2019-2020学年山东省枣庄市薛城区九年级(上)期末数学试卷

合集下载

山东省枣庄市薛城区上学期期末考试九年级数学试卷(含答案)

山东省枣庄市薛城区上学期期末考试九年级数学试卷(含答案)

山东省枣庄市薛城区上学期期末考试九年级数学试卷(含答案)山东省枣庄市薛城区2019-2019学年上学期期末考试九年级数学试卷一、选择题(每小题3分,共36分)1.(3分)一元二次方程x2﹣6x﹣6=0配方后化为()A.(x﹣3)2=15 B.(x﹣3)2=3 C.(x+3)2=15 D.(x+3)2=32.(3分)抛物线y=2(x﹣3)2+4顶点坐标是()A.(3,4)B.(﹣3,4)C.(3,﹣4)D.(2,4)3.(3分)如图,⊙O的直径AB=8,点C在⊙O 上,∠ABC=30°,则AC的长是()A.2 B.2 C.2 D.44.(3分)在Rt△ABC中,∠C=90°,AB=4,AC=1,则cosB的值为()A. B.C. D.5.(3分)下列命题为真命题的是()A.三点确定一个圆B.度数相等的弧是等弧C.直径是圆中最长的弦D.相等的圆心角所对的弧相等,所对的弦也相13.(4分)若抛物线y=x2﹣6x+m与x轴没有交点,则m的取值范围是.14.(4分)如图,一个小球由地面沿着坡度i=1:3的坡面向上前进了10m,此时小球距离地面的高度为m.15.(4分)如图,O是坐标原点,菱形OABC 的顶点A的坐标为(﹣3,4),顶点C在x轴的负半轴上,函数y=(x<0)的图象经过顶点B,则k的值为.16.(4分)将如图所示的抛物线先向右平移1个单位长度,再向上平移3个单位长度后,得到的抛物线解析式是.17.(4分)如图,点A、B、C是圆O上的三点,且四边形ABCO是平行四边形,OF⊥OC交圆O于点F,则∠BAF=.18.(4分)如图,沿AE折叠矩形纸片ABCD,使点D落在BC边上的点F处,已知AB=8,BC=10,则cos∠EFC的值为.三、解答题(共7道大题,满分60分)19.(6分)计算:|1﹣|﹣2sin45°+(π﹣3.14)0+2﹣2.20.(10分)如图,根据图中数据完成填空,再按要求答题:sin2A1+sin2B1=;sin2A2+sin2B2=;sin2A3+sin2B3=.(1)观察上述等式,猜想:在Rt△ABC中,∠C=90°,都有sin2A+sin2B=.(2)如图④,在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别是a、b、c,利用三角函数的定义和勾股定理,证明你的猜想.(3)已知:∠A+∠B=90°,且sinA=,求sinB.21.(8分)如图,∠BAC=60°,AD平分∠BAC 交⊙O于点D,连接OB、OC、BD、CD.(1)求证:四边形OBDC是菱形;(2)当∠BAC为多少度时,四边形OBDC是正方形?22.(8分)工人师傅用一块长为10dm,宽为6dm 的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形.(厚度不计)(1)在图中画出裁剪示意图,用实线表示裁剪线,虚线表示折痕;并求长方体底面面积为12dm2时,裁掉的正方形边长多大?(2)若要求制作的长方体的底面长不大于底面宽的五倍,并将容器进行防锈处理,侧面每平方分米的费用为0.5元,底面每平方分米的费用为2元,裁掉的正方形边长多大时,总费用最低,最低为多少?23.(8分)如图,四边形ABCD中,AB=AC=AD,AC平分∠BAD,点P是AC延长线上一点,且PD⊥AD.(1)证明:∠BDC=∠PDC;(2)若AC与BD相交于点E,AB=1,CE:CP=2:3,求AE的长.24.(10分)保护生态环境,建设绿色社会已经从理念变为人们的行动.某化工厂2009年1月的利润为200万元.设2009年1月为第1个月,第x个月的利润为y万元.由于排污超标,该从2009年1月底起适当限产,并投入资金进行治污改造,导致月利润明显下降,从1月到5月,y与x成反比例.到5月底,治污改造工程顺利完工,从这时起,该厂每月的利润比前一个月增加20万元(如图).(1)分别求该化工厂治污期间及改造工程顺利完工后y与x之间对应的函数关系式.(2)治污改造工程顺利完工后经过几个月,该厂利润才能达到200万元?(3)当月利润少于100万元时为该厂资金紧张期,问该厂资金紧张期共有几个月?25.(10分)如图,已知抛物线的顶点为A(1,4),抛物线与y轴交于点B(0,3),与x轴交于C、D两点.点P是x轴上的一个动点.(1)求此抛物线的解析式;(2)求C、D两点坐标及△BCD的面积;(3)若点P在x轴上方的抛物线上,满足S△PCD=S△BCD,求点P的坐标.