四川省成都市高二(上)期末数学试卷(理科)

合集下载

四川省高二上学期期末教学质量检测理科数学试题(解析版)

四川省高二上学期期末教学质量检测理科数学试题(解析版)

期末教学质量检测 数学试题卷(理工类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题).满分150分,考试时间120分钟. 注意事项:1.答题前,务必将自己的姓名.准考证号等填写在答题卷规定的位置上.2.答选择题时,必须使用2B 铅笔将答题卷上对应题目的答案标号涂黑.3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卷规定的位置上.4.考试结束后,将答题卷交回.第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,有且只有一项是符合题目要求.1. 平面∥平面,,则直线和的位置关系( )αβ,a b αβ⊂⊂a b A. 平行 B. 平行或异面C. 平行或相交D. 平行或相交或异面【答案】B 【解析】 【分析】利用平面∥平面,可得平面与平面没有公共点,根据,可得直线,没有公共αβαβ,a b αβ⊂⊂a b 点,即可得到结论.【详解】∵平面平面,∴平面与平面没有公共点 //αβαβ∵,,∴直线,没有公共点 a α⊂b β⊂a b ∴直线,的位置关系是平行或异面, a b 故选:B.2. 双曲线的左、右焦点坐标分别是 ,虚轴长为4,则双曲线的标准方程是( )()()123,03,0F F -,A.B.22154x y -=22154y x -=C.D.221134x y -=221916x y -=【答案】A 【解析】【分析】根据双曲线的几何性质即可求解的值.,,a b c 【详解】由题意,双曲线的左、右焦点坐标分别是,所以, 12(3,0),(3,0)F F -3c =又虚轴长为,则,所以,所以,424b =2b =a = 所以双曲线的标准方程为, 22154x y -=故选:A.3. 已知表示两条不同直线,表示平面,下列说法正确的是 ,m n αA. 若,则 B. 若,则 ,m n ααA A m n A ,m n αα⊥∥m n ⊥C. 若,则 D. 若,则,m m n α⊥⊥n α⊥,m n m α⊥∥n αA 【答案】B 【解析】【分析】根据直线与平面的位置关系,可判定A ,利用线面垂直的性质,可判定B ;根据线面垂直的性质和直线与平面的位置关系,可判定C 、D ,得到答案.【详解】由题意,对于A 中,若,则与相交、平行或异面,所以不正确; ,m n ααA A m n 对于B 中,若,根据线面垂直的性质可知是正确的; ,m n αα⊥∥m n ⊥对于C 中,若,则与平行、相交或在平面内,所以不正确; ,m m n α⊥⊥n α对于D 中,若,则与的位置关系不确定,所以不正确,故选B.,m n m α⊥∥n α【点睛】本题主要考查了空间中直线与平面的位置关系的判定,其中解答中熟记空间中线面位置关系的判定定理和线面垂直的性质是解答本题的关键,着重考查了推理与论证能力,属于基础题.4. 在空间直角坐标系中,已知,则的中点关于平面的对称点坐标()()1,0,2,3,2,4M N --MN Q xOy 是()A. B.C.D.()1,1,1-()1,1,1--()1,1,1--()1,1,1【答案】D 【解析】 【分析】由中点坐标公式可得点,再由关于平面对称的点的特征即可得解. ()1,1,1Q -xOy 【详解】因为,所以的中点,()()1,0,2,3,2,4M N --MN ()1,1,1Q -所以点关于平面的对称点坐标是. Q xOy ()1,1,1故选:D.5. 已知椭圆的两个焦点是,点在椭圆上,若,则的面积是22142x y +=12F F 、P 12||||2PF PF -=12PF F ∆A.B.C.D.1+1+【答案】D 【解析】【详解】,可得,2212+1,4,242x y PF PF c =∴+== 122PF PF -= 123,1PF PF ==,是直角三角形,的面积故选(2219+= 21PF F ∴∆12PF F ∴∆21211122PF F F ⨯=⨯⨯=D.6. 某四棱锥的三视图如图所示,该四棱锥的表面积是A. 32B. 16+C. 48D. 16+【答案】B 【解析】【详解】由题意知原几何体是正四棱锥,其中正四棱锥的高为2,底面是一个边长为4的正方形,过顶点向底面做垂线,垂线段长是2,过底面的中心向长度是4的边做垂线,连接垂足与顶点,得到直角三角形,得到斜高是2,所以四个侧面积是,底面面积为,所以该四棱锥的表面积是16+,故选B .点评:本题考查由三视图求几何体的表面积,做此题型的关键是正确还原几何体及几何体的棱的长度.7. 已知为椭圆上的点,点到椭圆焦点的距离的最小值为,最大值为1P 2222:1(0)x y C a b a b+=>>P 28,则椭圆的离心率为( ) A.B.C.D.35455453【答案】B 【解析】【分析】根据点到椭圆焦点的距离的最小值为,最大值为18,列出a ,c 的方程组,进而解出a ,c ,最P 2后求出离心率.【详解】因为点到椭圆焦点的距离的最小值为,最大值为18, P 2所以,210188a c a a c c -==⎧⎧⇒⎨⎨+==⎩⎩所以椭圆的离心率为:. 45c e a ==故选:B.8. 在长方体中,,,为的中点,则异面直线与1111ABCD A B C D -12AB AA ==1AD =E 1CC 1BC AE 所成角的余弦值为 ( )A .B.C.D.【答案】B 【解析】【分析】建立空间直角坐标系结合空间向量的数量积即可求解.【详解】解:由题意,在长方体中,以为原点建立如图所示的空间直角坐标系D由题知,,为的中点,则12AB AA ==1AD =E 1CC ,,, ()1,0,0A ()1,2,0B ()10,2,2C ()0,2,1E 所以,()1,2,1AE =- ()11,0,2BC =-设直线与所成角为,则1BC AE α11cos AE BC AE BC α⋅====所以直线与 1BC AE 故选:B .9. 已知矩形,,,将矩形沿对角线折成大小为的二面角ABCD 4AB =3BC =ABCD AC θ,则折叠后形成的四面体的外接球的表面积是B ACD --ABCD A. B.C.D. 与的大小有关9π16π25πθ【答案】C 【解析】【详解】由题意得,在二面角内的中点O 到点A,B,C,D 的距离相等,且为,所以点O 即D B AC --AC 522AC =为外接球的球心,且球半径为,所以外接球的表面积为.选C . 52R =24=25S R ππ=10. 已知点P 是抛物线上的-个动点,则点P 到点A(0, 1)的距离与点P 到y 轴的距离之和的最小214x y =值为 A. 2 B.C.D.11+【答案】C 【解析】【详解】抛物线,可得:y 2=4x ,抛物线的焦点坐标(1,0). 214x y =依题点P 到点A (0,1)的距离与点P 到y 轴的距离之和的最小值,就是P 到(0,1)与P 到该抛物线准线的距离的和减去1.由抛物线的定义,可得则点P 到点A (0,1)的距离与P 到该抛物线焦点坐标的距离之和减1,.1故选C .11. 已知为坐标原点,双曲线:的右焦点为,直线过点且与的右支交于,O C 2213y x -=F l F C M 两点,若,,则直线的斜率为( )N 2OM ON OA +=8OA OF ⋅=l k A. B.C.D.2±±3±【答案】B 【解析】【分析】根据点差法,结合平面向量坐标表示公式、斜率的公式进行求解即可.【详解】设,,,由题可知,是线段的中点,()11,M x y ()22,N x y ()00,A x y ()2,0F A MN ,∴,∵,分别是双曲线右支上的点,∴两式相减并整理得028OA OF x ⋅== 04x =M N 221122221,31,3y x y x ⎧-=⎪⎪⎨⎪-=⎪⎩,∴,即, ()()()()1212121203y y y y x x x x +-+--=002203y k x⋅-=0403y k⋅-=又,∴,∴. 00022AF y yk k x ===-0y =±k =故选:B【点睛】关键点睛:应用点差法,结合平面向量运算的坐标表示公式是解题的关键.12. 已知是椭圆上一点,,是椭圆的左,右焦点,点是的内心,延长交M 2212516x y +=1F 2F I 12MF F ∆MI线段于,则的值为( )12F F N MI INA.B.C.D.53354334【答案】A 【解析】【分析】如图,点是椭圆上一点,过点M 作BM 垂直直线于点,过点作垂直直M 2212516x y +=12F F B I IA 线于点,设的内切圆半径为,则,由得:12F F A 12MF F ∆r IA r =121212MF F MF I MIF IF F S S S S =++A A A A 12112211112222F F MB r MF r F F r MF ⋅=++又,故得:,所以,由椭圆方程122MF MF a +=111222222c MB r a r c ⋅=⋅+⋅IA c MB a c =+得:,,,所以由与相似,可2212516x y +=5a =4b =3c ==38IA c MB a c ==+MNB A INA A 得:,令,则,可求得:,问38IA INMBMN ==3IN m =8MN m =383IN IN m IM MN IN m m ===--35题得解.【详解】如图,点是椭圆上一点,过点M 作BM 垂直直线于点,过点I 作垂直直M 2212516x y +=12F F B IA 线于点,设的内切圆半径为,则,由三角形面积相等即:12F F A 12MF F ∆r IA r =得:121212MF F MF I MIF IF F S S S S =++A A A A 12112211112222F F MB r MF r F F r MF ⋅=++又,故得:,所以,由椭圆方程122MF MF a +=111222222c MB r a r c ⋅=⋅+⋅IA c MB a c =+得:,,,所以由与相似,可2212516x y +=5a =4b =3c ==38IA c MB a c ==+MNB A INA A 得:,令,则,可求得:,故38IA INMBMN ==3IN m =8MN m =383IN IN m IM MN IN m m ===--35选A .【点睛】本题主要是利用三角形相似将所求的比值转化成三角形相似比问题,即构造两个三角形相似来处理,对于内切圆问题通常利用等面积法列方程.即:即:=++(其中是ABC S A IBC S A IAC S A IAB S A I ABC A 的内切圆圆心),从而解决问题. ⇔1()2ABC S r a b c =++A 第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题5分,共20分.请将答案填在答题卷中的相应位置.13. 若抛物线上任意一点到点的距离与到直线的距离相等,则___________. 22y px =(1,0)=1x -p =【答案】 2【解析】【分析】直接由抛物线的定义求解即可. 【详解】由抛物线的定义可得,解得. 12p=2p =故答案为:2.14. 已知直线与圆相切,则a 的值为_____________. 340x y a ++=221x y +=【答案】 5±【解析】 【分析】利用圆心到直线的距离,直接求的值.d r =a【详解】由题意可知圆心到直线的距离,d r =1d ∴==解得:. 5a =±故答案为:5±【点睛】本题考查直线与圆的位置相切,求参数,属于简单题型.15. 设点,分别为椭圆C :的左,右焦点,点是椭圆上任意一点,若使得1F 2F 2214x y +=P C 成立的点恰好是4个,则实数的一个取值可以为_________.12PF PF m ⋅=m 【答案】0(答案不唯一) 【解析】【分析】当时,说明椭圆上存在4点满足条件. 120PF PF ⋅=【详解】当时,,则,0m =120PF PF ⋅= 12PF PF ⊥由椭圆方程可知,,,,因为,所以以为直径的圆与椭圆有4个交点,使24a =21b =23c =c b >12F F 得成立的点恰好有4个,所以实数的一个取值可以为0.120PF PF ⋅=m 故答案为:0(答案不唯一)16. 在长方体中,已知底面为正方形,为的中点,,1111ABCD A B C D -ABCD P 11A D 2AD =,点为正方形所在平面内的一个动点,且满足,则线段的长度的1AA =Q ABCD QC =BQ 最大值是________. 【答案】 6【解析】【分析】在正方形所在平面内建立平面直角坐标系,设,由,可得ABCD (,)Q x y QC =,进而可得出结果.22(2)4x y ++=【详解】在正方形所在平面内建立平面直角坐标系,设, ABCD (,)Q x y 则有,, 2223(1)PQ x y =++-222(2)(2)QC x y =-+-因为,所以,QC =2222(2)(2)622(1)x y x y -+-=++-整理得,22(2)4x y ++=所以点的轨迹是以为圆心,以为半径的圆, Q (2,0)-2所以线段长度的最大值为. BQ 2226⨯+=故答案为6【点睛】本题主要考查点线面间的距离计算,以及立体几何中的轨迹问题,常用坐标系的方法处理,属于常考题型.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17. 已知圆经过坐标原点和点,且圆心在轴上. C O ()4,0x (1)求圆的方程;C (2)设直线经过点,且与圆相交所得弦长为的方程. l ()1,2l C l 【答案】(1)()2224x y -+=(2)或. 10x -=34110x y +-=【解析】【分析】(1)设圆的方程为,再利用待定系数法求出,即可得解;C ()()2220x a y rr -+=>,a r (2)分类讨论直线的斜率存在与不存在两种情况,结合弦长公式及点到直线的距离公式即可求解. 【小问1详解】依题意,设圆的方程为,C ()()2220x a y rr -+=>则有,解得, ()22224a r a r⎧=⎪⎨-=⎪⎩224a r =⎧⎨=⎩所以圆的方程为; C ()2224x y -+=【小问2详解】由弦长公式知,解得,==1d =即圆心到直线的距离为1,()2,0C l当直线斜率不存在时,即符合题意,l 1x =当直线斜率存在时,设直线方程为,即,l 2(1)y k x -=-20kx y k --+=,解得, 1=34k =-所以直线的方程为,即, l 32(1)4y x -=--34110x y +-=综上,直线的方程为或.l 10x -=34110x y +-=18. 如图所示,在四棱锥中,四边形是正方形,点分别是线段的中点.C ABED -ABED ,G F ,EC BD(1)求证:;//GF ABC 平面(2)线段上是否存在一点,使得面面,若存在,请找出点并证明;若不存在,请说BC H GFH ∥ACD H 明理由.【答案】(1)见证明;(2)见解析【解析】【分析】(1)由四边形为正方形可知,连接必与相交于中点,证得,利用ABED AE BD F GF AC A 线面平行的判定定理,即可得到面;GF A ABC (2)由点分别为中点,得,由线面平行的判定定理,证得面,G H ,CE CB GH EB AD ∥∥GH A ,由面面平行的判定定理,即可得到证明.ACD 【详解】(1)证明:由四边形为正方形可知,连接必与相交于中点ABED AE BD F 故GF AC A ∵面GF ⊄ABC ∴面GF A ABC (2)线段上存在一点满足题意,且点是中点BC H H BC理由如下:由点分别为中点可得:,G H ,CE CBGH EB AD A A ∵面GH ⊄ACD ∴面GH A ACD 由(1)可知,面GF A ACD 且GF GH G ⋂=故面面GFH A ACD 【点睛】本题考查线面位置关系的判定与证明,熟练掌握空间中线面位置关系的定义、判定、几何特征是解答的关键,其中垂直、平行关系证明中应用转化与化归思想的常见类型:(1)证明线面、面面平行,需转化为证明线线平行;(2)证明线面垂直,需转化为证明线线垂直,着重考查了推理与论证能力. 19. 如图,在多面体中,矩形,矩形所在的平面均垂直于正方形所在ABCDEFG ADEF CDEG ABCD 的平面,且.2,3AB AF ==(1)求多面体的体积;ABCDEFG (2)求平面与平面所成锐二面角的余弦值.BFG ADEF【答案】(1)10(2【解析】【分析】(1)利用补形法和体积差减去三棱锥的体积即可;B FHG -(2)以为坐标原点,分别为轴正方向建立空间直角坐标系,求出平面与平A ,,AB AD AF ,,x y z BFG 面的法向量,,求出,并结合立体图形判定二面角为锐角,从ADEF 21,1,3m ⎛⎫=- ⎪⎝⎭()1,0,0n = ,m n 而进一步求出二面角余弦值即可.【小问1详解】平面,同理均与平面垂直,故可将多面体补成如图所示的,AF AD AF ⊥∴⊥ ABCD ,ED GC ABCD 长方体,此长方体体积为,三棱锥的体积为,故此ABCD FHGE -22312⨯⨯=B FHG -12323⨯⨯=多面体的体积为10;【小问2详解】以为坐标原点,分别为轴正方向建立空间直角坐标系,则A ,,AB AD AF ,,x y z ,()()()()()0,0,0,2,0,0,0,2,0,0,0,3,2,2,3A B D F G ,设平面的法向量为,()()2,0,3,2,2,0BF FG ∴=-= BFG (),,m x y z =则,令得, 230220x z x y -+=⎧⎨+=⎩1x =21,1,3m ⎛⎫=- ⎪⎝⎭ 又为正方形,,故平面,ABCD AB AD ∴⊥AB ⊥ADEF 为平面的一个法向量,()1,0,0n∴= ADEF ,cos ,m n ==故平面与平面BFG ADEF 20. 已知在平面直角坐标系中,椭圆的离心率为,过焦点的直xOy 2222:1(0)x y C a b a b+=>>12(1,0)F 线与椭圆交于两点.l ,A B (1)求椭圆的标准方程;C (2)从下面两个条件中任选其一作为已知,证明另一个成立:①;②直线的斜率满足:. 415=AB l k 214k =【答案】(1) 22143x y +=(2)答案见解析【解析】【分析】(1)由椭圆的性质求解,(2)联立直线与椭圆方程公式,由弦长公式与韦达定理化简求解,【小问1详解】依题意,有:,则,121c a c ⎧=⎪⎨⎪=⎩21a b c =⎧⎪=⎨⎪=⎩故椭圆的标准方程为:· 22143x y +=【小问2详解】选①作为已知:当直线斜率不存在时,与椭圆交点为,此时,不合题意, :1l x =3(1,2±41215=≠AB 当直线斜率存在时,设,联立,有:, :l y kx k =-22::143l y kx k x y C =-⎧⎪⎨+=⎪⎩2222(43)84120k x k x k +-+-=,22222(8)4(43)(412)169(1)∆=--+-=⋅+k k k k 则, 22211243+=-==⋅+k AB x k 令,则有:, 154AB =22221511220151616443+=⋅⇒+=++k k k k 解得, 214k =选②作为已知:依题意,,则直线, 12k =±1:(1)2=±-l y x 联立,有, ()22112:143y x x y C ⎧=±-⎪⎪⎨⎪+=⎪⎩242110x x --=,2(2)44(11)180∆=--⨯⨯-=则, 2154AB x =-==即 415=AB 21. 如图,在四棱柱中,底面是正方形,平面平面,1111ABCD A B C D -ABCD 11A ADD ⊥ABCD ,.2AD =11AA A D =(1)求证:; 1A D AB ⊥(2)若直线与平面,求的长度. AB 11A DC 1AA 【答案】(1)证明见解析(2)12AA =【解析】【分析】(1)利用面面垂直的性质可证得平面,再利用线面垂直的性质可证得结论成立; AB ⊥11AA D D (2)取的中点,连接,证明出平面,以点为坐标原点,、、AD O 1AO 1A O ⊥ABCD O AB AD 1OA 的方向分别为、、的正方向建立空间直角坐标系,设,其中,利用空间向量法可得x y z 1A O a =0a >出关于的方程,求出的值,即可求得棱的长.a a 1AA 【小问1详解】证明:因为四边形为正方形,则,ABCD AB AD ⊥因为平面平面,平面平面,平面, 11A ADD ⊥ABCD 11 A ADD ABCD AD =AB ⊂ABCD 平面,AB ∴⊥11AA D D 平面,所以,.1A D ⊂Q 11AA D D 1AB A D ⊥【小问2详解】解:取的中点,连接,AD O 1AO,为的中点,则,11AA A D = O AD 1A O AD ⊥因为平面平面,平面平面,平面, 11AA D D ⊥ABCD 11AA D D ⋂ABCD AD =1AO ⊂11AA D D 所以,平面,1A O ⊥ABCD 以点为坐标原点,、、的方向分别为、、的正方向建立如下图所示的空间直角坐标O AB AD 1OA x y z 系,设,其中,1A O a =0a>则、、、、,()0,1,0A -()2,1,0B -()10,0,A a ()12,2,C a ()0,1,0D ,,,()2,0,0AB = ()112,2,0A C =u u u u r ()10,1,A D a =- 设平面的法向量为,则,取,则, 11A C D (),,m x y z = 1112200m A C x y m A D y az ⎧⋅=+=⎪⎨⋅=-=⎪⎩ x a =(),,1m a a =-- 由题意可得cos ,AB m AB m AB m ⋅<>====⋅,解得,则.0a > a =12AA == 22. 已知以动点为圆心的与直线:相切,与定圆:相外切. P P A l 12x =-F A 221(1)4x y -+=(Ⅰ)求动圆圆心的轨迹方程;P C (Ⅱ)过曲线上位于轴两侧的点、(不与轴垂直)分别作直线的垂线,垂足记为、C x M N MN x l 1M ,直线交轴于点,记、、的面积分别为、、,且1N l x A 1AMM ∆AMN ∆1ANN ∆1S 2S 3S 22134S S S =,证明:直线过定点.MN 【答案】(Ⅰ);(Ⅱ)详见解析.24y x =【解析】【分析】(Ⅰ)根据题意,点到直线的距离与到的距离相等,由抛物线的定义可得解; P =1x -(1,0)F (Ⅱ)设、,用坐标表示、、,利用韦达定理,代入即得解. 111,2M y ⎛⎫- ⎪⎝⎭21,2N y ⎛⎫- ⎪⎝⎭1S 2S 3S 【详解】(Ⅰ)设,半径为,则,,所以点到直线的距离(,)P x y P A R 12R x =+1||2PF R =+P =1x -与到的距离相等,故点的轨迹方程为.(1,0)F P C 24y x =(Ⅱ)设,,则、 ()11,M x y ()22,N x y 111,2M y ⎛⎫- ⎪⎝⎭21,2N y ⎛⎫- ⎪⎝⎭设直线:()代入中得MN x ty n =+0t ≠24y x =2440y ty n --=,124y y t +=1240y y n =-<∵、 1111122S x y =+⋅3221122S x y =+⋅∴ 131********S S x x y y ⎛⎫⎛⎫=++ ⎪⎪⎝⎭⎝⎭ 12121122ty n ty n y y ⎛⎫⎛⎫=++++ ⎪⎪⎝⎭⎝⎭ ()22121211422t y y n t y y n n ⎡⎤⎛⎫⎛⎫=+++++⋅-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦2221144422nt t n n n ⎡⎤⎛⎫⎛⎫=-++++⋅⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦ 221242t n n ⎡⎤⎛⎫=++⋅⎢⎥ ⎪⎝⎭⎢⎥⎣⎦又212111222S n y y n =+⋅-=+∴ ()()22222211116164422S n t n n t n ⎛⎫⎛⎫=+⋅+=+⋅+ ⎪ ⎪⎝⎭⎝⎭ 222222131114842222S S S nt n t n n n ⎛⎫⎛⎫=⇔=+⇔=+⇒= ⎪ ⎪⎝⎭⎝⎭∴直线恒过 MN 1,02⎛⎫ ⎪⎝⎭【点睛】本题考查了直线和抛物线综合,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.。

2023-2024学年四川省成都市校级联考高二(上)期末数学试卷(含答案)

2023-2024学年四川省成都市校级联考高二(上)期末数学试卷(含答案)

2023-2024学年四川省成都市校级联考高二(上)期末数学试卷一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.已知向量a =(1,1,2),b =(−3,2,0),则a +b 在a 上的投影向量为( )A. (32,32,322) B. (1510, 1510, 3010)C. (34,34,3 24) D. (−25,35, 25)2.平面直角坐标系内,与点A(1,1)的距离为1且与圆(x−1)2+(y−4)2=4相切的直线有( )A. 4条B. 3条C. 2条D. 0条3.设−A 、−B 分别是事件A 、B 的对立事件,P(A)>0,P(B)>0,则下列结论不正确的是( )A. P(A)+P(−A )=1B. 若A 、B 是互斥事件,则P(A ∩B)=P(A)P(B)C. P(A ∪−A )=1D. 若A 、B 是独立事件,则P(A ∩B)=P(A)P(B)4.如图,在平行六面体ABCD−A 1B 1C 1D 1中,以顶点A 为端点的三条棱长度都为1,且两两夹角为60°,则AC1⋅BD 1=( )A. 12B. 1C. 32D. 25.在样本频率分布直方图中共有9个小矩形,若其中1个小矩形的面积等于其他8个小矩形面积和的25,且样本容量为210,则该组的频数为( )A. 28B. 40C. 56D. 606.已知双曲线C :x 22−y 24=1的左、右焦点分别为F 1,F 2,过F 1作其中一条渐近线的垂线,垂足为P ,则|P F 2|为( )A.3B. 23C. 2D. 47.已知抛物线y 2=4x 的焦点为F ,其上有两点A ,B ,若AB 的中点为M ,满足MF 的斜率等于1,则|BF|的最大值是( )A. 7B. 8C. 5+23D. 108.半径为R 的光滑半球形碗中放置着4个半径为r 的质量相同的小球,且小球的球心在同一水平面上,今将另一个完全相同的小球至于其上方,若小球不滑动,则Rr 的最大值是( )A. 25+1B. 27+1C. 211+1D. 213+1二、多选题:本题共4小题,共20分。

