高中数学导数与极限ppt课件

合集下载

导数的应用:函数的极值问题 高中数学课堂教学ppT课件

导数的应用:函数的极值问题 高中数学课堂教学ppT课件

练习1.函数f (x) 2x3 3x2 a的极大值为6,则a (C )
A.5
B.0
C.6
D.1
练习2.函数f (x) x3 ax2 3x 9,已知f (x)在x 3时取得极值,
则a (A)
A.5
B.0
C.6
D.1
练习3,若函数f (x) x3 ax2 3x 9无极值,则a的
(2)如果函数 y=f(x)在区间(a,x0)上是 单调递减 的,在区 间(x0,b)上是 单调递增 的,则 x0 是极小值点,f(x0)是极小值.
注:在不为单调函数的前提下,极值点是导函数的零点,即方程 的根。
如:已知函数f (x)的图象如下,则函数f (x)在区间[a, h] 上的极大值点和极小值点分别有( )个
取值范围为( C)
注:以下五点点加深对极值的理解 ,所有函数为可导函数
四、课堂小结
1.函数的极值的概念 2.会求函数的极值
答:极大值点有c,e,g 极小值点有:b,d,f
o
abc d e f
gh x
A.2,没有 C.4,0
B.(0,0), (4,0) D.(4,0), (0,0)
三、求函数的极值
注:求函数极值的步骤 (1)确定函数的定义域; (2)求方程 f′(x)=0 的根; (3)用方程 f′(x)=0 的根顺次将函数的定义域分成若干个 小开区间,并列成表格;(写出单调区间) (4)由 f′(x)在方程 f′(x)=0 的根左右的符号,来判断 f(x) 在这个根处取极值的情况.
提示:f(x)在(a,x0)上单调递增,导数大于零,在(x0,b)上单 调递减,导数小于零.
问题 4:函数 y=g(x)在(a,b)上,结论如何? 提示:与 y=f(x)在(a,b)上结论相反.

人教版高中数学选择性必修2《函数的极值与最大(小)值》PPT课件

人教版高中数学选择性必修2《函数的极值与最大(小)值》PPT课件

根据以上信息,我们画出f(x)的大致图象如图所示.
(3)方程()=( ∈ )的解的个数为函数=()的图象与直线=的
交点个数.
1
由(1)及图可得,当= − 2时,()有最小值( − 2)=− e2.
所以,关于方程()=( ∈ )的解的个数有如下结论:
1
当 < − e2时,解为0个;
结合上面两图以及函数极值中的例子,不难看出,只要把函数=()的所有极值连同
端点的函数值进行比较,就可以求出函数的最大值与最小值.
在开区间(,)上函数的最值常见的有以下几种情况:
图(1)中的函数=()在(,)上有最大值而无最小值;
图(2)中的函数=()在(,)上有最小值而无最大值;
(2),(4),(6)是函数=()的极大值.
探究:进一步地,你能找出函数=()在区间[,]上的最小值、最大值吗?
从图中可以看出,函数=()在区间[,]上的最小值是(3 ),最大值是().
在下面两图中,观察[,]上的函数=()和=()的图象,它们在[,]上
当半径 < 2时, ′() < 0,()单调递减,即半径越大,利润越低.
(1)半径为6 cm时,利润最大.
(2)半径为2 cm时,利润最小,这时(2) < 0,表示此种瓶内饮料的利润还不
够瓶子的成本,此时利润是负值.
换一个角度:如果我们不用导数工具,直接从函数()的图象上观察,你
=()=0.2 ×
4
3
π
3

3
2
0.8π =0.8π
3
− 2 ,0 < ≤ 6.
所以 ′()=0.8π(2 − 2).
令 ′()=0,解得=2.
当 ∈ (0,2)时, ′() < 0;当 ∈ (2,6)时, ′() > 0.

