甲醇制丙烯(MTP)工艺介绍

合集下载

甲醇裂解制丙烯

甲醇裂解制丙烯

甲醇制烯烃技术资料一、德国鲁奇公司MTP技术开发历史及进展MTP(Methanol To Propylene)其含义是由甲醇制造丙烯的技术,实际上MTP生产丙烯的同时还付产一部分乙烯、汽油和液化气(LPG)。

德国鲁奇公司是世界上唯一开发成功MTP技术的公司,该公司还拥有甲醇洗(Rectisol),硫回收及尾气处理 (SRU&LTGT)及大甲醇(Mega Methanol) 技术,这几个技术组合起来,组成了一个完整的三合一的合成气至丙烯的技术路线。

这是一条和石油化工不同的,以天然气或者煤炭合成丙烯的技术路线。

德国鲁奇公司于1996年代前后开始研究甲醇制造烯烃技术,鲁奇是以气体技术起家,在气体制备,净化以及甲醇合成方面具有丰富的经验,基于以下情况,鲁奇技术人员在1996年前后开始构思MTP 技术:●已经开发成功的沸石催化剂ZSM5已经证明可以支持烯烃低聚以及甲醇和二甲醚合成烯烃。

●由于需求增加特别是聚丙烯发展,导致丙烯中期短缺;而短缺不能通过常规生产方法弥补如蒸汽裂解装置或FCC.图1. 丙烯短缺 (从上至下:国际丙烯需求,短缺,通过已有装置优化,来自炼油装置,乙烯蒸汽裂解付产)●同时1000亿立方米天然气和石油气由于技术原因或者没有市场而白白放火炬。

这是自然资源的巨大浪费且造成温室气体增加。

这是工程技术人员和环保人员产生利用这些气体想法的动力。

●鲁奇那时开发了大甲醇工艺,产量达到日产5,000吨以上。

研发计划开始在法兰克福鲁奇总部建造了一个”工艺试验装置”,基本工艺设计数据从这个研发中心的大于9000小时的操作运行数据中获得。

此外,还进行了反应条件优化和循环流分析。

以此并行,鲁奇决定建设一个大规模示范装置,在一个世界规模的甲醇工厂,使用真实甲醇进料进行连续运行试验。

与挪威的Statoil ASA在2001年1月签订合同后,示范装置在德国组装并于同年11月运输到挪威的Tjeldbergodden。

MTOMTGMTA

MTOMTGMTA

MTOMTGMTAMTO(甲醇制烯烃):甲醇制取低碳烯烃(MTO)最具有代表性的工艺是:美国UOP公司与挪威Hydro公司联合开发的流化床甲醇制烯烃工艺(MTO)和中国科学院大连化学物理研究所开发的合成气经由二甲醚制取低碳烯烃工艺(SDTO)。

1 UOP/Hydro公司的MTO工艺UOP公司与Hydro公司联合开发的流化床MTO工艺采用以磷酸硅铝分子筛SAPO-34为活性组分的MTO-100催化剂,在操作压力0.1-0.5MPa、反应温度350-550℃,甲醇转化率99.8%,C2-C4烯烃选择性大于80 %。

反应产物中乙烯和丙烯比例可在0.75-1.5范围内调节,乙烷、丙烷、二烯烃和炔烃生成的数量少。

在示范装置的运转中,甲醇的转化率接近100%,产品收率(碳基准)为:乙烯48%,丙烯33%,丁烯9.6%,C5+2.4%,C1-C3饱和烃3.5%,COx0.5%,焦炭3.0%。

2 中科院大化所SDTO工艺(1)20世纪80年代初,大化所就开始进行甲醇制烯烃的研究工作,“七五”期间完成了300 t/a的中试装置,采用固定床反应器,催化剂为改性ZSM-5,在反应温度500-550℃,压力0.1-0.15MPa,甲醇转化率100%,低碳烯烃(乙烯,丙烯和碳四烯的总和)为86%。

(2)20世纪90年代初,开发了由合成气经二甲醚制取低碳烯烃的新技术路线。

分两个阶段:在第一阶段将合成气转化为二甲醚,采用双功能催化剂,固定床反应器,在反应温度265℃,GHSV/h-11000,压力4.0MPa,CO转化率90.35%,DME+MeOH 选择性99.26%。

第二阶段将二甲醚转化为低碳烯烃,催化剂为基于改性的SAPO-34催化剂(Do123),在450℃,GHSV/h-12000,常压下,将进入反应器的二甲醚完全转化,低碳烯烃的选择性分别为:乙烯40.19%,丙烯34.14%,碳四烯8.03%,总计82.36%。

甲醇制丙烯工艺

甲醇制丙烯工艺

甲醇制丙烯工艺与甲醇制烯经同时生产乙烯和丙烯不同,甲醇制丙烯工艺主要生产丙烯,副产LPG和汽油;反应中生成的乙烯和丁烯返回系统再生产,作为歧化制备丙烯的原料。

1、鲁奇公司(Lurgi)的MTP工艺1996年鲁奇公司使用南方化学公司的高选择性沸石基改性ZSM-5催化剂,开始研发MTP工艺。

1999年,鲁奇公司在德国法兰克福研发中心建立了一套单管绝热固定床反应装置,装置设计规模为数百克/时甲醇处理能力,主要完成了催化剂性能测试,并验证了MTP设计理念、优化了反应条件。

