最小二乘法线性详细说明-课件(ppt·精选)

合集下载

最小二乘法简介PPT课件

最小二乘法简介PPT课件
为消除异方差的影响,使各项的地位相 同,观测值的权数取观测值误差项方差 的倒数,即 ωi=1/σi2
在实际问题中,σi2通常是未知的,当自 变量水平以系统的形式变化时,取 ωi=1/xi2
-
15
5.3 WLS模型
加权后的最小二乘估计模型为:
n
s (i yi a bxi)2 i 1
令 s 0, s 0 a b
n
n
n
xi
y

i
xi
yi
i1
i1
i1
n
n
i1
x
2 i

n
i1
xi
2
-
a

1 n
n
y

i
i1
b n
n
xi
i1
8
2、多元性拟合
设变量y与n个变量x1,x2,…,xn(n≥1)内在联系是
线性的,即有y=a0+∑ajxj(j=1,...,n)。
m
n
s (yi a0 a j xij)2
i 1
j 1
令 s 0, s 0 a0 a j
s
a
0
m
2
yi
i1
a0
n
a
j xij
j 1
0
s a1
2
m
i1
yi
a0
n
j 1
a
j
x ij
x
i1
0
s
a
n
m
2
yi
a0
n
a
j xij
x
i
n
i1
j 1
0
- a0,a1,,am的值9

第5章-1 曲线拟合(线性最小二乘法)讲解

第5章-1 曲线拟合(线性最小二乘法)讲解
a ∑xi2 +b ∑xi= ∑xi yi a ∑xi+bn=∑ yi
求所需系数,得到方程: 29.139a+17.9b=29.7076 17.9a+11b=18.25
通过全选主元高斯消去求得:
a=0.912605
b=0.174034
所以线性拟合曲线函数为: y=0.912605x+0.174034
练习2
根据下列数据求拟合曲线函数: y=ax2+b
x 19 25 31 38 44 y 19.0 32.3 49.0 73.3 97.8
∑xi4 a + ∑xi2 b = ∑xi 2yi
∑xi2 a + n b = ∑yi
7277699a+5327b=369321.5 5327a+5b=271.4
曲线拟合的最小二乘法
1.曲线拟合的意思
Y
.
.
.
.
y=ax+b y=ax2+bx+c
X
y=ax+b y=ax2+bx+c 就是未知函数的拟合曲线。
2最小二乘法原理
观测值与拟合曲线值误差的平方和为最小。
yi y0 y1 y2 y3 y4…… 观测值 y^i y^0 y^1 y^2 y^3 y^4…… 拟合曲线值
拟合曲线为: y=(-11x2-117x+56)/84
x
yHale Waihona Puke 1.61 1.641.63 1.66
1.6 1.63
1.67 1.7
1.64 1.67
1.63 1.66
1.61 1.64
1.66 1.69
1.59 1.62

最小二乘估计课件(43张)

最小二乘估计课件(43张)
栏目导航
30
2.已知变量 x,y 有如下对应数据:
x
1
2
3
4
y
1
3
4
5
(1)作出散点图;
(2)用最小二乘法求关于 x,y 的回归直线方程.
栏目导航
[解] (1)散点图如下图所示.
31
栏目导航
(2) x =1+2+4 3+4=52, y =1+3+4 4+5=143,
4
i∑=1xiyi=1+6+12+20=39, i∑=41x2i =1+4+9+16=30, b=393-0-4×4×52×521243=1130,
(1)判断它们是否有相关关系,若有相关关系,请作一条拟合直 线;
(2)用最小二乘法求出年龄关于脂肪的线性回归方程.
栏目导航
25
[思路探究] (1)作出散点图,通过散点图判断它们是否具有相关 关系,并作出拟合直线;
(2)利用公式求出线性回归方程的系数 a,b 即可.
栏目导航
26
[解] (1)以 x 轴表示年龄,y 轴表示脂肪含量(百分比),画出散 点图,如下图.
32
栏目导航
a=143-1130×52=0, 故所求回归直线方程为 y=1130x.
33
栏目导航
34
1.求回归直线的方程时应注意的问题 (1)知道 x 与 y 呈线性相关关系,无需进行相关性检验,否则应首先进 行相关性检验.如果两个变量之间本身不具有相关关系,或者说,它们之
间的相关关系不显著,即使求出回归方程也是毫无意义的,而且用其估计
栏目导航
8
2.下表是 x 与 y 之间的一组数据,则 y 关于 x 的线性回归方程 y
=bx+a 必过( )
x