高中数学(新课标)选修2课件1.3.2函数的极值与导数

高中数学(新课标)选修2课件1.3.2函数的极值与导数

知识点一 极值点与极值
1.极小值与极小值点 如图,若函数 y=f(x)在点 x=a 的函数值 f(a)比它在点 x=a 附 近其他点的函数值都小,f′(a)=0;而且在点 x=a 附近的左侧 _f_′__(x_)_<_0_,右侧_f′__(_x_)>__0_,则把点 a 叫做函数 y=f(x)的极小值点, f(a)叫做函数 y=f(x)的极小值.
类型三 函数极值的综合应用
例 3 已知函数 f(x)=13x3-12ax2,a∈R. (1)当 a=2 时,求曲线 y=f(x)在点(3,f(3))处的切线方程; (2)讨论 f(x)的单调性并判断有无极值,有极值时求出极值.
【解析】 (1)由题意 f′(x)=x2-ax, 所以,当 a=2 时,f(3)=0,f′(x)=x2-2x, 所以 f′(3)=3, 因此,曲线 y=f(x)在点(3,f(3))处的切线方程是 y=3(x-3), 即 3x-y-9=0.
∴f′(x)=32x2-32.
由题意知,x=±1 是 f′(x)=0 的根.
根据 x=±1 列表分析 f′(x)的符号,f(x)的单调性和极值点.
x (-∞,-1) -1 (-1,1)
1
(1,+∞)
f′(x)

0

0

f(x)
极大值 1
极小值-1
由上表可以看出,
当 x=-1 时,函数有极大值,且 f(-1)=1;
解析:由极小值点的定义,知极小值点左右两侧的导函数值是 左负右正,又函数 f(x),x∈R 有唯一的极值点,所以当 x∈(-∞, 1)时,f′(x)≤0;当 x∈(1,+∞)时,f′(x)≥0.
答案:C
2.下图是函数 y=f(x)的导函数 y=f′(x)的图象,给出下列命 题:

高中数学选修2-2函数的极值与导数课件

高中数学选修2-2函数的极值与导数课件

B. y=cos2x
C. y=tanx-x
课堂练习
2.曲线y=x4-2x3+3x在点P(-1,0)处的切线的斜率为( B )
A. –5
B. –6
C. –7
D. –8
课堂练习 3. 下列说法正确的是 ( C )
A. 函数在闭区间上的极大值一定比极小值大 B. 函数在闭区间上的最大值一定是极大值 C. 对于f(x)=x3+px2+2x+1,若|p|<√6,则f(x)无极值 D. 函数f(x)在区间(a,b)上一定存在最值
一般地,求函数y=f(x)的极值的方法是:解方程 f ' x 0 .当 f ' x0 0 时:
x (1)如果在 0 附近的左侧f′(x)>0,右侧f′(x)<0,那么
2如果在x0附近的左侧f ' x 0,右侧 f ' x 0, 那么f x0 是极小值.
f x0
是极大值;
口诀:左负右正为极小,左正右负为极大.
例题讲解
求函数y=(x2-1)3+1的极值. 解:定义域为R,y ’=6x(x2-1)2.由y ’=0可得x1=-1,x2=0,x3=1 当x变化时,y ’ ,y的变化情况如下表:
当x=0时,y有极小值,并且y极小值=0.
课堂练习
1 . 下列函数中,x=0是极值点的函数是( B )
A. y=-x3 D. y=1/x
人教版高中数学选修2-2
第1章 导数及其应用
函数的极值与导数
课前导入
一般地,函数的单调性与导数的关系: 在某个区间a, b内, 如果f ' x > 0, 那么 函数y = f x在这个区间内单调递增; 如果 f ' x < 0,那么函数 y = f x在这个区间内