四川省成都市2022-2023学年高二上学期期末调研考试数学(理科)试题

四川省成都市2022-2023学年高二上学期期末调研考试数学(理科)试题

2022~2023学年度上期期末高二年级调研考试数学(理科)第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.双曲线2214y x -=的渐近线方程为( ) A .14y x =± B .12y x =± C .4y x =± D .2y x =±2.在空间直角坐标系Oxyz 中,点(4,1,9)P 到点(2,4,3)Q 的距离为( )A .5B .6C .7D .83.在一次游戏中,获奖者可以获得5件不同的奖品,这些奖品要从编号为1-50号的50种不同奖品中随机抽取确定,用系统抽样的方法为获奖者抽取奖品编号,则5件奖品的编号可以是( ) A .3,13,23,33,43 B .11,21,31,41,50 C .3,6,12,24,48D .3,19,21,27,504.命题“0m ∀∈≤N ”的否定是( )A .00m ∃∉≥NB .00m ∃∈>NC .00m ∃∈≤ND .0m ∀∈>N5.若,,a b c ∈R ,则“a b >”是“a c b c +>+”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件6.已知直线:0l Ax By C ++=(A ,B 不同时为0),则下列说法中错误的是( ) A .当0B =时,直线l 总与x 轴相交 B .当0C =时,直线l 经过坐标原点O C .当0A C ==时,直线l 是x 轴所在直线 D .当0AB ≠时,直线l 不可能与两坐标轴同时相交7.执行如图所示的程序语句,若输入5x =,则输出y 的值为( )B .7C .22-D .28-8.已知F 是抛物线24y x =的焦点,M 是抛物线上一点,且满足120OFM ∠=︒(O 为坐标原点),则FM 的值为( )A .4B .3C .D .29.已知圆221:(2)(1)9O x y -+-=和直线:10l x y -+=.若圆2O 与圆1O 关于直线l 对称,则圆2O 的方程为( ) A .22(3)9x y -+=B .22(3)9x y +-= C .22(2)(3)9x y -+-=D .22(3)(2)9x y -+-=10.已知13,22m ⎡⎤∈-⎢⎥⎣⎦,命题2:2320p m m --≤,命题22:1623x y q m m +=--表示焦点在x 轴上的椭圆.则下列命题中为假命题的是( ) A .p q ∧ B .p q ∨ C .p q ⌝∨ D .p q ⌝∨11.在平面直角坐标系xOy 内,对任意两点()11,A x y ,()22,B x y ,定义A ,B 之间的“曼哈顿距离”为1212AB x x y y =-+-,记到点O 的曼哈顿距离小于或等于1的所有点(,)x y 形成的平面区域为Ω.现向221x y +=的圆内随机扔入N 粒豆子,每粒豆子落在圆内任何一点是等可能的,若落在Ω内的豆子为M 粒,则下面各式的值最接近圆周率的是( ) A .NMB .2NMC .3NMD .4NM12.已知有相同焦点1F ,2F 的椭圆22122:1(0)x y C a b a b +=>>与双曲线22222:1(0,0)x y C m n m n -=>>在第一象限的交点为A ,若2AOF △(O 为坐标原点)是等边三角形,则ab mn的值为( )A .2+B .2-CD 第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡上.13.已知椭圆22110036x y +=上一点P 到一个焦点的距离为6,那么点P 到另一个焦点的距离为______. 14.为了解某校高三学生的数学成绩,随机地抽查了该校100名高三学生的期中考试数学成绩,得到频率分布直方图如图所示.请根据以上信息,估计该校高三学生数学成绩的中位数为______.(结果保留到小数点后两位)15.甲,乙两人下棋,若两人下成和棋的概率是13,甲获胜的概率是14,则乙获胜的概率是______.16.已知双曲线22221(0,0)x y a b a b-=>>的左,右焦点1F ,2F ,经过1F 斜率为l 与双曲线的左支相交于P ,Q 两点.记12PF F △的内切圆的半径为a ,则双曲线的离心率为______.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)已知点(4,2)P -,直线:3450l x y --=. (Ⅰ)求经过点P 且与直线l 平行的直线的方程; (Ⅱ)求经过点P 且与直线l 垂直的直线的方程. 18.(本小题满分12分)甲,乙两台机床同时生产一种零件,统计5天中两台机床每天所出的次品件数,数据如下图:(Ⅰ)判断哪台机床的性能更稳定,请说明理由;(Ⅱ)从甲机床这五天的数据中任意抽取两天的数据,求至多有一天的次品数超过1件的概率. 19.(本小题满分12分)已知圆22:60A x y x +-=与直线32x =相交于M ,N 两点. (Ⅰ)求||MN 的长;(Ⅱ)设圆C 经过点M ,N 及(2,2)B .若点P 在圆C 上,点Q 在圆A 上,求||PQ 的最大值. 20.(本小题满分12分)某工厂统计2022年销售网点数量与售卖出的产品件数的数据如下表:(Ⅰ)求2022年售卖出的产品件数y (单位:万件)关于销售网点数x (单位:个)的线性回归方程; (Ⅱ)根据(Ⅰ)中求出的线性回归方程,预测2022年该工厂建立40个销售网点时售卖出的产品件数.参考公式:()()()1122211ˆnnii i ii i nni ii i xx y y x ynxy bx x xnx ====---==--∑∑∑∑,ˆˆay bx =-. 21.(本小题满分12分)已知椭圆2222:1(0)x y E a b a b +=>>经过点12⎫⎪⎭(Ⅰ)求椭圆E 的方程;(Ⅱ)设经过右焦点2F 的两条互相垂直的直线分别与椭圆E 相交于A ,B 两点和C ,D 两点.求四边形ACBD 的面积的最小值. 22.(本小题满分12分)已知点(1,0)F ,经过y 轴右侧一动点A 作y 轴的垂线,垂足为M ,且||||1AF AM -=.记动点A 的轨迹为曲线C . (Ⅰ)求曲线C 的方程;(Ⅱ)设经过点(1,0)B -的直线与曲线C 相交于P ,Q 两点,经过点(1,)((0,2)D t t ∈,且t 为常数)的直线PD 与曲线C 的另一个交点为N ,求证:直线QN 恒过定点.。

【免费下载】四川省成都市高二上期末数学试卷理科

【免费下载】四川省成都市高二上期末数学试卷理科
14.在正方体 ABCD﹣A1B1C1D1 的 12 条面对角线所在的直线中,与 A1B 所在的直线异面而 且夹角为 60°的直线有 条. 15.记空间向量 = , = , = ,其中 , , 均为单位向量.若 ⊥ ,且 与 ,
的夹角均为 θ,θ∈[0,π].有以量 与 + 的夹角; ③若向量 + 所在直线与平面 ABC 垂直,则 θ=60°;
17.(12 分)(2014 秋•成都期末)某校要调查高中二年级男生的身高情况,现从全年级男 生中随机抽取一个容量为 100 的样本.样本数据统计如表,对应的频率分布直方图如图所 示. (1)求频率分布直方图中 a,b 的值; (2)用样本估计总体,若该校高中二年级男生共有 1000 人,求该年级中男生身高不低于 170cm 的人数. 身高(单位:cm) [150,155) [155,160) [160,165) [165,170) [170,175) [175,180) [180,185) [185,190) 人数 2 8 15 20 25 18 10 2
A. 10 B. 21 C. 35 D. 46 3.已知点 A(﹣1,2),B(1,3),若直线 l 与直线 AB 平行,则直线 l 的斜率为( ) A. ﹣2 B. 2 C. ﹣ D. 4.根据如图的程序语句,当输入的 x 的值为 2 时,则执行程序后输出的结果是( )
A. 4 B. 6 C. 8 D. 10 5.经过点(2,1),且倾斜角为 135°的直线方程为( ) A. x+y﹣3=0 B. x﹣y﹣1=0 C. 2x﹣y﹣3=0 D. x﹣2y=0 6.已知圆 C1:x2+y2+2x﹣4y+1=0,圆 C2:(x﹣3)2+(y+1)2=1,则这两圆的位置关系是( ) A. 相交 B. 相离 C. 外切 D. 内含

2021-2022学年四川省成都市蓉城高中教育联盟高二(上)期末数学试卷(理科)(附详解)

2021-2022学年四川省成都市蓉城高中教育联盟高二(上)期末数学试卷(理科)(附详解)

2021-2022学年四川省成都市蓉城高中教育联盟高二(上)期末数学试卷(理科)一、单选题(本大题共12小题,共60.0分)1.高二(1)班有男同学28人,女同学21人,按性别分层,用分层抽样的方法从学生中抽出一个样本,抽取男同学的人数为8人,则抽取女同学的人数为()A. 12人B. 10人C. 8人D. 6人2.椭圆x216+y27=1的焦点坐标为()A. (±4,0)B. (0,±4)C. (±3,0)D. (0,±3)3.学校田径运动会有15名运动员参加跳高比赛,预赛成绩各不相同,取前8名参加决赛,某同学已经知道了自己的成绩,为了判断自己是否能进入决赛,他还需要知道这15名运动员成绩的()A. 平均数B. 众数C. 中位数D. 方差4.已知双曲线C:y2−x22=1,则该双曲线的实轴长为()A. 1B. 2C. √2D. 2√25.经过直线x−y+4=0与直线x+y+2=0的交点,且平行于直线2x−y=0的直线方程为()A. 2x−y−7=0B. 2x−y+7=0C. x−2y+1=0D. x+2y+1=06.命题“∃x0∈R,x02−x0+1<0”的否定是()A. ∃x0∈R,x02−x0+1≥0B. ∃x0∉R,x02−x0+1≥0C. ∀x∈R,x2−x+1≥0D. ∀x∉R,x2−x+1≥07.抛物线y2=2px(p>0)上的一点P(4,−8)到其焦点F的距离|PF|等于()A. 12B. 10C. 8D. 68.“a=−1”是“直线l1:(a−2)x+(a+1)y+1=0与l2:(a+1)x+(2a−3)y−2=0互相垂直”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件9.已知圆C的圆心在直线x+y=0上,且圆C与y轴的交点分别为A(0,4),B(0,−2),则圆C的标准方程为()A. (x −1)2+(y +1)2=10B. (x +1)2+(y −1)2=10C. (x −1)2+(y +1)2=√10D. (x +1)2+(y −1)2=√1010. 执行如图所示的程序框图,若输入m =51,n =18,则输出的结果是( )A. 13B. 5C. 3D. 211. 已知两点A(−4,8),B(2,4),点C 在直线y =x +1上,则|AC|+|BC|的最小值为( )A. 2√13B. 9C. √74D. 1012. 已知过椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点F 且斜率为√33的直线与椭圆C 相交于A ,B 两点,若AF ⃗⃗⃗⃗⃗ =3FB ⃗⃗⃗⃗⃗ ,则椭圆C 的离心率为( )A. 13B. √33C. 15D. √55二、单空题(本大题共4小题,共20.0分)13. 已知圆C :x 2+y 2=5,则过圆上一点P(1,2)的切线方程是______ .14. 已知焦点在x 轴上的双曲线,其渐近线方程为y =±12x ,焦距为2√5,则该双曲线的标准方程为______.15. 在抛掷一颗骰子(一种正方体玩具,六个面分别标有1,2,3,4,5,6字样)的试验中,事件A 表示“不大于3的奇数点出现”,事件B 表示“小于4的点数出现”,则事件A +B −的概率为______.16.已知过点P(a,0)的直线l与抛物线y2=4x交于A,B两点,若1|AP|2+1|BP|2为定值,则实数a的值为______.三、解答题(本大题共6小题,共70.0分)17.已知三角形ABC的三个顶点分别是A(1,6),B(7,2),C(5,−1).求:(1)BC边所在直线的方程;(2)BC边上高线AD所在直线的方程.18.某商品公司随机选取了1000名购物者在某年度的消费情况进行统计,并根据消费金额(单位:万元)分成6组,制成如图所示的频率分布直方图:(1)求a的值;(2)在这些购物者中,求消费金额在区间(0.5,0.9]内的购物者的人数.19. 已知动点P 到定点A(−2,0)的距离与它到定点B(2,0)的距离之比为√3.(1)求动点P 的轨迹E 的方程;(2)若圆C :(x −2)2+(y −32)2=94与轨迹E 相交于M ,N 两点,求线段MN 的长.20. 已知双曲线C :x 2a 2−y 2b 2=1(a >0,b >0),离心率e =√3,虚轴长为2√2.(1)求双曲线C 的标准方程;(2)过点P(1,1)能否作直线l ,使直线l 与双曲线C 交于A ,B 两点,且点P 为弦AB 的中点?若存在,求出直线l 的方程;若不存在,请说明理由.21. 已知抛物线E :y 2=2px(p >0)经过点P(2,√6).(1)求抛物线E 的方程;(2)若直线l :y =kx +m(km <0)与抛物线E 相交于A ,B 两点,且OA ⃗⃗⃗⃗⃗ ⋅OB ⃗⃗⃗⃗⃗⃗ =4,证明:直线l 过定点.22.已知椭圆C的焦点为F1(−√3,0),F2(√3,0),且长轴长是焦距的2√3倍.3(1)求椭圆C的标准方程;(2)若斜率为1的直线l与椭圆C相交于A,B两点,已知点P(1,1),求△ABP面积的最大值.答案和解析1.【答案】D【解析】解:∵高二(1)班有男同学28人,女同学21人,按性别分层,用分层抽样的方法从学生中抽出一个样本,抽取男同学的人数为8人,∴抽取女同学的人数为:828×21=6,故选:D.根据分层抽样的定义建立比例关系即可.本题主要考查分层抽样的应用,根据条件建立比例公式是解决本题的关键.2.【答案】C【解析】解:由椭圆x216+y27=1可得焦点在x轴上,且c2=a2−b2=16−7=9,∴c=3,故焦点坐标为(±3,0),故选:C.由椭圆的方程即可求解.本题考查了椭圆的方程以及性质,考查了学生的运算能力,属于基础题.3.【答案】C【解析】解:学校田径运动会有15名运动员参加跳高比赛,预赛成绩各不相同,取前8名参加决赛,∴中位数和比中位数高的都能进入决赛,∴某同学已经知道了自己的成绩,为了判断自己是否能进入决赛,他还需要知道这15名运动员成绩的中位数.故选:C.学校田径运动会有15名运动员参加跳高比赛,预赛成绩各不相同,取前8名参加决赛,由此得到中位数和比中位数高的都能进入决赛.本题考查中位数的性质及应用,考查平均数、众数、中位数、方差的定义等基础知识,考查数据分析能力,是基础题.4.【答案】B【解析】解:双曲线方程y 2−x 22=1中,∵a 2=1,∴双曲线的实轴长2a =2×1=2. 故选:B . 双曲线方程y 2−x 22=1中,由a 2=1,能求出双曲线的实轴长.本题考查双曲线的实轴长的求法,是基础题.解题时要认真审题,仔细解答.5.【答案】B【解析】解:根据题意,要求直线平行于直线2x −y =0,设要求直线的方程为2x −y +m =0,联立{x −y +4=0x +y +2=0,解可得{x =−3y =1,即两条直线交点的坐标为(−3,1),要求直线的方程为2x −y +m =0,有−6−1+m =0,解可得m =7, 即要求直线的方程为2x −y +7=0, 故选:B .根据题意,设要求直线的方程为2x −y +m =0,求出直线x −y +4=0与直线x +y +2=0的交点,代入要求直线的方程2x −y +m =0,求出m 的值,即可得答案. 本题考查直线的一般式方程与直线平行的的关系,涉及两条直线交点的计算,属于基础题.6.【答案】C【解析】解:∵特称命题的否定是全称命题.∴命题p :∃x 0∈R ,使x 02−x 0+1<0的否定是:∀x ∈R ,x 2−x +1≥0.故选:C .利用特称命题的否定是全称命题写出结果即可.本题考查命题的否定,注意量词的变化,基本知识的考查.7.【答案】C【解析】解:因为点P(4,−8)在抛物线y 2=2px 上, 所以(−8)2=8p ,解得p =8,所以抛物线方程为y 2=16x ,焦点F 的坐标为(4,0), 所以|PF|=|−8−0|=8. 故选:C .将点P 的坐标代入抛物线方程中求出p ,从而可得焦点F 的坐标,利用两点间的距离公式求解即可.本题主要考查抛物线的方程,两点间的距离公式,考查运算求解能力,属于基础题.8.【答案】A【解析】解:当两条直线的斜率均存在时,有a +1≠0,且2a −3≠0,所以a ≠−1且a ≠32,又2−aa+1⋅a+13−2a =−1,解得a =53;当a =−1时,直线l 1的斜率不存在,其方程为x =13,直线l 2的斜率为0,其方程为y =−25, 此时两条直线互相垂直,所以a =−1符合题意,“a =−1”是“直线l 1:(a −2)x +(a +1)y +1=0与l 2:(a +1)x +(2a −3)y −2=0互相垂直”的充分不必要条件. 故选:A .分直线的斜率是否存在两种情况讨论,结合两直线垂直,斜率之积为−1,求出a.然后判断充要条件即可.本题考查两条直线的垂直关系,充要条件的判断,考查运算求解能力,属于基础题.9.【答案】B【解析】解:由题意设圆心坐标为(a,−a),再由圆C 与y 轴的交点分别为A(0,4),B(0,−2),可得a =−1,则圆心坐标为(−1,1),半径r =√(−1−0)2+(1−4)2=√10. ∴该圆的标准方程是(x +1)2+(y −1)2=10. 故选:B .由题意可得圆心的横坐标与纵坐标相反,再由圆C 与y 轴的交点分别为(0,4),(0,−2)求得圆心坐标,进一步求解圆的半径,则答案可求. 本题考查圆的标准方程,考查运算求解能力,是基础题.10.【答案】C【解析】解:如果输入m =51,n =18,第一次执行循环体后,r =15,m =18,n =15,不满足输出条件; 第二次执行循环体后,r =3,m =15,n =3,不满足输出条件; 第三次执行循环体后,r =0,m =3,n =0,满足输出条件; 故输出的m 值为3, 故选:C .由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量m 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,属于基础题.11.【答案】C【解析】解:A(−4,8),B(2,4),点C 为直线y =x +1上的动点, 设点A(−4,8)关于直线y =x +1的对称点为D(a,b),则{b−8a+4=18+b2=a−42+!,解得a =7,b =−3,∴D(7,−3),∴|AC|+|BC|=|DC|+|BC|,当B ,D ,C 共线时,|AC|+|BC|的最小值为:|DB|=√(7−2)2+(−3−4)2=√72. 故选:C .设点A(−4,8)关于直线x −3y =0的对称点为D(a,b),列方程组求出D 的坐标,从而|AC|+|BC|=|DC|+|BC|,当B ,D ,C 共线时,|AC|+|BC|的最小值为|DB|. 本题考查两线段和的最小值的求法,考查对称、两点间距离公式等基础知识,考查运算求解能力,是基础题.12.【答案】B【解析】解:由椭圆的方程可得左焦点F(−c,0),由题意可得直线AB 的方程为x =√3y −c ,设A(x 1,y 1),B(x 2,y 2), 联立{x =√3y −cb 2x 2+a 2y 2=a 2b2,整理可得:(3b 2+a 2)y 2−2√3cb 2y −b 4=0, 可得y 1+y 2=2√3cb 23b 2+a 2①,y 1y 2=−b 43b 2+a 2②,因为AF⃗⃗⃗⃗⃗ =3FB ⃗⃗⃗⃗⃗ ,则(−c −x 1,−y 1)=3(x 2+c,y 2), 所以可得−y 1=3y 2,即y 1=−3y 2,③将③代入①中可得y 2=√3cb 23b 2+a 2,再代入②中,−3y 22=−b 43b 2+a 2,即−3⋅(√3cb 23b 2+a 2)2=−b 43b 2+a2, 整理可得3c 2=a 2, 解得离心率e =√33,故选:B .由题意设直线AB 的方程,与椭圆联立求出两根之和及两根之积,再由向量的关系求出A ,B 的纵坐标的关系,与两根之和及两根之积联立求出a ,c 的关系,进而求出椭圆的离心率.本题考查直线与椭圆的综合应用及由向量的关系可得点坐标的关系的应用,属于中档题.13.【答案】x +2y −5=0【解析】解:∵k CP =2,∴过圆上一点P(1,2)的切线斜率为−12,∴过圆上一点P(1,2)的切线方程为y −2=−12(x −1),即x +2y −5=0. 故答案为:x +2y −5=0.求出过圆上一点P(1,2)的切线斜率,利用点斜式可得切线方程.本题考查圆的切线方程,考查圆的性质,考查学生的计算能力,属于基础题.14.【答案】x 24−y 2=1【解析】解:双曲线的焦点在x 轴上,由b a =12且c 2=a 2+b 2=5,两式联立解得a 2=4,b 2=1,所以所求双曲线的标准方程为x 24−y 2=1.故答案为:x 24−y 2=1.利用双曲线的焦距以及渐近线方程,求解a ,b ,然后求解双曲线方程即可. 本题考查双曲线的简单性质的应用,双曲线方程的求法,是基础题.15.【答案】56【解析】解:在抛掷一颗骰子的试验中,事件A 表示“不大于3的奇数点出现”, 事件B 表示“小于4的点数出现”, 则A 与B −是互斥事件, ∴事件A +B −的概率为:P(A +B −)=P(A)+P(B −)=26+36=56. 故答案为:56.A 与B −是互斥事件,利用互斥事件概率加法公式能求出事件A +B −的概率.本题考查概率的求法,考查互斥事件概率加法公式等基础知识,考查运算求解能力,是基础题.16.【答案】2【解析】解:设直线l 的参数方程为{x =a +tcosαy =tsinα,t 是参数,α是直线的倾斜角,α∈(0,π), 代入抛物线方程,可得t 2sin 2α−4tcosα−4a =0. 设方程的两根为t 1,t 2,则t 1+t 2=4cosαsin 2α,t 1t 2=−4asin 2α, ∵1|AP|2+1|BP|2=1t 12+1t 22=t 12+t 22(t 1t2)2=(t 1+t 2)2−2t 1t 2(t 1t 2)2=16cos 2αsin 4α+8asin 2α16a 2sin 4α=2cos 2α+asin 2α2a 2为常数,∴2cos 2α+asin 2α为常数,即a =2.故答案为:2.设直线l 的参数方程为{x =a +tcosαy =tsinα,t 是参数,α是直线的倾斜角,α∈(0,π),代入抛物线方程,化为关于t 的一元二次方程,利用根与系数的关系结合1|AP|2+1|BP|2为定值,即可求得a 值.本题考查抛物线的几何性质,设直线的参数方程能使问题简单化,考查运算求解能力,是中档题.17.【答案】解:(1)三角形ABC 的三个顶点分别是A(1,6),B(7,2),C(5,−1),BC 边所在直线的方程为:y+1x−5=2+17−5=32,整理得:3x −2y −17=0. (2)k BC =2+17−5=32,∴BC 边上高线AD 的斜率k AD =−23, ∴BC 边上高线AD 所在直线的方程为:y −6=−23(x −1),整理得:2x +3y −20=0.【解析】(1)利用两点式方程能求出BC 边所在直线的方程.(2)先求出k BC =32,从而BC 边上高线AD 的斜率k AD =−23,由此能求出BC 边上高线AD 所在直线的方程.本题考查直线方程的求法,考查直线的斜率、两点式方程、直线的高、点斜式方程等基础知识,考查运算求解能力,是基础题.18.【答案】解:(1)由频率分布直方图及频率和等于1可得:0.2×0.1+0.8×0.1+1.5×0.1+2×0.1+2.5×0.1+a ×0.1=1, 解得a =3.(2)消费金额在区间(0.5,0.9]内频率为0.2×0.1+0.8×0.1+2×0.1+3×0.1=0.6, 所以消费金额在区间(0.5,0.9]内的购物者的人数为0.6×10000=6000.【解析】(1)利用频率和为1,求得a ;(2)由消费金额在区间(0.5,0.9]内的频率,求得消费金额在区间(0.5,0.9]内的购物者的人数.本题考查频数的求法,是基础题,解题时要认真审题,注意频率分布直方图的性质的合理运用.19.【答案】解:(1)设P(x,y),由题意,√(x+2)2+y 2√(x−2)2+y 2=√3,整理得:x 2+y 2−8x +4=0,即(x −4)2+y 2=12; (2)由(1)知,轨迹E :x 2+y 2−8x +4=0,又圆C :(x −2)2+(y −32)2=94,即x 2+y 2−4x −3y +4=0, 两圆方程作差,可得MN 所在直线方程为4x −3y =0. 圆E 的圆心坐标为E(4,0),半径为2√3, 圆心E 到直线4x −3y =0的距离d =√42+(−3)2=165.∴线段MN 的长为2√r 2−d 2=2√12−16252=4√115.【解析】(1)设P(x,y),由题意得,√(x+2)2+y 2√(x−2)2+y 2=√3,整理即可求得动点P 的轨迹E 的方程;(2)由(1)知,轨迹E :x 2+y 2−8x +4=0,化圆C 为一般方程,两圆方程作差,可得MN 所在直线方程,求出圆心E 到直线的距离,再由垂径定理求弦长.本题考查轨迹方程的求法,考查圆与圆位置关系的应用,考查运算求解能力,是中档题.20.【答案】解:(1)因为e =ca =√3,2b =2√2,所以c =√3a,b =√2, 又因为c 2=a 2+b 2, 所以3a 2=a 2+2, 所以a =1,所以双曲线C 的标准方程为x 2−y 22=1.(2)假设以定点P(1,1)为中点的弦存在,设以定点P(1,1)为中点的弦的端点坐标为A(x 1,y 1),B(x 2,y 2),(x 1≠x 2), 可得x 1+x 2=2,y 1+y 2=2,由A ,B 在双曲线上,可得:{x 12−y 122=1x 22−y 222=1,两式相减可得以定点P(1,1)为中点的弦所在的直线斜率为k =y 2−y1x 2−x 1=2(x 1+x 2)y 1+y 2=2,则以定点P(1,1)为中点的弦所在的直线方程为y −1=2(x −1), 即为y =2x −1,代入双曲线的方程可得2x 2−4x +3=0, 由Δ=(−4)2−4×2×3=−8<0, 所以不存在这样的直线.【解析】(1)根据离心率及虚轴长即可求解; (2)运用点差法求解,但是要注意检验.本题考查了双曲线的标准方程,点差法求直线斜率,属于中档题.21.【答案】解:(1)∵抛物线E :y 2=2px(p >0)经过点P(2,√6),∴(√6)2=4p ,解得p =32, ∴抛物线E 的方程为y 2=3x ;证明:(2)直线l 的方程为y =kx +m(km <0),交点A(x 1,y 1),B(x 2,y 2). 联立{y =kx +m y 2=3x ,消去y 得,k 2x 2+(2km −3)x +m 2=0,Δ=(2km −3)2−4k 2m 2=9−12km >0. ∴x 1+x 2=3−2km k 2,x 1x 2=m 2k 2.又∵y =kx +m ,∴y 1y 2=(kx 1+m)(kx 2+m)=k 2x 1x 2+km(x 1+x 2)+m 2. ∴OA ⃗⃗⃗⃗⃗ ⋅OB ⃗⃗⃗⃗⃗⃗ =x 1x 2+y 1y 2=(k 2+1)x 1x 2+km(x 1+x 2)+m 2 =m 2(k 2+1)k 2+km(3−2km)k 2+m 2=4,整理得m 2+3mk −4k 2=0,∴m =−4k 或m =k . ∵km <0,∴m =−4k ,则直线方程为y =kx −4k ,直线过定点(4,0).【解析】(1)把已知的的坐标代入抛物线方程,求得p 值,则抛物线方程可求; (2)联立直线方程与抛物线方程,化为关于x 的一元二次方程,由根与系数的关系结合数量积可得k 与m 的关系,即可证明直线l 过定点.本题考查抛物线方程的求法,考查直线与抛物线位置关系的应用,考查运算求解能力,是中档题.22.【答案】解:(1)设椭圆C 的标准方程为x 2a 2+y2b 2=1(a >b >0),依题意,半焦距c =√3,2a =2√33×2c ,即a =2,b 2=a 2−c 2=1, 所以椭圆C 的标准方程为x 24+y 2=1.(2)依题意,设直线l :y =x +m ,A(x 1,y 1),B(x 2,y 2), 由{y =x +m x 2+4y 2=4消去并整理得:5x 2+8mx +4m 2−4=0, 由Δ=64m 2−20(4m 2−4)=−16m 2+80>0,解得−√5<m <√5, 则有x 1+x 2=−8m 5,x 1x 2=4m 2−45,于是得|AB|=√1+12×√(x 1+x 2)2−4x 1x 2=√2×√(−8m 5)2−4×4m 2−45=4√25×√5−m 2,而点P 到直线l 的距离为d =√2,因此,△ABQ 的面积S =12|AB|⋅d =12×4√25×√5−m 2×√2=25√5m 2−m 4=25√−(m 2−52)2+254≤1,当且仅当m 2=52,即m =±√102时取“=“,所以△ABQ 面积的最大值为1.【解析】(1)根据给定条件求出椭圆半焦距c ,长短半轴长a ,b 即可得解.(2)设出直线l 的方程,再与椭圆C 的方程联立,求出弦AB 长及点P 到直线l 的距离,然后求出△ABP 面积的表达式并求其最大值即可.本题考查了直线与椭圆的综合,椭圆的标准方程,属于中档题.。

2021-2022学年四川省成都市高二(上)期末数学试卷(理科)(附详解)

2021-2022学年四川省成都市高二(上)期末数学试卷(理科)(附详解)