2000年,鲁奇公司在法兰克福研发中心建立了三管(3x50%能力)绝热固定床反应装置,装置处理甲醇能力为1千克/小时,该装置打通了MTP总工艺流程,模拟了系统循环操作,进一步优化了反应条件,并为MTP示范厂的建立积累了大量基础数据。

2002年1月,鲁奇公司在挪威Tjeldbergodden地区的Statoil甲醇厂建成甲醇处理能力为360千克/天的MTP示范厂。

2004年5月,示范工作结束。

通过测试,催化剂在线使用寿命满足8000小时的商业使用目标;产物丙烯纯度达到聚合级水平,并副产高品质汽油。

鲁奇公司MTP技术特点是甲醇经两个连续的固定床反应器,第一个反应器中甲醇首先转化为二甲醚,第二个反应器中二甲醚转化为丙烯。

该技术生成丙烯的选择性高,结焦少,丙烷产率低。

整个MTP工艺流程对丙烯的总碳收率约为71%。

催化剂由德国南方化学公司生产。

鲁奇公司MTP反应器有两种形式:即固定床反应嚣(只生产丙烯)和流化床反应器(可联产乙烯/丙烯)。

2008年3月,鲁奇公司与伊朗Fanavaran石化公司正式签署MTP技术转让合同,装置规模为10万吨/年。

2008年9月,LyondeIIBasell,特立尼达多巴哥政府,特立尼达多巴哥国家气体公司(NGC),特立尼达多巴哥国家能源公司(NEC)和鲁奇(Lurgi)公司联合宣布,已经签署了一项项目发展协议,共同建设和运营在特立尼达多巴哥的一体化甲醇制丙烯(MTP)和聚丙烯(PP)项目。

甲醇制烯烃MTO和MTP工艺

甲醇制烯烃MTO和MTP工艺

表性的理论如下: 1. 1 氧 内 盐机理 该机理认为, 甲醇脱水后得到的二甲醚与固体
酸表面的质子酸作用形成二甲基氧 离子, 之后又 与另一个二甲醚反应生成三甲基氧 内 氧盐。 接 着, 脱质子形成与催化剂表面相聚合的二甲基氧 内 盐物种。 该物种或者经分子内的 Steven s 重排 形成甲乙醚, 或者是分子间甲基化形成乙基二甲基 氧 离子。 两者都通过 Β2消除反应生成乙烯, 详见 图 1。
图 4 L u rgi 公司M T P 工艺流程示意图
由于采用固定床工艺, 催化剂需要再生。大约反 应 400~ 700 h 后使用氮气、空气混合物进行就地再 生。
L u rg i 的M T P 工艺, 其典型的产物分布为 (质
量分数) ;
C
o 2

1.
1%
:
C
= 2
为 1.
6%
;
C
o 3

1.
L u rgi 公司开发的固定床M T P 工艺流程如图 4 所示[8]。该工艺同样将甲醇首先脱水为二甲醚。然 后将甲醇、水、二甲醚的混合进入第一个M T P 反应 器, 同时还补充水蒸汽。反应在 400~ 450℃、0. 13~ 0. 16M Pa 下进行, 水蒸汽补充量为 0. 5~ 1. 0 kg kg 甲醇。 此时甲醇和二甲醚的转化率为 99% 以上, 丙 烯为烃类中的主要产物。为获得最大的丙烯收率, 还 附加了第二和第三M T P 反应器。 反应出口物料经 冷却, 并将气体、有机液体和水分离。 其中气体先经 压缩, 并通过常用方法将痕量水、CO 2 和二甲醚分 离。 然后, 清洁气体进一步加工得到纯度大于 97% 的化学级丙烯。 不同烯烃含量的物料返至合成回路 作为附加的丙烯来源。为避免惰性物料的累积, 需将 少量轻烃和 C4 C5 馏分适当放空。 汽油也是本工艺 的副产物, 水可作为工艺发生蒸汽, 而过量水则可在 作专用处理后供农业生产用。

5.16科普煤基甲醇制丙烯工艺简介

5.16科普煤基甲醇制丙烯工艺简介

煤基甲醇制丙烯工艺简介丙烯作为一种重要的化工基础原料,其产能需求正在不断增大。

目前蒸汽裂解仍然是丙烯的最大来源(约占67%),由于蒸汽裂解主要目的是生产乙烯,丙烯只是副产物。

目前的技术都在向着减少丙烯副产的方向进行,因此需要一个经济可行的技术渠道获取丙烯,以应对不断增长的丙烯需求。

约有30%的丙烯来自FCC工艺,其余的还有丙烷脱氢制丙烯和甲醇制丙烯等诸多方法。

我国煤化工业生产了大量的甲醇,目前的甲醇产能严重过剩的情况下,将甲醇转化为需求旺盛的丙烯是个很诱人的方向。

煤基甲醇制烯烃工艺主要由煤气化制合成气、合成气制甲醇及甲醇制烯烃等三项技术组成。

煤气化制合成气、合成气制甲醇两项技术均已较为成熟,能适应规模化经济的发展。

甲醇制烯烃技术目前世界上现行的方法主要有两种:一是MTO技术(甲醇制烯烃),即由合成气首先生产出甲醇,然后将甲醇转化为乙烯和丙烯混合物的工艺;二是MTP技术(甲醇制丙烯),即由合成气首先生产出甲醇,然后将甲醇转化成丙烯的工艺。