高中数学 第一章 导数及其应用 1.3.2 函数的极值与导数课件 新人教A版选修2-2

高中数学 第一章 导数及其应用 1.3.2 函数的极值与导数课件 新人教A版选修2-2
复习课件
高中数学 第一章 导数及其应用 1.3.2 函数的极值与导数课件 新人教A版选 修2-2
1.3.2 函数的极值与导数
目标定位
重点难点
1.了解函数在某点取得极值的必要条 重点:求函数极值的
件和充分条件 方法和步骤
2.理解极大值和极小值的概念 难点:函数极值的概
3.掌握求可导函数极大值和极小值的 念的理解
设f(x)在x0处连续且f′(x0)=0,判别f(x0)是极大(小)值的方 法:
(1)若在x0两侧f′(x)符号相同,则x0不是f(x)的极值点; (2)若在x0附近的左侧f′(x)>0,右侧f′(x)<0,则f(x0)是极 大值;
(3)若在x0附近的左侧f′(x)<0,右侧f′(x)>0,则f(x0)是极 小值.
解得ab==4-,11 或ab==3-. 3, 故a+b=-7或a+b=0.
【错因分析】可导函数在一点的导数值为0是函数在这 一点取得极值的必要条件,而非充分条件,本题忽略了对所得 两组解进行检验,从而出现了错误.
【正解】(接错解)当a=4,b=-11时, f(x)=x3+4x2-11x+16, 得f′(x)=3x2+8x-11=(3x+11)(x-1). 当x∈-131,1时,f′(x)<0; 当x∈(1,+∞)时,f′(x)>0.
(3) 如 果 f′(x) 在 点 x0 的 左 右 两 侧 符 号 不 变 , 则 f(x0) _不__是__极__值___.
1.函数f(x)=x3-3bx+3b在(0,1)内有极小值,则( )
A.0<b<1
B.b<0
C.b>0 【答案】A
D.b<12
2.已知函数y=x3-3x+2,则( ) A.y无极小值,也无极大值 B.y有极小值0,但无极大值 C.y有极小值0,极大值4 D.y有极大值4,但无极小值 【答案】C

高中数学选择性必修二 课件 5 3 2 第2课时函数的最大(小)值与导数课件(共58张)

高中数学选择性必修二 课件 5 3 2  第2课时函数的最大(小)值与导数课件(共58张)

[跟进训练] 1.已知函数 f (x)=excos x-x. (1)求曲线 y=f (x)在点(0,f (0))处的切线方程; (2)求函数 f (x)在区间0,π2上的最大值和最小值.
[解] (1)因为 f (x)=excos x-x,所以 f ′(x)=ex(cos x-sin x)-1,f ′(0)=0. 又因为 f (0)=1,所以曲线 y=f (x)在点(0,f (0))处的切线方程为 y=1.
函数的最大值、最小值是比较整个定义区间的函数值得出的,函 数的极值是比较极值点附近的函数值得出的,函数的极值可以有多 个,但最值只能有一个;极值只能在区间内取得,最值则可以在端点 取得;有极值的未必有最值,有最值的未必有极值;极值有可能成为 最值,最值只要不在端点必定是极值.
当连续函数 f (x)在开区间(a,b)内只有一个导数为零的点时,若 在这一点处 f (x)有极大值(或极小值),则可以判定 f (x)在该点处取得 最大值(或最小值),这里(a,b)也可以是无穷区间.
4.函数 y=3x-4x3 在区间[0,2]上的最大值是( ) A.1 B.2 C.0 D.-1 A [设 f (x)=3x-4x3,∴f ′(x)=-12x2+3=3(2x+1)(1-2x). ∵x∈[0,2],∴当 x=12时,f ′(x)=0. 又 f (0)=0,f 12=1,f (2)=-26, ∴函数 y=3x-4x3 在区间[0,2]上的最大值是 1.]
第五章 一元函数的导数及其应用
5.3 导数在研究函数中的应用 5.3.2 函数的极值与最大(小)值 第2课时 函数的最大(小)值与导数
学习目标
核心素养
1.理解函数的最值的概念.(难点) 1.通过函数最大(小)值存在性的
2.了解函数的最值与极值的区别 学习,体现直观想象核心素养.

高中数学 1.3.2 函数的极值与导数课件 新人教A版选修2

高中数学 1.3.2 函数的极值与导数课件 新人教A版选修2
对于可导函数,极值点的导数必为0.
因此对于可导函数,导数为0是点为极值点的必 要而不充分条件.
(2)函数的导数不存在的点也可能是极值点. 如函数f(x)=|x|,在x=0处,左侧(x<0时)f′(x)= -1<0,右侧(x>0时)f′(x)=1>0,当x=0时f(x) =0是f(x)的极小值点,但f′(0)不存在.