最小二乘估计(最新课件ppt)

最小二乘估计(最新课件ppt)
(1)根据这些数据画出散点图并作出直线y′=78+4.2x,计
10
算 yi yi 2; i1
(2)根据这些数据用最小二乘法求线性回归方程 yˆ =a+bx,
10
并由此计算 yi yˆi 2 ; i1
(3)比较(1)和(2)中两个计算结果的大小.
【审题指导】解答本题的关键是明确yi,y′i的意义,代入公式 求解. 【规范解答】(1)散点图与直线y′=78+4.2x如图所示.当x 分别取1,3,4,4,6,8,10,10,11,13时,y′的值分别为 82.2,90.6,94.8,94.8, 103.2,111.6,120,120,124.2,132.6,
a=y-bx=3.5-0.7×4.5=0.35.
故线性回归方程为y=0.7x+0.35.
(2)当x=10(年)时, 维修费用是0.7×10+0.35=7.35(万元), 所以根据回归方程的预测,使用年限为10年时,维修费用是 7.35(万元).
【误区警示】对解答本题时易犯的错误具体分析如下:
1.下列命题:
3.若施化肥量x kg与水稻产量y kg在一定范围内线性相关, 若回归方程为y=5x+250.当施化肥量为80 kg时,预计水 稻的产量为_____. 【解析】当x=80时,y=5×80+250=650(kg). 答案:650 kg
4.某饮料店的日销售收入y(单位:百元)与当天平均气温 x(单位:℃)之间有下列数据:
【典例】(2011·包头高二检测)假设关于某设备的使用年 限x和所支出的维修费用y(万元)有如表格所示的统计数 据,由资料显示y对x呈线性相关关系.
(1)请根据上表数据,用最小二乘法求出y关于x的线性回归 方程. (2)试根据(1)求出的线性回归方程,预测使用年限为10 年时, 维修费用是多少?

最小二乘法-PPT课件

最小二乘法-PPT课件
请用最小二乘法求出这两个变量之间的线性回归方程.
解 根据上表数据,可以计算出:x 4.5, y 25.5 其他数据如下表
-
19
i 1 2 3 4 5 6 7 8 合计

xi
yi
1
1
2
4
3
9
4
16
5
25
6
36
7
49
8
64
36
204
x2 i
xi yi
1
1
4
8
9
27
16
64
25
125
36
216
49
343
d bxi yi a b2 1
方法二:
xi,abix
yi a bxi 2 0 -
yabx
x
4
显然方法二能有效地表示点A与直线y=a+bx的距离, 而且比方法一计算更方便,所以我们用它来表示二者 之间的接近程度.
-
5
思考2.怎样刻画多个点与直线的接近程度? 提示:
例如有5个样本点,其坐标分别为(x1,y1),(x2, y2),(x3,y3),(x4,y4),(x5,y5),与直 线y=a+bx的接近程度:
使上式达到最小值的直线y=a+bx就是所要求的直线, 这种方法称为最小二乘法.
-
7
思考3:怎样使 [y1 (a bx1)]2 [yn (a bxn )]2 达到最小值?
先来讨论3个样本点的情况
…………………①
-
8
3 a 2 - 2 ( a y - b x ) ( y 1 - b x 1 ) 2 ( y 2 - b x 2 ) 2 ( y 3 - b x 3 ) 2

回归直线方程—最小二乘法ppt课件

回归直线方程—最小二乘法ppt课件
? ?
上面三种方法都有一定的道理,但总让人感到 可靠性不强.
回归直线与散点图中各点的位置用数学的方法 来描写应具有怎样的关系?
方法汇总
法一
1.选取两点作 直线 ps:使直线两 侧 的点的个 数根本一样。
法二
法三
1.画一条直线 2.丈量出各点 与它的间隔 3.挪动直线, 到达某一位置 使间隔的和最 小,丈量出此 时直线的斜率 与截距,得到 回归方程。