上述两种技术均是从天然气或煤转化成甲醇开始,然后再将甲醇转化成烯烃。

目前,典型的甲醇制烯烃技术包括UOP /HydroMTO工艺、Exxon Mobil公司的OTO工艺和MTO工艺、中科院大连化学物理研究所( DICP) 的DMTO工艺、中国石油化工股份有限公司( 以下简称中石化) 的SMTO工艺、神华集团的SHMTO工艺、以及以丙烯为目的产物的Lurgi公司的MTP工艺和清华大学等联合开发的FMTP工艺等。

其中,UOP公司的MTO技术、DICP的DMTO技术、中石化的SMTO技术及Lurgi公司的MTP技术都已实现工业化。

下面分别介绍一下其中的两种代表性的工艺。

UOP /HydroMTO工艺采用流化床反应器和再生器设计,如工艺图1。

反应热通过产生的蒸汽带出并回收,失活的催化剂被送到流化床再生器中烧碳再生,然后返回流化床反应器继续反应。

该装置采用以磷酸硅铝分子筛SAPO-34为主要成分的MTO-100型催化剂,SAPO-34分子筛催化剂的酸性位具有可控性,而且具有择形选择性,这一特点大大提高了乙烯和丙烯的选择性在。

甲醇制丙烯工艺流程设计与反应器优化

甲醇制丙烯工艺流程设计与反应器优化

甲醇制丙烯工艺流程设计与反应器优化甲醇制丙烯是一种重要的工业化学反应,该工艺旨在将甲醇转化为丙烯,一种重要的石油化工原料。

本文将从工艺流程设计和反应器优化两个方面来探讨甲醇制丙烯的相关问题。

一、工艺流程设计甲醇制丙烯的工艺流程设计需要考虑以下几个关键步骤:甲醇脱水、甲醇转化为甲醇醚、甲醇醚脱水和甲醇醚裂解。

1. 甲醇脱水甲醇脱水是将甲醇中的水分去除的过程。

常用的方法包括吸附法、蒸汽法和浓缩法。

其中,吸附法具有高效、低能耗的优点,是目前应用最广泛的甲醇脱水方法之一。

2. 甲醇转化为甲醇醚甲醇转化为甲醇醚是甲醇制丙烯过程的关键步骤。

传统的方法是通过甲醇与自由酸催化剂反应生成甲醇醚。

近年来,也有研究利用固定床催化剂实现甲醇醚的合成。

3. 甲醇醚脱水甲醇醚脱水是将甲醇醚中的水分去除的过程。

常用的方法有吸附法、蒸汽法和膜分离法等。

吸附法具有高效、低能耗的特点,因此是较为常用的甲醇醚脱水方法。

4. 甲醇醚裂解甲醇醚裂解是将甲醇醚分解为丙烯和其他副产物的过程。

目前主要采用的方法是通过催化剂在高温下催化裂解甲醇醚,以得到丙烯。

二、反应器优化为了提高甲醇制丙烯的反应效率和产率,反应器的设计和优化是非常重要的。

1. 反应器类型选择根据反应器的功能和操作要求,常见的反应器类型包括固定床反应器、流化床反应器和搅拌槽反应器等。

选择合适的反应器类型可以提高反应的效率和选择性。

2. 催化剂选择催化剂是提高甲醇制丙烯反应效率的关键。

合适的催化剂可以提高丙烯的产率和选择性。

目前常用的催化剂有氧化钙、硅铝酸和离子液体等。

3. 反应条件控制反应条件的控制对甲醇制丙烯的产率和选择性有着重要影响。

温度、压力、催化剂用量和空速等因素都需要在合适的范围内进行控制和优化。

综上所述,甲醇制丙烯的工艺流程设计和反应器优化是提高工业化学反应效率和产率的重要手段。

只有通过合理的流程设计和优化反应器选择,才能实现甲醇转化为丙烯的高效率工业化生产。

mtp反应机理

mtp反应机理

mtp反应机理MTP反应机理引言:MTP(Methanol-to-propylene)反应是一种重要的催化转化过程,用于将甲醇转化为丙烯。

丙烯是一种广泛应用于塑料、化纤等行业的重要化工原料,因此MTP反应具有重要的经济和工业价值。

本文将介绍MTP反应的机理及其关键步骤。

反应机理:MTP反应的机理主要包括甲醇的脱氢、碳链扩散、丙烯生成等关键步骤。

1. 甲醇的脱氢:在MTP反应中,甲醇首先经过脱氢生成甲醛。

这一步骤通常在酸性催化剂的作用下进行,常用的催化剂包括氧化钒、磷钼酸盐等。

甲醇在酸性环境下失去一个氢原子,形成甲醛,并释放出一个氢离子。

2. 甲醛的脱氢:甲醛继续经过脱氢反应生成甲烯。

这一步骤通常需要较高的温度和压力,并在催化剂的催化下进行。

常用的催化剂包括氧化铝、硅铝酸盐等。

甲醛在高温条件下失去一个氢原子,形成甲烯,并释放出一个氢离子。

3. 甲烯的碳链扩散:甲烯是MTP反应的关键中间体,需要在催化剂的作用下发生碳链扩散。

常用的催化剂包括大孔分子筛等。

甲烯在催化剂表面发生分子扩散,形成更长的碳链结构,同时释放出一个氢离子。

4. 丙烯的生成:碳链扩散后的中间体继续经过一系列的反应,最终生成丙烯。

这一过程涉及多个催化剂和反应步骤,其中包括分子裂解、异构化、骨架重排等。

通过调节反应条件和催化剂的选择,可以控制丙烯的选择性和产率。

结论:MTP反应是一种将甲醇转化为丙烯的重要催化转化过程。

该反应的机理主要包括甲醇的脱氢、碳链扩散和丙烯的生成等关键步骤。

通过调节反应条件和催化剂的选择,可以实现对丙烯的高效转化和选择性控制。

MTP反应具有重要的经济和工业价值,在化工领域具有广阔的应用前景。