参考答案1-10、AADAC BDCAA 11-12、AB13、m>914、15、-3216、y=2(x-1)2+117、15°18、19、20、21、证明:(1)连接OD,∵∠BAC=60°,∴∠BOC=120°,∵AD平分∠BAC交⊙O于点D,∴∠BAD=∠CAD,∴∠BOD=∠COD=60°,∵OB=OD=OC,∴△BOD和△COD都是等边三角形,∴OB=BD=DC=OC,∴四边形OBDC是菱形;(2)当∠BAC为45度时,四边形OBDC是正方形,理由是:∵∠BAC=45°,∴∠BOC=90°,∴四边形OBDC是正方形.22、解:(1)如图所示:设裁掉的正方形的边长为xdm,由题意可得(10-2x)(6-2x)=12,即x2-8x+12=0,解得x=2或x=6(舍去),答:裁掉的正方形的边长为2dm,底面积为12dm2;(2)∵长不大于宽的五倍,∴10-2x≤5(6-2x),解得0<x≤2.5,设总费用为w元,由题意可知w=[0.5×2x(16-4x)+2(10-2x)(6-2x)]=4x2-48x+120=4(x-6)2-24,∵对称轴为x=6,开口向上,∴当0<x≤2.5时,w随x的增大而减小,∴当x=2.5时,w有最小值,最小值为25元,答:当裁掉边长为2.5dm的正方形时,总费用最低,最低费用为25元.23、(1)证明:∵AB=AD,AC平分∠BAD,∴AC⊥BD,∴∠ACD+∠BDC=90°,∵AC=AD,∴∠ACD=∠ADC,∴∠ADC+∠BDC=90°,∵PD⊥AD,∴∠ADC+∠PDC=90°,∴∠BDC=∠PDC;(2)解:过点C作CM⊥PD于点M,∵∠BDC=∠PDC,∴CE=CM,∵∠CMP=∠ADP=90°,∠P=∠P,∴△CPM∽△APD,24、解:(1)根据图象,反比例函数图象经过(1,200),当x=5时,y=40,设改造工程完工后函数解析式为y=20x+b,则20×5+b=40,解得b=-60,∴改造工程完工后函数解析式为y=20x-60(x >5且x取整数);(2)当y=200时,20x-60=200,解得x=13.13-5=8.∴经过8个月,该厂利润才能达到200万元;20x-60=100,解得x=8,∴月利润少于100万元有:3,4,5,6,7月份.故该厂资金紧张期共有5个月.25、。

2020-2021学年枣庄市薛城区九年级上学期期末数学试卷(含答案解析)

2020-2021学年枣庄市薛城区九年级上学期期末数学试卷(含答案解析)

2020-2021学年枣庄市薛城区九年级上学期期末数学试卷一、选择题(本大题共12小题,共36.0分)1.关于x的一元二次方程x2−5x+p2−2p+1=0的一个根为0,则实数p的值是()A. 1B. −1C. 0或2D. 42.下列物体的主视图、俯视图和左视图不全是圆的是()A. 橄榄球B. 兵乓球C. 篮球D. 排球3.如图,已知△ABC的面积为12,点D在线段AC上,点F在线段BC的延长线上,且BF=4CF,四边形DCFE是平行四边形,则图中阴影部分的面积为()A. 2B. 3C. 4D. 54.不解方程,判别方程5x2−7x+5=0的根的情况是()A. 有两个相等的实数根B. 有两个不相等的实数根C. 只有一个实数根D. 没有实数根5.如图,在平面直角坐标系中,Rt△ABC的顶点A、C的坐标分别是(0,3)、(k>0,x>0)的图象经过点B,(3,0).∠ACB=90°,AC=2BC,则函数y=kx则k的值为()A. 92B. 9C. 278D. 2746.如图,A、D是⊙O的两点,BC是⊙O的直径,若∠D=35°,∠OAC=()A. 70°B. 65°C. 55°7.王老师有一个装文具用的盒子,它的三视图如图所示,这个盒子类似于()A. 圆锥B. 圆柱C. 长方体D. 三棱柱8.正方形ABCD在直角坐标系中的位置如下图表示,将正方形ABCD绕点A顺时针方向旋转180°后,C点的坐标是()A. (2,0)B. (3,0)C. (2,−1)D. (2,1)9.把二次函数y=5x2的图象先向左平移3个单位,再向下平移2个单位后,所得二次函数图象的解析式是()A. y=5(x+3)2−2B. y=5(x+3)2+2C. y=5(x−3)2−2D. y=5(x−3)2−210.如图所示,是反比例函数y=3x 与y=−7x在x轴上方的图象,点C是y轴正半轴上的一点,过点C作AB//x轴分别交这两个图象于A点和B点,P和Q在x轴上,且四边形ABPQ为平行四边形,则四边形ABPQ的面积等于()A. 20B. 15C. 10D. 511.若一个正方形的面积为8,则这个正方形的边长为()A. 4B. 2√2C. √2D. 812.已知二次函数的图象如图所示,有下列4个结论:①;②;③;④,其中正确的结论有B. 3个C. 2个D. 1个二、填空题(本大题共8小题,共32.0分)13.如图,某人在山坡坡脚A处测得电视塔尖点C的仰角为60°,沿山坡向上走到P处再测得点C的仰角为45°,已知OA=100米,山坡坡度为i=1:2,且O、A、B在同一条直线上.求电视塔OC的高度以及所在位置点P的铅直高度.14.如图:P是反比例函数y=k的图象上的点,过点P作x轴、y轴的垂线,x垂足分别为A、B,且四边形PAOB的面积为4,则y与x的函数关系式是______ .15.已知二次函数y=2x2−2(a+b)x+a2+b2,a,b为常数,当y达到最小值时,x的值为______16.斜边的边长为5cm,一条直角边长为4cm的直角三角形的面积是______cm2.17.等腰三角形的腰长为1cm,底边长为√3cm,则它的底角的正切值为______.18.若正方形的面积为16cm2,则正方形对角线长为______cm.19.12.已知点O(0,0),B(1,2),点A在y轴上,且的面积为2,则满足条件的点A的坐标为。