2021-2022学年四川省成都市高二(上)期末数学试卷(理科)一、单选题(本大题共12小题,共60.0分)1.命题“∀x∈N,e x>sinx”的否定是()A. ∀x∈N,e x≤sinxB. ∀x∈N,e x<sinxC. ∃x0∈N,e x0>sinx0D. ∃x0∈N,e x0≤sinx02.抛物线y2=4x的准线方程是()A. y=116B. y=−116C. x=−1D. x=13.在空间直角坐标系Oxyz中,点A(1,−1,1)关于x轴对称的点的坐标为()A. (1,1,1)B. (1,1,−1)C. (−1,−1,−1)D. (1,−1,−1)4.设直线l1:ax+(a−2)y+1=0,l2:x+ay−3=0.若l1⊥l2,则a的值为()A. 0或1B. 0或−1C. 1D. −15.下列有关命题的表述中,正确的是()A. 命题“若a+b是偶数,则a,b都是偶数”的否命题是假命题B. 命题“若a为正无理数,则√a也是无理数”的逆命题是真命题C. 命题“若x=2,则x2+x−6=0”的逆否命题为“若x2+x−6≠0,则x≠2”D. 若命题“p∧q”,“p∨(¬q)”均为假命题,则p,q均为假命题6.执行如图所示的算法框图,则输出的结果是()A. 99100B. 100101C. 101100D. 991017.方程x2m+3+y21−m=1表示椭圆的充分不必要条件可以是()A. m∈(−3,1)B. m∈(−3,−1)∪(−1,1)C. m∈(−3,0)D. m∈(−3,−1)8.如图,是对某位同学一学期8次体育测试成绩(单位,分)进行统计得到的散点图,关于这位同学的成绩分析,下列结论错误的是()A. 该同学的体育测试成绩总的趋势是在逐步提高,且8次测试成绩的极差超过15分B. 该同学8次测试成绩的众数是48分C. 该同学8次测试成绩的中位数是49分D. 该同学8次测试成绩与测试次数具有相关性,且呈正相关9.若椭圆x23+y24=1的弦AB恰好被点M(1,1)平分,则AB所在的直线方程为()A. 3x−4y+1=0B. 3x+4y−7=0C. 4x−3y−1=0D. 4x+3y−7=010.七巧板是中国古代劳动人民发明的一种传统智力玩具,被誉为“东方魔社”,它是由五块等腰直角三角形,一块正方形和一块平行四边形共七块板组成的.如图是一个用七巧板拼成的正方形,若在此正方形中随机地取一点,则该点恰好取自白色部分的概率为()A. 916B. 716C. 1332D. 113211.已知双曲线x2a2−y2b2=1(a>0,b>0)的左、右焦点分别为F1、F2.若双曲线右支上存在点P,使得PF1与双曲线的一条渐近线垂直并相交于点Q,且|PF1|=4|F1Q|,则双曲线的浙近线方程为()A. y=±xB. y=±43x C. y=±34x D. y=±√2x12. 数学美的表现形式不同于自然美或艺术美那样直观,它蕴藏于特有的抽象概念,公式符号,推理论证,思维方法等之中,揭示了规律性,是一种科学的真实美.平面直角坐标系中,曲线C :x 2+y 2=|x|+|y|流是一条形状优美的曲线,对于此曲线,给出如下结论:①曲线C 围成的图形的面积是2+π; ②曲线C 上的任意两点间的臥离不超过2;③若P(m,n)是曲线C 上任意一点,则|3m +4n −12|的最小值是17−5√22. 其中正确结论的个数为( )A. 0B. 1C. 2D. 3二、单空题(本大题共4小题,共20.0分) 13. 椭圆x 2+2y 2=4的长轴长为______.14. 某班有40位同学,将他们从01至40编号,现用系统抽样的方法从中选取5人参加文艺演出,抽出的编号从小到大依次排列,若排在第一位的编号是05,那么第四位的编号是______.15. 根据某市有关统计公报显示,随着“一带一路”经贸合作持续深化,该市对外贸易近几年持续繁荣,2017年至2020年每年进口总额x(单位:千亿元)和出口总额y(单位:千亿元)之间的一组数据如下:若每年的进出口总额x ,y 满足线性相关关系y ̂=b ̂x −0.84,则b ̂=______;若计划2022年出口总额达到5千亿元,预计该年进口总额为______千亿元.16. 已知椭圆和双曲线有相同的焦点F 1和F 2,设椭圆和双曲线的离心率分别为e 1,e 2,P 为两曲线的一个公共点,且|PF⃗⃗⃗⃗⃗ 1−PF ⃗⃗⃗⃗⃗ 2|=2|PO ⃗⃗⃗⃗⃗ |(O 为坐标原点).若e 1∈(√22,√32],则e 2的取值范围是______.三、解答题(本大题共6小题,共70.0分)17. 已知△ABC 的三个顶点是A(4,0),B(6,7),C(0,3).(Ⅰ)求AC 边所在的直线方程;(Ⅱ)求经过AB 边的中点,且与AC 边平行的直线l 的方程.18.某班主任对全班50名学生进行了作业量多少与手机网游的调查,数据如下表:(Ⅰ)若随机抽问这个班的一名学生,分别求事件“认为作业不多”和事件“喜欢手机网游且认为作业多”的概率;(Ⅱ)若在“认为作业多”的学生中已经用分层抽样的方法选取了5名学生.现要从这5名学生中任取2名学生了解情况,求其中恰有1名“不喜欢手机网游”的学生的概率.19.已知圆C的圆心为C(1,2),且圆C经过点P(5,5).(Ⅰ)求圆C的一般方程;(Ⅱ)若圆O:x2+y2=m2(m>0)与圆C恰有两条公切线,求实数m的取值范围.20.为了讴歌中华民族实现伟大复兴的奋斗历程,增进学生对中国共产党的热爱,某学校举办了一场党史竞赛活动,共有500名学生参加了此次竞赛活动.为了解本次竞赛活动的成绩,从中抽取了50名学生的得分(得分均为整数,满分为100分)进行统计,所有学生的得分都不低于60分,将这50名学生的得分进行分组,第一组[60,70),第二组[70,80),第三组[80,90),第四组[90,100](单位:分),得到如下的频率分布直方图.(Ⅰ)求图中m的值,估计此次活动学生得分的中位数;(Ⅱ)根据频率分布直方图,估计此竞赛活动得分的平均值.若对得分不低于平均值的同学进行奖励,请估计在参赛的500名学生中有多少名学生获奖.21.已知抛物线E:x2=2py(p>0)的焦点为F,直线y=3与抛物线E在第一象限的交点为A,且|AF|=4.(Ⅰ)求抛物线E的方程;(Ⅱ)经过焦点F作互相垂直的两条直线l1,l2,l1与抛物线E相交于P,Q两点,l2与抛物线E相交于M,N两点.若C,D分别是线段PQ,MN的中点,求|FC|⋅|FD|的最小值.22. 已知点P 是圆C :(x +√3)2+y 2=16上任意一点,A(√3,0)是圆C 内一点,线段AP的垂直平分线与半径CP 相交于点Q .(1)当点P 在圆上运动时,求点Q 的轨迹E 的方程;(2)设不经过坐标原点O ,且斜率为12的直线l 与曲线E 相交于M ,N 两点,记OM ,ON 的斜率分别是k 1,k 2,以OM ,ON 为直径的圆的面积分别为S 1,S 2.当k 1,k 2都存在且不为0时,试探究S 1+S 2k1k 2是否为定值?若是,求出此定值;若不是,请说明理由.答案和解析1.【答案】D【解析】解:命题为全称命题,则命题的否定为∃x0∈N,e x0≤sinx0,故选:D.根据含有量词的命题的否定即可得到结论.本题主要考查含有量词的命题的否定,比较基础.2.【答案】C【解析】解:由已知抛物线方程可得:2p=4,所以p=2,=−1,即x=−1,所以准线方程为x=−p2故选:C.由已知抛物线方程以及求出p的值,进而可以求解.本题考查了抛物线的性质以及准线方程,属于基础题.3.【答案】B【解析】解:∵点A(1,−1,1),一个点关于x轴对称的点的坐标是只有横标不变,纵标和竖标改变,∴点A(1,−1,1)关于x轴对称的点的坐标为(1,1,−1)故选:B.根据所给的点的坐标,知一个点关于x轴对称的点的坐标是只有横标不变,纵标和竖标改变,写出点的坐标.本题考查空间中点的对称,是一个基础题,注意点在空间中关于坐标轴和坐标平面对称的点的坐标,这种题目通常单独作为一个知识点出现.4.【答案】A【解析】解:∵直线l1:ax+(a−2)y+1=0,l2:x+ay−3=0,l1⊥l2,∴a×1+(a−2)×a=0,解得a=0或a=1.故选:A.利用直线与直线垂直的性质直接求解.本题考查实数值的求法,考查直线与直线垂直的性质等基础知识,考查运算求解能力,是基础题.5.【答案】C【解析】解:对于A:命题“若a+b是偶数,则a,b都是偶数”的逆命题是:“若a,b都是偶数,则a+b是偶数”,该命题为真命题,由于逆命题和否命题等价,故否命题为真命题,故A错误;对于B:命题“若a为正无理数,则√a也是无理数”的逆命题是:若√a是无理数,则a也为无理数”是假命题,故B错误;对于C:命题“若x=2,则x2+x−6=0”的逆否命题为“若x2+x−6≠0,则x≠2”,故C正确;对于D:若命题“p∧q”,“p∨(¬q)”均为假命题,则p为假命题,q为真命题,故D 错误.故选:C.直接利用四种命题的转换和命题真假的判定的应用求出结果.本题考查的知识要点:命题真假的判定,四种命题的转换,主要考查学生对基础知识的理解,属于基础题.6.【答案】B【解析】解:模拟程序的运行,可得该程序的功能是利用循环结构计算并输出变量S=1 1×2+12×3+...+1100×101的值,S=11×2+12×3+...+1100×101=(1−12)+(12−13)+...+(1100−1101)=1−1101=100101.故选:B.模拟程序的运行,可得该程序的功能是利用循环结构计算并输出变量S=11×2+12×3+...+1100×101的值,进而根据裂项法即可求解. 本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.7.【答案】D【解析】解:若方程x 2m+3+y 21−m=1表示椭圆,则{m +3>01−m >0m +3≠1−m ,解得:−3<m <1且m ≠−1, 则方程x 2m+3+y 21−m =1表示椭圆的充要条件是{m|:−3<m <1且m ≠−1},则:方程x 2m+3+y 21−m =1表示椭圆的充分不必要条件所对应的集合必须是{m|:−3<m <1且m ≠−1}的真子集,选项D ,m ∈(−3,−1)符合条件. 故选:D . 求得方程x 2m+3+y 21−m =1表示椭圆的条件,根据利用充分条件和必要条件的定义判断. 本题主要考查充分条件和必要条件的应用,以及椭圆的方程,属于基础题.8.【答案】C【解析】解:由散点图得:对于A ,该同学的体育测试成绩总的趋势是在逐步提高,且8次测试成绩的极差为:56−38=18,超过15分,故A 正确;对于B ,该同学8次测试成绩的众数是48分,故B 正确; 对于C ,该同学8次测试成绩的中位数是:48+482=48分,故C 错误;对于D ,该同学8次测试成绩与测试次数具有相关性,且呈正相关,故D 正确. 故选:C .利用散点图、极差、众数、中位数、相关性直接求解.本题考查命题真假的判断,考查散点图、极差、众数、中位数、相关性等基础知识,考查运算求解能力,是基础题.9.【答案】D【解析】解:设A(x1,y1),B(x2,y2),则x123+y124=1,x223+y224=1,两式相减得:x12−x223+y12−y224=0,因为弦AB恰好被点M(1,1)平分,所以有x1+x2=2,y1+y2=2.所以直线AB的斜率k=y2−y1x2−x1=−43⋅x1+x2y2+y1=−43,因此直线AB的方程为y−1=−43(x−1),即4x+3y−1=0,故选:D.设A(x1,y1),B(x2,y2),利用平方差法求出直线的斜率,然后求解直线方程.本题考查直线与椭圆的位置关系的应用,椭圆的简单性质的应用,平方差法的应用,考查计算能力,属于中档题.10.【答案】A【解析】解:如图,设大正方形的边长为2,则最大的三角形是腰长为√2的等腰直角三角形,角上的三角形是腰长为1的等腰直角三角形,最小的三角形是腰长为√22的等腰直角三角形,∴白色部分的面积为:S 白=22−12×√2×√2−12×√22×√22−12×1×1=94,∴在此正方形中任取一点,则此点取自白色部分的概率为:P=S白S正方形=944=916.故选:A.设大正方形的边长为2,求出白色部分的面积,利用几何概型能求出在此正方形中任取一点,则此点取自白色部分的概率.本题考查概率的运算,考查几何概型等基础知识,考查运算求解能力,是基础题.11.【答案】B【解析】解:设双曲线x 2a 2−y 2b 2=1(a >0,b >0)的左、右焦点分别为: F 1(−c,0),F 2(c,0),一条渐近线方程为bx −ay =0,可得F 2到渐近线的距离为|F 2Q|=|bc|√a 2+b 2=b , 则|PF 2|=4b ,|PF 1|=4b −2a ,在直角三角形OF 2Q 中,cos∠QF 2O =|QF 2||OF 2|=bc ,在△PF 2F 1中,可得cos∠PF 2F 1=|F 1F 2|2+|PF 2|2−|PF 1|22|F 1F 2||PF 2|=4c 2+16b 2−(4b−2a)22×2c×4b=bc,化为3b =4a ,所以双曲线的渐近线方程为:y =±43x. 故选:B .设出双曲线的焦点和一条渐近线方程,求得F 2到渐近线的距离,可得|PF 2|=4b ,|PF 1|=4b −2a ,由直角三角形的锐角三角函数和三角形的余弦定理,化简可得3b =4a ,可得渐近线方程.本题考查双曲线的定义、方程和性质,主要是渐近线方程的求法,考查三角形的余弦定理和锐角三角函数的定义,考查方程思想和运算能力,属于中档题.12.【答案】C【解析】解:曲线C :x 2+y 2=|x|+|y|可知曲线关于原点,x ,y 轴对称, 当x ≥0,y ≥0时,可得x 2+y 2−x −y =0,可得(x −12)2+(y −12)2=12,所以可得是以C(12,12)为圆心,r =√22为半径的半圆,由此可作出曲线C 的图象,如图所示,所以曲线C 围成的图形的面积是√2×√2+2×π×(√22)2=2+π,故命题①正确;曲线上任意两点间距离的最大值为4×√22=2√2,故命题②错误;设圆心C 到直线3x +4y −12=0的距离为d =∣3×12+4×12−12∣22=1710,故曲线上任意一点P(m,n)到直线l 的距离的最小值为3m+4n−12√32+42最小值为1710−√22, 故|3m +4n −12|的最小值是17−5√22,故命题③正确. 故选:C .由曲线方程知曲线关于原点,x ,y 轴对称,当x ≥0,y ≥0时,可得x 2+y 2−x −y =0,可得(x −12)2+(y −12)2=12,所以可得是以C(12,12)为圆心,r =√22为半径的半圆,由此可作出曲线C 的图象,从而通过运算可判断命题①②③的真假.本题考查命题真假的判断,以及考查由曲线方程研究曲线的相关性质,属中档题.13.【答案】4【解析】解:椭圆x 2+2y 2=4,可得x 24+y 22=1,可得a =2,所以椭圆长轴长为:4. 故答案为:4.化简椭圆方程为标准方程,然后求解长轴长即可. 本题考查椭圆的简单性质的应用,是基础题.14.【答案】29【解析】解:系统抽样间隔为40÷5=8,且抽取的第一位编号是05, 所以第四位的编号是5+8×3=29. 故答案为:29.求出系统抽样间隔,根据抽取的第一位编号即可写出第四位的编号. 本题考查了系统抽样应用问题,是基础题.15.【答案】1.6 3.65【解析】解:由题意可得:x −=1.8+2.2+2.6+3.04=2.4.y −=2.0+2.8+3.2+4.04=3.因为样本中心满足回归直线方程,可得3=2.4 b ⏜−0.84, 解得 b⏜=1.6. y ̂=1.6x −0.84,2022年出口总额达到5千亿元,预计该年进口总额为x , 则5=1.6x −0.84,解得x =3.65. 故答案为:1.6;3.65.求出样本中心坐标,代入回归直线方程,求解b ^,然后代入计划2022年出口总额达到5千亿元,求解即可.本题考查回归直线方程的求法与应用,考查分析问题解决问题的能力,是中档题.16.【答案】[√62,+∞)【解析】解:设椭圆C 1:x 2a 12+y 2b 12=1(a 1>b 1>0),双曲线C 2:x 2a 22−y 2b 22=1(a 2>0,b 2>0),F 1(−c,0),F 2(c,0)为C 1与C 2的共同焦点,则c 2=a 12−b 12,c 2=a 22+b 22, 由|PF 1⃗⃗⃗⃗⃗⃗⃗ −PF 2⃗⃗⃗⃗⃗⃗⃗ |=2|PO ⃗⃗⃗⃗⃗ |,得|F 2F 1⃗⃗⃗⃗⃗⃗⃗⃗ |=2|PO ⃗⃗⃗⃗⃗ |, 所以2c =2|PO|,所以|PO|=c , 所以|OF 1|=|OP|=|OF 2|=c ,所以∠F 1PF 2=90°(P 为C 1与C 2的一个公共点), 设|PF 1|=m ,|PF 2|=n ,则m 2+n 2=4c 2,① m +n =2a 1,②, |m −n|=2a 2,③②2+③2,得2m 2+2n 2=4(a 12+a 22), 代入①,得2×4c 2=4(a 12+a 22), 所以2c 2=a 12+a 22,所以a 12c 2+a 22c 2=2,④ 又e 1=ca 1,e 2=ca 2,所以1e 1=a 1c,1e 2=a 2c,所以④化为1e 12+1e 22=2,即1e 22=2−1e 12,因为e 1∈(√22,√32],所以12<e 12≤34,所以43≤1e 12<2,所以−2<−1e 12≤−43,所以0<2−1e 12≤2−43=23,即0<1e 22≤23,则e 22≥32,又e 2>1,所以e 2≥√62, 所以e 2的取值范围为[√62,+∞),故答案为:[√62,+∞).设椭圆C 1:x 2a 12+y 2b 12=1(a 1>b 1>0),双曲线C 2:x 2a 22−y 2b 22=1(a 2>0,b 2>0),F 1(−c,0),F 2(c,0)为C 1与C 2的共同焦点,则c 2=a 12−b 12,c 2=a 22+b 22,由|PF 1⃗⃗⃗⃗⃗⃗⃗ −PF 2⃗⃗⃗⃗⃗⃗⃗ |=2|PO ⃗⃗⃗⃗⃗ |,得|PO|=c ,则∠F 1PF 2=90°(P 为C 1与C 2的一个公共点),设|PF 1|=m ,|PF 2=n ,可得m 2+n 2=4c 2①,m +n =2a 1②,|m −n|=2a 2③,进一步求出e 2的取值范围. 本题考查椭圆与双曲线的性质,解题中需要理清思路,属于中档题.17.【答案】解:(Ⅰ)由题意知AC 斜率为k =3−00−4=−34,所以AC 边所在直线方程为y −0=−34(x −4),即3x +4y −12=0.(Ⅱ)由(Ⅰ)知l 可设为3x +4y +m =0,又AB 边中点为(5,72),将点(5,72)代入直线l 的方程得3×5+4×72+m =0,解得m =−29,所以l 方程为3x +4y −29=0.【解析】(Ⅰ)由A 、C 两点坐标可以写出直线AC 斜率,再代入A 、C 中的一个点就可以求出AC 方程.(Ⅱ)求出AB 中点,l 与AC 平行,从而斜率相等,即可设出l ,代入A 、C 中点求得l .本题考查了直线方程的求解和两直线平行的关系,属于简单题.18.【答案】解::(Ⅰ)用A 表示“认为作业不多”,用B 表示“喜欢手机网游且认为作业多”,则P(A)=2550=12,P(B)=2050=25.(Ⅱ)若在“认为作业多”的学生中已经用分层抽样的方法选取了5名学生, “不喜欢手机网游”与“喜欢手机网游”的人数的比值为520=14, ∴采用分层抽样方法抽取5人,其中“不喜欢手机网游”的有1人, “喜欢手机网游”有4人,记“不喜欢手机网游”的1名学生为B,“喜欢手机网游”的4名学生分别为B1,B2,B3,B4,从5名学生中抽取2名学生的所有可能情况有n=C52=10,恰有1名“不喜欢手机网游”学生的情况有:{B,B1},{B,B2},{B,B3},{B,B4},共4种,∴其中恰有1名“不喜欢手机网游”的学生的概率P=410=25.【解析】(Ⅰ)利用古典概型直接求解.(Ⅱ)采用分层抽样方法抽取5人,其中“不喜欢手机网游”的有1人,“喜欢手机网游”有4人,记“不喜欢手机网游”的1名学生为B,“喜欢手机网游”的4名学生分别为B1,B2,B3,B4,从5名学生中抽取2名学生的所有可能情况有n=C52=10,利用列举法求出恰有1名“不喜欢手机网游”学生的情况有4种,由此能求出其中恰有1名“不喜欢手机网游”的学生的概率.本题考查概率的求法,考查古典概型基础知识,考查运算求解能力,是基础题.19.【答案】解:(I)设圆C的方程为(x−1)2+(y−2)2=r2(r为圆C的半径),∵圆C经过点P(5,5),∴(5−1)2+(5−2)2=r2,即r2=25,∴圆C的标准方程为(x−1)2+(y−2)2=25.(II)由(I)知圆C的圆心为C(1,2),半径为5,∵圆O:x2+y2=m2(m>0)与圆C恰有两条公切线,∴圆O与圆C相交,∴|5−m|<|OC|<5+m,∵|OC|=√(1−0)2+(2−0)2=√5,∴5−√5<m<5+√5,故m的取值范围是(5−√5,5+√5).【解析】(I)设圆C的方程为(x−1)2+(y−2)2=r2(r为圆C的半径),再将点P(5,5)代入圆C方程,即可求解.(II)将已知条件转化为两圆相交,再结合圆心距与两圆半径之间的关系,即可求解.本题主要考查两圆之间的位置关系,属于基础题.20.【答案】(Ⅰ)由图知第三组频率为1−(0.01+0.04+0.02)×10=0.30,所以第三组矩形的高为m =0.3010=0.03.因为前两组的频率为(0.01+0.03)×10=0.4<0.5,前三组的频率为(0.01+0.03+0.04)×10=0.8>0.5,所以得分的中位数在第三组内,设中位数为x ,(0.01+0.03)×10+(x −80)×0.04=0.5,解得x =82.5,所以估计此次得分的中位数是 82.5分.(Ⅱ)由频率分布直方图知,学生得分的平均值为x −=65×10×0.01+75×10×0.03+85×10×0.04+95×10×0.02=82.参赛的500名学生中得分不低于82分的人数为500×[0.02×10+(90−82)×0.04]=260,所以估计此次参加比赛活动学生得分的平均值为82分,参赛的500名学生中有260名学生获奖.【解析】(Ⅰ)所有组频率之和为1,每个小长方形面积为该组对应的频率,这样让1减去其它组频率即为所求组频率,所求组频率即为对应长方形面积,面积除以宽得到高就是m 值.频率分布直方图中的中位数是频率0.5位置为应的x 的值.(Ⅱ)平均值是各组中点值乘以对应的频率之和,不低于平均值的学生人数为总数500乘以不低于平均值的频率.本题考查了频率直方图中的频率、中位数、平均数,频数的求解,考查较基础难度不大.21.【答案】解:(Ⅰ)由题意,|AF|=3+p2=4,得p =2.∴抛物线E 的方程为x 2=4y ; (Ⅱ)由(Ⅰ)知焦点为F(0,1).由已知可得两直线PQ 、MN 的斜率都存在且均不为0. 设直线PQ 的斜率为k ,则直线MN 的斜率为−1k , 故直线PQ 的方程为y =kx +1,联立方程组{y =kx +1x 2=4y ,消去y ,整理得x 2−4kx −4=0,设点P(x 1,y 1),Q(x 2,y 2),则x 1+x 2=4k ,∵C(x C ,y C )为弦PQ 的中点,∴x C =12(x 1+x 2)=2k . 由y C =kx C +1=2k 2+1,故点C(2k,2k 2+1),同理,可得D(−2k ,2k 2+1),故|FC|=√4k 2+4k 4=2√k 4+k 2,|FD|=√4k 2+4k 4=2√1k 4+1k 2.∴|FC|⋅|FD|=4√(k 4+k 2)(1k+1k)=4√(2+k 2+1k)≥4√2+2√k 2⋅1k =8.当且仅当k 2=1k 2,即k =±1时,等号成立. ∴|CF|⋅|FD|的最小值为8.【解析】(Ⅰ)由题意可得|AF|=3+p2=4,求得p ,则抛物线E 的方程可求; (Ⅱ)由(Ⅰ)知焦点为F(0,1).由已知可得两直线PQ 、MN 的斜率都存在且均不为0.设直线PQ 的斜率为k ,则直线MN 的斜率为−1k ,可得直线PQ 与MN 的方程,与抛物线方程联立,利用根与系数的关系及中点坐标公式求得C 与D 的坐标,再求出|FC|与|FD|的值,作积后整理,再由基本不等式求最值.本题考查抛物线的方程和性质,考查直线和抛物线的位置关系的应用,考查化简运算能力和推理能力,训练了利用基本不等式求最值,属于中档题.22.【答案】解:(1)由题意知|PQ|=|AQ|,又|PQ|+|CQ|=|CP|=4,且|AC|=2√3, ∴|AQ|+|CQ|=4>|AC|,由椭圆定义知Q 点的轨迹是以A ,C 为焦点的椭圆, 设椭圆的方程为x 2a 2+y 2b 2=1(a >b >0), 则a =2,c =√3. ∴b 2=1. ∴曲线E 的方程为x 24+y 2=1.(2)由题意知直线l 的方程为y =12x +m(m ≠±1), 设直线l 与椭圆的交点为M(x 1,y 1),N(x 2,y 2),由{y =12x +mx 24+y 2=1,消去y ,化简得x 2+2mx +2m 2−2=0,∴Δ=4m 2−4(2m 2−2)=8−4m 2>0, 即m 2<2,∴x 1+x 2=−2m,x 1x 2=2m 2−2, ∴k 1k 2=y 1x 1⋅y 2x 2=12x 1+m x 1⋅12x 2+m x 2=14+m 2x 1x 2+m(x 1+x 2)2x 1x 2=14+m 22m 2−2+m⋅(−2m)4m 2−4=14, S 1+S 2=π4(|OM|2+|ON|2)=π4(x 12+y 12+x 22+y 22)=π4(x 12+x 22+y 12+y 22), ∵x 12+x 22=(x 1+x 2)2−2x 1x 2=4m 2−2(2m 2−2)=4,∴y 12+y 22=(1−x 124)+(1−x 224)=2−x 12+x 224=1,∴S 1+S 2=π4(x 12+x 22+y 12+y 22)=5π4,∴S 1+S 2k 1k 2=5π414=5π,∴S 1+S 2k 1k 2是定值,为5π.【解析】(1)由条件可得Q 点轨迹满足椭圆定义,设出椭圆方程,由a ,c 的值可得b 的值,从而求得轨迹方程;(2)设出直线l 的方程,结合韦达定理,分别求得k 1k 2为定值,S 1+S 2也为定值,从而可得S 1+S 2k1k 2是定值.本题考查了椭圆的标准方程,直线与椭圆的综合,属于难题.。

四川省成都市高二上学期期末数学试卷(理科)

四川省成都市高二上学期期末数学试卷(理科)