参考文献:1. Zhang, Y., Wei, Y., & Liu, Z. (2016). Review of recent progress in methanol-to-propylene (MTP) reaction over zeolite catalysts. Catalysts, 6(4), 56.2. Li, J., & Wang, Y. (2015). Methanol-to-olefins (MTO): from fundamentals to commercialization. ACS Catalysis, 5(3), 1922-1938.3. Miao, S., Xie, Z., Liu, H., & Xu, L. (2019). Recent advances in the methanol-to-olefins (MTO) reaction over zeolite catalysts. Green Chemistry, 21(3), 570-600.。

甲醇制丙烯(MTP)工艺介绍

甲醇制丙烯(MTP)工艺介绍

31
第一个完全 由甲醇制成的杯子
15.05.03
32
ห้องสมุดไป่ตู้ 33
谢谢!
34
WCR WC
激冷塔 预激冷塔AB/C
P-60315 A/B P-60311A/B
AE-60311
急冷水
P-60312A/B MTP 反应产物 碳氢化合物 DME冷凝液 排出管线 急冷水 急冷水 急冷水 急冷水 急冷水 急冷水 工艺水 水
18
2.4 HC压缩(6040)单元
工艺介绍
经激冷塔冷却分离后的MTP反应器物流温度为 40℃,压力为0.105MPa,送入HC压缩(6040)单 元。通过HC压缩机进行四级压缩,压力达 2.25MPa。每级压缩后都设一水冷器和一分离器, 分离冷凝下来的水份和一部份液态烃。分离出的 水送到激冷塔作为激冷水,分离出的烃送到四级 压缩分离器,进行气烃和液烃分离,然后气烃送 入气烃干燥器,液烃送入液烃干燥器分别进行干 燥。
甲醇制丙烯(MTP) 工艺介绍
内容:
1. 装置总体介绍 2. 工艺介绍 2.1 反应单元(6010)工艺介绍
2.2
再生单元(6020)工艺介绍
2.3 气体冷却和分离(6030)单元工艺介绍
2.4 HC压缩(6040)单元工艺介绍
2.5 产品精制(6050)和乙烯精制(6550)单元工 艺介绍 3. 其它
化剂进行再生。
15
再生单元(6020)工艺介绍
工艺蒸汽 热再生气 冷再生气 再生气加热器 大气 装置空气 氮气 氮气 氮气
氮气加热器
再生气 过滤器 再生气 预热器 再生气 燃料气 装置空气 氮气
16
2.3 气体冷却和分离(6030) 单元工艺介绍

甲醇制丙烯的工艺简介

甲醇制丙烯的工艺简介
[3]Waldemar L,Martin R. Greating value from standard natural gas[J]. Petrochemicals and Gas Processing,2003: 141 - 147.
[4] 董宇涵. 甲醇制取烯烃技术简介[J]. 化学工程与装备, 2010( 3) : 136 - 139.
参考文献
[1] 何海军 ,韩金兰 ,王乃计 ,等. Lurgi MTP 工艺的技术经 济分析[J]. 煤质技术,2006,5( 3) : 45 - 47
[2] Rothaemel M,Holtmann H D. Methanol to pmpylene MTP - Lurgi’S Way[J]. Special Print of Oil Gas European Magazine,2002( 1) : 27 - 30.
Lurgi MTP 工艺采用绝热式固定床反应器。对 于固定床反应器[4]( 特指绝热操作) ,其温度控制的 难度较高。通常,为了限制绝热床层温度的升高,一 般将原料和蒸汽分配在多个反应管中。固定床反应 器的优势在于: 可以较轻松地扩大反应器的生产规 模、降低投资成本、可以明显提高产物的选择性。
图 2 Lurgi MTP 反应器[1]
从上步工序送来的甲醇经过预热气化后进入预 反应器,先合成二甲醚和水,该反应的转化率几乎达 到热力学平衡程度。CH3 OH - H2 O - 二甲醚物料进 入分凝器,气相温度升温至反应温度后进入 MTP 反 应器( 图 2) 。液相经流量计作为控温介质通过激冷 喷嘴入 MTP 反应器。CH3 OH - 二甲醚的转化率约 99% ,主要产物是丙烯。
由于采用固 定 床 生 产 工 艺,催 化 剂 需 要 再 生。 大约反应 400 ~ 700 h 后使用 N2 、空气混合物进行就 地再生。 3 流程的优缺点

mtp 甲醇制丙烯的工艺

mtp 甲醇制丙烯的工艺

mtp 甲醇制丙烯的工艺
1 甲醇制丙烯的工艺
甲醇制丙烯是石化行业中的重要装置,产物用于制造多种烯烃,
制冷剂、橡胶、涂料等,其中,以聚丙烯、有机合成树脂等烯烃的占
有率最高。