薛城初三期末数学试卷

薛城初三期末数学试卷

一、选择题(每题5分,共50分)1. 下列各数中,有理数是()A. √-1B. √2C. 0.1010010001…(循环小数)D. π2. 已知函数f(x) = 2x - 3,若f(2) = f(x),则x的值为()A. 1B. 2C. 3D. 43. 下列各组数中,成等差数列的是()A. 1, 4, 7, 10B. 2, 4, 8, 16C. 1, 3, 5, 7D. 0, 2, 4, 64. 在△ABC中,若∠A=60°,∠B=45°,则∠C的度数是()A. 45°B. 60°C. 75°D. 90°5. 已知一元二次方程x² - 4x + 3 = 0,下列选项中正确的是()A. 它有两个不相等的实数根B. 它有两个相等的实数根C. 它没有实数根D. 它的根是x = 16. 下列各式中,能表示圆的方程是()A. x² + y² = 4B. x² + y² - 2x - 4y = 0C. x² + y² + 2x + 4y = 0D. x² + y² = 97. 下列函数中,有最小值的是()A. y = x²B. y = -x²C. y = x³D. y = -x³8. 若等差数列{an}的公差为d,且a1 = 2,a4 = 10,则d的值为()A. 2B. 4C. 6D. 89. 在△ABC中,若a=3,b=4,c=5,则sinA的值为()A. 1/3B. 1/2C. 2/3D. 3/210. 下列各数中,绝对值最小的是()A. -3B. -2C. -1D. 0二、填空题(每题5分,共50分)11. 已知等差数列{an}的第一项a1=1,公差d=2,则第10项an=__________。

12. 函数f(x) = 3x² - 2x + 1的对称轴方程是__________。

九年级上册枣庄数学期末试卷测试与练习(word解析版)

九年级上册枣庄数学期末试卷测试与练习(word解析版)

九年级上册枣庄数学期末试卷测试与练习(word 解析版)一、选择题1.已知二次函数y =ax 2+bx +c 的图像如图所示,则下列结论正确的个数有( ) ①c >0;②b 2-4ac <0;③ a -b +c >0;④当x >-1时,y 随x 的增大而减小.A .4个B .3个C .2个D .1个2.若关于x 的一元二次方程kx 2﹣2x ﹣1=0有两个不相等的实数根,则实数k 的取值范围是( ) A .k >﹣1B .k <1且k≠0C .k≥﹣1且k≠0D .k >﹣1且k≠03.在Rt ABC ∆中,90C ∠=︒,3AC =,=1BC ,则sin A 的值为( ) A .1010B .310C .13D .1034.小广,小娇分别统计了自己近5次数学测试成绩,下列统计量中能用来比较两人成绩稳定性的是( ) A .方差 B .平均数C .众数D .中位数5.如图,在△ABC 中,点D 、E 分别是AB 、AC 的中点,若△ADE 的面积为4,则△ABC 的面积为( )A .8B .12C .14D .166.点P 1(﹣1,1y ),P 2(3,2y ),P 3(5,3y )均在二次函数22y x x c =-++的图象上,则1y ,2y ,3y 的大小关系是( ) A .321y y y >>B .312y y y >=C .123y y y >>D .123y y y =>7.已知二次函数y =ax 2+bx +c 的图像如图所示,则下列结论正确的个数有( ) ①c >0;②b 2-4ac <0;③ a -b +c >0;④当x >-1时,y 随x 的增大而减小.A.4个B.3个C.2个D.1个8.如图,在矩形中,,,若以为圆心,4为半径作⊙.下列四个点中,在⊙外的是( )A.点B.点C.点D.点9.如图所示的网格是正方形网格,则sin A的值为()A.12B.22C.35D.4510.下表是二次函数y=ax2+bx+c的部分x,y的对应值:x…﹣1﹣12121322523…y…2m﹣1﹣74﹣2﹣74﹣1142…可以推断m的值为()A.﹣2 B.0 C.14D.211.如图1,一个扇形纸片的圆心角为90°,半径为4.如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为()A .4233π- B .8433π- C .8233π- D .843π- 12.已知⊙O 的半径是6,点O 到直线l 的距离为5,则直线l 与⊙O 的位置关系是 A .相离B .相切C .相交D .无法判断二、填空题13.已知矩形ABCD ,AB=3,AD=5,以点A 为圆心,4为半径作圆,则点C 与圆A 的位置关系为 __________.14.