• 极小值点、极大值点统称为极值点,> 极大值和极小值统
称为极值.极值反映了函数在某一点附近的大小情况,
刻画的是函数的局部性质.
<

• 2.求可导函数y=f(x)的极值的方法是:
• 解方程f′(x)=0.当f′(x0)=0时: • (1)如果在x0附近的左侧
,那么f(x0)是极大值; • (2)f′如(x)果<在0 x0附近的左侧
,那么f(x0)是极小值.
,右侧 f′(x)>0
,右侧 f′(x)<0
f′(x)>0
• [例1] 判断函数y=x3在x=0处能否取得极值. • [分析] 可由极值的定义来判断,也可由导数来判断. • [解析] 解法1:当x=0时,f(x)=0,在x=0的附近区域
内,f(x)有正有负,不存在f(0)>f(x)(或f(0)<f(x)),因此y= x3在x=0处取不到极值. • 解法2:y′=3x2,当x≠0时,y′>0, • 当y=0时,f(x)=0,因此y=x3在(-∞,+∞)上是增函数, 因为单调函数没有极值,所以y=x3在x=0处取不到极 值.
• 设函数y=f(x)在点x0及其附近可导,且f′(x0)=0. • (1)如果f′(x)的符号在点x0的左右由正变负,则f(x0)
为函数f(x)的极大值.
• (2)如果f′(x)的符号在点x0的左右由负变正,则f(x0) 为函数f(x)的极小值.

高中数学导数与极限ppt课件

高中数学导数与极限ppt课件
lim an =a,读作“当
n
n 趋向于无穷
大时,an 的极限等于 a”. “n→∞”表示“n 趋向于无穷大时” ,即 n 的无限增 大的意思. lim an a 有时也记作:当 n→∞时,an→a. n
4.函数的极限 当 x→∞时函数 f (x)的极限: 当自变量 x 取正值并且无 限增大时,如果函数 f (x)无限趋近于一个常数 a,就 说当 x 趋向于正无穷大时,函数 f (x)的极限是 a,记 作xlim f (x)=a, (或 x→+∞时,f (x)→a) 当自变量 x 取负值并且无限增大时,如果函数 f (x)无 限趋近于一个常数 a,就说当 x 趋向于负无穷大时, 函数 f (x)的极限是 a, 记作xli m f (x)=a, (或 x→-∞时,f (x) →a)注:自变量 x→+∞和 x→-∞都是单方向的,而 x→∞是双向的,故有以下等价命题 xli m f (x)= xli m f (x) =a
9.数学归纳法 数学归纳法的定义 在证明与自然数有关的数学命题时,以下列两步完 成: (1)当 n=n0(n0 为确定的自然数)时,验证命题成立; (2)假设当 n=k(k≥n0)时,命题成立, 则 n=k+1 时,命题也成立. 由(1)(2)知,命题成立. 这种证明数学命题的方法叫数学归纳法.
精品回扣练习
0
注:xl i mx f (x)= xl i mx f (x)=a
0 0
x x0
lim f (x)=a.并且可作为一个判
断函数在一点处有无极限的重要工具. 注:极限不存在的三种形态:①左极限不等于右极限
x x 0
lim
f (x)≠ xl i mx f (x);②x→x0 时,f (x)→±∞,③x→x0 时,f (x)

(新课标)高中数学《3.3.2-函数的极值与导数》课件-新人教A版选修1-1

(新课标)高中数学《3.3.2-函数的极值与导数》课件-新人教A版选修1-1
第17页,共29页。
规律方法 已知函数极值情况,逆向应用确定函数的解析式, 进而研究函数性质时注意两点: (1)常根据极值点处导数为 0 和极值两个条件列方程组,利用待 定系数法求解. (2)因为导数值等于零不是此点为极值点的充要条件,所以利用 待定系数法求解后必须验证根的合理性.
第18页,共29页。
第22页,共29页。
如图(1),此时曲线 f(x)与 x 轴恰有两个交点,即方程 f(x)=0 恰 好有两个实数根,所以 a+2=0,a=-2.(10 分) 如图(2),当极小值等于 0 时,有极大值大于 0,此时曲线 f(x) 与 x 轴恰有两个交点,即方程 f(x)=0 恰好有两个实数根,所以 a-2=0,a=2.综上,当 a=2,或 a=-2 时方程恰有两个实数 根.(12 分)
第8页,共29页。
2.极值点与导数的关系 (1)可导函数的极值点一定是导数为 0 的点,但导数为 0 的点不 一定是函数的极值点. (2)导数为 0 的点可能是函数的极值点,如 y=x2,y′(0)=0,x =0 是极小值.导数为 0 的点也可能不是函数的极值点,如 y =x3,y′(0)=0,x=0 不是极值点.
第23页,共29页。
【题后反思】 用求导的方法确定方程根的个数是一种很有效的 方法,它是通过函数的变化情况,运用数形结合的思想来确定 函数的图象与 x 轴的交点个数.
第24页,共29页。
【变式 3】 设函数 f(x)=x3-6x+5,x∈R. (1)求函数 f(x)的单调区间和极值; (2)若关于 x 的方程 f(x)=a 有三个不同的实数根,求实数 a 的取 值范围. 解 (1)f′(x)=3x2-6,令 f′(x)=0, 解得 x=- 2或 x= 2. 因为当 x> 2或 x<- 2时,f′(x)>0; 当- 2<x< 2时,f′(x)<0, 所以 f(x)的单调递增区间为(-∞,- 2),( 2,+∞); 单调递减区间为(- 2, 2).