此外,丙烯也是重要的化工原料,可用于合成苯乙烯、柠
檬酸、苯甲酸等。

甲醇制丙烯是一种化学反应,通过添加溶剂催化剂和氢气,把甲
醇强氢分解为丙烯和水,它们可用于制备一些有价值的中间体物质和
最终产品。

丙烯有宝贵的工业应用,因此,甲醇制丙烯将成为全球化工巨头
争夺的焦点。

甲醇转化制备丙烯,不仅可以成本价更低,而且,会使
甲醇的经济价值大大提升。

甲醇制丙烯的工艺流程,基本上可以分为两个阶段:一是前处理
阶段,主要由甲醇,空气,氢气和催化剂构成,通过精细的控制调节,达到平衡状态;二是制备阶段,主要由甲醇、水和氮构成,经过反应
得到丙烯气体,并加以合成并冷却成液态产品。

此外,甲醇制丙烯工艺中,还可以采用微电极催化反应,在维持
合适温度的条件下,实现甲醇到丙烯的直接转换。

这种工艺技术的特
点为:催化剂的耗用量低,反应速度快,生产效率更高,在来历容易
制得纯度更高的产品,优点有助于节能环保。

甲醇制丙烯虽然有很多好处,但同时还需要注意操作安全等问题,要建立完善的安全措施,以期产生更多的价值。

鲁奇(MTP)三合一项目简介(甲醇制烯烃)

鲁奇(MTP)三合一项目简介(甲醇制烯烃)
见下表:
(3)项目采用工艺
本项目采用鲁奇专利的两级氧克劳斯(OXYCLAUS®)硫回
收工艺加LTGT®(Lurgi Tail Gas Treatment)尾气处理技 术,处理能力可达传统工艺的200%,总硫回收率可达99.8% 以上。 硫磺产品的指标如下:
典型克劳斯工艺流程
氧克劳斯硫回收
分 离 器
过 滤 器
CO18.5% CO237.5% H242.46%
Ø3200×5100 单重59.7T 材质: 14Cr1MoR+ 347 催化剂K811:25m3
第 一 变 换 炉
450℃
250℃
去低温甲醇洗 40℃, 3.4MPa,262000 Nm3/Hr 低压蒸汽
36.5T/h, 160℃
H2S0.43%
第 二 变 换 炉
370℃
48.4T/h, 108℃
Ø 3800×1 1000 单重68.4T 催化剂 QCS01:76m3
去气化
分 离 器
脱盐水
低温甲醇洗工艺(Rectisol)
以各种不同原料制取成气的工艺中,都有相
当数量的CO2以及对甲醇合成有害的毒物H2S、 COS等毒物需要除去,这类酸性气体经中合 成气中脱出后又可进一步回收利用。在本项 目里,脱出的CO2经压缩后作为Shell煤气化 工序的粉煤载气,富硫气体(以H2S为主) 经过进一步回收利用生产硫磺。
克劳斯工艺的基本原理
克劳斯硫回收工艺是1883年由CLAUS提出的,并在20世纪初
实现工业化,此法回收硫的基本反应如下:

以上反应均是放热反应,反应(1)、(2)在燃烧炉中进行,
H2S+1/2O2=S+H2O H2S+3/2O2=SO2+H2O 2H2S+SO2=3S+2H2O

MTP工艺

MTP工艺

MTP工艺装置一、总工艺流程简述甲醇由汽车运输进入厂内的甲醇储罐,由泵送至甲醇脱水单元,甲醇在反应器中发生发应,反应产物经过换热、冷却、压缩、吸收稳定分离后,得到富烯烃液化气、富乙烯干气、混合芳烃、生成水等产品,混合芳烃直接作为产品出装置,富乙烯干气作为干气回收单元的原料。

富烯烃液化气送至气体分馏单元,分离出丙烯、丙烷(液化气)和富烯烃C4,丙烯、丙烷(液化气)作为生产产品出装置。

富烯烃C4与罐区来的甲醇一起送至MTBE 单元生产出MTBE和混合碳四,MTBE作为产品出装置,混合碳四进入工业异辛烷装置。

干气回收单元,生产出干气(燃料气)、液化石油气和混合芳烃,干气用作装置加热炉燃料气,液化石油气进入工业异辛烷装置,混合芳烃作为产品出装置。

工业异辛烷单元,生产出工业异辛烷、正丁烷和轻烃作为产品出装置。

甲醇脱水单元生产出来的生成水送至甲醇回收单元,回收甲醇后送至污水处理场处理。

二、工艺技术路线选择1)甲醇制丙烯工业化工艺进展德国鲁奇的MTP技术德国鲁奇的MTP工艺采用固定床反应器,所用催化剂为德国南方化学公司提供的经改性的ZSM-5催化剂,该催化剂具有较高的丙烯选择性,低的结焦率和低的丙烷收率。

在0.13-0.16MPa、380-480℃下操作,示范装置在挪威国家的石油公司的甲醇装置上运行,催化剂运转8000小时,稳定性良好。

鲁奇的MTP工艺典型产物分布(质量分数):工艺流程:MTP工艺过程为:原料甲醇先预热至260℃后,再进入绝热式固定床二甲醚预反应器中,该过程采用活性、选择性优良的催化剂将大部分甲醇转化为二甲醚和水。

生成甲醇、二甲醚、水的混合物。

然后将反应物流继续预热到470℃后进入一级MTP反应器中,同时在反应器中加入少量蒸汽(0.3~0.8kg/kg)以转移反应产生的大量热,在此阶段99%以上的甲醇和二甲醚得到转化。

