return;}if(cw+w[i]<=c){cw+=w[i];cp+=v[i];put[i]=1;backtrack(i+1);cw-=w[i];cp-=v[i];}if(bound(i+1)>bestp)//符合条件搜索右子数 backtrack(i+1);}//计算上界函数double bound(int i){double leftw= c-cw;double b = cp;while(i<=n&&w[i]<=leftw){leftw-=w[i];b+=v[i];i++;}if(i<=n)b+=v[i]/w[i]*leftw;return b;}int main(){int i;printf("请输入物品的数量和容量:");scanf("%d %lf",&n,&c);printf("请输入物品的重量和价值:");for(i=1;i<=n;i++){printf("第%d个物品的重量:",i);scanf("%lf",&w[i]);printf("价值是:");scanf("%lf",&v[i]);order[i]=i;}knapsack();backtrack(1);printf("最有价值为:%lf\n",bestp);printf("需要装入的物品编号是:");for(i=1;i<=n;i++){if(put[i]==1)printf("%d ",order[i]);}return 0;}5、实验结果:四、实验分析1、:n后问题分析只要不要在同一直线和斜线上就行。

回溯算法解决N皇后问题实验及其代码

回溯算法解决N皇后问题实验及其代码

实验报告4回溯算法实验4回溯算法解决N皇后问题一、实验目的1)掌握回溯算法的实现原理,生成树的建立以及限界函数的实现;2)利用回溯算法解决N皇后问题;二、实验内容回溯算法解决N皇后问题。

三、算法设计1)编写限界函数bool PLACE(int k,int x[]),用以确定在k列上能否放置皇后;2)编写void NQUEENS(int n)函数用以摆放N个皇后;3)编写主函数,控制输入的皇后数目;4)改进和检验程序。

四、程序代码//回溯算法解决N皇后问题的c++程序#include<math.h>#include<iostream>using namespace std;int count=0; //皇后摆放的可能性bool PLACE(int k,int x[]);//限界函数void NQUEENS(int n);//摆放皇后int main(){}int queen;cout<<"先生(女士)请您输入皇后的总数,谢谢!:"<<endl;cin>>queen;NQUEENS(queen);cout<<"所有可能均摆放完毕,谢谢操作"<<endl;return 0;void NQUEENS(int n){/*此过程使用回溯算法求出在一个n*n棋盘上放置n个皇后,使其即不同行,也不同列,也不在同一斜角线上*/int k, *x=new int[n];//存放皇后所在的行与列x[0]=0;k=0;while (k>=0&&k<n){ //对所有的行执行以下语句x[k]=x[k]+1; //移到下一列while(x[k]<=n&&(!PLACE(k,x))){ //此处能放置一个皇后吗?}if( x[k]<=n ) { //找到一个位置if( k==n-1 ){ //是一个完整的解吗cout<<"第"<<++count<<"排法是:"<<endl;for(int i=0;i<n;i++)//打印皇后的排列{}cout<<"\n";for (int j=0;j<n;j++){}cout<<"\n";if (x[i] == j+1){}else{}cout<<". ";cout<<"*";x[k]=x[k]+1; //移到下一列}}}}else { k=k+1; x[k]=0;} //移向下一行else k=k-1; //回溯bool PLACE(int k,int x[]){/*如果一个皇后能放在第k行和x(k)列,返回ture;否则返回false。

回溯算法补充内容(N皇后、图的着色问题)

回溯算法补充内容(N皇后、图的着色问题)

• 子集合数问题的递归回溯算法
• • Procedure Sumofsum(s,k,r) //找w(1:n)中和数为M的所有子集。进入此过程的时候x(1),…,x(k-1)的值已经确定。 s=w(1)x(1)+…+w(k-1)x(k-1); r=w(k)+…+w(n) 这些W(j)按非降次的顺序排列。假定 w(1)<=M, w(1)+…+w(n)>=M
N皇后问题的所有解
end while
end
PLACE (k)的程序
• Procedure PLACE(k) // 如果一个皇后能放在第k行和x(k)列,返回ture;否则返回false。x是一个全局 变量,进入此过程的时候已经置了k个值。ABS(r)过程返回r的绝对值 global x(1:k); integer i,k; i=1; while i<k do if x(i)==x(k) or ABS(x(i)-x(k))==ABS(i-k) //在同一列 或者在同一斜角线上 有两个皇后 then return (false) end if i=i+1; end while return (true) end
Global integer m,n X(1:n) Boolean Graph(1:n,1:n) integer k loop X(k)=(X(k)+1)mod(m+1) //试验下一个最高标值的颜色 if X(k)==0 return //全部颜色用完 endif for j=1:n if Graph(k,j)and X(k)==X(j) //如果(k,j)是一条边并且临近的结点有相同的颜色 exit endif endfor if j==n+1 // 找到了一种新颜色 return endif endloop end