如图,二次函数y =ax 2+bx +c 的图像过点A (3,0),对称轴为直线x =1,则方程ax 2+bx +c =0的根为____.15.将抛物线y=﹣2x 2+1向左平移三个单位,再向下平移两个单位得到抛物线________; 16.在Rt ABC ∆中,90C ∠=︒,12AC =,9BC =,圆P 在ABC ∆内自由移动.若P 的半径为1,则圆心P 在ABC ∆内所能到达的区域的面积为______.17.一个扇形的圆心角是120°.它的半径是3cm .则扇形的弧长为__________cm . 18.两个相似三角形的面积比为9:16,其中较大的三角形的周长为64cm ,则较小的三角形的周长为__________cm .19..甲、乙、丙、丁四位同学在五次数学测验中他们成绩的平均分相等,方差分别是2.3,3.8,5.2,6.2,则成绩最稳定的同学是______.20.已知⊙O 半径为4,点,A B 在⊙O 上,21390,sin BAC B ∠=∠=OC 的最大值为_____.21.圆锥的底面半径是4cm ,母线长是6cm ,则圆锥的侧面积是______cm 2(结果保留π).22.如图,在△ABC 和△APQ 中,∠PAB =∠QAC ,若再增加一个条件就能使△APQ ∽△ABC ,则这个条件可以是________.23.如图,点O 为正六边形ABCDEF 的中心,点M 为AF 中点,以点O 为圆心,以OM 的长为半径画弧得到扇形MON ,点N 在BC 上;以点E 为圆心,以DE 的长为半径画弧得到扇形DEF ,把扇形MON 的两条半径OM ,ON 重合,围成圆锥,将此圆锥的底面半径记为r 1;将扇形DEF 以同样方法围成的圆锥的底面半径记为r 2,则r 1:r 2=_____.24.如图,二次函数y =x (x ﹣3)(0≤x ≤3)的图象,记为C 1,它与x 轴交于点O ,A 1;将C 1点A 1旋转180°得C 2,交x 轴于点A 2;将C 2绕点A 2旋转180°得C 3,交x 轴于点A 3;……若P (2020,m )在这个图象连续旋转后的所得图象上,则m =_____.三、解答题25.如图,已知矩形ABCD 的边6AB =,4BC =,点P 、Q 分别是AB 、BC 边上的动点.(1)连接AQ 、PQ ,以PQ 为直径的O 交AQ 于点E .①若点E 恰好是AQ 的中点,则QPB ∠与AQP ∠的数量关系是______; ②若3BE BQ ==,求BP 的长; (2)已知3AP =,1BQ =,O 是以PQ 为弦的圆.①若圆心O 恰好在CB 边的延长线上,求O 的半径:②若O 与矩形ABCD 的一边相切,求O 的半径.26.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点H ,点F 是AD 上一点,连接AF 交CD 的延长线于点E .(1)求证:△AFC ∽△ACE ;(2)若AC =5,DC =6,当点F 为AD 的中点时,求AF 的值. 27.用铁片制作的圆锥形容器盖如图所示.(1)我们知道:把平面内线段OP 绕着端点O 旋转1周,端点P 运动所形成的图形叫做圆.类比圆的定义,给圆锥下定义 ;(2)已知OB =2 cm ,SB =3 cm , ①计算容器盖铁皮的面积;②在一张矩形铁片上剪下一个扇形,用它围成该圆锥形容器盖.以下是可供选用的矩形铁片的长和宽,其中可以选择且面积最小的矩形铁片是 . A .6 cm×4 cm B .6 cm×4.5 cm C .7 cm×4 cm D .7 cm×4.5 cm28.(1)问题提出:苏科版《数学》九年级(上册)习题2.1有这样一道练习题:如图①,BD 、CE 是△ABC 的高,M 是BC 的中点,点B 、C 、D 、E 是否在以点M 为圆心的同一个圆上?为什么?在解决此题时,若想要说明“点B 、C 、D 、E 在以点M 为圆心的同一个圆上”,在连接MD 、ME 的基础上,只需证明 .(2)初步思考:如图②,BD 、CE 是锐角△ABC 的高,连接DE .求证:∠ADE =∠ABC ,小敏在解答此题时,利用了“圆的内接四边形的对角互补”进行证明.(请你根据小敏的思路完成证明过程.)(3)推广运用:如图③,BD 、CE 、AF 是锐角△ABC 的高,三条高的交点G 叫做△ABC 的垂心,连接DE 、EF 、FD ,求证:点G 是△DEF 的内心.29.4张相同的卡片分别写有数字﹣1、﹣3、4、6,将这些卡片的背面朝上,并洗匀. (1)从中任意抽取1张,抽到的数字大于0的概率是______;(2)从中任意抽取1张,并将卡片上的数字记作二次函数y =ax 2+bx 中的a ,再从余下的卡片中任意抽取1张,并将卡片上的数字记作二次函数y =ax 2+bx 中的b ,利用树状图或表格的方法,求出这个二次函数图象的对称轴在y 轴右侧的概率.30.如图,已知抛物线2y x bx c =++经过(10)A -,、(30)B ,两点,与y 轴相交于点C . (1)求抛物线的解析式;(2)点P 是对称轴上的一个动点,当PAC 的周长最小时,直接写出点P 的坐标和周长最小值;S ,求出此时点Q的坐标.