然后反物流再通过二级MTP反应器继续反应。

最后,反应混合物经过冷凝,分离气体产物、液体有机物和水等过程,气体产物经压缩、分离出痕量的水、二氧化碳和二甲醚后,经进一步精制分离出产品丙烯、混合芳烃和燃料气。

甲醇制乙烯丙烯原理

甲醇制乙烯丙烯原理

甲醇制烯烃技术(MTO/MTP)甲醇制烯烃(Methanol to Olefins,MTO)和甲醇制丙烯(Methanol to Propylene)是两个重要的C1化工新工艺,是指以煤或天然气合成的甲醇为原料,借助类似催化裂化装置的流化床反应形式,生产低碳烯烃的化工技术。

从MTG反应机理分析,低碳烯烃是MTG反应的中间产物,因而MTG工艺的开发成功促进了MTO工艺的开发。

国际上的一些知名石化公司,如Mobil、BASF、UOP、Norsk Hydro 等公司都投入巨资进行技术开发。

Mobil公司以该公司开发的ZSM-5催化剂为基础,最早研究甲醇转化为乙烯和其它低碳烯烃的工作,然而,取得突破性进展的是UOP和Norsk Hydro两公司合作开发的以UOP MTO-100为催化剂的UOP/Hydro的MTO工艺。

国内科研机构,如中科院大连化物所、石油大学、中国石化石油化工科学研究院等亦开展了类似工作。

其中大连化物所开发的合成气经二甲醚制低碳烯烃的工艺路线(SDTO)具独创性,与传统合成气经甲醇制低碳烯烃的MTO相比较,CO转化率高,达90%以上,建设投资和操作费用节省50%~80%。

当采用D0123催化剂时产品以乙烯为主,当使用D0300催化剂是产品以丙烯为主。

一、催化反应机理MTO及MTG的反应历程主反应为:2CH3OH→C2H4+2H2O3CH3OH→C3H6+3H2O甲醇首先脱水为二甲醚(DME),形成的平衡混合物包括甲醇、二甲醚和水,然后转化为低碳烯烃,低碳烯烃通过氢转移、烷基化和缩聚反应生成烷烃、芳烃、环烷烃和较高级烯烃。

甲醇在固体酸催化剂作用下脱水生成二甲醚,其中间体是质子化的表面甲氧基;低碳烯烃转化为烷烃、芳烃、环烷烃和较高级烯烃,其历程为通过带有氢转移反应的典型的正碳离子机理;二甲醚转化为低碳烯烃有多种机理论述,目前还没有统一认识。

Mobil公司最初开发的MTO催化剂为ZSM-5,其乙烯收率仅为5%。

流化床甲醇制丙烯

流化床甲醇制丙烯
MTO MTP
主要产物:乙烯、丙烯 工艺:流化床
主要产物:丙烯 工艺:固定床
投资成本:高
温控要求:低 催化剂要求:选择性高
投资成本:低
温控要求:高 催化剂要求:失活慢,选 择性高
ห้องสมุดไป่ตู้化床甲醇制丙烯(FMTP)工艺
基本原理:
甲醇在多级纳米结构择形分子筛催化剂的作用下发生裂解反应, 高选择性地生成目的产物丙烯, 副产——其它低碳烯烃( 乙烯、丁烯和戊烯) 进入烯烃转化反应器 再次高选择性地转化为丙烯。
流化床甲醇制丙烯 (FMTP)简介
主要内容
总结
背景 MTO MTP FMTP
背景
丙烯的重要性与用途
用途
丙烯的来源
来源
12%
19%
7% 8%
66%
88%
聚丙烯
环氧丙烷
丙烯腈
其它
催化裂化与蒸汽裂解
其它
MTO与MTP简介
煤或天 然气 合成气
MTO / MTP 工艺
甲醇
烯烃
MTO与MTP简介

MTO与MTP简介
工艺原理:三个主要反应
甲醇制烯烃(MTO) 反应 乙烯、丁烯、戊烯制丙烯(EBTP) 反应 烷烃脱氢反应(PDH)。
FMTP工艺
FMTP工艺
FMTP工艺
主要工艺特点:
SAPO-18/34催化剂 C2、C4、C4+的转化
双层气固逆流流化床反应器
总结
流态化与多相流在工业上应用广泛 合适地应用能够极大提高工业生产效率

MTP工艺简介

MTP工艺简介

MTP工艺简介
MTP工艺由德国Lurgi公司在20世纪90年代开发成功。该工艺采用稳定的分子筛催化剂和固定床反应器,催化剂由南方化学(Sud–Chemie)公司提供。第一个反应器中甲醇转化为二甲醚,第二个反应器中转化为丙烯,反应一再生轮流切换操作。从甲醇装置来的精甲醇送至二甲醚(DME)预反应器,在高选择、高活性、几乎符合热力学平衡的条件下,精甲醇被转化为DME和水,甲醇、水、DME蒸气和循环的烯烃、蒸气一起被送往MTP反应器中,超过99%的甲醇、DME被转化为主导碳氢化合物产品丙烯,每个反应器有5-6个催化剂床层,每个床层的工艺条件接近性能担保值,而且反应条件相似并都有最大的丙烯收率,反应条件是由床层间的小股新鲜料液控制的。反应器出来的产品混合物经过冷却、分离、压缩、干燥、精馏、除杂,最后生产出符合规格的丙烯、LPG、乙烯、汽油等产品。
2001年,鲁奇公司在挪威建设了MTP工艺的示范装置,为大型工业化设计取得了大量数据。2004年3月份,鲁奇公司与伊朗Fanavaran石化公司正式签署MTP技术转让合同,装置规模为10万吨/年。鲁奇公司与伊朗石化技术研究院共同向伊Fanavaran石化公司提供基础设计、技术使用许可证和主要设备。该项目2009年建成投产,届时将成为世界上第1套MTP工业化生产装置。对于鲁奇公司MTP技术的可靠性和经济性,也有待于伊朗项目投产后的考查与验证。 2006年神华宁煤50万吨/年MTP项目在宁东能源化工基地煤化工园区(A丙烯收率,专有的沸石催化剂,低磨损的固定床反应器,低结焦催化剂可降低再生循环次数,在反应温度下可以不连续再生。MTP技术所用催化剂的开发和工业化规模生产已由供应商完成。Lurgi公司开发的MTP工艺,它与MTO不同之处除催化剂对丙烯有较高选择性外,反应器采用固定床而不是流化床,典型的产物体积组成: 乙烯1.6% 、丙烯71.0% 、丙烷1.6% 、C4/C 58.5% 、C616.1%、焦炭<0.01% 。由于副产物相对减少,所以分离提纯流程也较MTO更为简单。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