n皇后 实验报告

n皇后 实验报告

n皇后实验报告n皇后实验报告引言:n皇后问题是一个经典的数学问题,旨在找到在一个n×n的棋盘上放置n个皇后,使得它们互不攻击。

这个问题涉及到了组合数学、图论和计算机算法等多个领域,具有一定的难度和挑战性。

本实验旨在通过不同的算法和策略来解决n皇后问题,并对它们的效率和性能进行评估。

实验一:暴力法暴力法是最简单直接的解决方法之一。

它通过穷举法遍历所有可能的皇后放置方式,并检查是否满足条件。

具体步骤如下:1. 生成一个空的n×n棋盘。

2. 从第一行开始,依次尝试将皇后放置在每个格子上。

3. 如果当前格子可以放置皇后,则继续下一行;否则,回溯到上一行,重新选择一个可行的格子。

4. 当所有行都放置了皇后时,找到了一个解,记录下来。

5. 继续尝试下一个可能的放置方式,直到遍历完所有情况。

实验结果显示,暴力法在小规模问题上表现良好,但在n较大时,其时间复杂度呈指数级增长,运行时间非常长。

实验二:回溯法回溯法是一种优化的解决方法,它通过剪枝操作来减少不必要的搜索。

具体步骤如下:1. 生成一个空的n×n棋盘。

2. 从第一行开始,依次尝试将皇后放置在每个格子上。

3. 如果当前格子可以放置皇后,则继续下一行;否则,回溯到上一行,重新选择一个可行的格子。

4. 当所有行都放置了皇后时,找到了一个解,记录下来。

5. 在每次尝试放置皇后时,通过检查当前格子所在的行、列和对角线上是否已经有皇后,来判断是否满足条件。

6. 在每次回溯时,可以通过剪枝操作来减少搜索的空间。

实验结果显示,回溯法相较于暴力法有了一定的提升,但在n较大时,仍然存在一定的时间复杂度问题。

实验三:优化算法为了进一步提高解决n皇后问题的效率,我们尝试了一些优化算法。

其中,一种比较常见的优化算法是基于位运算的方法。

1. 生成一个空的n×n棋盘。

2. 使用一个n位的二进制数来表示每一行上的皇后位置,其中1表示有皇后,0表示没有皇后。

基本算法4-回溯法-N皇后问题

基本算法4-回溯法-N皇后问题

1
x1=1 2
x2= 2 3 kill
1
1 2
回溯到结点2生成结点8, 路径变为(1, 3), 则结点8成为E-结点, 它生成结点9和结点11都会被杀死(即它的儿子表示不可能导 x1=1 致答案的棋盘格局), 所以结点8也被杀死, 应回溯.
1
1
1
2
2
3
x2= 2 x2= 3 3 kill 8 x3=2 9 kill x3=4 11 kill
借书问题 [问题描述]
学校放暑假时,信息学辅导教师有n本书要分给参加培训的n个学生。如:A, B,C,D,E共5本书要分给参加培训的张、刘、王、李、孙5位学生,每人只能选 1本。教师事先让每个人将自己喜爱的书填写在如下的表中,然后根据他们填写的 表来分配书本,希望设计一个程序帮助教师求出可能的分配方案,使每个学生都满 意。 A 张 王 刘 孙 李 Y Y Y Y Y Y Y B C Y D Y E
● ●
……
● ● ● ● ● ● ● ●
……
……





● ● ● ●


● ●

● ●

● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ● ●
● ● ●
•搜索解空间,剪枝:
– (1) 从空棋盘起,逐行放置棋子。
– (2) 每在一个布局中放下一个棋子,即推演到一 个新的布局。 – (3) 如果当前行上没有可合法放置棋子的位置, 则回溯到上一行,重新布放上一行的棋子。
61 2
64
3
16
3
20
4
22
1
25

n皇后 实验报告

n皇后 实验报告

n皇后问题实验报告1. 引言n皇后问题是一个经典的组合优化问题,旨在找到如何在一个n × n的棋盘上放置n个皇后,使得任意两个皇后不在同一行、同一列或同一对角线上。