《高中数学导数讲解》课件

《高中数学导数讲解》课件

积分
导数是积分的基础,通过 求导可以推导出原函数的 表达式。
微分方程
导数在解决微分方程问题 中起到关键作用,如物理 中的动力学问题。
THANKS
感谢观看
பைடு நூலகம்
高中数学导数讲解
目录
• 导数的基本概念 • 导数的计算 • 导数的应用 • 导数的实际应用 • 导数的扩展知识
01
导数的基本概念
导数的定义
总结词
导数是函数在某一点的变化率,表示函数在该点的切线斜率。
详细描述
导数是微积分中的一个基本概念,用于描述函数在某一点附近的变化率。对于可导函数$f(x)$,其在点$x_0$处 的导数定义为$f'(x_0) = lim_{Delta x to 0} frac{Delta y}{Delta x}$,其中$Delta y = f(x_0 + Delta x) - f(x_0)$ 。导数表示函数在点$x_0$处的切线斜率。
01
02
03
起源
导数最初由牛顿和莱布尼 茨在17世纪分别独立发现 ,为微积分学奠定了基础 。
早期发展
18世纪,欧拉、拉格朗日 等数学家进一步发展了导 数理论,将其应用于函数 研究。
现代应用
随着数学的发展,导数在 物理、工程、经济等领域 得到广泛应用,成为解决 实际问题的重要工具。
导数的其他性质
导数的几何意义
详细描述
在物理中,导数具有实际意义。例如,物体运动的瞬时速度 可以由速度函数的导数表示,物质扩散的瞬时速度可以由扩 散函数的导数表示。导数可以描述物体或物质在极短时间内 速度或加速度的变化。
02
导数的计算
切线斜率与导数
切线斜率
导数描述了函数在某一点的切线斜率 ,即函数在该点的变化率。

1.3.2函数的极值与导数-人教A版高中数学选修2-2课件

1.3.2函数的极值与导数-人教A版高中数学选修2-2课件
A、a 3, b 3或a 4, b 11 B、a 4, b 1或a 4, b 11
C、a 4, b 11
D、以上 都不 对
解:由题设条件得:
f f
(1) 10 '(1) 0
1 a b a2 10
3 2a b 0
解之得
a3 b 3
或, ab
4 11
注意代
f'(x) +
0
-
f(x) ↗ 极大值-2a ↘
-
0
+
↘ 极小值2a ↗
故当x=-a时,f(x)有极大值f(-a)=-2a;当x=a时,f(x) 有极小值f(a)=2a.
练习2、求函数y 6x 的极值 1 x2
解:
y
1
6x x2

y
6(1 x2 ) (1 x 2 )2
.
令y 0,解得x1 1,x2 1
因此,当x=-1时函数取得极大值,且极大值为f(-1)=10;当 x=3时函数取得极小值,且极小值为f(3)=-22
(2)函数f ( x) ln x 的定义域为(0, ),且f '( x) 1 ln x
x
x2
令f '( x) 0,得x e
当x变化时,f '( x)与f ( x)的变化情况如下表:
故f(x)在(-∞,1)和(2,+∞)上递增,在(1,2)上递 减,因此f(x)在x=1处取得极大值,所以x0=1
O
1
(2)∵ f '( x)=3ax2 2bx c
2x
由f '(1) 0,f '(2) 0,f (1) 5得
3a 2b c 0
12a 4b c 0,解得a 2,b 9,c 12