23
去CO2吸收塔
脱乙烷塔 压缩机
C3制冷剂
195
从脱丙烷塔 来的物流
1
脱乙烷塔
49
保护床
T-60561 C3分离塔
1
LPG
丙烯
24
C5/C6循环回 MTP反应器
CWS CWR MP蒸汽 MP冷凝液 WC WCR
脱丁烷塔塔底 主要是C5、6 及以下产品
1
脱己烷塔
1
汽油稳定塔
24
47
MP蒸汽 MP蒸汽 MP冷凝液 MP冷凝液
22
产品精制(6050)单元工艺流程简图
LPG产品 C4循环去 6040单元 MTP反应器 来液烃 6040单元 来气烃 甲醇
RP
去脱乙 烷塔
RP
萃取塔
SL
C3制冷剂 1
1
TL
脱丁烷塔
C3制冷剂
RP
48
脱丙烷塔
LP蒸汽 LP冷凝液
152
LP蒸汽
RP
LP冷凝液
废水去甲醇回收塔 处理后排出装置
去脱己烷塔经过分 离后出汽油产品
送入激冷塔,用激冷水进行冷却,温度降
至40℃后送至碳氢压缩单元。出激冷塔的
激冷水大部分经过热量回收后循环回激冷
塔,小部分送到甲醇回收塔,回收其中含
有的甲醇,回收的甲醇与新鲜甲醇混合进
入DME反应器。
17
气体冷却和分离(6030)单元工艺流程简图
碱液 火炬
PC
去碳氢压缩单元
WR
E-60312
WR
E-60311A-F
13
反应单元(6010)工艺流程简图
DME反应器 内径:5m 切线高度:10.8m 275℃ 1.60MPa(a)
循环甲醇 33t/h 101℃,1.8MPa
MTP反应器(2+1台) 内径:11.7m 切线高度:17.54m
DME加热器
甲醇 211.9t/h 甲醇进料泵
高压蒸汽
6030单元 气体冷却 分离单元
1
28
脱丁烷塔结构简图
设备 位号 T-60511 设备 名称 脱丁烷塔 上部 底部 设备尺寸 mm 数量 估计总 长度 51600 壁厚
42/65/58
内径
T/T 高 41400
主要 材料
设备总重t 外壳 总重
1
SA516 Gr.70
469 885
42 58
4500 6350
8000 33400
29
2
1.
总体介绍
甲醇制丙烯(MTP)工艺是德国鲁奇公司使用甲醇作为原料生 产聚合物级丙烯的专利技术,该工艺同时可副产乙烯,LPG 和汽油。 MTP工艺包含五个工艺步骤: MTP反应部分 MTP反应器再生部分 水烃冷却分离部分 碳氢压缩部分 产品/副产品精制部分
3
MTP工艺的发展
C3分离塔结构图
设备 位号 设备尺寸 mm 设备 数量 估计 总长度 100050 壁厚 72 内径 8000 T/T 长高 88200 主要 材料 SA516Gr.70N 设备总重t 外壳 1691 总重 2700
T-60561 C3分离塔
1
30
MTP装置3D PDS模型
3D PDS Model
11
740 - 790 kg/m3 0,45 - 0,70 bar 90 - 95 RON
2. 工艺介绍
12
2.1
反应单元(6010) 工艺介绍
来自甲醇中间罐区的新鲜甲醇和由甲醇回收塔返回的循环 甲醇经过一系列换热设备,加热到275℃。混合物料先在 DME反应器中于275 ℃,1.6MPa,在氧化铝基催化剂的作用 下反应生产二甲醚。之后,生成的二甲醚与循环回的 C2/C4/C5/C6混合进入MTP反应器,于480 ℃,0.13MPa下, 在沸石基催化剂的作用下进行反应,生产以丙烯为主要产 品的各种烃类,送到下一单元-气体冷却和分离单元。
汽油产品
25
பைடு நூலகம்
其它
26
MTP反应器的示意图
内径:11.7m
切线高:17.54m
估计总高:31.673m
壁厚:15/20/22/16mm 主要材质:SS321 空重:340吨
27
脱丙烷塔结构简图
设备尺寸 mm 设备 位号 T-60521 设备 名称 脱丙烷塔 数量 估计总 长度 89300 壁厚 38 内径 4400 T/T 长高 78900 主要 材料 SA738Gr.A 设备总重t 外壳 435 总重 784
19
HC压缩(6040)单元工艺流程简图
WCR
WC
LC
WCR
WC
LC
WCR
WC
LC
WCR
WC
WR
WR
LS
LDC
LDC
LDC
气烃去脱 丙烷塔
M
碳氢压缩机 水去激冷塔 进料
碳氢化合物来 自激冷塔
液烃去脱 丁烷塔
20
HC 压缩机, 大唐 额定情况 (保证情况)