这个问题可以通过回溯算法来解决。

在本实验报告中,我们将详细介绍n皇后问题,并提供一个实现回溯算法解决该问题的步骤。

2. 算法步骤以下是解决n皇后问题的步骤:2.1 初始化首先,我们需要定义一个n × n的棋盘,并初始化所有位置为空。

2.2 递归回溯接下来,我们使用递归回溯来找到合适的解决方案。

我们从第一行开始,逐个尝试在每个位置放置一个皇后。

2.2.1 判断位置是否合法在放置皇后之前,我们需要判断当前位置是否符合规则。

判断的条件包括当前位置所在的行、列以及对角线上是否已经存在其他皇后。

如果存在冲突,则需要尝试下一个位置。

2.2.2 放置皇后如果当前位置合法,我们将在该位置放置一个皇后,并继续递归地尝试下一行。

2.2.3 回溯如果放置皇后后无法找到合适的解决方案,我们需要回溯到上一行,将上一行的皇后位置向后移动一位,并尝试下一个位置。

2.3 输出解决方案当找到一个合适的解决方案时,我们输出棋盘的状态,显示每个位置是否有皇后。

2.4 继续寻找其他解决方案如果还存在其他解决方案,我们将继续递归回溯,直到找到所有的解决方案。

3. 实验结果经过实验,我们使用回溯算法成功解决了n皇后问题。

对于不同的n值,我们找到了所有的解决方案并进行了输出。

以下是几个n皇后问题的解决方案示例:3.1 n = 4- Q - -- - - QQ - - -- - Q -3.2 n = 8Q - - - - - - -- - - - Q - - -- - - - - - - Q- - - - - Q - -- - Q - - - - -- - - - - - Q -- Q - - - - - -- - - Q - - - -4. 总结通过本实验,我们了解了n皇后问题,并学习了回溯算法的应用。

5-4回溯法-皇后好累

5-4回溯法-皇后好累

要求在一个n×n的棋盘上放置n个皇后,使得她们彼此不受攻击。

八皇后问题求解过程第1列第2列第3列第4列第5列第6列第7列第1行第2行第3行第4行第5行第6行第7行第8行八皇后的一个可行解第1列第2列第3列第4列第5列第6列第7列第1行○第2行○第3行○第4行第5行○第6行○第7行○第8行○先回顾递归回溯法的一般形式:NTry(s)做挑选候选者的准备;while (未成功且还有候选者) {挑选下一个候选者next ;if (next 可接受) {记录next ;if (满足成功条件) {成功并输出结果}else Try(s+1);if (不成功) 删去next 的记录; }}return 成功与否}NTry(s){做挑选候选者的准备;while (未成功且还有候选者) {挑选下一个候选者next ;if (next 可接受) {记录next ;if (满足成功条件) {成功并输出结果}else Try(s+1);if (不成功) 删去next 的记录; }}return 成功与否}s 为准备放置后的行数候选者为1到n 列。

j = 0; q = 0; 令列标记j = 0;q 表示未成功。

列数不到n 就还有候选者(!q && j < n ) { 列数加1j++;各后都安全,便可接受(Safe(s, j)) {记下该行后的位置(列数)Record(s, j);n 行后都放完就成功了(s = = n) {q = 1; output( );} 不成功,删去后在该行的位置。