人教版高中数学选修2-2 导数与最值 PPT课件

人教版高中数学选修2-2 导数与最值 PPT课件

x5
x015-1-4
x0
x
o
x0
x
3
二 函数极值的定义
定义 设函数f ( x )在区间(a , b)内有定义, x 是 0
(a , b)内的一个点 , 如果存在着点 x0的一个邻域, 对于这邻域内的 任何点x , 除了点 x0外, f ( x ) f ( x0 )均成立, 就称 f ( x0 )是函数 f ( x )的一个极大值 ; 如果存在着点 x0的一个邻域, 对于这邻域内的 任何点x , 除了点x0外, f ( x ) f ( x0 )均成立, 就称 f ( x0 )是函数 f ( x )的一个极小值 .
2015-1-4 4
函数的极大值与极小值统称为极值, 使函数取得极值的点称为极值点.
函数 f ( x) 2 x 3 9 x 2 12x 3
有极大值 f (1) 2和 极 小 值 f ( 2) 1, 点x 1, x 2是 函 数 f ( x )的 极 值 点 。
注1:极值是函数的局部性概念,与最值不同;
f ( x ) x 3 3 x 2 9 x 5 图形如下
M
N
2015-1-4
9
函数的最大值与最小值
知识回顾 1、分析下图一个定义在区间 a, b上的函数 f ( x ) 的极值 和最值.
2015-1-4
10
2、函数 f ( x ) 在 a, b 上间断或在开区间 (a , b) 上连续是否也
②求函数 f ( x )在区间端点 f (a )、f (b) 的值;
③将函数 f ( x )在各极值与 f (a )、f (b) 比较,其中最大的一 个是最大值,最小的一个是最小值.
2015-1-4 12

人教版高中数学 选择性必修二 A版5.3.2(1)《函数的极值》课件PPT

人教版高中数学 选择性必修二 A版5.3.2(1)《函数的极值》课件PPT

第二部分
新知讲解
导入新课
3
引例:求函数 = +
1 2

2
− 2 + 4 的单调区间.

解析: =3 2 + − 2 = 3 − 2 + 1

令 < 0 得 −1 < <

2
3
2
3
令 > 0 得 > 或 < −1
导入新课
∴ = 的单调递减区间是(−1,
o
x
例如: = 的极大值是 −1 ,极小值是
2
极大值点是-1,极小值点是
3
2
3

知识梳理
结论: 函数 = 的极值点为, , … ,
则一定有′()=0 , ′()=0 ,……
反之,若′()=0 ,则 , , … ,不一定是 = 的极值点.
比如: = = 3 在R上单调递增, ′()=3 2 =0 时,
1

′()=4 − =
4 2 −1 2+1 2−1
=


令 ′() > 0 得 >
1
2
令 ′() < 0 得0< <
1
2
课堂互动
∴ 的单调递增区间是
∴ 的极小值为
没有极大值.
1
2
1
, +∞
2
=2 ×
1
4
1
,单调递减区间是(0, )
2
1

2
1
解析: 的定义域为 0, +∞
1

高中数学全程复习方略3.3.2 函数的极值与导数(共65张PPT)

高中数学全程复习方略3.3.2 函数的极值与导数(共65张PPT)
g′(x) g(x)
2 (-≦,- ) 3 2 3 2 (- ,4) 3
4
0 -16-m
(4,+≦)
+Байду номын сангаас
+
0
68 -m 27
-



则函数g(x)的极大值为g( 2 )= 68 -m,极小值为g(4)=-16-m.
≨由y=f(x)的图象与y=
1 f′(x)+5x+m的图象有三个不同交点, 3
3
27
68 2 g( ) m>0, 得 3 27 解得-16<m< 68 . 27 g 4 16 m<0,

+ ↗
0
4 27
-
f(x)