(3)点Q为抛物线上一点,若8QAB31.超市销售某种儿童玩具,如果每件利润为40元(市场管理部门规定,该种玩具每件利润不能超过60元),每天可售出50件.根据市场调查发现,销售单价每增加2元,每天销售量会减少1件.设销售单价增加x元,每天售出y件.(1)请写出y与x之间的函数表达式;(2)当x为多少时,超市每天销售这种玩具可获利润2250元?(3)设超市每天销售这种玩具可获利w元,当x为多少时w最大,最大值是多少?32.某商店销售一种商品,经市场调查发现:该商品的月销售量y(件)是售价x(元/件)的一次函数,其售价x、月销售量y、月销售利润w(元)的部分对应值如下表:售价x(元/件)4045月销售量y(件)300250月销售利润w(元)30003750注:月销售利润=月销售量×(售价-进价)(1)①求y关于x的函数表达式;②当该商品的售价是多少元时,月销售利润最大?并求出最大利润;(2)由于某种原因,该商品进价提高了m元/件(m>0),物价部门规定该商品售价不得超过40元/件,该商店在今后的销售中,月销售量与售价仍然满足(1)中的函数关系.若月销售最大利润是2400元,则m的值为.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据抛物线与x 轴交点及x=-1时二次函数的值的情况进行推理,进而对所得结论进行判断. 【详解】解:由图象可知,a <0,c >0,故①正确;抛物线与x 轴有两个交点,则b²-4ac>0,故②错误;∵当x=-1时,y>0,即a-b+c>0, 故③正确;由图象可知,图象开口向下,对称轴x >-1,在对称轴右侧, y 随x 的增大而减小,而在对称轴左侧和-1之间,是y 随x 的增大而减小,故④错误. 故选:C . 【点睛】本题考查了二次函数图象与系数的关系:二次项系数a 决定抛物线的开口方向和大小.当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时,对称轴在y 轴左; 当a 与b 异号时,对称轴在y 轴右.常数项c 决定抛物线与y 轴交点:抛物线与y 轴交于(0,c ).抛物线与x 轴交点个数由判别式确定:△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac=0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点.2.D解析:D 【解析】∵一元二次方程kx 2﹣2x ﹣1=0有两个不相等的实数根, ∴△=b 2﹣4ac=4+4k >0,且k≠0. 解得:k >﹣1且k≠0.故选D .考点:一元二次方程的定义,一元二次方程根的判别式,分类思想的应用.3.A解析:A 【解析】 【分析】先根据勾股定理求出斜边的长,再根据正弦的定义解答即可. 【详解】解:在Rt ABC ∆中,∵90C ∠=︒,3AC =,=1BC ,∴AB =∴sinBC A AB ===. 故选:A. 【点睛】本题考查了勾股定理和正弦的定义,属于基本题型,熟练掌握基本知识是解题关键.4.A解析:A 【解析】根据方差的意义:体现数据的稳定性,集中程度,波动性大小;方差越小,数据越稳定.要比较两位同学在五次数学测验中谁的成绩比较稳定,应选用的统计量是方差. 【详解】平均数,众数,中位数都是反映数字集中趋势的数量,方差是反映数据离散水平的数据,也就会说反映数据稳定程度的数据是方差 故选A 考点:方差5.D解析:D 【解析】 【分析】直接利用三角形中位线定理得出DE ∥BC ,DE=12BC ,再利用相似三角形的判定与性质得出答案. 【详解】解:∵在△ABC 中,点D 、E 分别是AB 、AC 的中点, ∴DE ∥BC ,DE=12BC , ∴△ADE ∽△ABC , ∵DE BC =12, ∴14ADE ABC S S ∆∆=, ∵△ADE 的面积为4, ∴△ABC 的面积为:16, 故选D . 【点睛】考查了三角形的中位线以及相似三角形的判定与性质,正确得出△ADE ∽△ABC 是解题关键.6.D解析:D 【解析】试题分析:∵22y x x c =-++,∴对称轴为x=1,P 2(3,2y ),P 3(5,3y )在对称轴的右侧,y 随x 的增大而减小,∵3<5,∴23y y >,根据二次函数图象的对称性可知,P 1(﹣1,1y )与(3,2y )关于对称轴对称,故123y y y =>,故选D . 考点:二次函数图象上点的坐标特征.7.C【解析】【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据抛物线与x轴交点及x=-1时二次函数的值的情况进行推理,进而对所得结论进行判断.【详解】解:由图象可知,a<0,c>0,故①正确;抛物线与x轴有两个交点,则b²-4ac>0,故②错误;∵当x=-1时,y>0,即a-b+c>0,故③正确;由图象可知,图象开口向下,对称轴x>-1,在对称轴右侧, y随x的增大而减小,而在对称轴左侧和-1之间,是y随x的增大而减小,故④错误.故选:C.