四川省成都市高二上学期期末数学试卷(理科)姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)命题“∀x∈R,都有|sinx|<1”的否定是()A . ∀x∈R,都有|sinx|>1B . ∀x∈R,都有|sinx|≥1C . ∃x∈R,使|sinx|>1D . ∃x∈R,使|sinx|≥12. (2分) (2017高三上·珠海期末) 已知双曲线C1: =1,双曲线C2: =1(a>0,b>0)的左、右焦点分别为F1 , F2 , M 是双曲线C2 一条渐近线上的点,且OM⊥MF2 ,若△OMF2的面积为 16,且双曲线C1 , C2的离心率相同,则双曲线C2的实轴长为()A . 4B . 8C . 16D . 323. (2分)若椭圆的离心率为,则双曲线的渐近线方程为A .B .C .D .4. (2分)已知f(x)=(m﹣1)x2+3mx+3为偶函数,则f(x)在区间(﹣4,2)上为()A . 增函数B . 减函数C . 先递增再递减D . 先递减再递增5. (2分) (2016高三上·湖州期末) 设双曲线 =1(a>b>0)的左、右焦点分别为F1 , F2 ,过F1作倾斜角为的直线交双曲线的右支交于点P,若|PF2|=|F1F2|,则双曲线的离心率是()A . ﹣1B .C . +1D .6. (2分) (2016高二上·临漳期中) 下列说法不正确的是()A . 若“p且q”为假,则p,q至少有一个是假命题B . 命题“∃x∈R,x2﹣x﹣1<0”的否定是“∀x∈R,x2﹣x﹣1≥0”C . 设A,B是两个集合,则“A⊆B”是“A∩B=A”的充分不必要条件D . 当a<0时,幂函数y=xa在(0,+∞)上单调递减7. (2分)设F为抛物线y2=4x的焦点,A、B、C为该抛物线上三点,若,则()A . 9B . 6C . 4D . 38. (2分) (2017高一下·新乡期中) 已知△ABC的外接圆半径为2,D为该圆上一点,且 + = ,则△ABC的面积的最大值为()A . 3B . 4C . 3D . 49. (2分)若抛物线y2=2px(p>0)上一点到焦点和抛物线的对称轴的距离分别为10和6,则p的值为()A . 2B . 18C . 2或18D . 4或1610. (2分)(2016·山东模拟) 如图,菱形ABCD的边长为2,∠BAD=60°,M为DC的中点,若N为菱形内任意一点(含边界),则的最大值为()A . 3B . 2C . 6D . 911. (2分)(2017·日照模拟) 已知O为坐标原点,F是双曲线的左焦点,A,B 分别为Γ的左、右顶点,P为Γ上一点,且PF⊥x轴,过点A的直线l与线段PF交于点M,与y轴交于点E,直线 BM与y轴交于点N,若|OE|=2|ON|,则Γ的离心率为()A . 3B . 2C .D .12. (2分)在直角坐标系xOy中,分别是与x轴、y轴正方向同向的单位向量,在直角三角形ABC中,若,则k的可能值个数是()A . 1B . 2C . 3D . 4二、填空题. (共4题;共5分)13. (1分)设AB是椭圆(a>b>0)的长轴,若把AB给100等分,过每个分点作AB的垂线,交椭圆的上半部分于P1、P2、…、P99 , F1为椭圆的左焦点,则|F1A|+|F1P1|+|F1P2|+…+|F1P99|+|F1B|的值是________14. (2分) (2018高二上·浙江月考) 若是双曲线的左,右焦点,点是双曲线上一点,若,则 ________,的面积 ________.15. (1分)已知一个正四面体的棱长为2,则它的体积为________16. (1分) (2016高二上·友谊期中) 给出下列命题:①直线l的方向向量为 =(1,﹣1,2),直线m的方向向量 =(2,1,﹣),则l与m垂直;②直线l的方向向量 =(0,1,﹣1),平面α的法向量 =(1,﹣1,﹣1),则l⊥α;③平面α、β的法向量分别为 =(0,1,3), =(1,0,2),则α∥β;④平面α经过三点A(1,0,﹣1),B(0,1,0),C(﹣1,2,0),向量 =(1,u,t)是平面α的法向量,则u+t=1.其中真命题的是________.(把你认为正确命题的序号都填上)三、解答题. (共5题;共45分)17. (10分) (2016高二上·吉林期中) 椭圆 =1上有一点M(﹣4,)在抛物线y2=2px(p>0)的准线l上,抛物线的焦点也是椭圆焦点.(1)求椭圆的标准方程;(2)若点N在抛物线上,过N作准线l的垂线,垂足为Q,求|MN|+|NQ|的最小值.18. (5分) (2016高二上·大连期中) 已知命题p:“ =1是焦点在x轴上的椭圆的标准方程”,命题q:“不等式组所表示的区域是三角形”.若p∨q为真命题,p∧q为假命题,求实数m的取值范围.19. (15分) (2019高一上·应县期中) 已知函数,(1)写出函数的解析式;(2)若直线与曲线有三个不同的交点,求的取值范围;(3)若直线与曲线在内有交点,求的取值范围.20. (5分)如图,已知△ABC为正三角形,D为AB的中点,E在AC上,且AE= AC,现沿DE将△ADE折起,折起过程中点A仍然记作点A,使得平面ADE⊥平面BCED,在折起后的图形中.(I)在AC上是否存在点M,使得直线ME∥平面ABD.若存在,求出点M的位置;若不存在,说明理由.(Ⅱ)求平面ABD与平面ACE所成锐二面角的余弦值.21. (10分)已知椭圆C的中心在原点,焦点在x轴上,焦距为2,离心率为.(1)求椭圆C的方程;(2)设直线l经过点M(0,1),且与椭圆C交于A,B两点,若,求直线l的方程.四、填空题 (共3题;共12分)22. (1分)在平面直角坐标系xOy中,若直线l: (t为参数)过椭圆C: (φ为参数)的右顶点,则常数a的值为________。

成都市高二上学期期末数学试卷(理科)(I)卷(考试)

成都市高二上学期期末数学试卷(理科)(I)卷(考试)

成都市高二上学期期末数学试卷(理科)(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)(2018·大新模拟) 锐角的外接圆半径为1,,,且满足,则()A .B .C .D .2. (2分)已知是等差数列的前n项和,且,有下列四个命题,假命题的是()A . 公差;B . 在所有中,最大;C . 满足的的个数有11个;D . ;3. (2分) (2016高二下·新余期末) 设 =(x,2y,3), =(1,1,6),且∥ ,则x+y等于()A .B .C .D . 24. (2分) (2017高二上·莆田月考) 已知,椭圆的方程为,双曲线的方程为,与的离心率之积为,则的渐近线方程为()A .B .C .D .5. (2分) (2016高二上·洛阳期中) 若关于x的不等式ax2+bx+c<0的解集为({﹣∞,﹣1})∪(,+∞),则不等式cx2﹣bx+a<0的解集为()A . (﹣1,2)B . (﹣∞,﹣1)∪(2,+∞)C . (﹣2,1)D . (﹣∞,﹣2)∪(1,+∞)6. (2分)设的内角A,B,C所对的边分别为a,b,c,若三边的长为连续的三个正整数,且A>B>C,,则=()A . 4:3:2B . 5:6:7C . 5:4:3D . 6:5:47. (2分)(2016·山东模拟) 已知变量x,y满足约束条件,若目标函数z=ax+y(其中a>0)仅在点(1,1)处取得最大值,则a的取值范围为()A . (0,2)B . (0,)C . (0,)D . ()8. (2分) (2016高一下·湖北期中) 公差不为零的等差数列的第1项、第6项、第21项恰好构成等比数列,则它的公比为()A .B . ﹣C . 3D . ﹣39. (2分)双曲线的渐近线与圆(x-3)2+y2=r2(r>0)相切,则r=()A .B . 2C . 3D . 610. (2分)在R上定义运算:对x,y R,有x y=2x+y,如果a3b=1(ab>0),则的最小值是()A .B .C .D .11. (2分) (2016高一上·西安期末) 如图长方体中,AB=AD=2 ,CC1= ,则二面角C1﹣BD﹣C的大小为()A . 30°B . 45°C . 60°D . 90°12. (2分)(2020·鹤壁模拟) 设双曲线的左、右焦点分别为,,是双曲线上的点,且与轴垂直,的内切圆的方程为,则双曲线的渐近线方程为()A .B .C .D .二、填空题 (共4题;共4分)13. (1分) (2016高二上·西湖期中) 已知△ABC的周长为9,且sinA:sinB:sinC=3:2:4,则cosC=________.14. (1分) (2017高一下·盐城期末) 已知数列{an}满足(k∈N*),若a1=1,则S20=________.15. (1分)若命题“存在x∈R,ax2+4x+a≤0”为假命题,则实数a的取值范围是________ .16. (1分) (2018高二上·淮北月考) 若点坐标为,是椭圆的下焦点,点是该椭圆上的动点,则的最大值为,最小值为,则 ________.三、解答题 (共6题;共50分)17. (10分)(2019高一上·丹东月考) ,非空集合,集合.(1)时,求;(2)若是的必要条件,求实数的取值范围.18. (5分)(2020·海南模拟) 在① ,,② ,,③,三个条件中任选一个补充在下面问题中,并加以解答.已知的内角A , B , C的对边分别为a , b , c ,若,__________,求的面积S.19. (10分)如图,四棱锥P﹣ABCD,底面ABCD是∠ABC=60°的菱形,侧面PAD是边长为2的正三角形,O 是AD的中点,M为PC的中点.(1)求证:PC⊥AD;(2)若PO与底面ABCD垂直,求直线DM与平面PAC所成的角的正弦值.20. (10分) (2017高三·银川月考) 在一般情况下,城市主干道上的车流速度(单位:千米/小时)是车流密度(单位:辆/千米)的函数。

2023-2024学年四川省成都市高二上期期末考试数学(理)试题(含解析)

2023-2024学年四川省成都市高二上期期末考试数学(理)试题(含解析)

2023-2024学年四川省成都市高二上期期末考试数学(理)试题一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.过点()0,2-且与已知直线0x y +=垂直的直线方程为()A.20x y +-=B.20x y --= C.20x y ++= D.20x y -+=【正确答案】B【分析】由垂直关系得到直线斜率,由点斜式写出方程即可.【详解】∵直线0x y +=的斜率11k =-,∴所求直线斜率2 1k =,故直线方程为()()220y k x --=-,即20x y --=.故选:B .2.若一个圆的标准方程为()2214x y +-=,则此圆的圆心与半径分别是()A.()1,04-; B.()102,; C.()014-,; D.()0,12;【正确答案】D【分析】根据圆的标准方程求得圆心和半径.【详解】圆的标准方程为()2214x y +-=,所以圆心为()0,1,半径为2.故选:D3.将某选手的得分去掉1个最高分,去掉1个最低分,剩余分数的平均分为91,现场作的分数的茎叶图后来有1个数据模糊,无法辨认,在图中以x 表示,则x =()A.2B.3C.4 D.5【正确答案】B【分析】根据去掉最高分和最低分后的平均分可直接构造方程求解.【详解】由茎叶图可知:最高分为99分,最低分为87分,∴剩余分数的平均分为8794909190915x+++++=,解得.3x =故选:B.4.某校为了了解高二学生的身高情况,打算在高二年级12个班中抽取3个班,再按每个班男女生比例抽取样本,正确的抽样方法是()A.简单随机抽样B.先用分层抽样,再用随机数表法C.分层抽样D.先用抽签法,再用分层抽样【正确答案】D【分析】利用抽样方法求解.【详解】解:在高二年级12个班中抽取3个班,这属于简单随机抽样中的抽签法,按男女生比例抽取样本属于分层抽样,所以是先用抽签法,再用分层抽样.故选:D .5.若x ∈R ,则“44x -<<”是“22x x <”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【正确答案】B【分析】由22x x <解得02x <<,由集合的包含关系判断必要性、充分性即可【详解】由22x x <解得02x <<,则由()0,2真包含于()4,4-可得“44x -<<”是“22x x <”的必要不充分条件.故选:B .6.已知命题*:p x ∀∈R ,12x x+≥,则p ⌝为()A.*0x ∃∈R ,0012x x +≥ B.*0x ∃∈R ,0012x x +<C.*0x ∃∉R ,0012x x +< D.x ∀∈R ,12x x+<【正确答案】B【分析】“任意一个都符合”的否定为“存在一个不符合”.【详解】“任意一个都符合”的否定为“存在一个不符合”.故选:B .7.下列命题为真命题的是()A.若0a b <<,则11a b< B.若ac bc >,则a b >C.若a b >,c d >,则a c b d ->- D.若22ac bc >,则a b>【正确答案】D【分析】利用不等式的性质,赋值法进行判断解决即可.【详解】对于A ,当2,1a b =-=-时,11a b>,故A 错误;对于B ,当0c <时,a b <,故B 错误;对于C ,当2,1,5,1a b c d ====时,a c b d -<-,故C 错误;对于D ,当22ac bc >时,必有20c >,所以a b >,故D 正确;故选:D8.已知双曲线的上、下焦点分别为()10,5F ,()20,5F -,P 是双曲线上一点且满足126PF PF -=,则双曲线的标准方程为()A.221169x y -= B.221916x y -= C.221169y x -= D.221916y x -=【正确答案】D【分析】根据双曲线的定义求得正确答案.【详解】依题意5c =,1226,3PF PF a a -===,所以4b ==,由于双曲线的焦点在y 轴上,所以双曲线的标准方程是221916y x -=.故选:D9.已知圆O 的圆心是坐标原点O 0y --=截得的弦长为6,则圆O 的方程为()A.224x y +=B.228x y +=C.2212x y +=D.22216x y +=【正确答案】C【分析】由圆的弦长公式,计算可得.【详解】圆心到直线的距离d ==6=212r =,故选:C .10.如图所示程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的,a b 分别为39,27,则输出的=a ()A.1B.3C.5D.7【正确答案】B【分析】按照程序框图运行程序,直到不满足a b ¹时输出结果即可.【详解】按照程序框图运行程序,输入39a =,27b =,满足a b ¹,且a b >,392712a ∴=-=,继续运行;满足a b ¹,不满足a b >,271215b ∴=-=,继续运行;满足a b ¹,不满足a b >,15123b ∴=-=,继续运行;满足a b ¹,且a b >,1239a ∴=-=,继续运行;满足a b ¹,且a b >,936a ∴=-=,继续运行;满足a b ¹,且a b >,633a ∴=-=,继续运行;不满足a b ¹,输出3a =.故选:B.11.若两个正实数x ,y 满足311x y+=,则x +3y 的最小值为()A.6B.9C.12D.15【正确答案】C【分析】运用基本不等式求解.【详解】()319336612y x x y x y x y x y ⎛⎫+=++=++≥+=⎪⎝⎭,当且仅当9y xx y=,x =6,y =2时取等号;故选:C .12.直线l 过抛物线22y px =(p >0)的焦点F ,且交抛物线于P ,Q 两点,由P ,Q 分别向准线引垂线PR ,QS ,垂足分别为R ,S ,如果2PF =,4QF =,M 为RS 的中点,则MF =()A. B.C. D.2【正确答案】A【分析】利用抛物线的定义得QF QS =,PF PR =,证明90SFR ∠= ,则有12MF RS =,过点P 作PN ⊥QS 交于点N ,利用矩形性质得PN RS =,利用勾股定理求得PN =MF .【详解】如图所示,由抛物线的定义可得QF QS =,PF PR =,QFS QSF ∴∠=∠,PFR PRF ∠=∠,由题意可得////QS FG PR ,SFG QSF ∴∠=∠,RFG PRF ∠=∠,90SFG RFG ∴∠+∠= ,∴12MF RS =,过点P 作PN ⊥QS 交于点N ,则PN RS =,在Rt PQN 中,PN ==,∴MF =.故选:A .二、填空题:本题共4小题,每小题5分,共20分.13.以下两个变量成负相关的是_____.①学生的学籍号与学生的数学成绩;②坚持每天吃早餐的人数与患胃病的人数;③气温与冷饮销售量;④电瓶车的重量和行驶每千米的耗电量.【正确答案】②【分析】根据相关关系的知识确定正确答案.【详解】①无相关关系;②负相关;③④正相关.故②14.若圆224x y +=与圆22()9(0)x m y m ++=>外切,则实数m =_____.【正确答案】5【分析】根据两圆外切列方程,从而求得m 的值.【详解】圆224x y +=的圆心为()0,0,半径为2.圆22()9(0)x m y m ++=>的圆心为(),0m -,半径为3.235m ==+=,由于0m >,故解得5m =.故515.若抛物线212y x =上的点M 到焦点的距离为8,则点M 到y 轴的距离为_____.【正确答案】5【分析】设()0,M x y ,根据已知求出抛物线的准线方程.根据抛物线的定义求出05x=,即可得出结果.【详解】解:由已知可得,抛物线的焦点坐标为()3,0F ,准线方程为:3l x =-.由已知根据抛物线的定义可得,点M 到准线距离为8.设()0,Mx y ,00x≥,则()038x --=,解得05x =.所以点M 到y 轴距离为5.故5.16.1F ,2F 是椭圆C 的两个焦点,点P 是椭圆C 上异于顶点的一点,点I 是12PF F △的内切圆圆心,若12PF F △的面积是12IF F △的面积的4倍,则椭圆C 的离心率为______.【正确答案】13【分析】作图,根据几何关系以及条件求出a 与c 的关系式,再求出e .【详解】设椭圆方程为:221x y a b +=,如图,设P (m ,n ),()1,0F c -,()2,0F c ,12PF F △的周长为l ,内切圆I 的半径为r ,则由椭圆的定义可得l =2a +2c ,∴122222PF F S c n c n r la ca c===++△,12124PF F IF F S S =△△,∴1124222c nc n c a c⨯⨯=⨯⨯⨯+,解得:13c a =,13e =;故13.三、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知直线l :12540x y +-=与圆C :222270x y x y +---=交于A ,B 两点.(1)求圆C 的弦AB 的长;(2)若直线m 与直线l 平行,且与圆C 相切,求直线m 的方程.【正确答案】(1)AB =;(2)125220x y ++=或125560x y +-=.【分析】(1)求出圆心到直线l 的距离,利用弦长公式即可求出AB .(2)设出直线m 的方程,利用点到直线的距离公式列方程,化简求得直线m 的方程.【小问1详解】圆C :()()22119x y -+-=,其中圆心(1,1)C ,半径r =3,圆心C 到直线l的距离1d ==,可得AB ==【小问2详解】∵直线m 与直线l 平行,∴可设直线m 的方程为:1250(4)x y K K ++=≠-,又直线m 与圆C相切,有3=,可得22K =或56K =-,∴直线m 的方程为:125220x y ++=或125560x y +-=.18.已知命题p :方程22113x y m m +=--表示焦点在x 轴上的双曲线,命题q :a <m <a +4.(1)若p 是q 的充分不必要条件,求实数a 的取值范围;(2)若a =2,p q ∧为假,p q ∨为真,求实数m 的取值范围.【正确答案】(1)[-1,1](2)(][)1,23,6⋃【分析】(1)根据充分不必要条件的定义推理计算;(2)由条件可知,p 与q 一真一假,分类讨论.【小问1详解】由方程22113x y m m +=--表示焦点在x 轴上的双曲线,可得10,1330m m m ->⎧<<⎨-<⎩,∵p 是q 的充分不必要条件,∴1,1143a a a ≤⎧-≤≤⎨+≥⎩,经检验,11a -≤≤满足题意,∴实数a 的取值范围为:[-1,1];【小问2详解】易得p :1<m <3,q :2<m <6,又p q ∧假,p q ∨为真,∴p ,q 一真一假,当p 真q 假时有1326m m m <<⎧⎨≤≥⎩或,得12m <≤,当p 假q 真时有,1326m m m ≤≥⎧⎨<<⎩或,得36m ≤<,所以实数m 的取值范围为:(][)1,23,6⋃;综上,(1)[]1,1a ∈-,(2)(][)1,23,6m ∈ 19.世界对中国的印象很多,让很多人印象深刻的肯定包括“吃”,中国有句话叫民以食为天,中国人认为吃对于人来说是一件很重要的事情,不但要能吃,也要会吃.我们四川更是遍地美食,四川人很多也是“好吃嘴”,但是好吃不等于健康,有人对不同类型的某些食品做了一次调查,制作了下表.其中x 表示某种食品所含热量的百分比,y 表示一些“好吃嘴”以百分制给出的对应的评分.x 1520253035y6878808292附:相关系数r 可以衡量两个变量x 和y 之间线性关系的强弱,当r 为正时,x 和y 正相关,当r 为负时,x 和y 负相关,统计学认为如果[]0.75,1r ∈相关性很强,如果[)0.30,0.75r ∈相关性一般,如果[]0.25,0.25r ∈-相关性较弱.()()ni i x x y y r --=∑,()()()121ˆniii ni i x x y y bx x ==--=-∑∑,ˆˆa y bx=-.13.60≈.(1)试用r 对两个变量x ,y 的相关性进行分析(r 的结果保留两位小数);(2)求回归方程.【正确答案】(1)答案见解析;(2)ˆ 1.0454yx =+.【分析】(1)由已知条件求出r 公式中的相关数值,代入即可求出0.96r ≈,即可得出结果;(2)根据(1)问中所求的数据可求出ˆ 1.04b=,进而得到ˆ54a =,即可得出回归方程.【小问1详解】解:易得1520253035255x ++++==,6878808292805y ++++==,()()()522222211050510250i i x x =-=-+-+++=∑,()()()522222211220212296i i y y =-=-+-+++=∑,()()()()()511012520521012260iii x x y y =--=-⨯-+-⨯-++⨯+⨯=∑,所以()()5iix x y y r --=∑==130.9613.60≈≈,0.96[0.75,1]∈,即r 为正且接近于1,所以两个变量x ,y 之间成正相关,并且有相当强的相关性.【小问2详解】解:由(1)易得()()()2155126026ˆ 1.0425025iii i i x x y y bx x ==--====-∑∑,4ˆˆ80 1.04255ay bx =⨯==--,所以,回归方程为ˆ 1.0454yx =+.20.已知椭圆E :22221x y a b+=(0a b >>)的左、右焦点分别为()1F ,)2F ,且过点12P ⎫⎪⎭.(1)求椭圆E 的标准方程;(2)过椭圆E 的左焦点1F 且斜率为1的直线与椭圆E 交于A ,B 两点,求PAB 的面积.【正确答案】(1)2214x y +=(2)4625【分析】(1)由椭圆定义列方程求得参数a ,由a 、b 、c 关系求得b .(2)写出直线方程,联立椭圆与直线方程,由弦长公式及点线距离求得高,即可求得面积.【小问1详解】由椭圆定义得1224a PF PF =+==,∴2a =,又c =1b ==,∴椭圆E 的标准方程为:2214x y +=;【小问2详解】过椭圆E 的左焦点1F且斜率为1的直线方程为y x =,由2244y x x y ⎧=+⎪⎨+=⎪⎩,得2580x ++=.设()11,A x y ,()22,B x y ,有12835x x +=-,1285x x =,∴85AB ==,又点P 到直线AB 的距离4d ==,∴PAB面积125S AB d ==.21.四川新高考于2022年启动,2025年整体实施,2025年参加高考的学生将面临“3+1+2”高考新模式.其中的“3”指“语、数、外”三个必选学科,“1”是指“物理、历史”两个学科二选一,“2”是指“化学、政治、生物、地理”这四个再选学科中选两科,对于再选学科会通过等级赋分的办法计入总成绩.等级赋分以30分作为赋分起点,满分为100分,将考生每门的原始成绩从高到低划定为A 、B 、C 、D 、E 五等,各等级人数所占比例分别为15%、35%、35%、13%、2%.现在高2022级新高一学生已经开始使用新教材,并且新高一的学生也参加了进高中以来的第一次期中考试,成都市某高中为了调研新高一学生在此次期中考试中政治学科的学情,随机抽取了100名新高一学生的政治成绩,统计了如下表格:分数范围[)50,60[)60,70[)70,80[)80,90[]90,100学生人数52535305(1)根据统计表格画出频率分布直方图;(2)根据统计数据估计该学校新高一学生在此次期中考试中政治成绩的平均分;(3)根据统计数据结合等级赋分的办法,预估此次考试政治赋分等级至少为B 的大致分数线(取整数).【正确答案】(1)作图见解析;(2)75.5;(3)76.【分析】(1)根据统计表格求出各分组的频率,画出图即可;(2)根据频率分布图,估算样本平均数即可;(3)由已知,可得大致分数线即为数据的中位数.根据频率分布图列出700.050.250.350.58070x -++⨯=-,解出x 即为所求.【小问1详解】解:由已知可得,分数范围在[)50,60的频率为50.05100=;分数范围在[)60,70的频率为250.25100=;分数范围在[)70,80的频率为350.35100=;分数范围在[)80,90的频率为300.30100=;分数范围在[]90,100的频率为50.05100=.则画出频率分布图如下图:【小问2详解】根据频率分布直方图可估计:该学校新高一学生在此次期中考试中政治成绩的平均分为550.05650.25750.35850.30950.0575.5⨯+⨯+⨯+⨯+⨯=.【小问3详解】由题设条件可知A 、B 两等级人数占比为50%,所以,赋分等级至少为B 的大致分数线即为数据的中位数.由频率分布直方图可知,大致位于[)70,80,设中位数为x ,由700.050.250.350.58070x -++⨯=-可得,得75.7x ≈,所以,此次考试政治赋分等级至少为B 的大致分数线为76分.22.已知抛物线C :22y px =(p >0)的焦点为F ,过抛物线的焦点F 且斜率为1的直线l 与抛物线交于A ,B 两点,线段AB 的中点为P (3,2).(1)求抛物线C 的方程;(2)证明:抛物线过A ,B 两点的切线的交点Q 在抛物线的准线上.【正确答案】(1)24y x=(2)证明见解析【分析】(1)根据条件,建立方程组求出p ;(2)设A ,B 两点的切线方程,联立抛物线与切线方程,利用Δ0=,求出相应的代数关系,再利用直线AB 的方程即可求解.【小问1详解】()11,A x y ,()22,B x y ,∵线段AB 的中点为P (3,2),直线AB 的斜率为1,∴124y y +=,21211y y x x -=-,又A ,B 两点在抛物线上,∴有2112y px =,2222y px =,相减整理得:()()()21212124y y y y p x x -+==-,∴抛物线C 的方程为24y x =;【小问2详解】易得过A ,B 两点的抛物线的切线不与坐标轴垂直,不妨设过()11,A x y 的抛物线的切线方程为:()11x x m y y -=-,即11x my x my =+-,由1124x my x my y x=+-⎧⎨=⎩,有2114440y my x my --+=,切线与抛物线只有1个交点,∴2111616160m x my ∆=+-=,又2114y x =,整理得221104y m my -+=,解得12y m =,∴过()11,A x y 的抛物线的切线方程为:()1112y x x y y -=-,整理得()112x x y y +=,同理可得过()22,B x y 的抛物线的切线方程为:()222x x y y +=,设两切线的交点为()00,Q x y ,由()()112222x x y y x x y y ⎧+=⎪⎪⎨+⎪=⎪⎩可得()()2221212121211212012121244444y x x y y x x y y y y y y y x y y y y y y ---====---,易得直线AB 的方程为:x =y +1,由214x y y x=+⎧⎨=⎩有2440y y --=,∴124y y =-,∴01x =-,即两切线的交点Q 在抛物线的准线上;。