1 )= 4 , f(x)极大值=f( 27 3
f(x)极小值=f(1)=0. 答案: 4
27
0
2.≧f(x)=x4-x3,≨f′(x)=4x3-3x2. 令f′(x)=0,即4x3-3x2=0,得x2(4x-3)=0. ≨x=0或x= 3 .
4
当x变化时,f(x),f′(x)的变化情况如下表:
的交点,求实数m的取值范围.
【解析】1.f(x)=x3+x2-5x+2,
f′(x)=3x2+2x-5.由f′(x)=0得x=- 5 或x=1.
3
当x变化时,f′(x),f(x)的变化情况如下表: x f′(x)
5 (-≦,- ) 3 5 3 5 (- ,1) 3
1 0 -1
(1,+≦) +
+
0
229 27
1.极小值点与极小值的定义

高中数学选修2精品课件1.3.2函数的极值和导数

高中数学选修2精品课件1.3.2函数的极值和导数
4 2 2 2 解: f ( x) 5ax 3bx x (5ax 3b). 由题意, f ( x ) 0应有根 x 1 ,故5a=3b,于是: f ( x) 5ax2 ( x 2 1). (1)设a>0,列表如下:
4,极小值为0.试确定a,b,c的值.
x
f ( x )
的一个极大值。
2. 如 果 x0 是 f′(x)=0 的 一 个 根 , 并 且 在 x0 的 左 侧 附 近 的一个极小值。
f′(x)<0,在x0右侧附近f′(x)>0,那么是 f(x0)函数f(x)
导数值为0的点一定是函数的极值点吗?
导数值为0为函数是极值点的必要条件。
课堂练习
练习1:下列函数中,x=0是极值点的函数是( A.y=-x3 B.y=x2 C.y=x2-x
(6)极值只能在函数不可导的点或导数为零的点取到. 4.确定函数的极值应从几何直观入手,理解可导函数在 其定义域上的单调性与函数极值的相互关系,掌握利 用导数判断函数极值的基本方法.
例1:已知函数 f(x)满足条件:①当x>2时, f ( x ) 0 ;②当 x<2时, f ( x ) 0 ;③ f (2) 0. 求证:函数y=f(x2)在 x 2 处有极小值. 证:设g(x)=f(x2),则 g( x) f ( x 2 ) 2 x. 2 故当 x 2 时,x2>2,由条件①可知 f ( x ) 0 ,即 :
f (b) 0
极大值点
y
f ( x ) >0
f ( x )<0
f ( x ) <0 a
f (a) 0
f ( x) >0
o 极小值点 b
x
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.导数的应用 (1)求曲线的切线方程 利用导数求曲线的切线方程:由于函数 y=f(x)在 x=x0 处的导数表示曲线在点 P(x0,y0)处的斜率,因此曲线 y =f(x)在点 P(x0,y0)处的切线方程为 y-y0=f′(x0)(x- x0).注意:如果曲线 y=f(x)在点 P(x0,f(x0))处的切线 平行于 y 轴(此时导数不存在)时,由切线定义可知,切 线方程为 x=x0. (2)求函数的单调区间 利用求导方法讨论函数的单调性要注意以下几方面: ①f′(x)>0 是 f(x)递增的充分条件而非必要条件 (f′(x)<0 亦是如此);
x x0
x0 处是否有定义及是否等于 f (x0)都无关. 函数 f (x)的左、 右极限: 如果当 x 从点 x=x0 左侧 (即 x<x0) 无限趋近于 x0 时,函数 f (x)无限趋近于常数 a.就说 a 是 函数 f (x)的左极限,记作 xl i mx f (x)=a.
0
如果当 x 从点 x=x0 右侧(即 x>x0)无限趋近于 x0 时, 函数 f (x)无限趋近于常数 a.就说 a 是函数 f (x)的右极限, 记作xl i mx f (x)=a.
0
→值不唯一.
5.函数连续 函数在一点连续的定义:如果函数 f (x)在点 x=x0 处有 定义, (x)存在,且l i m f (x)=f (x0),那么函数 f (x)在点 lim f
x x0 x x0
x=x0 处连续.函数 f (x)在点 x=x0 处连续必须满足下面三 个条件: (1)函数 f (x)在点 x=x0 处有定义; ( 2) (x) lim f
x x0