【点睛】本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a 共同决定对称轴的位置:当a与b同号时,对称轴在y轴左;当a与b异号时,对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由判别式确定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.8.C解析:C【解析】【分析】连接AC,利用勾股定理求出AC的长度,即可解题.【详解】解:如下图,连接AC,∵圆A的半径是4,AB=4,AD=3,∴由勾股定理可知对角线AC=5,∴D在圆A内,B在圆上,C在圆外,故选C.【点睛】本题考查了圆的简单性质,属于简单题,利用勾股定理求出AC的长是解题关键.9.C解析:C 【解析】【分析】设正方形网格中的小正方形的边长为1,连接格点BC,AD,过C作CE⊥AB于E,解直角三角形即可得到结论.【详解】解:设正方形网格中的小正方形的边长为1,连接格点BC,AD,过C作CE⊥AB于E,∵224225AC BC=+==,BC=22,AD=2232AC CD+=,∵S△ABC=12AB•CE=12BC•AD,∴CE=223265525BC ADAB⨯==,∴6535525CEAsin CABC∠===,故选:C.【点睛】本题考查了解直角三角形的问题,掌握解直角三角形的方法以及锐角三角函数的定义是解题的关键.10.C解析:C【解析】【分析】首先根据表中的x、y的值确定抛物线的对称轴,然后根据对称性确定m的值即可.【详解】解:观察表格发现该二次函数的图象经过点(12,﹣74)和(32,﹣74),所以对称轴为x=13222+=1,∵511122⎛⎫-=--⎪⎝⎭,∴点(﹣12,m)和(52,14)关于对称轴对称,∴m=14,故选:C.【点睛】本题考查了二次函数的图象与性质,解题的关键是通过表格信息确定抛物线的对称轴.11.C解析:C【解析】【分析】连接OD,根据勾股定理求出CD,根据直角三角形的性质求出∠AOD,根据扇形面积公式、三角形面积公式计算,得到答案.【详解】解:连接OD,在Rt△OCD中,OC=12OD=2,∴∠ODC=30°,CD=2223OD OC+=∴∠COD=60°,∴阴影部分的面积=260418223=23 36023π⨯-⨯⨯π-,故选:C.【点睛】本题考查的是扇形面积计算、勾股定理,掌握扇形面积公式是解题的关键.12.C解析:C【解析】试题分析:根据直线与圆的位置关系来判定:①直线l和⊙O相交,则d<r;②直线l和⊙O相切,则d=r;③直线l和⊙O相离,则d>r(d为直线与圆的距离,r为圆的半径).因此,∵⊙O的半径为6,圆心O到直线l的距离为5,∴6>5,即:d<r.∴直线l与⊙O的位置关系是相交.故选C.二、填空题13.点C在圆外【解析】【分析】由r和CA,AB、DA的大小关系即可判断各点与⊙A的位置关系.【详解】解:∵AB=3厘米,AD=5厘米,∴AC=厘米,∵半径为4厘米,∴点C在圆A外【点解析:点C在圆外【解析】【分析】由r和CA,AB、DA的大小关系即可判断各点与⊙A的位置关系.【详解】解:∵AB=3厘米,AD=5厘米,∴AC=22+=厘米,3534∵半径为4厘米,∴点C在圆A外【点睛】本题考查了对点与圆的位置关系的判断.关键要记住若半径为r,点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上,当d<r时,点在圆内.14.【解析】【分析】根据点A的坐标及抛物线的对称轴可得抛物线与x轴的两个交点坐标,从而求得方程的解.【详解】解:由二次函数y =ax2+bx +c 的图像过点A (3,0),对称轴为直线x =1可得:解析:123;1x x ==-【解析】【分析】根据点A 的坐标及抛物线的对称轴可得抛物线与x 轴的两个交点坐标,从而求得方程的解.【详解】解:由二次函数y =ax 2+bx +c 的图像过点A (3,0),对称轴为直线x =1可得: 抛物线与x 轴交于(3,0)和(-1,0)即当y=0时,x=3或-1∴ax 2+bx +c =0的根为123;1x x ==-故答案为:123;1x x ==-【点睛】本题考查抛物线的对称性及二次函数与一元二次方程,利用对称性求出抛物线与x 轴的交点坐标是本题的解题关键.15.【解析】【分析】根据抛物线平移的规律计算即可得到答案.【详解】根据题意:平移后的抛物线为.【点睛】此题考查抛物线的平移规律:对称轴左加右减,函数值上加下减,掌握规律并熟练运用是解题的关解析:()2231y x =-+-【解析】【分析】根据抛物线平移的规律计算即可得到答案.【详解】根据题意:平移后的抛物线为()2231y x =-+-.【点睛】此题考查抛物线的平移规律:对称轴左加右减,函数值上加下减,掌握规律并熟练运用是解题的关键. 