(!q) Move-Off(s, j); }}}q }数组B[n]表示棋盘。

若B[i]=j ,1≤i, j≤n ,表示棋盘的第i 行第j 列上有皇后。

N数组C[j]=1表示第j 列上无皇后,1≤j≤n 。

数组D[k]=1表示第k 条下行(↘)对角线上无皇后。

123456123456k = i + j ,2≤k≤2n 。

采用回溯法编写n皇后问题的程序。

采用回溯法编写n皇后问题的程序。

下面是使用回溯法编写n皇后问题的程序的示例(使用Python语言):def is_safe(board, row, col, n):# 检查当前位置是否安全# 检查列上是否有皇后for i in range(row):if board[i][col] == 1:return False# 检查左上方是否有皇后i = rowj = colwhile i >= 0 and j >= 0:if board[i][j] == 1:return Falsei -= 1j -= 1# 检查右上方是否有皇后i = rowj = colwhile i >= 0 and j < n:if board[i][j] == 1:return Falsei -= 1j += 1# 当前位置安全return Truedef solve_n_queens(board, row, n):# 如果所有行都放置了皇后,则找到一组解决方案if row == n:print_solution(board, n)return# 尝试在当前行的每个列上放置皇后for col in range(n):if is_safe(board, row, col, n):# 放置皇后board[row][col] = 1# 递归地解决下一行solve_n_queens(board, row + 1, n)# 回溯,移除皇后board[row][col] = 0def print_solution(board, n):# 打印解决方案for i in range(n):for j in range(n):print(board[i][j], end=" ")print()print()def n_queens(n):# 创建一个空白棋盘board = [[0 for _ in range(n)] for _ in range(n)]solve_n_queens(board, 0, n)# 测试n = 4 # 设置n的值,表示n皇后问题的规模n_queens(n)此程序使用回溯法解决n皇后问题,其中函数is_safe用于检查当前位置是否安全,函数solve_n_queens用于递归地解决下一行,并在找到解决方案时打印出来,函数print_solution 用于打印解决方案,函数n_queens是入口函数,用于设置问题的规模并调用solve_n_queens 函数开始解决问题。

n后问题 回溯法

n后问题 回溯法

实验四 n后问题一.实验目的1. 了解皇后相互攻击的条件:如果任意两个皇后在同一行,同一列或同一对角线,则她们相互攻击。

2. 运用迭代的方法实现n皇后问题,求解得到皇后不相互攻击的一个解二.实验内容基本思路:用n元组x[1:n]表示n后问题的解,其中x[i]表示第i个皇后放在棋盘的第i 行的第x[i]列。

抽象约束条件得到能放置一个皇后的约束条件:(1)x[i]!=x[k];(2)abs(x[i]-x[k])!=abs(i-k)。

应用回溯法,当可以放置皇后时就继续到下一行,不行的话就返回到第一行,重新检验要放的列数,如此反复,直到将所有解解出。

在回溯法中,递归函数Backtrack(1)实现对整个解空间的回溯搜索。

Backtrack(i)搜索解空间的第i层子树。

类Queen 的数据成员记录解空间的节点信息,以减少传给Backtrack函数的参数。

sum记录当前已找到的可行方案数。

运用回溯法解题通常包含以下三个步骤:(1)针对所给问题,定义问题的解空间;(2)确定易于搜索的解空间结构;(3)以深度优先的方式搜索解空间,并且在搜索过程中用剪枝函数避免无效搜索。

三.实验结果四.源代码:#include<iostream>#include<stdlib.h>using namespace std;class Queen{friend int nQueen(int);private:bool Place(int k);void Backtract(int t);int n,*x;long sum; //可行方案数};bool Queen::Place(int k){for(int j=1;j<k;j++)if((abs(k-j)==abs(x[j]-x[k]))||(x[j]==x[k])) return false;return true;}void Queen::Backtract(int t){if (t>n){sum++;cout<<"第"<<sum<<"种方法:";for(int i=1;i<=n;i++)cout<<x[i]<<" ";cout<<endl;}else{for(int i=1;i<=n;i++){x[t]=i;if(Place(t)) Backtract(t+1);}}}int nQueen(int n){Queen X;X.n=n;X.sum=0;int *p=new int[n+1];for(int i=0;i<=n;i++)p[i]=0;X.x=p;X.Backtract(1);delete []p;return X.sum;}void main(){int n,m;cout<<"请输入皇后个数:";cin>>n;m=nQueen(n);cout<<endl;cout<<"有"<<m<<"种可行方法"<<endl;system("pause");}。