存在; (3) (x)=f (x0),即函数 f (x)在点 x0 处的极限值 lim f
x x0
等于这一点的函数值. 如果上述三个条件中有一个条件不满足, 就说函数 f (x) 在点 x0 处不连续.那么根据这三个条件, 我们就可以给 出函数在一点连续的定义.
6.函数连续性的运算 (1)若 f(x), g(x)都在点 x0 处连续, 则 f(x)± g(x), f(x)· g(x), f(x) (g(x)≠0)也在点 x0 处连续. g(x) (2)若 u(x)在点 x0 处连续,且 f(u)在 u0=u(x0)处连续, 则复合函数 f[u(x)]在点 x0 处连续.
高中数学导数 与极限课件
(3)求导数的方法 - ①基本导数公式: c′=0 (c 为常数 );(xm)′=mxm 1 (m∈Q);(sin x)′=cos x;(cos x)′=-sin x;(ex)′= 1 1 x x x e ;(a )′=a ln a;(ln x)′= x;(logax)′=xln a. ②导数的四则运算:(u± v)′=u′± v′; u u′v-uv′ (uv)′=u′v+uv′;v′= (v≠0). 2 v ③复合函数的导数:yx′=yu′· ux′. 如求 f(ax+b)的导数,令 u=ax+b,则 (f(ax+b))′=f′(u)· a.
0
注:xl i mx f (x)= xl i mx f (x)=a
0 0
x x0
lim f (x)=a.并且可作为一个判
断函数在一点处有无极限的重要工具. 注:极限不存在的三种形态:①左极限不等于右极限
x x 0
lim
f (x)≠ xl i mx f (x);②x→x0 时,f (x)→±∞,③x→x0 时,f (x)
②求单调区间时,首先要确定定义域,然后再根据 f′(x)>0(或 f′(x)<0)解出在定义域内相应的 x 的范围; ③在证明不等式时,首先要构造函数和确定定义域,其 次运用求导的方法来证明. (3)求可导函数的极值与最值 ①求可导函数极值的步骤 求导数 f′(x)→求方程 f′(x)=0 的根→检验 f′(x)在方 程根左右值的符号,求出极值(若左正右负,则 f(x)在这 个根处取极大值;若左负右正,则 f(x)在这个根处取极 小值). ②求可导函数在[a,b]上的最值的步骤 求 f(x)在(a,b)内的极值→求 f(a)、f(b)的值→比较 f(a)、 f(b)的值和极值的大小.
lim an =a,读作“当
n
n 趋“n→∞”表示“n 趋向于无穷大时” ,即 n 的无限增 大的意思. lim an a 有时也记作:当 n→∞时,an→a. n
4.函数的极限 当 x→∞时函数 f (x)的极限: 当自变量 x 取正值并且无 限增大时,如果函数 f (x)无限趋近于一个常数 a,就 说当 x 趋向于正无穷大时,函数 f (x)的极限是 a,记 作xlim f (x)=a, (或 x→+∞时,f (x)→a) 当自变量 x 取负值并且无限增大时,如果函数 f (x)无 限趋近于一个常数 a,就说当 x 趋向于负无穷大时, 函数 f (x)的极限是 a, 记作xli m f (x)=a, (或 x→-∞时,f (x) →a)注:自变量 x→+∞和 x→-∞都是单方向的,而 x→∞是双向的,故有以下等价命题 xli m f (x)= xli m f (x) =a
特别提醒 若 f(x)在某区间上单调递增,则在该区间上 有 f′(x)≥0 恒成立(但不恒等于 0);若在某区间上单调 递减, 则在该区间上有 f′(x)≤0 恒成立(但不恒等于 0).
3.数列极限的定义 一般地,如果当项数 n 无限增大时,无穷数列{an} 的项 an 无限趋近于某个常数 a(即|an-a|无限趋近于 0),那么就说数列{an}以 a 为极限,或者说 a 是数列 {an}的极限.记作
lim f (x)=a.
x
当 x→x0 时函数 f (x)的极限: 当自变量 x 无限趋近于常数 x0(但 x≠x0)时,如果函数 f (x)无限趋近于一个常数 a, 就说当 x 趋向于 x0 时, 函数 f (x)的极限是 a, 记作 xl i mx f (x)
0
=a,(或 x→x0 时,f (x)→a), l i m f (x)=a 与函数 f (x)在点
相关文档
最新文档