直 线
年 龄 23 27 39 41 45 49 50 53 54 56 57 58 60 61
脂 肪 9.5 17.8 21.2 25.9 27.5 26.3 28.2 29.6 30.2 31.4 30.8 33.5 35.2 34.6
思索:将表中的年龄作为x代入回归方程,看看 得出的数值与真实数值之间的关系,从中他领会 到了什么? y0.577x0.48
b
1
n
(xi x)2 1
a y b x
Q=(y1-bx1-a) 2+(y2-bx2-a) 2+…+(yn-bxn-a) 2 当a,b取什么值时,Q的值最小,即总体偏向最小
求线性回归方程的步骤:
(1)求平均数

(2)计算 xi与 yi 的乘积,再求

(3)计算

(4)将上述有关结果代入公式,写出回归 直线方程.
2.由一组 10 个数据(xi,yi)算得 x5, y10,
n
n
xiyi 58,4 xi229,2则 b= 2 ,a= 0 ,
i1
i1
回归方程为 y=2x .
下面讨论如何表达这些点与一条直线y=bx+a 之间的间隔。
最小二乘法的公式的探求过程如下:

8.2.2一元线性回归模型的最小二乘估计课件(人教版)

8.2.2一元线性回归模型的最小二乘估计课件(人教版)
ෝ =0.839x +28.957,令
ෝ=x,则
通过经验回归方程
x=179.733,即当父亲身高为179.733cm时,儿子的平均身
高与父亲的身高一样.
对于响应变量Y , 通过视察得到的数据称为观测值 , 通
ෝ为预测值. 视察值减去预测值称为
过经验回归方程得到的
残差.
残差是随机误差的估计结果,通过对残差的分析可判
෡ 叫做b,a的最小二乘估计.
求得的,ෝ

ഥ); 与相关系数
易得: 经验回归直线必过样本中心(ഥ
,
r符号相同.
对于上表中的数据,利
用我们学过的公式可以计算出

=0.839
,ෝ
=28.957,求出儿
子身高Y关于父亲身高x的经验
回归方程为
ŷ 0.839 x 28.957
相应的经验回归直线如图所示.
n i =1
n i =1
n
n
Q(a,b ) = ( yi - bxi - a ) = [ yi - bxi - ( y - bx ) + ( y - bx ) - a ]
2
i =1
n
2
i =1
= [( yi y ) b( xi - x ) + ( y - bx ) - a ]
2
i =1
i =1
综上,当a)( y y )
i
i
i =1
.
n
( x - x)
2
i
i =1
ˆ
ˆ
a
=
y

bx
时, Q到达最小.
ˆ aˆ 称为Y 关于x 的经验回归方程,也称

最小二乘估计PPT课件

最小二乘估计PPT课件
第12页/共29页
ห้องสมุดไป่ตู้
思考4:如果样本点只有两个,用最小二乘法得 到的直线与用两点式求出的直线一致吗? 提示:是一致的.
与用两点式相同.
第13页/共29页
例1 在上一节练习中,从散点图可以看出,某小卖
部6天卖出热茶的杯数(y)与当天气温(x)之间是
线性相关的.数据如下表:
气温(xi)/ ℃
26
18
13
yi
1 4 9 16 25 36 49 64 204
x2 i 1 4 9 16 25 36 49 64
204
xi yi
1 8 27 64 125 216 343 512 1 296
第19页/共29页
y=-15+9x.
思考:哪一个对呢?
第20页/共29页
所以,利用最小二乘法估计时,要先作出数据的散 点图.如果散点图呈现一定的规律性,我们再根据这 个规律性进行拟合.如果散点图呈现出线性关系,我 们可以用最小二乘法估计出线性回归方程;如果散 点图呈现出其他的曲线关系,我们就要利用其他的 工具进行拟合.
2011山东高考某产品的广告费用x与销售额y的统计数据如下表a636万元b655万元c677万元d720万元根据上表可得回归方程ybxa中的b为94据此模型预报广告费用为6万元时销售额为3
在上节课的讨论中,我们知道,人体脂肪含量
和年龄之间近似存在着线性关系,这种线性关系可 以有多种方法来进行刻画.但是这些方法都缺少数学 思想依据.
第5页/共29页
若有n个样本点:(x1,y1),… ,(xn,yn),可以用下 面的表达式来刻画这些点与直线y=a+bx的接近程度:
[y1 (a bx1)]2 [yn (a bxn )]2