Compressor SST-600 + STC-SH (10-4-B) + Gearbox + STC-SH (20-4-B)
LPG 3.65万 吨 /年
MTP 反应器
(2台运行+1台备用.)
汽油 18.22万 吨/年
烯烃循环 废水循环
产品精制
工艺水 内部使用或用作灌溉
8
6000单元工艺方框流程图
9
主要产品指标 丙烯 (聚合物级)
纯度
LPG 成分 C2 烃 C3 烃 C4 烃 C5 烃 总硫含量(最大)
> 99,60 % wt
< 0,2 % 10 - 12 75 - 90 < 2,0 % < 5 ppm
wt. % wt. % wt. wt. wt.
10
产品
汽油 性质 密度( 15°C) 蒸汽压( 37°C) 辛烷值(研究法) 成分 烷烃和环烷烃 烯烃 芳香烃 苯 总硫含量 45 - 65 20 - 25 15 - 30 < 1,0 % < 5 ppm % wt. % wt. % wt. wt. wt.
4
5
MTP示范装置
6
MTP ® 装置- 技术先进性
n n n n n n 高丙烯产率 专有沸石催化剂 固定床反应器 催化剂低结焦 催化剂在反应温度就地再生 已经中试装置验证
7
MTP单元示意图
甲醇,AA级 167万吨/ 年 = 5000 吨/天
燃料气 内部使用
DME 反应器
丙烯 47.4 万吨/年
功率消耗: 压缩机转速: 17.151 kW 8.506 rpm / 3.668 rpm
LP HP
T
21
2.5 产品精制(6050)单元
工艺介绍
经干燥后的气烃和液烃分别送入脱丙烷塔和脱丁烷塔,在 丁烷塔中,C4和C5+进行分离,C4烃与气烃一起送入脱丙 烷塔。C5+烃送入脱己烷塔进行C5烃与C6+烃的分离,C6 以上的烃从塔底出来,经冷却后成为汽油产品。C5以下的 烃从塔顶出来,经冷凝后大部分循环回MTP反应器,少部分 送入汽油稳定塔进行分离。汽油稳定塔塔底产品作为汽油, 塔顶蒸汽经冷凝循环回MTP反应器。 脱丙烷塔塔顶蒸汽(C3-)经冷凝后,送入脱乙烷塔。脱 乙烷塔塔底物流送入C3分离塔进行分离,C3分离塔塔顶蒸 汽经冷凝得到液态丙烯产品。脱丙烷塔底物送入萃取塔, 萃取塔塔顶物与C3分离塔塔底物丙烷作为LPG产品。 脱乙烷塔塔顶蒸汽经脱乙烷塔压缩机加压到3.7MPa后,送 到脱甲烷塔进行分离。脱甲烷塔塔顶物作为燃料气,塔底 物送入C2分离塔。C2分离塔塔顶为乙烯产品,塔底物作为
31
第一个完全 由甲醇制成的杯子
15.05.03
32
33
谢谢!
34
甲醇制丙烯(MTP) 工艺介绍
2012
内容:
1. 装置总体介绍 2. 工艺介绍 2.1 反应单元(6010)工艺介绍
2.2
再生单元(6020)工艺介绍
2.3 气体冷却和分离(6030)单元工艺介绍
2.4 HC压缩(6040)单元工艺介绍
2.5 产品精制(6050)和乙烯精制(6550)单元工 艺介绍 3. 其它
WCR WC
激冷塔 预激冷塔AB/C
P-60315 A/B P-60311A/B
AE-60311
急冷水
P-60312A/B MTP 反应产物 碳氢化合物 DME冷凝液 排出管线 急冷水 急冷水 急冷水 急冷水 急冷水 急冷水 工艺水 水
18
2.4 HC压缩(6040)单元
工艺介绍
经激冷塔冷却分离后的MTP反应器物流温度为 40℃,压力为0.105MPa,送入HC压缩(6040)单 元。通过HC压缩机进行四级压缩,压力达 2.25MPa。每级压缩后都设一水冷器和一分离器, 分离冷凝下来的水份和一部份液态烃。分离出的 水送到激冷塔作为激冷水,分离出的烃送到四级 压缩分离器,进行气烃和液烃分离,然后气烃送 入气烃干燥器,液烃送入液烃干燥器分别进行干 燥。
气体精制单元 C2/C4/C5/C6循环 205.4t/h,146℃,1.65MPa
285.461t/h/每台反应器 480℃,0.13MPa
14
2.2
再生单元(6020) 工艺介绍
MTP反应器经过一段时间的运行,在催化 剂的表面会产生一定的结焦,降低了催化
剂的活性,从而影响丙烯的产率。此时,
需用热的再生气(装置空气和氮气)对催
化剂进行再生。
15
再生单元(6020)工艺介绍
工艺蒸汽 热再生气 冷再生气 再生气加热器 大气 装置空气 氮气 氮气 氮气
氮气加热器
相关文档
最新文档