回溯法之N皇后问题

回溯法之N皇后问题

回溯法之N皇后问题回溯法之N皇后问题1. 问题描述在n*n格的棋盘上放置彼此不受攻击的n个皇后。

按照国际象棋的规则,皇后可以攻击与之在同⼀⾏或同⼀列或同⼀斜线上的旗⼦。

n后问题等价于在n*n格的棋盘上放置n个皇后,任何2个皇后不放在同⼀⾏或同⼀列或同⼀斜线上。

2. 问题分析(以n=4皇后问题为例)有俩种解法,第⼀种采⽤解空间为N(4)叉树的解法、第⼆种是采⽤解空间为排列数的解法。

2.1. N(4)叉树的解法每个皇后在⼀⾏上有四个可选位置。

即每个⾮叶结点有4个⼦节点,4叉树如下:解向量:(x1,x2,x3,......,x n)显约束:任意俩皇后不同⾏。

隐约束:(1) 不同列:x i ≠ x j (2) 不处于同⼀正反对⾓线:|i - j| ≠ |x i - x j|核⼼代码:// 剪枝函数,排除同列和同⼀对⾓线的分⽀int place1(int k) {for (int j = 1; j < k; j++)if (abs(k - j) == abs(x[j] - x[k]) || x[j] == x[k])return 0;return 1;}// t > n代表当前解已经求出,将总数+1// 利⽤循环遍历节点的n叉,同时判断分叉是否符合条件// 符合条件的分叉继续遍历下去void BackTrack1(int t) {if (t > n)sum++;elsefor (int i = 1; i <= n; i++) {x[t] = i;if (place1(t))BackTrack1(t + 1);}}2.2 排列数的解法解向量:(x1,x2,x3,......,x n)显约束:任意俩皇后不同⾏、不同列。

x1,x2,x3,......,x n是1,2,3.......n排列隐约束:不处于同⼀正反对⾓线:|i - j| ≠ |x i - x j|核⼼代码:// 交换俩⾏皇后的位置// 实现切换排列数的分⽀作⽤void swap(int i, int j) {int tmp = x[i];x[i] = x[j];x[j] = tmp;}// 剪枝函数,排除在同⼀对⾓线上的情况int place2(int k) {for (int j = 1; j < k; j++)if (abs(k - j) == abs(x[j] - x[k]))return 0;return 1;}// t > n时表⽰当前排列符合条件,总数 + 1// 利⽤for循环,和swap函数,将节点对应的所有排列遍历⼀次// 同时采⽤剪枝函数,减去错误的分⽀// 对正确的分⽀继续求解下去// 最后递归求解结束后,再次调⽤swap函数将状态返回到原本的节点状态void BackTrack2(int t) {if (t > n) sum++;elsefor (int i = t; i <= n; i++) {swap(t, i);if (place2(t))BackTrack2(t + 1);swap(t ,i);}}3. 完整代码/*** 回溯法求解n皇后问题* 使⽤x解向量,x1,x2,x3分别表⽰在1,2,3⾏上皇后的列号**/#include <stdio.h>#include <stdlib.h>#define MAX 4/*** n 皇后个数* x 当前解* sum**/int n = MAX;int x[MAX + 1];long sum = 0;// 剪枝函数,排除同列和同⼀对⾓线的分⽀int place1(int k) {for (int j = 1; j < k; j++)if (abs(k - j) == abs(x[j] - x[k]) || x[j] == x[k])return 0;return 1;}// t > n代表当前解已经求出,将总数+1// 利⽤循环遍历节点的n叉,同时判断分叉是否符合条件// 符合条件的分叉继续遍历下去void BackTrack1(int t) {if (t > n)sum++;elsefor (int i = 1; i <= n; i++) {x[t] = i;if (place1(t))BackTrack1(t + 1);}}// 交换俩⾏皇后的位置// 实现切换排列数的分⽀作⽤void swap(int i, int j) {int tmp = x[i];x[i] = x[j];x[j] = tmp;}// 剪枝函数,排除在同⼀对⾓线上的情况int place2(int k) {for (int j = 1; j < k; j++)if (abs(k - j) == abs(x[j] - x[k]))return 0;return 1;}// t > n时表⽰当前排列符合条件,总数 + 1// 利⽤for循环,和swap函数,将节点对应的所有排列遍历⼀次// 同时采⽤剪枝函数,减去错误的分⽀// 对正确的分⽀继续求解下去// 最后递归求解结束后,再次调⽤swap函数将状态返回到原本的节点状态void BackTrack2(int t) {if (t > n) sum++;elsefor (int i = t; i <= n; i++) {swap(t, i);if (place2(t))BackTrack2(t + 1);swap(t ,i);}}void main() {for (int i = 0; i <= n; i++)x[i] = i;BackTrack1(1);printf("%d\n", sum);for (int i = 0; i <= n; i++)x[i] = i;sum = 0;BackTrack2(1);printf("%d\n", sum);system("pause");}。

N皇后问题—回溯算法经典例题

N皇后问题—回溯算法经典例题

N皇后问题—回溯算法经典例题题⽬描述: N 皇后是回溯算法经典问题之⼀。

问题如下:请在⼀个 n×n 的正⽅形盘⾯上布置 n 名皇后,因为每⼀名皇后都可以⾃上下左右斜⽅向攻击,所以需保证每⼀⾏、每⼀列和每⼀条斜线上都只有⼀名皇后。

题⽬分析: 在 N 皇后问题中,回溯算法思路是每⼀次只布置⼀个皇后,如果盘⾯可⾏,就继续布置下⼀个皇后。

⼀旦盘⾯陷⼊死局,就返回⼀步,调整上⼀个皇后的位置。

重复以上步骤,如果解存在,我们⼀定能够找到它。

可以看到,我们在重复“前进—后退—前进—后退”这⼀过程。

问题是,我们不知道⼀共需要重复这个过程多少次,也不能提前知道 n 是多少,更不知道每⼀次后退时需要后退⼏⾏,因此我们不能利⽤ for 循环和 while 循环来实现这个算法。