四川省成都市龙泉驿区高二上期末数学理科试卷

四川省成都市龙泉驿区高二上期末数学理科试卷

2016-2017学年四川省成都市龙泉驿区高二(上)期末数学试卷(理科)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.直线x﹣2017=0的倾斜角为()A.0 B.C.D.不存在2.交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查.假设四个社区驾驶员的总人数为N,其中甲社区有驾驶员96人.若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N为()A.101 B.808 C.1212 D.20123.已知p1:直线l1:x﹣y﹣1=0与直线l2:x+ay﹣2=0平行,q:a=﹣1,则p是q的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件4.双曲线的焦点到渐近线的距离为()A.B.2 C.D.15.已知O,A,B三地在同一水平面内,A地在O地正东方向2km处,B地在O地正北方向2km处,某测绘队员在A、B之间的直线公路上任选一点C作为测绘点,用测绘仪进行测绘,O地为一磁场,距离其不超过的范围内对测绘仪等电子仪器形成干扰,使测量结果不准确,则该测绘队员能够得到准确数据的概率是()A.B.C.D.6.若点A的坐标为(3,2),F是抛物线y2=2x的焦点,点M在抛物线上移动时,使|MF|+|MA|取得最小值的M的坐标为()A.(0,0)B.C.D.(2,2)7.某班对一模考试数学成绩进行分析,利用随机数表法抽取样本时,先将70个同学按00,01,02,…,69进行编号,然后从随机数表第9行第9列的数开始向右读,则选出的第10个样本中第8个样本的编号是()(注:如表为随机数表的第8行和第9行)63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 7933 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54.A.07 B.44 C.38 D.518.算法共有三种逻辑结构,即顺序结构、条件结构、循环结构,下列说法正确的是()A.一个算法只能含有一种逻辑结构B.一个算法最多可以包含两种逻辑结构C.一个算法必须含有上述三种逻辑结构D.一个算法可以含有上述三种逻辑结构的任意组合9.如图,边长为a的正方形最长的网格中,设椭圆C1,C2,C3的离心率分别为e1,e2,e3,则()A.e1=e2<e3B.e1<e2=e3C.e1=e2>e3D.e2=e3<e110.下列说法错误的是()A.命题“若x2﹣5x﹣6=0”则“x=2”的逆否命题是“若x≠2”则“x2﹣5x﹣6≠0”B.若命题p:存在,则¬p:对任意x∈R,x2+x+1≥0C.若x,y∈R,则x=y是“”的充要条件D.已知命题p和q,若“p或q”为假命题,则命题p和q中必一真一假11.设变量x、y满足约束条件,则目标函数z=x2+y2的取值范围为()A.[2,8]B.[4,13]C.[2,13]D.12.已知E,F为双曲线的左右焦点,抛物线y2=2px(p>0)与双曲线有公共的焦点F,且与双曲线交于A、B不同两点,若5|AF|=4|EF|,则双曲线的离心率为()A.B.C.D.二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上.. 13.若直线ax+2y+4=0与直线x+y﹣2=0互相垂直,那么a的值为.14.已知直线5x+12y+m=0与圆x2﹣2x+y2=0相切,则m=.15.如果执行如图所示的程序框图,输入x=4.5,则输出的数i=.16.下列结论:①一次试验中不同的基本事件不可能同时发生;②设k<3,k≠0,则与必有相同的焦点;③点P(m,3)在圆(x﹣2)2+(y﹣1)2=2的外部;④已知ab<0,bc<0,则直线ax+by﹣c=0通过第一、三、四象限.其中正确的序号是.三、解答题:本大题共6小题,满分70分,解答应写出文字说明、证明过程或演算步骤17.(10分)已知△ABC的顶点A(5,1),AB边上的中线CM所在直线方程为2x﹣y﹣5=0.AC边上的高BH所在直线为x﹣2y﹣5=0.求:(1)顶点C的坐标;(2)直线BC的方程.18.(12分)“双节”期间,告诉公路车辆较多,某调查公司在一服务区从七座以下的小型汽车中按进服务区的先后每间隔50辆就抽取一辆的样本方法抽取40名驾驶员进行询问调查,将他们在某段高速公路的车速(km/h)分成六段;[60,65),[65,70),[70,75),[75,80),[80,85),[85,90]后得到如图所示的频率分布直方图.(1)求这40辆小型汽车车速的众数和中位数的估计值;(2)若从车速在[60,70)内的车辆中任抽取2辆,求车速在[65,70)内的车辆恰有一辆的概率.19.(12分)已知点P(2,2),圆C:x2+y2﹣8x=0,过点P的动直线l与圆C交于A、B两点,线段AB的中点为M,O为坐标原点.(1)求M的轨迹方程;(2)当|OP|=|OM|时,求直线l方程及△POM的面积.20.(12分)某中学高三年级从甲、乙两个班级各选出7名学生参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如图,其中甲班学生的平均分是85,乙班学生成绩的中位数是83.(1)求x和y的值;(2)计算甲班7位学生成绩的方差s2;(3)从成绩在90分以上的学生中随机抽取两名学生,求甲班至少有一名学生的概率.21.(12分)已知椭圆C:的离心率为,右顶点A是抛物线y2=8x 的焦点.直线l:y=k(x﹣1)与椭圆C相交于P,Q两点.(Ⅰ)求椭圆C的方程;(Ⅱ)如果,点M关于直线l的对称点N在y轴上,求k的值.22.(12分)如图,已知抛物线C:y2=4x,过点A(1,2)作抛物线C的弦AP,AQ.(Ⅰ)若AP⊥AQ,证明直线PQ过定点,并求出定点的坐标;(Ⅱ)假设直线PQ过点T(5,﹣2),请问是否存在以PQ为底边的等腰三角形APQ?若存在,求出△APQ的个数?如果不存在,请说明理由.2016-2017学年四川省成都市龙泉驿区高二(上)期末数学试卷(理科)参考答案与试题解析一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.直线x﹣2017=0的倾斜角为()A.0 B.C.D.不存在【考点】直线的倾斜角.【分析】直线x﹣2017=0与x轴垂直,由此能求出直线x﹣2017=0的倾斜角.【解答】解:∵直线x﹣2017=0与x轴垂直,∴直线x﹣2017=0的倾斜角为.故选:C.【点评】本题考查直线的倾斜角的求法,是基础题,解题时要注意直线方程的性质的合理运用.2.交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查.假设四个社区驾驶员的总人数为N,其中甲社区有驾驶员96人.若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N为()A.101 B.808 C.1212 D.2012【考点】分层抽样方法.【分析】根据甲社区有驾驶员96人,在甲社区中抽取驾驶员的人数为12求出每个个体被抽到的概率,然后求出样本容量,从而求出总人数.【解答】解:∵甲社区有驾驶员96人,在甲社区中抽取驾驶员的人数为12∴每个个体被抽到的概率为=样本容量为12+21+25+43=101∴这四个社区驾驶员的总人数N为=808故选B.【点评】本题主要考查了分层抽样,分层抽样是最经常出现的一个抽样问题,这种题目一般出现在选择或填空中,属于基础题.3.已知p1:直线l1:x﹣y﹣1=0与直线l2:x+ay﹣2=0平行,q:a=﹣1,则p是q的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】根据直线平行的等价条件结合充分条件和必要条件的定义进行判断即可.【解答】解:若两直线平行则≠,得a=﹣1,即p是q的充要条件,故选:A.【点评】本题主要考查充分条件和必要条件的判断,根据直线平行的等价条件是解决本题的关键.4.双曲线的焦点到渐近线的距离为()A.B.2 C.D.1【考点】双曲线的简单性质.【分析】先由题中条件求出焦点坐标和渐近线方程,再代入点到直线的距离公式即可求出结论.【解答】解:由题得:其焦点坐标为(﹣4,0),(4,0),渐近线方程为y=±x所以焦点到其渐近线的距离d==2.故选:A【点评】本题考查双曲线的标准方程,以及双曲线的简单性质,点到直线的距离公式的应用,属于基础题.5.已知O,A,B三地在同一水平面内,A地在O地正东方向2km处,B地在O地正北方向2km处,某测绘队员在A、B之间的直线公路上任选一点C作为测绘点,用测绘仪进行测绘,O地为一磁场,距离其不超过的范围内对测绘仪等电子仪器形成干扰,使测量结果不准确,则该测绘队员能够得到准确数据的概率是()A.B.C.D.【考点】几何概型.【分析】作出图形,以长度为测度,即可求出概率【解答】解:如图示:由题意,△AOB是直角三角形,OA=OB=2,所以AB=2,O地为一磁场,距离其不超过km的范围为个圆,与AB相交于C,D两点,作OE⊥AB,则OE=,所以CD=2,所以该测绘队员能够得到准确数据的概率是1﹣=1﹣.故选:D.【点评】本题考查利用数学知识解决实际问题,考查概率的计算,正确确定CD是关键.6.若点A的坐标为(3,2),F是抛物线y2=2x的焦点,点M在抛物线上移动时,使|MF|+|MA|取得最小值的M的坐标为()A.(0,0)B.C.D.(2,2)【考点】抛物线的定义.【分析】求出焦点坐标和准线方程,把|MF|+|MA|转化为|MA|+|PM|,利用当P、A、M三点共线时,|MA|+|PM|取得最小值,把y=2代入抛物线y2=2x 解得x值,即得M的坐标.【解答】解:由题意得F(,0),准线方程为x=﹣,设点M到准线的距离为d=|PM|,则由抛物线的定义得|MA|+|MF|=|MA|+|PM|,故当P、A、M三点共线时,|MF|+|MA|取得最小值为|AP|=3﹣(﹣)=.把y=2代入抛物线y2=2x 得x=2,故点M的坐标是(2,2),故选D.【点评】本题考查抛物线的定义和性质得应用,解答的关键利用是抛物线定义,体现了转化的数学思想.7.某班对一模考试数学成绩进行分析,利用随机数表法抽取样本时,先将70个同学按00,01,02,…,69进行编号,然后从随机数表第9行第9列的数开始向右读,则选出的第10个样本中第8个样本的编号是()(注:如表为随机数表的第8行和第9行)63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 7933 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54.A.07 B.44 C.38 D.51【考点】简单随机抽样.【分析】根据题意,写出从随机数表选出的10个样本数中第8个样本的编号即可.【解答】解:70个同学按00,01,02,…,69进行编号,从随机数表第9行第9列的数开始向右读,选出的第10个样本数分别是29,(78舍去),64,56,07,(82舍去),52,42,(07舍去),44,38,15,51;第8个样本的编号是38.故选:C.【点评】本题考查了简单随机抽样的应用问题,解题时应会使用随机数表,是基础题目.8.算法共有三种逻辑结构,即顺序结构、条件结构、循环结构,下列说法正确的是()A.一个算法只能含有一种逻辑结构B.一个算法最多可以包含两种逻辑结构C.一个算法必须含有上述三种逻辑结构D.一个算法可以含有上述三种逻辑结构的任意组合【考点】程序框图的三种基本逻辑结构的应用.【分析】根据算法中三种逻辑结构的定义,顺序结构是最基本的结构,每个算法一定包含顺序结构;选择结构是算法中出现分类讨论时使用的逻辑结构,循环结构一定包含一个选择结构;分析四个答案,即可得到结论.【解答】解:算法有三种逻辑结构最基本的是顺序结构一个算法一定包含有顺序结构,但是可以含有上述三种逻辑结构的任意组合,故选D.【点评】本题考查的知识点是算法的概念及算法的特点,是对概念的直接考查,属基础题,熟练掌握相关概念是解答本题的关键.9.如图,边长为a的正方形最长的网格中,设椭圆C1,C2,C3的离心率分别为e1,e2,e3,则()A.e1=e2<e3B.e1<e2=e3C.e1=e2>e3D.e2=e3<e1【考点】椭圆的简单性质.【分析】根据图形,利用椭圆的离心率计算公式即可得出结论.【解答】解:先看椭圆C1,长轴2a1=4a,短轴2b1∈(2a,4a),∴离心率e1==∈(0,).椭圆C2,长轴2a1=8a,短轴2b2=4a,∴离心率e2===.同理可得椭圆C3的离心率e3=.∴e1、e2、e3的关系为e1<e2=e3.故选:B.【点评】本题考查了椭圆的标准方程及其性质,考查了推理能力与计算能力,属于中档题.10.下列说法错误的是()A.命题“若x2﹣5x﹣6=0”则“x=2”的逆否命题是“若x≠2”则“x2﹣5x﹣6≠0”B.若命题p:存在,则¬p:对任意x∈R,x2+x+1≥0C.若x,y∈R,则x=y是“”的充要条件D.已知命题p和q,若“p或q”为假命题,则命题p和q中必一真一假【考点】命题的真假判断与应用.【分析】A.写出命题“若x2﹣5x﹣6=0”则“x=2”的逆否命题,即可判断其正误;B.写出命题p:存在,的否定,即可判断其正误;C.利用充分必要条件的定义,从正反两个方面推理,即可判断其正误;D.利用若“p或q”为假命题,则命题p和q都假可判断其正误.【解答】解:对于A,命题“若x2﹣5x﹣6=0”则“x=2”的逆否命题是“若x≠2”则“x2﹣5x ﹣6≠0”,故A正确;对于B,若命题p:存在,则¬p:对任意x∈R,x2+x+1≥0,故B 正确;对于C,若x,y∈R,则x=y⇒“”成立,反之,也成立,故x=y是“”的充要条件,故C正确;对于D,已知命题p和q,若“p或q”为假命题,则命题p和q中必都假,故D错误.故选:D.【点评】本题考查命题的真假判断与应用,熟练掌握命题及其否定、特称命题与全称命题之间的关系是解决问题的关键,属于中档题.11.设变量x、y满足约束条件,则目标函数z=x2+y2的取值范围为()A.[2,8]B.[4,13]C.[2,13]D.【考点】简单线性规划.【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,即可得到结论..【解答】解:作出不等式对应的平面区域,则z=x2+y2的几何意义为动点P(x,y)到原点的距离的平方,则当动点P位于A时,OA的距离最大,当直线x+y=2与圆x2+y2=z相切时,距离最小,即原点到直线x+y=2的距离d=,即z的最小值为z=d2=2,由,解得,即A(3,2),此时z=x2+y2=32+22=9+4=13,即z的最大值为13,即2≤z≤13,故选:C【点评】本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.12.已知E,F为双曲线的左右焦点,抛物线y2=2px(p>0)与双曲线有公共的焦点F,且与双曲线交于A、B不同两点,若5|AF|=4|EF|,则双曲线的离心率为()A.B.C.D.【考点】双曲线的简单性质.【分析】根据双曲线的定义求出|BE|=10a,|BF|=8a,结合抛物线的定义求出交点B的纵坐标,结合直角三角形的边角关系建立方程进行求解即可.【解答】解:根据双曲线和抛物线的对称性得|BF|=|AF|=|BE|,∵|BE|﹣|BF|=2a,∴|BE|﹣|BE|=|BE|=2a,则|BE|=10a,|BF|=8a,∵抛物线y2=2px(p>0)与双曲线有公共的焦点F,∴=c,且x=﹣c是抛物线的准线,则|BD|=|BF|=8a,设B(x,y),则由抛物线的性质得x+c=8a,即x=8a﹣c,代入抛物线方程y2=2px=4cx得y2=4c(8a﹣c),则|DE|2=y2=4c(8a﹣c),在直角三角形BDE中,BE2=DE2+BD2,即100a2=64a2+4c(8a﹣c),即36a2﹣32ac+4c2=0,即c2﹣8ac+9a2=0,解e2﹣8e+9=0,得e==4±,∵0<a<b,∴e==>,∴e=4+,故选:A【点评】本题主要考查双曲线离心率的计算,根据抛物线和双曲线的定义建立方程关系,求出a,c的关系是解决本题的关键.综合性较强,有一定的难度.二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上.. 13.若直线ax+2y+4=0与直线x+y﹣2=0互相垂直,那么a的值为﹣2.【考点】直线的一般式方程与直线的垂直关系.【分析】利用相互垂直的直线斜率之间的关系即可得出.【解答】解:由于直线x+y﹣2=0的斜率存在,且直线ax+2y+4=0与直线x+y﹣2=0互相垂直,则﹣1×(﹣)=﹣1,解得a=﹣2.故答案为﹣2.【点评】本题考查了相互垂直的直线斜率之间的关系,考查了推理能力与计算能力,属于基础题.14.已知直线5x+12y+m=0与圆x2﹣2x+y2=0相切,则m=8或﹣18.【考点】直线与圆的位置关系.【分析】根据直线与圆相切的性质可知圆心直线的距离为半径,先把圆的方程整理的标准方程求得圆心和半径,在利用点到直线的距离求得圆心到直线的距离为半径,求得答案.【解答】解:整理圆的方程为(x﹣1)2++y2=1故圆的圆心为(1,0),半径为1直线与圆相切∴圆心到直线的距离为半径即=1,求得m=8或﹣18故答案为:8或﹣18【点评】本题主要考查了直线与圆的位置关系.解题的过程充分利用数形结合的思想和直线与圆相切的性质.15.如果执行如图所示的程序框图,输入x=4.5,则输出的数i=4.【考点】循环结构.【分析】计算循环中x,与i的值,当x<1时满足判断框的条件,退出循环,输出结果即可.【解答】解:循环前x=3.5,不满足判断框条件,第1次循环,i=2,x=2.5,第2次判断后循环,i=3,x=1.5,第3次判断并循环i=4,x=0.5,满足判断框的条件退出循环,输出i=4.故答案为:4.【点评】本题考查循环结构的应用,注意循环的结果的计算,考查计算能力.16.下列结论:①一次试验中不同的基本事件不可能同时发生;②设k<3,k≠0,则与必有相同的焦点;③点P(m,3)在圆(x﹣2)2+(y﹣1)2=2的外部;④已知ab<0,bc<0,则直线ax+by﹣c=0通过第一、三、四象限.其中正确的序号是②③④.【考点】命题的真假判断与应用.【分析】①,基本事件的特点是任意两个基本事件是互斥的;②,设k<3,k≠0,当0<k<3,则0<3﹣k<3,表实轴为x轴的双曲线,a2+b2=3=c2.当k<0时,﹣k>0,且3﹣k>﹣k,表实轴为x轴焦点在x轴上的椭圆.a2=3﹣k,b2=﹣k.③,(m﹣2)2+(3﹣1)2>2,可判定④把直线的方程化为斜截式,判断斜率及在y轴上的截距的符号,从而确定直线在坐标系中的位置【解答】解:对于①,∵基本事件的特点是任意两个基本事件是互斥的,∴一次试验中,不同的基本事件不可能同时发生.故正确对于②,设k<3,k≠0,当0<k<3,则0<3﹣k<3,表实轴为x轴的双曲线,a2+b2=3=c2.∴二曲线有相同焦点;当k<0时,﹣k>0,且3﹣k>﹣k,表实轴为x轴焦点在x轴上的椭圆.a2=3﹣k,b2=﹣k.∴a2﹣b2=3=c2与已知椭圆有相同焦点.故正确;对于③,∵(m﹣2)2+(3﹣1)2>2,∴点P(m,3)在圆(x﹣2)2+(y﹣1)2=2的外部,故正确;对于④,由ab<0,bc<0得,则直线ax+by﹣c=0的斜率k>0,直线在y轴上的截距为,故直线第一、三、四象限,正确.故答案为:②③④【点评】本题考查了命题真假的判定,涉及了大量的基础知识,属于基础题.三、解答题:本大题共6小题,满分70分,解答应写出文字说明、证明过程或演算步骤17.(10分)(2016秋•龙泉驿区期末)已知△ABC的顶点A(5,1),AB边上的中线CM所在直线方程为2x﹣y﹣5=0.AC边上的高BH所在直线为x﹣2y﹣5=0.求:(1)顶点C的坐标;(2)直线BC的方程.【考点】待定系数法求直线方程;两条直线的交点坐标.【分析】(1)先求直线AC的方程,然后求出C的坐标.(2)设出B的坐标,求出M代入直线方程为2x﹣y﹣5=0,与直线为x﹣2y﹣5=0.联立求出B的坐标然后可得直线BC的方程.【解答】解:直线AC的方程为:y﹣1=﹣2(x﹣5),即2x+y﹣11=0,解方程组得则C点坐标为(4,3).设B(m,n),则M(,),,整理得,解得则B点坐标为(﹣1,﹣3),y﹣3=(x﹣4),即6x﹣5y﹣9=0.【点评】本题考查两条直线的交点,待定系数法求直线方程,是基础题.18.(12分)(2016秋•龙泉驿区期末)“双节”期间,告诉公路车辆较多,某调查公司在一服务区从七座以下的小型汽车中按进服务区的先后每间隔50辆就抽取一辆的样本方法抽取40名驾驶员进行询问调查,将他们在某段高速公路的车速(km/h)分成六段;[60,65),[65,70),[70,75),[75,80),[80,85),[85,90]后得到如图所示的频率分布直方图.(1)求这40辆小型汽车车速的众数和中位数的估计值;(2)若从车速在[60,70)内的车辆中任抽取2辆,求车速在[65,70)内的车辆恰有一辆的概率.【考点】列举法计算基本事件数及事件发生的概率;频率分布直方图.【分析】(1)由频率分布直方图知[75,80)对应的小矩形最高,由此能求出这40辆小型汽车车速的众数;由频率分布直方图求出[60,75)对应的频率为0.35,[75,80)对应的频率为0.3,由此能求出中位数的估计值.(2)车速在[60,70)内频率为0.15,从而车速在[60,70)内的车辆有6辆,其中车速在[60,65)内的车辆有2辆,车速在[65,70)内的车辆有4辆,由此能求出从车速在[60,70)内的车辆中任抽取2辆,车速在[65,70)内的车辆恰有一辆的概率.【解答】解:(1)由频率分布直方图知[75,80)对应的小矩形最高,∴这40辆小型汽车车速的众数为:=77.5(km/h).由频率分布直方图知[60,75)对应的频率为:(0.010+0.020+0.040)×5=0.35,[75,80)对应的频率为:0.060×5=0.3,∴中位数的估计值为:=77.5(km/h).(2)车速在[60,70)内频率为(0.010+0.020)×5=0.15,∴车速在[60,70)内的车辆有0.15×40=6辆,其中车速在[60,65)内的车辆有:0.010×5×40=2辆,车速在[65,70)内的车辆有:0.020×5×40=4辆,∴从车速在[60,70)内的车辆中任抽取2辆,基本事件总数n=,车速在[65,70)内的车辆恰有一辆包含的基本事件个数m==8,∴车速在[65,70)内的车辆恰有一辆的概率p==.【点评】本题考查众数、中位数的求法,考查概率的求法,是基础题,解题时要认真审题,注意频率分布直方图的性质的合理运用.19.(12分)(2016秋•龙泉驿区期末)已知点P(2,2),圆C:x2+y2﹣8x=0,过点P的动直线l与圆C交于A、B两点,线段AB的中点为M,O为坐标原点.(1)求M的轨迹方程;(2)当|OP|=|OM|时,求直线l方程及△POM的面积.【考点】直线与圆的位置关系.【分析】(1)圆C的方程可化为(x﹣4)2+y2=16,由此能求出圆心为C(4,0),半径为4,设M(x,y),求出向量CM,MP的坐标,由=0,运用向量的数量积的坐标表示,化简整理求出M的轨迹方程;(2)由(1)知M的轨迹是以点N(3,1)为圆心,为半径的圆.由于|OP|=|OM|,故O在线段PM的垂直平分线上,可得ON⊥PM,由直线垂直的条件:斜率之积为﹣1,再由点斜式方程可得直线l的方程.利用点到直线距离公式结合已知条件能求出△POM的面积【解答】解:(1)圆C的方程可化为(x﹣4)2+y2=16,所以圆心为C(4,0),半径为4,设M(x,y),则=(x﹣4,y),=(2﹣x,2﹣y),由题设知=0,故(x﹣4)(2﹣x)+y(2﹣y)=0,即(x﹣3)2+(y﹣1)2=2.由于点P在圆C的内部,所以M的轨迹方程是(x﹣3)2+(y﹣1)2=2.(2)由(1)可知M的轨迹是以点N(3,1)为圆心,为半径的圆.由于|OP|=|OM|,故O在线段PM的垂直平分线上,又P在圆N上,从而ON⊥PM.因为ON的斜率为,所以l的斜率为﹣3,故l的方程为y﹣2=﹣3(x﹣2),即为3x+y﹣8=0.又|OP|=|OM|=2,O到l的距离为,|PM|=,所以△POM的面积为.【点评】本题考查点的轨迹方程的求法,考查直线方程的求法,考查三角形面积的求法,解题时要认真审题,注意函数与方程思想的合理运用.20.(12分)(2016•广元二模)某中学高三年级从甲、乙两个班级各选出7名学生参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如图,其中甲班学生的平均分是85,乙班学生成绩的中位数是83.(1)求x和y的值;(2)计算甲班7位学生成绩的方差s2;(3)从成绩在90分以上的学生中随机抽取两名学生,求甲班至少有一名学生的概率.【考点】古典概型及其概率计算公式;茎叶图;极差、方差与标准差.【分析】(1)利用平均数求出x的值,中位数求出y的值,解答即可.(2)根据所给的茎叶图,得出甲班7位学生成绩,做出这7次成绩的平均数,把7次成绩和平均数代入方差的计算公式,求出这组数据的方差.(3)设甲班至少有一名学生为事件A,其对立事件为从成绩在90分以上的学生中随机抽取两名学生,甲班没有一名学生;先计算出从成绩在90分以上的学生中随机抽取两名学生的所有抽取方法总数,和没有甲班一名学生的方法数目,先求出从成绩在90分以上的学生中随机抽取两名学生,甲班没有一名学生的概率,进而结合对立事件的概率性质求得答案.【解答】解:(1)∵甲班学生的平均分是85,∴,∴x=5,∵乙班学生成绩的中位数是83,∴y=3;(2)甲班7位学生成绩的方差为s2==40;(3)甲班成绩在90分以上的学生有两名,分别记为A,B,乙班成绩在90分以上的学生有三名,分别记为C,D,E,从这五名学生任意抽取两名学生共有10种情况:(A,B),(A,C),(A,D),(A,E),(B,C),(B,D),(B,E),(C,D),(C,E),(D,E)其中甲班至少有一名学生共有7种情况:(A,B),(A,C),(A,D),(A,E),(B,C),(B,D),(B,E).记“从成绩在90分以上的学生中随机抽取两名学生,甲班至少有一名学生”为事件M,则.答:从成绩在90分以上的学生中随机抽取两名学生,甲校至少有一名学生的概率为.【点评】本小题主要考查茎叶图、样本均值、样本方差、概率等知识,考查或然与必然的数学思想方法,以及数据处理能力、运算求解能力和应用意识.21.(12分)(2015•丰台区一模)已知椭圆C:的离心率为,右顶点A是抛物线y2=8x的焦点.直线l:y=k(x﹣1)与椭圆C相交于P,Q两点.(Ⅰ)求椭圆C的方程;(Ⅱ)如果,点M关于直线l的对称点N在y轴上,求k的值.【考点】直线与圆锥曲线的关系;椭圆的标准方程.【分析】(Ⅰ)确定椭圆的几何量,即可求椭圆C的方程;(Ⅱ)设P(x1,y1),Q(x2,y2),直线l:y=k(x﹣1)与椭圆C联立,确定M的坐标,进一步可得MN中点坐标,由于M,N关于直线l对称,所以M,N所在直线与直线l垂直,即可求k的值.【解答】解:(Ⅰ)抛物线y2=8x,所以焦点坐标为(2,0),即A(2,0),所以a=2.又因为e==,所以c=.所以b=1,所以椭圆C的方程为.…(4分)(Ⅱ)设P(x1,y1),Q(x2,y2),因为,所以=(x1+x2﹣4,y1+y2),所以M(x1+x2﹣2,y1+y2).由直线l:y=k(x﹣1)与椭圆C联立,得(4k2+1)x2﹣8k2x+4k2﹣4=0,得x1+x2﹣2=﹣,y1+y2=,即M(﹣,).设N(0,y3),则MN中点坐标为(﹣,),因为M,N关于直线l对称,所以MN的中点在直线l上,所以=k(﹣﹣1),解得y3=﹣2k,即N(0,﹣2k).由于M,N关于直线l对称,所以M,N所在直线与直线l垂直,所以,解得k=±.…(14分)【点评】本题考查抛物线的几何性质,考查椭圆的标准方程,考查直线与椭圆的位置关系,考查学生的计算能力,属于中档题.22.(12分)(2012•武昌区模拟)如图,已知抛物线C:y2=4x,过点A(1,2)作抛物线C的弦AP,AQ.(Ⅰ)若AP⊥AQ,证明直线PQ过定点,并求出定点的坐标;(Ⅱ)假设直线PQ过点T(5,﹣2),请问是否存在以PQ为底边的等腰三角形APQ?若存在,求出△APQ的个数?如果不存在,请说明理由.【考点】直线与圆锥曲线的综合问题;抛物线的简单性质.【分析】(I)设直线l的方程与抛物线方程联立,利用AP⊥AQ,结合韦达定理,即可证明直线PQ过定点,并可求出定点的坐标;(II)先求出PQ的中点坐标,再结合三角形APQ为等腰三角形求出关于m的等式,借助于函数的单调性求出m的取值个数即可得到结论.【解答】(Ⅰ)证明:设直线PQ的方程为x=my+n,点P、Q的坐标分别为P(x1,y1),Q(x2,y2).直线方程代入抛物线方程,消x得y2﹣4my﹣4n=0.由△>0,得m2+n>0,y1+y2=4m,y1•y2=﹣4n.∵AP⊥AQ,∴,∴(x1﹣1)(x2﹣1)+(y1﹣2)(y2﹣2)=0.∴(y1﹣2)(y2﹣2)[(y1+2)(y2+2)+16]=0,∴(y1﹣2)(y2﹣2)=0或(y1+2)(y2+2)+16=0.∴n=2m﹣1或n=2m+5,∵△>0恒成立,∴n=2m+5.∴直线PQ的方程为x﹣5=m(y+2),∴直线PQ过定点(5,﹣2).(Ⅱ)解:假设存在以PQ为底边的等腰三角形APQ,由第(Ⅰ)问可知,将n用2m+5代换得直线PQ的方程为x=my+2m+5.设点P、Q的坐标分别为P(x1,y1),Q(x2,y2),直线方程代入抛物线方程,消x得y2﹣4my﹣8m﹣20=0.∴y1+y2=4m,y1•y2=﹣8m﹣20.∴PQ的中点坐标为(2m2+2m+5,2m).由已知得,即m3+m2+3m﹣1=0.设g(m)=m3+m2+3m﹣1,则g′(m)=3m2+2m+3>0,∴g(m)在R上是增函数.又g(0)=﹣1<0,g(1)=4>0,∴g(m)在(0,1)内有一个零点.∴函数g(m)在R上有且只有一个零点,即方程m3+m2+3m﹣1=0在R上有唯一实根.所以满足条件的等腰三角形有且只有一个.【点评】本题主要考查直线与抛物线的综合问题.解决第一问的巧妙之处在于直线方程的设法.当直线的斜率不确定存在时,为避免讨论,常设直线方程为x=my+n的形式.。