16.24【解析】【分析】根据题意做图,圆心在内所能到达的区域为△EFG ,先求出AB 的长,延长BE 交AC 于H 点,作HM ⊥AB 于M ,根据圆的性质可知BH 平分∠ABC ,故CH=HM,设CH=x=HM ,根解析:24【解析】【分析】根据题意做图,圆心P 在ABC ∆内所能到达的区域为△EFG ,先求出AB 的长,延长BE 交AC 于H 点,作HM ⊥AB 于M ,根据圆的性质可知BH 平分∠ABC ,故CH=HM,设CH=x=HM ,根据Rt △AMH 中利用勾股定理求出x 的值,作EK ⊥BC 于K 点,利用△BEK ∽△BHC ,求出BK 的长,即可求出EF 的长,再根据△EFG ∽△BCA 求出FG ,即可求出△EFG 的面积.【详解】如图,由题意点O 所能到达的区域是△EFG ,连接BE ,延长BE 交AC 于H 点,作HM ⊥AB 于M ,EK ⊥BC 于K ,作FJ ⊥BC 于J .∵90C ∠=︒,12AC =,9BC =,∴15=根据圆的性质可知BH 平分∠ABC∴故CH=HM,设CH=x=HM ,则AH=12-x ,BM=BC=9,∴AM=15-9=6在Rt △AMH 中,AH 2=HM 2+AM 2即AH 2=HM 2+AM 2(12-x )2=x 2+62解得x=4.5∵EK ∥AC ,∴△BEK ∽△BHC , ∴EK BK HC BC =,即14.59BK = ∴BK=2,∴EF=KJ=BC-BK-JC=9-2-1=6,∵EG ∥AB ,EF ∥AC ,FG ∥BC , ∴∠EGF =∠ABC ,∠FEG =∠CAB ,∴△EFG ∽△ACB , 故EF FG BC AC =,即6912FG = 解得FG=8 ∴圆心P 在ABC ∆内所能到达的区域的面积为12FG×EF=12×8×6=24, 故答案为24.【点睛】此题主要考查相似三角形的判定与性质综合,解题的关键是熟知勾股定理、相似三角形的判定与性质.17.2π【解析】分析:根据弧长公式可得结论.详解:根据题意,扇形的弧长为=2π,故答案为:2π点睛:本题主要考查弧长的计算,熟练掌握弧长公式是解题的关键.解析:2π【解析】分析:根据弧长公式可得结论.详解:根据题意,扇形的弧长为1203180π⨯=2π,故答案为:2π点睛:本题主要考查弧长的计算,熟练掌握弧长公式是解题的关键.18.48【解析】【分析】根据面积之比得出相似比,然后利用周长之比等于相似比即可得出答案.【详解】∵两个相似三角形的面积比为∴两个相似三角形的相似比为∴两个相似三角形的周长也比为∵较大的三解析:48【解析】【分析】根据面积之比得出相似比,然后利用周长之比等于相似比即可得出答案.【详解】∵两个相似三角形的面积比为9:16∴两个相似三角形的相似比为3:4∴两个相似三角形的周长也比为3:4∵较大的三角形的周长为64cm ∴较小的三角形的周长为643484cm ⨯= 故答案为:48.【点睛】本题主要考查相似三角形的性质,掌握相似三角形的性质是解题的关键. 19.甲【解析】【分析】方差反映了一组数据的波动情况,方差越小越稳定,据此可判断.【详解】∵2.3<3.8<5.2<6.2,∴,∴成绩最稳定的是甲.故答案为:甲.【点睛】本题考查了方差解析:甲【解析】【分析】方差反映了一组数据的波动情况,方差越小越稳定,据此可判断.【详解】∵2.3<3.8<5.2<6.2,∴2222甲乙丁丙<<<S S S S ,∴成绩最稳定的是甲.故答案为:甲.【点睛】本题考查了方差的概念,正确理解方差所表示的意义是解题的关键.20.【解析】【分析】过点A 作AE ⊥AO,并使∠AEO =∠ABC,先证明,由三角函数可得出,进而求得,再通过证明,可得出,根据三角形三边关系可得:,由勾股定理可得,求出BE 的最大值,则答案即可求出.解析:833+【解析】【分析】过点A作AE⊥AO,并使∠AEO=∠ABC,先证明ABC AEO∆∆,由三角函数可得出23AOAE=,进而求得6AE=,再通过证明AEB AOC∆∆,可得出23OC BE=,根据三角形三边关系可得:BE OE OB≤+,由勾股定理可得213OE=,求出BE的最大值,则答案即可求出.【详解】解:过点A作AE⊥AO,并使∠AEO=∠ABC,∵OAE BACAEO ABC∠=∠⎧⎨∠=∠⎩,∴ABC AEO∆∆,∴tanAC AOBAB AE∠==,∵213sin B∠=,∴2213313cos11313B⎛⎫∠=-=⎪⎪⎝⎭,∴213sin213tancos3313BBn B∠∠===∠,∴23AOAE=,又∵4AO=,∴6AE=,∵90,90EAB BAO OAC BAO∠+∠=︒∠+∠=︒,∴=EAB OAC∠∠,又∵AC AOAB AE=,∴AEB AOC∆∆,∴23OC AC BE AB ==, ∴23OC BE =, 在△OEB 中,根据三角形三边关系可得:BE OE OB ≤+,∵OE ===,∴4OE OB +=,∴BE 的最大值为:4,∴OC 的最大值为:()28433=. 【点睛】本题主要考查了三角形相似的判定和性质、三角函数、勾股定理及三角形三边关系,解题的关键是构造直角三角形. 21.24π【解析】【分析】根据圆锥的侧面展开图为扇形,先计算出圆锥的底面圆的周长,然后利用扇形的面积公式计算即可.