因此我们需要利⽤递归来实现代码结构。

逻辑如下:当⽅法布置完当前⾏的皇后,就让⽅法调⽤⾃⼰去布置下⼀⾏的皇后。

当盘⾯变成绝境的时候,就从当前⽅法跳出来,返回到上⼀⾏,换掉上⼀⾏的皇后再继续。

我们定义 NQueens(n) ⽅法,它负责输出所有成⽴的 n×n 盘⾯。

其中 1 代表皇后,0 代表空格。

代码:def NQueens(n): #输出所有成⽴的n·n盘⾯cols = [0 for _ in range(n)] #每⼀⾏皇后的纵坐标res = [] #结果列表def checkBoard(rowIndex): #检查盘⾯是否成⽴,rowIndex是当前⾏数for i in range(rowIndex):if cols[i]==cols[rowIndex]: #检查竖线return Falseif abs(cols[i]-cols[rowIndex]) == rowIndex-i: #检查斜线return Falsereturn Truedef helper(rowIndex): #布置第rowIndex⾏到最后⼀⾏的皇后if rowIndex==n: #边界条件board = [[0 for _ in range(n)] for _ in range(n)]for i in range(n):board[i][cols[i]] = 1res.append(board) #把当前盘⾯加⼊结果列表return#返回for i in range(n): #依次尝试当前⾏的空格cols[rowIndex] = iif checkBoard(rowIndex): #检查当前盘⾯helper(rowIndex+1) #进⼊下⼀⾏helper(0) #从第1⾏开始return resprint(NQueens(4))代码分析: 在 NQueens() ⽅法中,我们会定义 helper(x) ⽅法帮助实现递归结构。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本科实验报告
课程名称:算法设计与分析
实验项目:回溯法求n皇后问题
实验地点:
专业班级:学号:
学生姓名:
指导教师:
实验四回溯法求n皇后问题
一、实验目的
1.掌握回溯算法的基本思想
2.通过n皇后问题求解熟悉回溯法
3.使用蒙特卡洛方法分析算法的复杂度
二、实验内容
要求在一个8*8的棋盘上放置8个皇后,使得它们彼此不受“攻击”。两个皇后位于棋盘上的同一行、同一列或同一对角线上,则称它们在互相攻击。现在要找出使得棋盘上8个皇后互不攻击的布局。
if (k<=i-1){ //与第k个皇后互相攻击
queen[i]++; //第i个皇后右移一列,重测
continue;
}
i++; //无冲突,安置下一行皇后
if(i<8) continue;
for(j=0;j<8;j++) cout<<queen[j]; //已完成,输出结果
cout<<" ";
total++; //方案数加1
int i, j, k;
for (i=0;i<8;i++) queen[i] = 0; //八皇后全放在第0列
for (i=1;;){ //首先安放第0行皇后
if(queen[i]<8){ //皇后还可调整
k=0; //检查与第k个皇后是否互相攻击
while(k<i&&(queen[k]-queen[i])&&(abs(queen[k]-queen[i])-abs(k-i))) k++;
三、实验环境
程序设计语言:c++
编程工具:microsoft visual studio 2010
四、算法描述和程序代码
#include <iostream>
#include <cmath>
using namespace std;
int main(){
int queen[8];
int total = 0; //方案计数
cout<<"总数:"<<total<<endl;
return 0;
}
else queen[i]&#}
}
五、实验结果截图
六、实验总结
回溯法是一种满足某种约束条件的穷举式搜索技术,是一种逐步试探以求出问题解的方法。适用于解决一些组合相当大的问题,是算法设计的重要方法之一。
if(total%5==0) cout<<endl;
queen[7]++; //将第7个皇后右移一列,前7个不动
i=7; //此处是制造机会,如不成功则回溯,关键一步
}
else //当前行皇后无法安置,回溯
{
queen[i]=0; //当前行皇后回归0列
i--; //回溯到前一行皇后
if(i<0){ //回溯到数组0行之前,结束
相关文档
最新文档