最小二乘法线性详细说明.ppt

最小二乘法线性详细说明.ppt
19
3. 回归方程的精度和相关系数
用最小二乘法确定a, b存在误差。 总结经验公式时,我们初步分析判断所假定
的函数关系是正确,为了解决这些问题,就 需要讨论回归方程的精度和相关性。 为了估计回归方程的精度,进一步计算数据
点 xi,yi 偏离最佳直线y=a+bx的大小,我们 引入概念——剩余标准差 s ,它反映着回
一种可能是各数据点与该线偏差较小,一种可能是各数据 点与该线偏差较大。
当R 1时,s 减小,一般的数据点越靠近最佳值两旁。两
变量间的关系线性相关,可以认为是线性关系,最佳直线 所反应的函数关系也越接近两变量间的客观关系。同时还 说明了测量的精密度高。
当条“R 最佳1时”,直线s 增。大然,而根,据数数据据点点与的“分最布佳,”也直许线能的得偏到差一过
14
根据二元函数求极值法,把③式对a和b分 别求出偏导数。得:
n
v2 i
i1
a n
2yi a bxi
4
v2 i
i1 2
b
yi a bxi xi
15
令④等于零,得:
n
n
yi na b xi 0
i1 n
i1
n
n
5
yixi
i1
a xi i1
b
x2 i
i1
0
解方程,得:
而且: b 1.993 0.006
31
第二节 二元线性回归
已知函数形式(或判断经验公式的函数形式)为 y a b1x1 b2x2
式中,均为独立变量,故是二元线性回归。 若有实验数据:
x1 x11, x12,......... .x1n x2 x21, x22,......... .x2n

最小二乘法PPT课件

最小二乘法PPT课件
第2页/共74页
一、问题背景
• 在多数估计和曲线拟合的问题中,不论是 参数估计还是曲线拟合,都要求确定某些(或 一个)未知量,使得所确定的未知量能最好地 适应所测得的一组观测值,即对观测值提供 一个好的拟合。
• 解决这类问题最常用的方法就是最小二乘 法。
• 在一些情况下,即使函数值不是随机变量, 最小二乘法也可使用。

,aˆ1
,…,
aˆ2
。这样aˆk求出的参数叫参数的最小二乘估计。
第6页/共74页
正规方程
=最小
• 根据数学分析中求函数极值的条件:
共得k个方程,称正规方程,求此联立方程的解可得出诸参数估计值
(j=1,2,…,k)。 aˆ 等精度观测的情况,若诸观测值yi是不等精度的观测,即它们服从不 同的方差σi2的正态分布N(0,1),那么也不难证明,在这种情况下,最小二乘 法可改为:
正规方程(5—19)组,还可表示成如下形式
表示成矩阵形式为
第23页/共74页
线性参数正规方程的矩阵形式
又因
(5-21)
有 即 若令 则正规方程又可写成 若矩阵C是满秩的,则有
(5-22)
(5-22) (5-23)
第24页/共74页
的数学期望Xˆ
因 可见 Xˆ 是X的无偏估计。
式中Y、X为列向量(n ×1阶矩阵和t×l阶矩阵)
例5.3
• 试求例5.1中铜棒长度的测量精度。
已知残余误差方程为 将ti,li,值代人上式,可得残余误差为
第43页/共74页
(二)不等精度测量数据的精度估计
不等精度测量数据的精度估计与等精度测量数据的精度估计相似,只是公 式中的残余误差平方和变为加权的残余误差平方和,测量数据的单位权方差 的无偏估计为
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档