2020-2021学年四川省成都市高二上学期期末考试数学(理)试卷及答案

2020-2021学年四川省成都市高二上学期期末考试数学(理)试卷及答案

2020-2021学年四川省成都市高二上学期期末考试数学(理)试卷及答案一.选择题(在每小题给出的四个选项中,只有一项是符合题目要求的)1.在空间直角坐标系O xyz -中,点()1,1,1P 关于平面xOz 对称的点Q 的坐标是()A .()1,1,1-B .()1,1,1--C .()1,1,1-D .()1,1,1-2.双曲线()2210,043y x a b -=>>的渐近线方程为()A .32y x =±B .34y x =±C .43y x =±D .233y x =±3.某组数据的茎叶图如图所示,其众数为a ,中位数为b ,平均数为c ,则()A .a b c>>B .a c b>>C .b a c>>D .c a b>>4.为了评估某家快递公司的服务质量,某评估小组进行了客户满意度调查,从该公司参与调查的客户中随机抽取500名客户的评分,评分均在区间[50,100]上,其频率分布直方图如图所示.规定评分在60分以下表示对该公司的服务质量不满意,则这500名客户中对该公司的服务质量不满意的客户的人数为()A .15B .16C .17D .185.在区间11,22⎡⎤-⎢⎥⎣⎦上任取一个数k ,使直线()3y k x =+与圆221x y +=相交的概率为()A .12B .24C .23D .226.如图是一个求20个数的平均数的程序,在横线上应填充的语句为()A .20i ≥B .21i ≥C .21i >D .20i <7.“烟霏霏,雪霏霏,雪向梅花枝上堆.”1月7日成都迎来了2021年首场雪,天气预报说,在今后的三天中每一天下雪的概率均为40%.我们用1,2,3,4表示下雪,用5,6,7,8,9,0表示不下雪,通过计算机得到以下20组随机数:907966191925271932812458569683431257393027556488730113537989,用随机模拟的方法计算这三天中恰有两天下雪的概率是()A .40%B .30%C .25%D .20%8.已知斜率为2的直线l 与双曲线()2222:10,0x y C a b a b-=>>交于A ,B 两点,若点()3,1P 是AB 的中点,则双曲线C 的离心率等于()A 2B 5C .2D .1539.已知点)3,0Q ,P 为抛物线24x y =上的动点,若点P 到抛物线准线的距离为d ,则d PQ +的最小值是()A .1B .2C .3D .410.下列四个命题中正确命题的个数是()①命题“若1x ≠,则2320x x -+≠”的逆否命题是“若2320x x -+=,则1x =”;②“2x >”是“2320x x -+>”的必要不充分条件;③命题“若0xy =则0x =或0y =”的否命题;④“0x ∃>,1xe >”的否定是“0x ∀≤,1xe ≤”.A .0B .1C .2D .311.秦九韶算法是中国南宋时期的数学家秦九韶提出的一种多项式简化算法,直到今天这种算法仍是多项式求值比较先进的算法.如图所示的程序框图是使用秦九韶算法计算多项式值的一个实例,把k 进制的数转化为10进制的数其实就是求一个多项式的值的运算.我们使用该程序时输入4n =,8x =,2v =,运行中依次输入了33a =,27a =,16a =,02a =,则该程序运行是最后输出的v 是()转化的10进制数.A .()826732B .()823762C .()486732D .()42673812.已知1F ,2F 分别为双曲线22:1916x y C -=的左、右焦点,过2F 的直线与双曲线C 的右支于A ,B 两点(其中点A 在第一象限),设点H ,G 分别为12AF F △、12BF F △的内心,则HG 的取值范围是()A .(]3,4B .[)3,4C .(]4,5D .[)4,5二.填空题13.8251与6105的最大公约数为______.14.设1F ,2F 是椭圆221259x y +=的焦点,P 是椭圆上的一点,且满足120PF PF ⋅= ,则12PF F △的内切圆面积为______.15.已知圆221:60C x y x ++=和圆222:450C x y y ++-=相交于A ,B 两点.若圆C 的圆心在直线20x y -+=上,且圆C 过A ,B 两点,则圆C 的方程为______.16.已知抛物线24y x =的焦点为F ,过F 的直线l 与抛物线相交于A ,B 两点,5,03P ⎛⎫- ⎪⎝⎭,若PB AB ⊥,则AF =______.三.解答题(解答应写出文字说明、证明过程或演算步骤)17.已知a R ∈,命题[]:1,2p x ∀∈,20x a -≥,命题q :已知方程22112x y a a +=+-表示双曲线.(1)若命题q 为真命题,求实数a 的取值范围(2)若命题p q ∨为真命题,命题p q ∧为假命题,求实数a 的取值范围18.第七次全国人口普查登记于2020年11月1日开始,这是在我国人口发展进入关键期开展的一次重大国情国力调查,可以为编制“十四五”规划,为推动高质量发展,完善人口发展战略和政策体系,促进人口长期均衡发展提供重要信息支持,本次普查主要调查人口和住户的基本情况.某校高二一班共有学生50名,按人口普查要求,所有住校生按照集体户进行申报,所有非住校生(走读生及半走读生)按原家庭申报,已知该班住校生与非住校生人数的比为4:1,住校生中男生24人,现从住校生中采用分层抽样的方法取5名同学担任集体户户主进行人口普查登记.(1)应从住校的男生、女生中分别抽取多少人?(2)若从抽出的5人中随机抽取2人进行普查登记培训,求这2人中既有男生又有女生的概率.19.已知圆22:2410C x y x y ++-+=.(1)求过点(1,3)与圆C 相切的直线的方程(2)点O 为坐标原点,动点P 在圆外,直线PM 与圆C 相切于点M .若PM PO =,求点P 的轨迹方程.20.过点()4,0P -的动直线l 与抛物线()2:20C x py p =>相交于D 、E 两点,当l 的斜率为12时,4PE PD = .(1)求抛物线C 的方程(2)设线段DE 的中垂线在y 轴上的截距为b ,求b 的取值范围21.近年来,随着互联网的发展,诸如“滴滴打车”、“神州专车”等网约车服务在我国各城市迅猛发展,为人们出行提供了便利,但也给城市交通管理带来了一些困难.为掌握网约车在S 省的发展情况,S 省某调查机构从该省抽取了5个城市,分别收集和分析了网约车的A 、B 两项指标数i x ,()1,2,3,4,5i y i =,数据如下表所示:城市1城市2城市3城市4城市5A 指标数x 24568B 指标数y34445==,2s ==(1)试求y 与x 间的相关系数r ,并利用r 说明y 与x 是否具有较强的线性相关关系(若0.75r >,则线性相关程度很高,可用线性回归模型拟合);(2)建立y 关于x 的回归方程,并预测当A 指标数为7时,B 指标数的估计值(3)若城市的网约车A 指标数x 落在区间()3,3x s x s -+之外,则认为该城市网约车数量过多,会对城市交通管理带来较大的影响,交通管理部门将介入进行治理,直至A 指标数x 回落到区间()3,3x s x s -+之内.现已知2020年11月该城市网约车的A 指标数为13,问:该城市的交通管理部门是否要介入进行治理?试说明理由.附:相关公式:()()niix x y y r --=∑()()niix x yy b--=∑ ,y bx a =+ 0.55≈,0.95≈.22.已知ABM △的两个顶点坐标为()2,0A -,()2,0B ,且AM 与BM 所在直线的斜率之积为34-.(1)求顶点M 的轨迹E 的方程.(2)若点P 为直线4x =上的动点,直线PA 与曲线E 的另一交点为C ,直线PB 与曲线E 的另一交点为D ,过坐标原点O 作CD 的垂线,垂足为N ,证明:存在定点Q ,使得NQ 为定值.数学试卷参考答案(理科)1-10DDAAD BCDBC 11-12BD 13.37;14.π;15.222441055x y x y +++-=;16.4.17.解:(1)若q 为真命题时:()()120a a ++<,∴12a -<<,∴()1,2a ∈-;(2)若p 为真命题时:()[]2min1,2a x x ≤∈,∴1a ≤,p q ∨为真命题,p q ∧为假命题,则p 、q 一真一假,即121a a -<<⎧⎨>⎩或211a a a ≥≤-⎧⎨≤⎩或,解得12a <<或1a ≤-,∴a 的范围为()(]1,2,1⋃-∞-.18.解:(1)由已知有学生50名,住校生与非住校生人数的比为4:1,所以住校生人数为40人,又住校生中男生24人,则住校生中女生16人;24:163:2=,采用分层抽样的方法从中抽取5人,男生抽取的人数为3535⨯=人,女生抽取的人数为2525⨯=人(2)设抽出的5人中男生为a 、b 、c ,女生为A 、B ,从这5人中随机抽取2人的情况有ab 、ac 、aA 、aB 、bc 、bA 、bB 、cA 、cB 、AB ,共10种,其中这2人中既有男生又有女生的有aA 、aB 、bA 、bB 、cA 、cB ,共6种则这2人中既有男生又有女生的概率为63105P ==19.解:(1)把圆C 的方程化为标准方程为()()22124x y ++-=,则圆心为()1,2C -,半径2r =.当切线的斜率不存在时,此时切线方程为1x =,C 到l 的距离2d r ==,满足条件.当切线的斜率存在时,设斜率为k ,得切线方程为()31y k x -=-,即30kx y k -+-=2=,解得34k =-.故切线方程为()3314y x -=--,即34150x y +-=.综上,满足条件的切线方程为1x =或34150x y +-=.(2)设(),P x y ,则()()22222124PM PC MC x y =-=++--,222PO x y =+.∵PM PO =,∴()()2222124x y x y ++--=+,整理,得2410x y -+=,∴点P 的轨迹方程为2410x y -+=.20.解:(1)由题意可知,直线l 的方程为()142y x =+,与抛物线方程()2:20C x py p =>方程联立可得,()22880y p y -++=,设()11,D x y ,()22,E x y ,由韦达定理可得,1282py y ++=,124y y =,因为4PE PD = ,()224,PE x y =+,()114,PD x y =+ ,所以214y y =,解得11y =,24y =,2p =,所以抛物线C 的方程为24x y =;(2)设():4l y k x =+,DE 的中点为()00,x y ,由()244x y y k x ⎧=⎪⎨=+⎪⎩,消去y 可得24160x kx k --=,所以判别式216640k k ∆=+>,解得4k <-或0k >,由韦达定理可得,022D Ex x x k +==,()200424y k x k k =+=+,所以DE 的中垂线方程为()21242y k k x k k--=--,令0x =则()2224221b y k k k ==++=+,因为4k <-或0k >,所以2b >即为所求.21.解:(1)由已知数据可得2456855x ++++==,3444545y ++++==.所以相关系数5110.95i ix x y yr =--=.因为0.75r >,所以y 与x 具有较强的线性相关关系,可用线性回归模型拟合y 与x 的关系.(2)由(1)可知()()()51251632010i iii ix x y y b x x ==--===-∑∑ ,3545102ay bx =-=-⨯= ,所以y 与x 之间线性回归方程为 35102y x =+当7x =时, 357 4.6102y =⨯+=.(3)()()3,31,11x s x s -+=-,而1311>,故2020年11月该城市的网约车已对城市交通带来较大的影响,交通管理部门将介入进行治理.22.解:(1)设点(),M x y ,由直线AM 、BM 的斜率之积为()32224y y x x x ⋅=-≠±+-,整理得223412x y +=,即()221243x y x +=≠±,因此,点M 的轨迹方程为()221243x y x +=≠±.(2)易知直线CD 的斜率不为0,设直线:CD l x my n =+.()11,C x y ,()22,D x y 由22,34120.x my n x y =+⎧⎨+-=⎩得()2223463120m y mny n +++-=,则:0∆>时,122634mny y m -+=+,212231234n y y m -=+又直线AC 的方程为()1122y y x x =+-,令4x =,得1162P yy x =+,所以1164,2y P x ⎛⎫ ⎪+⎝⎭.同理直线BD 的方程为()2222y y x x =--,则2224,2y P x ⎛⎫ ⎪-⎝⎭所以12126222y y x x =+-,又34DA DB k k ⋅=-,所以22223224y y x x ⋅=-+-,则有212133224y y x x ⋅=-++,化简得()1212124240y y x x x x ++++=,其中()22121212x x m y y mn y y n =+++;()12122x x m y y n =++,即()()()22121242440m y y mn m y y n n +++++++=,()()222223126424403434n mnm mn m n n m m --+⋅++⋅+++=++,整理得220n n +-=,则1n =或2n =-,当2n =-,直线CD 过A 点,与题设矛盾;当1n =,:1CD l x my =+,直线CD 恒过定点()1,0F ,当点Q 为OF 中点时,由ON CD ⊥,可得1122NQ OE ==.综上,存在定点1,02Q ⎛⎫⎪⎝⎭,使得NQ 恒为定值.。

四川省成都市高二数学上学期期末试卷 理(含解析)-人教版高二全册数学试题

四川省成都市高二数学上学期期末试卷 理(含解析)-人教版高二全册数学试题

2014-2015学年某某省某某市高二(上)期末数学试卷(理科)一、选择题(每小题5分,共50分)1.在空间直角坐标系Oxyz中,已知点A(2,1,﹣1),则与点A关于原点对称的点A1的坐标为()A.(﹣2,﹣1,1) B.(﹣2,1,﹣1) C.(2,﹣1,1) D.(﹣2,﹣1,﹣1)2.如图是某样本数据的茎叶图,则该样本数据的众数为()A. 10 B. 21 C. 35 D. 463.已知点A(﹣1,2),B(1,3),若直线l与直线AB平行,则直线l的斜率为() A.﹣2 B. 2 C.﹣ D.4.根据如图的程序语句,当输入的x的值为2时,则执行程序后输出的结果是()A. 4 B. 6 C. 8 D. 105.经过点(2,1),且倾斜角为135°的直线方程为()A. x+y﹣3=0 B. x﹣y﹣1=0 C. 2x﹣y﹣3=0 D. x﹣2y=06.已知圆C1:x2+y2+2x﹣4y+1=0,圆C2:(x﹣3)2+(y+1)2=1,则这两圆的位置关系是() A.相交 B.相离 C.外切 D.内含7.如图,在平行六面体ABCD﹣A1B1C1D1中,E为BC1与B1C的交点,记=,=,=,则=()A.++ B.++ C.++ D.﹣﹣8.已知l,m是两条不同的直线,α,β是两个不同的平面,则在下列条件中,一定能得到l⊥m的是()A.α∩β=l,m与α,β所成角相等B.α⊥β,l⊥α,m∥βC. l,m与平面α所成角之和为90°D.α∥β,l⊥α,m∥β9.已知直线l:xsinα﹣ycosα=1,其中α为常数且α∈[0,2π).有以下结论:①直线l的倾斜角为α;②无论α为何值,直线l总与一定圆相切;③若直线l与两坐标轴都相交,则与两坐标轴围成的三角形的面积不小于1;④若P(x,y)是直线l上的任意一点,则x2+y2≥1.其中正确结论的个数为()A. 1 B. 2 C. 3 D. 410.在Rt△ABC中,已知D是斜边AB上任意一点(如图①),沿直线CD将△ABC折成直二面角B﹣CD﹣A(如图②).若折叠后A,B两点间的距离为d,则下列说法正确的是()A.当CD为Rt△ABC的中线时,d取得最小值B.当CD为Rt△ABC的角平分线时,d取得最小值C.当CD为Rt△ABC的高线时,d取得最小值D.当D在Rt△ABC的AB边上移动时,d为定值二、填空题(每小题5分,共25分)11.在空间直角坐标系Oxyz中,已知点P(1,0,5),Q(1,3,4),则线段PQ的长度为.12.某单位有1200名职工,其中年龄在50岁以上的有500人,35~50岁的400人,20~35岁的300人.为了解该单位职工的身体健康状况,现采用分层抽样的方法,从1200名职工抽取一个容量为60的样本,则在35~50岁年龄段应抽取的人数为.13.执行如图所示的程序框图,则输出的结果为.14.在正方体ABCD﹣A1B1C1D1的12条面对角线所在的直线中,与A1B所在的直线异面而且夹角为60°的直线有条.15.记空间向量=,=,=,其中,,均为单位向量.若⊥,且与,的夹角均为θ,θ∈[0,π].有以下结论:①⊥(﹣);②直线OC与平面OAB所成角等于向量与+的夹角;③若向量+所在直线与平面ABC垂直,则θ=60°;④当θ=90°时,P为△ABC内(含边界)一动点,若向量与++夹角的余弦值为,则动点P的轨迹为圆.其中,正确的结论有(写出所有正确结论的序号).三、解答题(共75分,解答应写出文字说明、证明过程或演算步骤)16.(12分)(2014秋•某某期末)如图,在正方体ABCD﹣A1B1C1D1中,M,N,P分别是棱AB,A1D1,AD的中点,求证:(Ⅰ)平面MNP∥平面BDD1B1;(Ⅱ)MN⊥AC.17.(12分)(2014秋•某某期末)某校要调查高中二年级男生的身高情况,现从全年级男生中随机抽取一个容量为100的样本.样本数据统计如表,对应的频率分布直方图如图所示.(1)求频率分布直方图中a,b的值;(2)用样本估计总体,若该校高中二年级男生共有1000人,求该年级中男生身高不低于170cm的人数.身高(单位:cm) [150,155) [155,160) [160,165) [165,170) [170,175) [175,180) [180,185) [185,190)人数 2 8 15 20 25 18 10 218.(12分)(2014秋•某某期末)如图,在三棱柱ABC﹣A1B1C1中,向量,,两两垂直,||=1,||=2,E,F分别为棱BB1,BC的中点,且•=0.(Ⅰ)求向量的模;(Ⅱ)求直线AA1与平面A1EF所成角的正弦值.19.(12分)(2014秋•某某期末)已知直线l1:mx﹣(m+1)y﹣2=0,l2:x+2y+1=0,l3:y=x ﹣2是三条不同的直线,其中m∈R.(Ⅰ)求证:直线l1恒过定点,并求出该点的坐标;(Ⅱ)若l2,l3的交点为圆心,2为半径的圆C与直线l1相交于A,B两点,求|AB|的最小值.20.(13分)(2014秋•某某期末)如图,在四棱锥P﹣ABCD中,△PAB是边长为2的正三角形,底面ABCD为菱形,且平面PAB⊥平面ABCD,PC⊥AB,E为PD上一点,且PD=3PE.(Ⅰ)求异面直线AB与CE所成角的余弦值;(Ⅱ)求平面PAC与平面ABCD所成的锐二面角的余弦值.21.(14分)(2014秋•某某期末)已知点P(0,2),设直线l:y=kx+b(k,b∈R)与圆C:x2+y2=4相交于异于点P的A,B两点.(Ⅰ)若•=0,求b的值;(Ⅱ)若|AB|=2,且直线l与两坐标轴围成的三角形的面积为,求直线l的斜率k的值;(Ⅲ)当|PA|•|PB|=4时,是否存在一定圆M,使得直线l与圆M相切?若存在,求出该圆的标准方程;若不存在,请说明理由.2014-2015学年某某省某某市高二(上)期末数学试卷(理科)参考答案与试题解析一、选择题(每小题5分,共50分)1.在空间直角坐标系Oxyz中,已知点A(2,1,﹣1),则与点A关于原点对称的点A1的坐标为()A.(﹣2,﹣1,1) B.(﹣2,1,﹣1) C.(2,﹣1,1) D.(﹣2,﹣1,﹣1)考点:空间中的点的坐标.专题:空间位置关系与距离.分析:利用关于原点对称的点的特点即可得出.解答:解:与点A关于原点对称的点A1的坐标为(﹣2,﹣1,1),故选:A.点评:本题考查了关于原点对称的点的特点,属于基础题.2.如图是某样本数据的茎叶图,则该样本数据的众数为()A. 10 B. 21 C. 35 D. 46考点:众数、中位数、平均数.专题:概率与统计.分析:通过样本数据的茎叶图直接读出即可.解答:解:通过样本数据的茎叶图发现,有3个数据是35,最多,故选:C.点评:本题考查了样本数据的众数,考查了茎叶图,是一道基础题.3.已知点A(﹣1,2),B(1,3),若直线l与直线AB平行,则直线l的斜率为() A.﹣2 B. 2 C.﹣ D.考点:直线的斜率.专题:直线与圆.分析:直接由两点坐标求得直线AB的斜率,再由两直线平行斜率相等得答案.解答:解:∵A(﹣1,2),B(1,3),∴,又直线l与直线AB平行,则直线l的斜率为.故选:D.点评:本题考查了由直线上的两点的坐标求直线的斜率公式,是基础的计算题.4.根据如图的程序语句,当输入的x的值为2时,则执行程序后输出的结果是()A. 4 B. 6 C. 8 D. 10考点:选择结构.专题:算法和程序框图.分析:执行程序语句,可得程序的功能是计算并输出分段函数y=的值,将x=2代入即可求值.解答:解:执行程序语句,可得程序的功能是计算并输出分段函数y=的值,故当x=2时,y=2×(2+1)=6.故选:B.点评:本题主要考查了程序与算法,正确理解程序的功能是解题的关键,属于基础题.5.经过点(2,1),且倾斜角为135°的直线方程为()A. x+y﹣3=0 B. x﹣y﹣1=0 C. 2x﹣y﹣3=0 D. x﹣2y=0考点:直线的点斜式方程.专题:直线与圆.分析:由直线的倾斜角求出直线的斜率,代入直线的点斜式方程得答案.解答:解:∵直线的倾斜角为135°,∴直线的斜率k=tan135°=﹣1.又直线过点(2,1),由直线的点斜式可得直线方程为y﹣1=﹣1×(x﹣2),即x+y﹣3=0.故选:A.点评:本题考查了直线的倾斜角与斜率的关系,考查了直线的点斜式方程,是基础题.6.已知圆C1:x2+y2+2x﹣4y+1=0,圆C2:(x﹣3)2+(y+1)2=1,则这两圆的位置关系是() A.相交 B.相离 C.外切 D.内含考点:圆与圆的位置关系及其判定.专题:计算题;直线与圆.分析:把圆的方程化为标准方程,分别找出两圆的圆心坐标和半径R与r,利用两点间的距离公式求出两圆心的距离d,由d>R+r得到两圆的位置关系为相离.解答:解:由圆C1:x2+y2+2x﹣4y+1=0,化为(x+1)2+(y﹣2)2=4,圆心C1(﹣1,2),R=2圆C2:(x﹣3)2+(y+1)2=1,圆心C2(3,﹣1),r=1,∴两圆心间的距离d==5>2+1,∴圆C1和圆C2的位置关系是相离.故选:B.点评:此题考查了圆与圆的位置关系及其判定,以及两点间的距离公式.圆与圆位置关系的判定方法为:0≤d<R﹣r,两圆内含;d=R﹣r,两圆内切;R﹣r<d<R+r时,两圆相交;d=R+r时,两圆外切;d>R+r时,两圆相离(d为两圆心间的距离,R和r分别为两圆的半径).7.如图,在平行六面体ABCD﹣A1B1C1D1中,E为BC1与B1C的交点,记=,=,=,则=()A.++ B.++ C.++ D.﹣﹣考点:空间向量的加减法.专题:空间向量及应用.分析:利用向量三角形法则、平行四边形法则即可得出.解答:解:,,,∴=+=.故选:C.点评:本题考查了向量三角形法则、平行四边形法则,属于基础题.8.已知l,m是两条不同的直线,α,β是两个不同的平面,则在下列条件中,一定能得到l⊥m的是()A.α∩β=l,m与α,β所成角相等B.α⊥β,l⊥α,m∥βC. l,m与平面α所成角之和为90°D.α∥β,l⊥α,m∥β考点:空间中直线与平面之间的位置关系.专题:空间位置关系与距离.分析:充分利用面面垂直和面面平行的性质定理对选项分别分析选择.解答:解:对于A,α∩β=l,m与α,β所成角相等,当m∥α,β时,m∥l,得不到l⊥m;对于B,α⊥β,l⊥α,得到l∥β或者l⊂β,又m∥β,所以l与m不一定垂直;对于C,l,m与平面α所成角之和为90°,当l,m与平面α都成45°时,可能平行,故C错误;对于D,α∥β,l⊥α,得到l⊥β,又m∥β,所以l⊥m;故选D.点评:本题考查了直线垂直的判断,用到了线面垂直、线面平行的性质定理和判定定理,熟练运用相关的定理是关键,属于中档题目.9.已知直线l:xsinα﹣ycosα=1,其中α为常数且α∈[0,2π).有以下结论:①直线l的倾斜角为α;②无论α为何值,直线l总与一定圆相切;③若直线l与两坐标轴都相交,则与两坐标轴围成的三角形的面积不小于1;④若P(x,y)是直线l上的任意一点,则x2+y2≥1.其中正确结论的个数为()A. 1 B. 2 C. 3 D. 4考点:命题的真假判断与应用.专题:简易逻辑.分析:举例说明①错误;由点到直线的距离公式求得(0,0)到直线的距离判断②;求出三角形面积公式,结合三角函数的有界性判断③;由②说明④正确.解答:解:直线l:xsinα﹣ycosα=1,当α=时,直线方程为:x=﹣1,直线的倾斜角为,命题①错误;∵坐标原点O(0,0)到直线xsinα﹣ycosα=1的距离为,∴无论α为何值,直线l总与一定圆x2+y2=1相切,命题②正确;当直线和两坐标轴都相交时,它和坐标轴围成的三角形的面积S=≥1,故③正确;∵无论α为何值,直线l总与一定圆x2+y2=1相切,∴④正确.∴正确的命题是3个.故选:C.点评:本题考查了命题的真假判断与应用,考查了直线的倾斜角,点与直线的关系,直线与圆的位置关系,三角函数的值域等,是中档题.10.在Rt△ABC中,已知D是斜边AB上任意一点(如图①),沿直线CD将△ABC折成直二面角B﹣CD﹣A(如图②).若折叠后A,B两点间的距离为d,则下列说法正确的是()A.当CD为Rt△ABC的中线时,d取得最小值B.当CD为Rt△ABC的角平分线时,d取得最小值C.当CD为Rt△ABC的高线时,d取得最小值D.当D在Rt△ABC的AB边上移动时,d为定值考点:平面与平面之间的位置关系.专题:空间位置关系与距离.分析:过A作CD的垂线AG,过B作CD的延长线的垂线BH,设BC=a,AC=b,∠ACD=θ,利用两条异面直线上两点间的距离转化为含有θ的三角函数求得最值.解答:解:如图,设BC=a,AC=b,∠ACD=θ,则(0),过A作CD的垂线AG,过B作CD的延长线的垂线BH,∴AG=bsinθ,BH=acosθ,CG=bcosθ,CH=asinθ,则HG=CH﹣CG=asinθ﹣bcosθ,∴d=|AB|====.∴当,即当CD为Rt△ABC的角平分线时,d取得最小值.故选:B.点评:本题考查平面与平面之间的位置关系,考查了两条异面直线上两点间的距离,运用数学转化思想方法是解答该题的关键,是中档题.二、填空题(每小题5分,共25分)11.在空间直角坐标系Oxyz中,已知点P(1,0,5),Q(1,3,4),则线段PQ的长度为.考点:空间两点间的距离公式.专题:空间位置关系与距离.分析:直接利用空间两点间距离公式求解即可.解答:解:空间直角坐标系中,P(1,0,5),Q(1,3,4),则线段|PQ|==.故答案为:.点评:本题考查空间两点间的距离公式的应用,基本知识的考查.12.某单位有1200名职工,其中年龄在50岁以上的有500人,35~50岁的400人,20~35岁的300人.为了解该单位职工的身体健康状况,现采用分层抽样的方法,从1200名职工抽取一个容量为60的样本,则在35~50岁年龄段应抽取的人数为20 .考点:分层抽样方法.专题:概率与统计.分析:根据题意,求出抽取样本的比例,计算抽取的人数即可.解答:解:根据题意,得;抽样比例是=,∴在35~50岁年龄段应抽取的人数为400×=20.故答案为:20.点评:本题考查了分层抽样方法的应用问题,是基础题目.13.执行如图所示的程序框图,则输出的结果为 4 .考点:程序框图.专题:算法和程序框图.分析:执行程序框图,依次写出每次循环得到的x,y的值,当x=8时,不满足条件x≤4,输出y的值为4.解答:解:执行程序框图,可得x=1,y=1满足条件x≤4,x=2,y=2满足条件x≤4,x=4,y=3满足条件x≤4,x=8,y=4不满足条件x≤4,输出y的值为4.故答案为:4.点评:本题主要考查了程序框图和算法,准确执行循环得到y的值是解题的关键,属于基础题.14.在正方体ABCD﹣A1B1C1D1的12条面对角线所在的直线中,与A1B所在的直线异面而且夹角为60°的直线有 4 条.考点:空间中直线与直线之间的位置关系.专题:空间位置关系与距离.分析:作出正方体,利用正方体的空间结构,根据异面直线的定义进行判断解答:解:如图,在正方体ABCD﹣A1B1C1D1中,与A1B异面而且夹角为60°的有:AC,AD1,CB1,B1D1,共有4条.故答案为:4.点评:本题考查异面直线的定义,是基础题,解题时要熟练掌握异面直线的概念.15.记空间向量=,=,=,其中,,均为单位向量.若⊥,且与,的夹角均为θ,θ∈[0,π].有以下结论:①⊥(﹣);②直线OC与平面OAB所成角等于向量与+的夹角;③若向量+所在直线与平面ABC垂直,则θ=60°;④当θ=90°时,P为△ABC内(含边界)一动点,若向量与++夹角的余弦值为,则动点P的轨迹为圆.其中,正确的结论有①③④(写出所有正确结论的序号).考点:平面向量数量积的运算.专题:平面向量及应用.分析:①•(﹣)==cosθ﹣cosθ=0,可得⊥(﹣);②当时,直线OC与平面OAB所成角的补角等于向量与+的夹角,即可判断出正误;③向量+所在直线OD与平面ABC垂直于点D,又BC=AC,D为AB的中点,则CD⊥AB,可得OD⊥CD,可得AC=1=OC=OA,可得θ=60°,即可判断出正误;④补全正方体,对角线OD与平面ABC相交于点M,点M为等边三角形的中心,可得OM=,OP=,MP=.即可得出动点P的轨迹为圆,点M为圆心,MP为半径的圆.解答:解:①∵•(﹣)==cosθ﹣cosθ=0,∴⊥(﹣),正确;②当时,直线OC与平面OAB所成角等于向量与+的夹角;当时,直线OC与平面OAB所成角的补角等于向量与+的夹角,因此不正确;③向量+所在直线OD与平面ABC垂直于点D,又BC=AC,D为AB的中点,则CD⊥AB,∴OD⊥CD,又OD=DA==CD,∴AC=1=OC=OA,则θ=60°,正确;④当θ=90°时,P为△ABC内(含边界)一动点,补全正方体,对角线OD与平面ABC相交于点M,点M为等边三角形的中心,OM==,∵向量与++(即与)的夹角的余弦值为,∴=,∴=.∴动点P的轨迹为圆,点M为圆心,MP为半径的圆,因此正确.其中,正确的结论有①③④.故答案为:①③④.点评:本题考查了向量的数量积运算性质、空间线面位置关系、空间角、正方体的性质,考查了空间想象能力,考查了推理能力与计算能力,属于难题.三、解答题(共75分,解答应写出文字说明、证明过程或演算步骤)16.(12分)(2014秋•某某期末)如图,在正方体ABCD﹣A1B1C1D1中,M,N,P分别是棱AB,A1D1,AD的中点,求证:(Ⅰ)平面MNP∥平面BDD1B1;(Ⅱ)MN⊥AC.考点:空间中直线与直线之间的位置关系;平面与平面平行的判定.专题:空间位置关系与距离.分析:(Ⅰ)只要证明MP∥BD,NP∥DD1,利用面面平行的判定定理可证;(Ⅱ)由已知容易得到NP⊥底面ABCD,利用射影定理,只要证明MP⊥AC即可.解答:证明:(Ⅰ)∵在正方体ABCD﹣A1B1C1D1中,M,N,P分别是棱AB,A1D1,AD的中点,∴MP∥BD,NP∥DD1,∴平面MNP∥平面BDD1B1;(Ⅱ)由已知,可得NP∥DD1,又DD1⊥底面ABCD,∴NP⊥底面ABCD,∴MN在底面ABCD的射影为MP,∵M,N是AB,A1D1的中点,∴MP∥BD,又BD⊥AC,∴MP⊥AC,∴MN⊥AC.点评:本题考查了正方体的性质以及线面平行、面面平行的判定定理和性质定理的运用.17.(12分)(2014秋•某某期末)某校要调查高中二年级男生的身高情况,现从全年级男生中随机抽取一个容量为100的样本.样本数据统计如表,对应的频率分布直方图如图所示.(1)求频率分布直方图中a,b的值;(2)用样本估计总体,若该校高中二年级男生共有1000人,求该年级中男生身高不低于170cm的人数.身高(单位:cm) [150,155) [155,160) [160,165) [165,170) [170,175) [175,180) [180,185) [185,190)人数 2 8 15 20 25 18 10 2考点:频率分布直方图.专题:概率与统计.分析:(1)根据频率、频数与样本容量的关系,结合频率分布直方图中小矩形的高,求出a、b的值;(2)求出该年级中男生身高不低于170cm的频率,计算对应的频数即可.解答:解:(1)身高在[160,165)的频率为=0.15,∴==0.03,即a=0.03;身高在[170,175)的频率为=0.25,∴==0.05,即b=0.05;(2)该年级中男生身高不低于170cm的频率为0.25+0.036×5+0.02×5+0.004×5=0.55,∴估计该年级中男生身高不低于170cm的人数是1000×0.55=550.点评:本题考查了频率分布表与频率分布直方图的应用问题,是基础题目.18.(12分)(2014秋•某某期末)如图,在三棱柱ABC﹣A1B1C1中,向量,,两两垂直,||=1,||=2,E,F分别为棱BB1,BC的中点,且•=0.(Ⅰ)求向量的模;(Ⅱ)求直线AA1与平面A1EF所成角的正弦值.考点:平面向量数量积的运算;直线与平面所成的角.专题:平面向量及应用.分析:(Ⅰ)分别以AC,AB,AA1为x,y,z轴建立空间直角坐标系,设A1(0,0,z),得到•=4﹣=0,解出即可.(Ⅱ)分别求出,,的坐标,设平面A1EF的法向量=(x,y,z),得到方程组,求出一个,从而求出直线AA1与平面A1EF所成角的正弦值.解答:解:(Ⅰ)分别以AC,AB,AA1为x,y,z轴建立空间直角坐标系,如图示:,∴C(1,0,0),B(0,2,0),F(1,1,0),设A1(0,0,z),则E(0,2,),B1(0,2,z),∴=(﹣1,2,z),=(0,2,﹣),∴•=4﹣=0,解得:z=2,∴||=2;(Ⅱ)由(Ⅰ)得:=(0,0,2),=(1,1,﹣2),=(0,2,﹣),设平面A1EF的法向量=(x,y,z),∴,令z=2,∴=(3,,2),设直线AA1与平面A1EF所成的角为θ,∴sinθ===.点评:本题考查了平面向量的数量积的运算及应用,考查了线面角问题,是一道中档题.19.(12分)(2014秋•某某期末)已知直线l1:mx﹣(m+1)y﹣2=0,l2:x+2y+1=0,l3:y=x ﹣2是三条不同的直线,其中m∈R.(Ⅰ)求证:直线l1恒过定点,并求出该点的坐标;(Ⅱ)若l2,l3的交点为圆心,2为半径的圆C与直线l1相交于A,B两点,求|AB|的最小值.考点:直线与圆相交的性质;恒过定点的直线.专题:计算题;直线与圆.分析:(Ⅰ)直线l1:mx﹣(m+1)y﹣2=0,可化为m(x﹣y)﹣(y+2)=0,可得,即可得出直线l1恒过定点,及该点的坐标;(Ⅱ)求|AB|的最小值,即求圆心到直线的距离的最大值,此时CD⊥直线l1.解答:(Ⅰ)证明:直线l1:mx﹣(m+1)y﹣2=0,可化为m(x﹣y)﹣(y+2)=0,∴,∴x=y=﹣2,∴直线l1恒过定点D(﹣2,﹣2);(Ⅱ)解:l2:x+2y+1=0,l3:y=x﹣2联立可得交点坐标C(1,﹣1),求|AB|的最小值,即求圆心到直线的距离的最大值,此时CD⊥直线l1,∵|CD|==,∴|AB|的最小值为2=2.点评:本题考查直线l1恒过定点,考查弦长的计算,考查学生分析解决问题的能力,比较基础.20.(13分)(2014秋•某某期末)如图,在四棱锥P﹣ABCD中,△PAB是边长为2的正三角形,底面ABCD为菱形,且平面PAB⊥平面ABCD,PC⊥AB,E为PD上一点,且PD=3PE.(Ⅰ)求异面直线AB与CE所成角的余弦值;(Ⅱ)求平面PAC与平面ABCD所成的锐二面角的余弦值.考点:二面角的平面角及求法;异面直线及其所成的角.专题:空间角.分析:(Ⅰ)建立空间坐标系,利用向量法即可求异面直线AB与CE所成角的余弦值;(Ⅱ)建立空间坐标系,利用向量法即可求平面PAC与平面ABCD所成的锐二面角的余弦值.解答:解:(I)取AB的中点O,连接PO,OC∵△PAB为边长为2的正三角形,∴PO⊥AB又∵平面PAB⊥平面ABCD,平面PAB∩平面ABCD=AB,PO⊂平面PAB∴PO⊥平面ABCD,又∵PC⊥AB,PO∩PC=P,PO,PC⊂平面POC∴AB⊥平面POC又∵OC⊂平面POC∴AB⊥OC以O为坐标原点,建立如图所示的空间坐标系,则A(﹣1,0,0),C(0,,0),P(0,0,),D(﹣2,,0),B(1,0,0),∵PD=3PE,∴E(,,)则=(2,0,0),=(,﹣,),则||=,则cos<,>===﹣,即异面直线AB与CE所成角的余弦值为.(2)设平面PAC的法向量为=(x,y,z),∵=(1,,0),=(0,﹣,),∴由,即,令z=1,则y=1,x=,即=(,1,1),平面ABCD的法向量为=(0,0,1),则cos<,>===,故平面PAC与平面ABCD所成的锐二面角的余弦值为.点评:本题主要考查异面直线所成角的求解,以及二面角的求解,建立空间坐标系,利用向量法是解决二面角的常用方法.考查学生的运算和推理能力.21.(14分)(2014秋•某某期末)已知点P(0,2),设直线l:y=kx+b(k,b∈R)与圆C:x2+y2=4相交于异于点P的A,B两点.(Ⅰ)若•=0,求b的值;(Ⅱ)若|AB|=2,且直线l与两坐标轴围成的三角形的面积为,求直线l的斜率k的值;(Ⅲ)当|PA|•|PB|=4时,是否存在一定圆M,使得直线l与圆M相切?若存在,求出该圆的标准方程;若不存在,请说明理由.考点:直线与圆锥曲线的综合问题;平面向量数量积的运算.专题:向量与圆锥曲线;圆锥曲线的定义、性质与方程.分析:(1)由P在圆上,且•=0,可知直线l过圆心O,由此求出b的值;(2)由|AB|=2得到原点O到直线l的距离,再由面积为得另一关于k和b的等式,联立方程组求得满足条件的k值;(3)联立直线方程和圆的方程,化为关于x的一元二次方程,由|PA|•|PB|=4得到A,B两点横坐标的关系,结合根与系数的关系得到直线l的斜率和截距的关系,由点到直线的距离公式求出P到直线l的距离为定值,由此可得存在一定圆M,方程是x2+(y﹣2)2=1,使得直线l与圆M相切.解答:解:(Ⅰ)∵点P(0,2)在圆C:x2+y2=4上,且直线l:y=kx+b与圆C交于A,B 两点,当•=0时,,∴直线l过圆心O(0,0),则b=0;(Ⅱ)由题意可知,直线l不过原点O,不妨设k>0,b>0,由|AB|=2,得,①取x=0,得y=b,取y=0,得x=﹣,∴,②联立①②解得:或k=,由对称性可得满足条件的直线l的斜率的值为或;(Ⅲ)联立,消去y,得(k2+1)x2+2kbx+b2﹣4=0.设A(x1,y1),B(x2,y2),∴x1+x2=﹣,x1x2=,∵|PA|•|PB|=4,∴,∴=16,即(2﹣y1)(2﹣y2)=1,∴y1y2﹣2(y1+y2)+3=0,则(kx1+b)(kx2+b)﹣2(kx1+b+kx2+b)+3=0,k2x1x2+(kb﹣2k)(x1+x2)﹣4b+3=0,∴k2•+(kb﹣2b)•(﹣)﹣4b+3=0.化简得:化简得k2=b2﹣4b+3,即k2+1=(b﹣2)2,∴.∵点P(0,2)到直线l:y=kx+b的距离d==1,∴存在一定圆M,方程是x2+(y﹣2)2=1,使得直线l与圆M相切.点评:本题考查了平面向量的应用,考查了直线与圆的位置关系,考查了定值的应用问题,综合性强,属难题.。

四川省成都市2022-2023学年高二上学期期末数学(理科)模拟试卷

四川省成都市2022-2023学年高二上学期期末数学(理科)模拟试卷

2022-2023学年四川省成都市高二(上)期末数学模拟试卷(理科)一.选择题(共12小题,满分60分,每小题5分)1.(5分)某学校举行的演讲比赛有七位评委,如图是评委们为某选手给出分数的茎叶图,根据规则去掉一个最高分和一个最低分.则此所剩数据的平均数和方差分别为()A.84,4.84B.84,1.6C.85,4D.85,1.62.(5分)命题“若a+b>1,则a2+b2>1”的逆否命题为()A.若a2+b2≤1,则a+b≤1B.若a2+b2>1,则a+b>1C.若a+b>1,则a2+b2≤1D.若a2+b2<1,则a+b<13.(5分)已知抛物线:y2=4x的焦点为F,A为该抛物线上一点,若|AF|=4,则线段AF的中点到y轴的距离为()A.4B.C.2D.4.(5分)小王每天在6:30至6:50出发去上班,其中在6:30至6:40出发的概率为0.4,在该时间段出发上班迟到的概率为0.1;在6:40至6:50出发的概率为0.6,在该时间段出发上班迟到的概率为0.2,则小王某天在6:30至6:50出发上班迟到的概率为()A.0.16B.0.17C.0.18D.0.195.(5分)10名小学生的身高(单位:cm)分成了甲、乙两组数据,甲组:115,122,105,111,109;乙组:125,132,115,121,119.两组数据中相等的数字特征是()A.中位数、极差B.平均数、方差C.方差、极差D.极差、平均数6.(5分)某地某所高中2019年的高考考生人数是2016年高考考生人数的1.2倍,为了更好地对比该校考生的升学情况,统计了该校2016年和2019年的高考升学情况,得到如图柱图:则下列结论正确的是()A.与2016年相比,2019年一本达线人数有所减少B.与2016年相比,2019年二本达线人数增加了1倍C.与2016年相比,2019年艺体达线人数相同D.与2016年相比,2019年不上线的人数有所增加7.(5分)为了解疫情防控延迟开学期间全区中小学线上教学的主要开展形式,某课题组面向各学校开展了一次随机调查,并绘制得到如图统计图,则采用“直播+录播”方式进行线上教学的学校占比约为()A.22.5%B.27.5%C.32.5%D.37.5%8.(5分)若圆C1:x2+y2=4与圆C2:x2+y2﹣4x+2ay+a2=0外切,则实数a的值为()A.B.C.D.9.(5分)某学校共有学生4000名,为了了解学生的自习情况,随机调查了部分学生的每周自习时间(单位:小时),制成了如图所示的频率分布直方图,样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,估计该校学生中每周自习时间不少于22.5小时的人数是()A.2800B.1200C.140D.6010.(5分)若a,b∈R,命题p:直线y=ax+b与圆x2+y2=1相交;命题,则p是q的()A.必要不充分条件B.充分不必要条件C.充分必要条件D.既不充分也不必要条件11.(5分)已知离心率为的双曲线=1的右焦点为F,直线l过点F且垂直于x轴,若l被抛物线y2=2px截得的线段长为4,则p=()A.1B.2C.D.12.(5分)已知双曲线C:﹣=1(a>0,b>0)的右焦点为F,过点F作双曲线C的两条渐近线的垂线,垂足分别为H1,H2,若∠H1FH2=120°,则双曲线C的离心率为()A.B.C.D.二.填空题(共4小题,满分20分,每小题5分)13.(5分)某校有足球、篮球、排球三个兴趣小组,共有成员120人,其中足球、篮球、排球的成员分别有40人、60人、20人.现用分层抽样的方法从这三个兴趣小组中抽取24人来调查活动开展情况,则在足球兴趣小组中应抽取人.14.(5分)若=(2,﹣3,1),=(﹣1,1,﹣4),则|﹣|=.15.(5分)若直线l:x﹣y+m=0与椭圆x2+=1交于A,B两点,且线段AB的中点在圆x2+y2=1上,则m=.16.(5分)已知长轴长为2a,短轴长为2b的椭圆的面积为πab.现用随机模拟的方法来估计π的近似值,先用计算机产生n个数对(x i,y i),i=1,2,3,⋯⋯,n,其中x i,y i均为[0,2]内的随机数,再由计算机统计发现其中满足条件的数对有m个,由此可估计π的近似值为.三.解答题(共6小题,满分70分)17.(10分)为评估大气污染防治效果,调查区域空气质量状况,某调研机构从A,B两地区分别随机抽取了20天的观测数据,得到A,B两地区的空气质量指数(AQI),绘制如下频率分布直方图:根据空气质量指数,将空气质量状况分为以下三个等级:空气质量指数AQI(0,100)[100,200)[200,300)空气质量状况优良轻中度污染重度污染(I)试根据样本数据估计A地区当年(365天)的空气质量状况“优良”的天数;(II)若分别在A、B两地区上述20天中,且空气质量指数均不小于150的日子里随机各抽取一天,求抽到的日子里空气质量等级均为“重度污染”的概率.18.(12分)已知圆M:x2+(y﹣6)2=16,点P是直线l:x﹣2y=0上的一动点,过点P作圆M的切线P A,PB,切点为A,B.(1)当切线P A的长度为4时,求线段PM长度.(2)若△P AM的外接圆为圆N,试问:当P在直线l上运动时,圆N是否过定点?若存在,求出所有的定点的坐标;若不存在,说明理由;(3)求线段AB长度的最小值.19.(12分)已知F1,F2分别为椭圆=1(a>b>0)左、右焦点,点P(1,y0)在椭圆上,且PF2⊥x轴,△PF1F2的周长为6;(Ⅰ)求椭圆的标准方程;(Ⅱ)过点T(0,1)的直线与椭圆C交于A,B两点,设O为坐标原点,是否存在常数λ,使得+=﹣7恒成立?请说明理由.20.(12分)某厂采用新技术改造后生产甲产品的产量x(吨)与相应的生产成本y(万元)的几组对照数据.x3456y3 3.5 4.55(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程=x+;(3)已知该厂技改前生产50吨甲产品的生产成本为40万元.试根据(2)求出的线性回归方程,预测生产50吨甲产品的生产成本比技改前降低多少万元?(参考数据:.5.5,=)21.(12分)设A是圆O:x2+y2=16上的任意一点,l是过点A且与x轴垂直的直线,B是直线l与x轴的交点,点Q在直线l上,且满足4|BQ|=3|BA|.当点A在圆O上运动时,记点Q的轨迹为曲线C.(1)求曲线C的方程;(2)已知直线y=kx﹣2(k≠0)与曲线C交于M,N两点,点M关于y轴的对称点为M′,设P(0,﹣2),证明:直线M′N过定点,并求△PM′N面积的最大值.22.(12分)动点P到定点F(0,1)的距离之比它到直线y=﹣2的距离小1,设动点P的轨迹为曲线C,过点F的直线交曲线C于A,B两个不同的点,过点A,B分别作曲线C的切线,且二者相交于点M.(1)求曲线C的方程;(2)求证:;(3)求△ABM的面积的最小值.。

四川省成都市2020年(春秋版)高二上学期期末数学试卷(理科)B卷

四川省成都市2020年(春秋版)高二上学期期末数学试卷(理科)B卷

四川省成都市2020年(春秋版)高二上学期期末数学试卷(理科)B卷姓名:________ 班级:________ 成绩:________一、填空题: (共14题;共14分)1. (1分) (2016高二上·金华期中) 有下列四个命题:①命题“面积相等的三角形全等”的否命题;②若“xy=1,则x,y互为倒数”的逆命题;③命题“若A∩B=B,则A⊆B”的逆否命题;④命题“若m>1,则x2﹣2x+m=0有实根”的逆否命题.其中是真命题的是________(填上你认为正确的命题的序号).2. (1分)(2016·枣庄模拟) 已知双曲线x2﹣ =1(b>0)的离心率为2,则其渐近线的方程为________.3. (1分) (2015高二下·广安期中) 已知i是虚数单位,,则|z|=________.4. (1分) (2017高二上·黑龙江月考) 过点向圆所引的切线方程为________.5. (1分)设曲线y=xn+1(n∈N*)在点(1,1)处的切线与x轴的交点的横坐标为xn ,则x1.x2.x3 (x2)015=________.6. (1分) (2016高一下·岳池期末) 设变量x,y满足约束条件,则目标函数z=4x+2y的最大值为________.7. (1分) (2016高二上·南昌期中) 过抛物线y2=4x的焦点F的直线交该抛物线于A,B两点,O为坐标原点.若|AF|=3,则△AOB的面积为________.8. (1分) (2017高一下·盐城期末) 在平面直角坐标系xOy中,以点(1,0)为圆心且与直线2mx﹣y﹣4m+1=0(m∈R)相切的所有圆中,半径最大的圆的标准方程为________.9. (1分) (2016高二下·金沙期中) 观察下列等式:32=52﹣42 , 52=132﹣122 , 72=252﹣242 , 92=412﹣402 ,…照此规律,第n个等式为________.10. (1分)定义[x]与{x}是对一切实数都有定义的函数,[x]的值等于不大于x的最大整数,{x}的值是x﹣[x],则下列结论正确的是________ (填上正确结论的序号).①[﹣x]=﹣[x];②[x]+[y]≤[x+y];③{x}+{y}≥{x+y};④{x}是周期函数.11. (1分) (2019高三上·海淀月考) 已知函数的导函数有且仅有两个零点,其图像如图所示,则函数在 ________处取得极值.12. (1分) (2016高一上·赣州期中) 函数f(x)是定义在R上的奇函数,给出下列命题:①f(0)=0;②若f(x)在(0,+∞)上有最小值为﹣1,则f(x)在(﹣∞,0)上有最大值1;③若f(x)在[1,+∞)上为增函数,则f(x)在(﹣∞,﹣1]上为减函数;④若x>0,f(x)=x2﹣2x;则x<0时,f(x)=﹣x2﹣2x.其中所有正确的命题序号是________.13. (1分)在平面直角坐标系中,△ABC的顶点A、B分别是离心率为e的圆锥曲线的焦点,顶点C在该曲线上.一同学已正确地推得:当m>n>0时,有e•(sinA+sinB)=sinC.类似地,当m>0、n<0时,有e•(________ )=sinC.14. (1分) (2019高三上·烟台期中) 已知函数在内有且只有一个零点,则在上的最大值与最小值的和为________.二、解答题: (共6题;共45分)15. (10分) (2016高一上·潍坊期末) 已知△ABC的三个顶点坐标分别为A(﹣1,1),B(7,﹣1),C(﹣2,5),AB边上的中线所在直线为l.(1)求直线l的方程;(2)若点A关于直线l的对称点为D,求△BCD的面积.16. (10分)已知,数列{an} 的前 n 项的和记为 Sn .S(1)求S1,S2,S3的值,猜想Sn的表达式;(2)请用数学归纳法证明你的猜想.17. (5分) (2017高二上·黑龙江月考) 已知圆.(Ⅰ)若直线过定点,且与圆相切,求直线的方程;(Ⅱ)若圆半径是,圆心在直线上,且与圆外切,求圆的方程.18. (5分)随州市汽车配件厂,是生产某配件的专业厂家,每年投入生产的固定成本为40万元,每生产1万件该配件还需要再投入16万元,该厂信誉好,产品质量过硬,该产品投放市场后供应不求,若该厂每年生产该配件x万件,每万件的销售收入为R(x)万元,且R(x)=.(1)写出年利润关于年产量x(万件)的函数解析式;(2)当年产量为多少万件时,该厂获得的利润最大?并求出最大利润.19. (10分)(2014·新课标I卷理) 已知点A(0,﹣2),椭圆E: + =1(a>b>0)的离心率为,F是椭圆的焦点,直线AF的斜率为,O为坐标原点.(1)求E的方程;(2)设过点A的直线l与E相交于P,Q两点,当△OPQ的面积最大时,求l的方程.20. (5分) (2018高三上·北京期中) 已知函数.(Ⅰ)求曲线在点处的切线方程;(Ⅱ)求证:存在唯一的,使得曲线在点处的切线的斜率为;(Ⅲ)比较与的大小,并加以证明.参考答案一、填空题: (共14题;共14分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、二、解答题: (共6题;共45分)15-1、15-2、16-1、16-2、17-1、18-1、19-1、19-2、20-1、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014-2015学年四川省成都市高二(上)期末数学试卷(理科)一、选择题(每小题5分,共50分)1.在空间直角坐标系Oxyz中,已知点A(2,1,﹣1),则与点A关于原点对称的点A1的坐标为()A.(﹣2,﹣1,1)B.(﹣2,1,﹣1)C.(2,﹣1,1)D.(﹣2,﹣1,﹣1)2.如图是某样本数据的茎叶图,则该样本数据的众数为()A.10 B.21 C.35 D.463.已知点A(﹣1,2),B(1,3),若直线l与直线AB平行,则直线l的斜率为()A.﹣2 B.2 C.﹣D.4.根据如图的程序语句,当输入的x的值为2时,则执行程序后输出的结果是()A.4 B. 6 C.8 D.105.经过点(2,1),且倾斜角为135°的直线方程为()A.x+y﹣3=0 B.x﹣y﹣1=0 C.2x﹣y﹣3=0 D.x﹣2y=06.已知圆C1:x2+y2+2x﹣4y+1=0,圆C2:(x﹣3)2+(y+1)2=1,则这两圆的位置关系是()A.相交B.相离C.外切D.内含7.如图,在平行六面体ABCD﹣A1B1C1D1中,E为BC1与B1C的交点,记=,=,=,则=()A.++B.++C.++D.﹣﹣8.已知l,m是两条不同的直线,α,β是两个不同的平面,则在下列条件中,一定能得到l⊥m的是()A.α∩β=l,m与α,β所成角相等B.α⊥β,l⊥α,m∥βC.l,m与平面α所成角之和为90°D.α∥β,l⊥α,m∥β9.已知直线l:xsinα﹣ycosα=1,其中α为常数且α∈[0,2π).有以下结论:①直线l的倾斜角为α;②无论α为何值,直线l总与一定圆相切;③若直线l与两坐标轴都相交,则与两坐标轴围成的三角形的面积不小于1;④若P(x,y)是直线l上的任意一点,则x2+y2≥1.其中正确结论的个数为()A.1 B. 2 C. 3 D. 410.在Rt△ABC中,已知D是斜边AB上任意一点(如图①),沿直线CD将△ABC折成直二面角B﹣CD﹣A(如图②).若折叠后A,B两点间的距离为d,则下列说法正确的是()A.当CD为Rt△ABC的中线时,d取得最小值B.当CD为Rt△ABC的角平分线时,d取得最小值C.当CD为Rt△ABC的高线时,d取得最小值D.当D在Rt△ABC的AB边上移动时,d为定值二、填空题(每小题5分,共25分)11.在空间直角坐标系Oxyz中,已知点P(1,0,5),Q(1,3,4),则线段PQ的长度为.12.某单位有1200名职工,其中年龄在50岁以上的有500人,35~50岁的400人,20~35岁的300人.为了解该单位职工的身体健康状况,现采用分层抽样的方法,从1200名职工抽取一个容量为60的样本,则在35~50岁年龄段应抽取的人数为.13.执行如图所示的程序框图,则输出的结果为.14.在正方体ABCD﹣A1B1C1D1的12条面对角线所在的直线中,与A1B所在的直线异面而且夹角为60°的直线有条.15.记空间向量=,=,=,其中,,均为单位向量.若⊥,且与,的夹角均为θ,θ∈[0,π].有以下结论:①⊥(﹣);②直线OC与平面OAB所成角等于向量与+的夹角;③若向量+所在直线与平面ABC垂直,则θ=60°;④当θ=90°时,P为△ABC内(含边界)一动点,若向量与++夹角的余弦值为,则动点P的轨迹为圆.其中,正确的结论有(写出所有正确结论的序号).三、解答题(共75分,解答应写出文字说明、证明过程或演算步骤)16.(12分)(2014秋•成都期末)如图,在正方体ABCD﹣A1B1C1D1中,M,N,P分别是棱AB,A1D1,AD的中点,求证:(Ⅰ)平面MNP∥平面BDD1B1;(Ⅱ)MN⊥AC.17.(12分)(2014秋•成都期末)某校要调查高中二年级男生的身高情况,现从全年级男生中随机抽取一个容量为100的样本.样本数据统计如表,对应的频率分布直方图如图所示.(1)求频率分布直方图中a,b的值;(2)用样本估计总体,若该校高中二年级男生共有1000人,求该年级中男生身高不低于170cm的人数.身高(单位:cm)[150,155)[155,160)[160,165)[165,170)[170,175)[175,180)[180,185)[185,190)人数2 8 15 20 25 18 10 218.(12分)(2014秋•成都期末)如图,在三棱柱ABC﹣A1B1C1中,向量,,两两垂直,||=1,||=2,E,F分别为棱BB1,BC的中点,且•=0.(Ⅰ)求向量的模;(Ⅱ)求直线AA1与平面A1EF所成角的正弦值.19.(12分)(2014秋•成都期末)已知直线l1:mx﹣(m+1)y﹣2=0,l2:x+2y+1=0,l3:y=x﹣2是三条不同的直线,其中m∈R.(Ⅰ)求证:直线l1恒过定点,并求出该点的坐标;(Ⅱ)若l2,l3的交点为圆心,2为半径的圆C与直线l1相交于A,B两点,求|AB|的最小值.20.(13分)(2014秋•成都期末)如图,在四棱锥P﹣ABCD中,△PAB是边长为2的正三角形,底面ABCD为菱形,且平面PAB⊥平面ABCD,PC⊥AB,E为PD上一点,且PD=3PE.(Ⅰ)求异面直线AB与CE所成角的余弦值;(Ⅱ)求平面PAC与平面ABCD所成的锐二面角的余弦值.21.(14分)(2014秋•成都期末)已知点P(0,2),设直线l:y=kx+b(k,b∈R)与圆C:x2+y2=4相交于异于点P的A,B两点.(Ⅰ)若•=0,求b的值;(Ⅱ)若|AB|=2,且直线l与两坐标轴围成的三角形的面积为,求直线l的斜率k的值;(Ⅲ)当|PA|•|PB|=4时,是否存在一定圆M,使得直线l与圆M相切?若存在,求出该圆的标准方程;若不存在,请说明理由.2014-2015学年四川省成都市高二(上)期末数学试卷(理科)参考答案与试题解析一、选择题(每小题5分,共50分)1.在空间直角坐标系Oxyz中,已知点A(2,1,﹣1),则与点A关于原点对称的点A1的坐标为()A.(﹣2,﹣1,1)B.(﹣2,1,﹣1)C.(2,﹣1,1)D.(﹣2,﹣1,﹣1)考点:空间中的点的坐标.专题:空间位置关系与距离.分析:利用关于原点对称的点的特点即可得出.解答:解:与点A关于原点对称的点A1的坐标为(﹣2,﹣1,1),故选:A.点评:本题考查了关于原点对称的点的特点,属于基础题.2.如图是某样本数据的茎叶图,则该样本数据的众数为()A.10 B.21 C.35 D.46考点:众数、中位数、平均数.专题:概率与统计.分析:通过样本数据的茎叶图直接读出即可.解答:解:通过样本数据的茎叶图发现,有3个数据是35,最多,故选:C.点评:本题考查了样本数据的众数,考查了茎叶图,是一道基础题.3.已知点A(﹣1,2),B(1,3),若直线l与直线AB平行,则直线l的斜率为()A.﹣2 B.2 C.﹣D.考点:直线的斜率.专题:直线与圆.分析:直接由两点坐标求得直线AB的斜率,再由两直线平行斜率相等得答案.解答:解:∵A(﹣1,2),B(1,3),∴,又直线l与直线AB平行,则直线l的斜率为.故选:D.点评:本题考查了由直线上的两点的坐标求直线的斜率公式,是基础的计算题.4.根据如图的程序语句,当输入的x的值为2时,则执行程序后输出的结果是()A.4 B. 6 C.8 D.10考点:选择结构.专题:算法和程序框图.分析:执行程序语句,可得程序的功能是计算并输出分段函数y=的值,将x=2代入即可求值.解答:解:执行程序语句,可得程序的功能是计算并输出分段函数y=的值,故当x=2时,y=2×(2+1)=6.故选:B.点评:本题主要考查了程序与算法,正确理解程序的功能是解题的关键,属于基础题.5.经过点(2,1),且倾斜角为135°的直线方程为()A.x+y﹣3=0 B.x﹣y﹣1=0 C.2x﹣y﹣3=0 D.x﹣2y=0考点:直线的点斜式方程.专题:直线与圆.分析:由直线的倾斜角求出直线的斜率,代入直线的点斜式方程得答案.解答:解:∵直线的倾斜角为135°,∴直线的斜率k=tan135°=﹣1.又直线过点(2,1),由直线的点斜式可得直线方程为y﹣1=﹣1×(x﹣2),即x+y﹣3=0.故选:A.点评:本题考查了直线的倾斜角与斜率的关系,考查了直线的点斜式方程,是基础题.6.已知圆C1:x2+y2+2x﹣4y+1=0,圆C2:(x﹣3)2+(y+1)2=1,则这两圆的位置关系是()A.相交B.相离C.外切D.内含考点:圆与圆的位置关系及其判定.专题:计算题;直线与圆.分析:把圆的方程化为标准方程,分别找出两圆的圆心坐标和半径R与r,利用两点间的距离公式求出两圆心的距离d,由d>R+r得到两圆的位置关系为相离.解答:解:由圆C1:x2+y2+2x﹣4y+1=0,化为(x+1)2+(y﹣2)2=4,圆心C1(﹣1,2),R=2圆C2:(x﹣3)2+(y+1)2=1,圆心C2(3,﹣1),r=1,∴两圆心间的距离d==5>2+1,∴圆C1和圆C2的位置关系是相离.故选:B.点评:此题考查了圆与圆的位置关系及其判定,以及两点间的距离公式.圆与圆位置关系的判定方法为:0≤d<R﹣r,两圆内含;d=R﹣r,两圆内切;R﹣r<d<R+r时,两圆相交;d=R+r时,两圆外切;d>R+r时,两圆相离(d为两圆心间的距离,R和r分别为两圆的半径).7.如图,在平行六面体ABCD﹣A1B1C1D1中,E为BC1与B1C的交点,记=,=,=,则=()A.++B.++C.++D.﹣﹣考点:空间向量的加减法.专题:空间向量及应用.分析:利用向量三角形法则、平行四边形法则即可得出.解答:解:,,,∴=+=.故选:C.点评:本题考查了向量三角形法则、平行四边形法则,属于基础题.8.已知l,m是两条不同的直线,α,β是两个不同的平面,则在下列条件中,一定能得到l⊥m的是()A.α∩β=l,m与α,β所成角相等B.α⊥β,l⊥α,m∥βC.l,m与平面α所成角之和为90°D.α∥β,l⊥α,m∥β考点:空间中直线与平面之间的位置关系.专题:空间位置关系与距离.分析:充分利用面面垂直和面面平行的性质定理对选项分别分析选择.解答:解:对于A,α∩β=l,m与α,β所成角相等,当m∥α,β时,m∥l,得不到l⊥m;对于B,α⊥β,l⊥α,得到l∥β或者l⊂β,又m∥β,所以l与m不一定垂直;对于C,l,m与平面α所成角之和为90°,当l,m与平面α都成45°时,可能平行,故C 错误;对于D,α∥β,l⊥α,得到l⊥β,又m∥β,所以l⊥m;故选D.点评:本题考查了直线垂直的判断,用到了线面垂直、线面平行的性质定理和判定定理,熟练运用相关的定理是关键,属于中档题目.9.已知直线l:xsinα﹣ycosα=1,其中α为常数且α∈[0,2π).有以下结论:①直线l的倾斜角为α;②无论α为何值,直线l总与一定圆相切;③若直线l与两坐标轴都相交,则与两坐标轴围成的三角形的面积不小于1;④若P(x,y)是直线l上的任意一点,则x2+y2≥1.其中正确结论的个数为()A.1 B. 2 C. 3 D. 4考点:命题的真假判断与应用.专题:简易逻辑.分析:举例说明①错误;由点到直线的距离公式求得(0,0)到直线的距离判断②;求出三角形面积公式,结合三角函数的有界性判断③;由②说明④正确.解答:解:直线l:xsinα﹣ycosα=1,当α=时,直线方程为:x=﹣1,直线的倾斜角为,命题①错误;∵坐标原点O(0,0)到直线xsinα﹣ycosα=1的距离为,∴无论α为何值,直线l总与一定圆x2+y2=1相切,命题②正确;当直线和两坐标轴都相交时,它和坐标轴围成的三角形的面积S=≥1,故③正确;∵无论α为何值,直线l总与一定圆x2+y2=1相切,∴④正确.∴正确的命题是3个.故选:C.点评:本题考查了命题的真假判断与应用,考查了直线的倾斜角,点与直线的关系,直线与圆的位置关系,三角函数的值域等,是中档题.10.在Rt△ABC中,已知D是斜边AB上任意一点(如图①),沿直线CD将△ABC折成直二面角B﹣CD﹣A(如图②).若折叠后A,B两点间的距离为d,则下列说法正确的是()A.当CD为Rt△ABC的中线时,d取得最小值B.当CD为Rt△ABC的角平分线时,d取得最小值C.当CD为Rt△ABC的高线时,d取得最小值D.当D在Rt△ABC的AB边上移动时,d为定值考点:平面与平面之间的位置关系.专题:空间位置关系与距离.分析:过A作CD的垂线AG,过B作CD的延长线的垂线BH,设BC=a,AC=b,∠ACD=θ,利用两条异面直线上两点间的距离转化为含有θ的三角函数求得最值.解答:解:如图,设BC=a,AC=b,∠ACD=θ,则(0),过A作CD的垂线AG,过B作CD的延长线的垂线BH,∴AG=bsinθ,BH=acosθ,CG=bcosθ,CH=asinθ,则HG=CH﹣CG=asinθ﹣bcosθ,∴d=|AB|====.∴当,即当CD为Rt△ABC的角平分线时,d取得最小值.故选:B.点评:本题考查平面与平面之间的位置关系,考查了两条异面直线上两点间的距离,运用数学转化思想方法是解答该题的关键,是中档题.二、填空题(每小题5分,共25分)11.在空间直角坐标系Oxyz中,已知点P(1,0,5),Q(1,3,4),则线段PQ的长度为.考点:空间两点间的距离公式.专题:空间位置关系与距离.分析:直接利用空间两点间距离公式求解即可.解答:解:空间直角坐标系中,P(1,0,5),Q(1,3,4),则线段|PQ|==.故答案为:.点评:本题考查空间两点间的距离公式的应用,基本知识的考查.12.某单位有1200名职工,其中年龄在50岁以上的有500人,35~50岁的400人,20~35岁的300人.为了解该单位职工的身体健康状况,现采用分层抽样的方法,从1200名职工抽取一个容量为60的样本,则在35~50岁年龄段应抽取的人数为20.考点:分层抽样方法.专题:概率与统计.分析:根据题意,求出抽取样本的比例,计算抽取的人数即可.解答:解:根据题意,得;抽样比例是=,∴在35~50岁年龄段应抽取的人数为400×=20.故答案为:20.点评:本题考查了分层抽样方法的应用问题,是基础题目.13.执行如图所示的程序框图,则输出的结果为4.考点:程序框图.专题:算法和程序框图.分析:执行程序框图,依次写出每次循环得到的x,y的值,当x=8时,不满足条件x≤4,输出y的值为4.解答:解:执行程序框图,可得x=1,y=1满足条件x≤4,x=2,y=2满足条件x≤4,x=4,y=3满足条件x≤4,x=8,y=4不满足条件x≤4,输出y的值为4.故答案为:4.点评:本题主要考查了程序框图和算法,准确执行循环得到y的值是解题的关键,属于基础题.14.在正方体ABCD﹣A1B1C1D1的12条面对角线所在的直线中,与A1B所在的直线异面而且夹角为60°的直线有4条.考点:空间中直线与直线之间的位置关系.专题:空间位置关系与距离.分析:作出正方体,利用正方体的空间结构,根据异面直线的定义进行判断解答:解:如图,在正方体ABCD﹣A1B1C1D1中,与A1B异面而且夹角为60°的有:AC,AD1,CB1,B1D1,共有4条.故答案为:4.点评:本题考查异面直线的定义,是基础题,解题时要熟练掌握异面直线的概念.15.记空间向量=,=,=,其中,,均为单位向量.若⊥,且与,的夹角均为θ,θ∈[0,π].有以下结论:①⊥(﹣);②直线OC与平面OAB所成角等于向量与+的夹角;③若向量+所在直线与平面ABC垂直,则θ=60°;④当θ=90°时,P为△ABC内(含边界)一动点,若向量与++夹角的余弦值为,则动点P的轨迹为圆.其中,正确的结论有①③④(写出所有正确结论的序号).考点:平面向量数量积的运算.专题:平面向量及应用.分析:①•(﹣)==cosθ﹣cosθ=0,可得⊥(﹣);②当时,直线OC与平面OAB所成角的补角等于向量与+的夹角,即可判断出正误;③向量+所在直线OD与平面ABC垂直于点D,又BC=AC,D为AB的中点,则CD⊥AB,可得OD⊥CD,可得AC=1=OC=OA,可得θ=60°,即可判断出正误;④补全正方体,对角线OD与平面ABC相交于点M,点M为等边三角形的中心,可得OM=,OP=,MP=.即可得出动点P的轨迹为圆,点M为圆心,MP为半径的圆.解答:解:①∵•(﹣)==cosθ﹣cosθ=0,∴⊥(﹣),正确;②当时,直线OC与平面OAB所成角等于向量与+的夹角;当时,直线OC与平面OAB所成角的补角等于向量与+的夹角,因此不正确;③向量+所在直线OD与平面ABC垂直于点D,又BC=AC,D为AB的中点,则CD⊥AB,∴OD⊥CD,又OD=DA==CD,∴AC=1=OC=OA,则θ=60°,正确;④当θ=90°时,P为△ABC内(含边界)一动点,补全正方体,对角线OD与平面ABC相交于点M,点M为等边三角形的中心,OM==,∵向量与++(即与)的夹角的余弦值为,∴=,∴=.∴动点P的轨迹为圆,点M为圆心,MP为半径的圆,因此正确.其中,正确的结论有①③④.故答案为:①③④.点评:本题考查了向量的数量积运算性质、空间线面位置关系、空间角、正方体的性质,考查了空间想象能力,考查了推理能力与计算能力,属于难题.三、解答题(共75分,解答应写出文字说明、证明过程或演算步骤)16.(12分)(2014秋•成都期末)如图,在正方体ABCD﹣A1B1C1D1中,M,N,P分别是棱AB,A1D1,AD的中点,求证:(Ⅰ)平面MNP∥平面BDD1B1;(Ⅱ)MN⊥AC.考点:空间中直线与直线之间的位置关系;平面与平面平行的判定.专题:空间位置关系与距离.分析:(Ⅰ)只要证明MP∥BD,NP∥DD1,利用面面平行的判定定理可证;(Ⅱ)由已知容易得到NP⊥底面ABCD,利用射影定理,只要证明MP⊥AC即可.解答:证明:(Ⅰ)∵在正方体ABCD﹣A1B1C1D1中,M,N,P分别是棱AB,A1D1,AD 的中点,∴MP∥BD,NP∥DD1,∴平面MNP∥平面BDD1B1;(Ⅱ)由已知,可得NP∥DD1,又DD1⊥底面ABCD,∴NP⊥底面ABCD,∴MN在底面ABCD的射影为MP,∵M,N是AB,A1D1的中点,∴MP∥BD,又BD⊥AC,∴MP⊥AC,∴MN⊥AC.点评:本题考查了正方体的性质以及线面平行、面面平行的判定定理和性质定理的运用.17.(12分)(2014秋•成都期末)某校要调查高中二年级男生的身高情况,现从全年级男生中随机抽取一个容量为100的样本.样本数据统计如表,对应的频率分布直方图如图所示.(1)求频率分布直方图中a,b的值;(2)用样本估计总体,若该校高中二年级男生共有1000人,求该年级中男生身高不低于170cm的人数.身高(单位:cm)[150,155)[155,160)[160,165)[165,170)[170,175)[175,180)[180,185)[185,190)人数2 8 15 20 25 18 10 2考点:频率分布直方图.专题:概率与统计.分析:(1)根据频率、频数与样本容量的关系,结合频率分布直方图中小矩形的高,求出a、b的值;(2)求出该年级中男生身高不低于170cm的频率,计算对应的频数即可.解答:解:(1)身高在[160,165)的频率为=0.15,∴==0.03,即a=0.03;身高在[170,175)的频率为=0.25,∴==0.05,即b=0.05;(2)该年级中男生身高不低于170cm的频率为0.25+0.036×5+0.02×5+0.004×5=0.55,∴估计该年级中男生身高不低于170cm的人数是1000×0.55=550.点评:本题考查了频率分布表与频率分布直方图的应用问题,是基础题目.18.(12分)(2014秋•成都期末)如图,在三棱柱ABC﹣A1B1C1中,向量,,两两垂直,||=1,||=2,E,F分别为棱BB1,BC的中点,且•=0.(Ⅰ)求向量的模;(Ⅱ)求直线AA1与平面A1EF所成角的正弦值.考点:平面向量数量积的运算;直线与平面所成的角.专题:平面向量及应用.分析:(Ⅰ)分别以AC,AB,AA1为x,y,z轴建立空间直角坐标系,设A1(0,0,z),得到•=4﹣=0,解出即可.(Ⅱ)分别求出,,的坐标,设平面A1EF的法向量=(x,y,z),得到方程组,求出一个,从而求出直线AA1与平面A1EF所成角的正弦值.解答:解:(Ⅰ)分别以AC,AB,AA1为x,y,z轴建立空间直角坐标系,如图示:,∴C(1,0,0),B(0,2,0),F(1,1,0),设A1(0,0,z),则E(0,2,),B1(0,2,z),∴=(﹣1,2,z),=(0,2,﹣),∴•=4﹣=0,解得:z=2,∴||=2;(Ⅱ)由(Ⅰ)得:=(0,0,2),=(1,1,﹣2),=(0,2,﹣),设平面A1EF的法向量=(x,y,z),∴,令z=2,∴=(3,,2),设直线AA1与平面A1EF所成的角为θ,∴sinθ===.点评:本题考查了平面向量的数量积的运算及应用,考查了线面角问题,是一道中档题.19.(12分)(2014秋•成都期末)已知直线l1:mx﹣(m+1)y﹣2=0,l2:x+2y+1=0,l3:y=x﹣2是三条不同的直线,其中m∈R.(Ⅰ)求证:直线l1恒过定点,并求出该点的坐标;(Ⅱ)若l2,l3的交点为圆心,2为半径的圆C与直线l1相交于A,B两点,求|AB|的最小值.考点:直线与圆相交的性质;恒过定点的直线.专题:计算题;直线与圆.分析:(Ⅰ)直线l1:mx﹣(m+1)y﹣2=0,可化为m(x﹣y)﹣(y+2)=0,可得,即可得出直线l1恒过定点,及该点的坐标;(Ⅱ)求|AB|的最小值,即求圆心到直线的距离的最大值,此时CD⊥直线l1.解答:(Ⅰ)证明:直线l1:mx﹣(m+1)y﹣2=0,可化为m(x﹣y)﹣(y+2)=0,∴,∴x=y=﹣2,∴直线l1恒过定点D(﹣2,﹣2);(Ⅱ)解:l2:x+2y+1=0,l3:y=x﹣2联立可得交点坐标C(1,﹣1),求|AB|的最小值,即求圆心到直线的距离的最大值,此时CD⊥直线l1,∵|CD|==,∴|AB|的最小值为2=2.点评:本题考查直线l1恒过定点,考查弦长的计算,考查学生分析解决问题的能力,比较基础.20.(13分)(2014秋•成都期末)如图,在四棱锥P﹣ABCD中,△PAB是边长为2的正三角形,底面ABCD为菱形,且平面PAB⊥平面ABCD,PC⊥AB,E为PD上一点,且PD=3PE.(Ⅰ)求异面直线AB与CE所成角的余弦值;(Ⅱ)求平面PAC与平面ABCD所成的锐二面角的余弦值.考点:二面角的平面角及求法;异面直线及其所成的角.专题:空间角.分析:(Ⅰ)建立空间坐标系,利用向量法即可求异面直线AB与CE所成角的余弦值;(Ⅱ)建立空间坐标系,利用向量法即可求平面PAC与平面ABCD所成的锐二面角的余弦值.解答:解:(I)取AB的中点O,连接PO,OC∵△PAB为边长为2的正三角形,∴PO⊥AB又∵平面PAB⊥平面ABCD,平面PAB∩平面ABCD=AB,PO⊂平面PAB∴PO⊥平面ABCD,又∵PC⊥AB,PO∩PC=P,PO,PC⊂平面POC∴AB⊥平面POC又∵OC⊂平面POC∴AB⊥OC以O为坐标原点,建立如图所示的空间坐标系,则A(﹣1,0,0),C(0,,0),P(0,0,),D(﹣2,,0),B(1,0,0),∵PD=3PE,∴E(,,)则=(2,0,0),=(,﹣,),则||=,则cos<,>===﹣,即异面直线AB与CE所成角的余弦值为.(2)设平面PAC的法向量为=(x,y,z),∵=(1,,0),=(0,﹣,),∴由,即,令z=1,则y=1,x=,即=(,1,1),平面ABCD的法向量为=(0,0,1),则cos<,>===,故平面PAC与平面ABCD所成的锐二面角的余弦值为.点评:本题主要考查异面直线所成角的求解,以及二面角的求解,建立空间坐标系,利用向量法是解决二面角的常用方法.考查学生的运算和推理能力.21.(14分)(2014秋•成都期末)已知点P(0,2),设直线l:y=kx+b(k,b∈R)与圆C:x2+y2=4相交于异于点P的A,B两点.(Ⅰ)若•=0,求b的值;(Ⅱ)若|AB|=2,且直线l与两坐标轴围成的三角形的面积为,求直线l的斜率k的值;(Ⅲ)当|PA|•|PB|=4时,是否存在一定圆M,使得直线l与圆M相切?若存在,求出该圆的标准方程;若不存在,请说明理由.考点:直线与圆锥曲线的综合问题;平面向量数量积的运算.专题:向量与圆锥曲线;圆锥曲线的定义、性质与方程.分析:(1)由P在圆上,且•=0,可知直线l过圆心O,由此求出b的值;(2)由|AB|=2得到原点O到直线l的距离,再由面积为得另一关于k和b的等式,联立方程组求得满足条件的k值;(3)联立直线方程和圆的方程,化为关于x的一元二次方程,由|PA|•|PB|=4得到A,B两点横坐标的关系,结合根与系数的关系得到直线l的斜率和截距的关系,由点到直线的距离公式求出P到直线l的距离为定值,由此可得存在一定圆M,方程是x2+(y﹣2)2=1,使得直线l与圆M相切.解答:解:(Ⅰ)∵点P(0,2)在圆C:x2+y2=4上,且直线l:y=kx+b与圆C交于A,B两点,当•=0时,,∴直线l过圆心O(0,0),则b=0;(Ⅱ)由题意可知,直线l不过原点O,不妨设k>0,b>0,由|AB|=2,得,①取x=0,得y=b,取y=0,得x=﹣,∴,②联立①②解得:或k=,由对称性可得满足条件的直线l的斜率的值为或;(Ⅲ)联立,消去y,得(k2+1)x2+2kbx+b2﹣4=0.设A(x1,y1),B(x2,y2),∴x1+x2=﹣,x1x2=,∵|PA|•|PB|=4,∴,∴=16,即(2﹣y1)(2﹣y2)=1,∴y1y2﹣2(y1+y2)+3=0,则(kx1+b)(kx2+b)﹣2(kx1+b+kx2+b)+3=0,k2x1x2+(kb﹣2k)(x1+x2)﹣4b+3=0,∴k2•+(kb﹣2b)•(﹣)﹣4b+3=0.化简得:化简得k2=b2﹣4b+3,即k2+1=(b﹣2)2,∴.∵点P(0,2)到直线l:y=kx+b的距离d==1,∴存在一定圆M,方程是x2+(y﹣2)2=1,使得直线l与圆M相切.点评:本题考查了平面向量的应用,考查了直线与圆的位置关系,考查了定值的应用问题,综合性强,属难题.。

相关文档
最新文档