【详解】解:∵圆锥的底面半径为4cm ,∴圆锥的底面圆的周长=2π•4=8π,解析:24π【解析】【分析】根据圆锥的侧面展开图为扇形,先计算出圆锥的底面圆的周长,然后利用扇形的面积公式计算即可.【详解】解:∵圆锥的底面半径为4cm ,∴圆锥的底面圆的周长=2π•4=8π,∴圆锥的侧面积=12×8π×6=24π(cm 2). 故答案为:24π.【点睛】本题考查了圆锥的侧面积的计算:圆锥的侧面展开图为扇形,扇形的弧长为圆锥的底面周长,扇形的半径为圆锥的母线长.也考查了扇形的面积公式:S=12•l •R ,(l 为弧长). 22.∠P=∠B(答案不唯一)【解析】【分析】要使△APQ∽△ABC ,在这两三角形中,由∠PAB=∠QAC可知∠PAQ=∠BAC,还需的条件可以是∠B=∠P或∠C=∠Q或.【详解】解:这个条件解析:∠P=∠B(答案不唯一)【解析】【分析】要使△APQ∽△ABC,在这两三角形中,由∠PAB=∠QAC可知∠PAQ=∠BAC,还需的条件可以是∠B=∠P或∠C=∠Q或AP AQ AB AC=.【详解】解:这个条件为:∠B=∠P ∵∠PAB=∠QAC,∴∠PAQ=∠BAC∵∠B=∠P,∴△APQ∽△ABC,故答案为:∠B=∠P或∠C=∠Q或AP AQ AB AC=.【点睛】本题考查了相似三角形的判定与性质的运用,掌握相似三角形的判定与性质是解题的关键.23.【解析】分析:根据题意正六边形中心角为120°且其内角为120°.求出两个扇形圆心角,表示出扇形半径即可.详解:连OA由已知,M为AF中点,则OM⊥AF∵六边形ABCDEF为正六边形∴2【解析】分析:根据题意正六边形中心角为120°且其内角为120°.求出两个扇形圆心角,表示出扇形半径即可.详解:连OA由已知,M为AF中点,则OM⊥AF ∵六边形ABCDEF为正六边形∴∠AOM=30°设AM=a∴AB=AO=2a,3a∵正六边形中心角为60°∴∠MON=120°∴扇形MON 120323aa π⋅⋅=则r13同理:扇形DEF的弧长为:120241803aaππ⋅⋅=则r2=2 3 ar1:r23:3:点睛:本题考查了正六边形的性质和扇形面积及圆锥计算.解答时注意表示出两个扇形的半径.24.【解析】【分析】x(x﹣3)=0得A1(3,0),再根据旋转的性质得OA1=A1A2=A2A3=…=A673A674=3,所以抛物线C764的解析式为y=﹣(x﹣2019)(x﹣2022),然解析:【解析】【分析】x(x﹣3)=0得A1(3,0),再根据旋转的性质得OA1=A1A2=A2A3=…=A673A674=3,所以抛物线C764的解析式为y=﹣(x﹣2019)(x﹣2022),然后计算自变量为2020对应的函数值即可.【详解】当y=0时,x(x﹣3)=0,解得x1=0,x2=3,则A1(3,0),∵将C1点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A 3;……∴OA 1=A 1A 2=A 2A 3=…=A 673A 674=3,∴抛物线C 764的解析式为y =﹣(x ﹣2019)(x ﹣2022),把P (2020,m )代入得m =﹣(2020﹣2019)(2020﹣2022)=2.故答案为2.【点睛】本题考查图形类规律,解题的关键是掌握图形类规律的基本解题方法.三、解答题25.(1)①2QPB AQP ∠=∠;②1.5;(2)①5;②53、255,35630、5. 【解析】【分析】(1)①根据直径所对的圆周角是直角判断△APQ 为等腰三角形,结合等腰三角形的两底角相等和圆周角定理证明;②证明△PBQ ∽△QBA ,由对应边成比例求解;(2)①画出图形,由勾股定理列方程求解;②分O 与矩形ABCD 的四边分别相切,画出图形,利用切线性质,由勾股定理列方程求解.【详解】解:(1)①如图,PQ 是直径,E 在圆上,∴∠PEQ=90°,∴PE ⊥AQ,∵AE=EQ,∴PA=PQ,∴∠PAQ=∠PQA,∴∠QPB=∠PAQ+∠PQA=2∠AQP ,∵∠QPB=2∠AQP . \②解:如图,∵BE=BQ=3,∴∠BEQ=∠BQE,∵∠BEQ=∠BPQ,∵∠PBQ=∠QBA,∴△PBQ∽△QBA,∴BP BQ BQ BA,∴3 36 BP,∴BP=1.5;(2)①如图, BP=3,BQ=1,设半径OP=r,在Rt△OPB中,根据勾股定理得,PB2+OB2=OP2∴32+(r-1)2=r2,∴r=5,∴O的半径是5.②如图,O与矩形ABCD的一边相切有4种情况,如图1,当O与矩形ABCD边BC相切于点Q,过O作OK⊥AB于K,则四边形OKBQ为矩形,设OP=OQ=r,则PK=3x,由勾股定理得,r2=12+(3-r)2,解得,r=5 3 ,∴O半径为5 3 .如图2,当O与矩形ABCD边AD相切于点N,延长NO交BC于L,则OL⊥BC,过P作PS⊥NL于S,设OS=x,则ON=OP=OQ=3+x,设PS=BL=y,由勾股定理得,2222223331x x yx x y,解得125 23x (舍去),225 23x,∴ON=25 53,∴O半径为25 5.如图3,当O与矩形ABCD边CD相切于点M,延长MO交AB于R,则OR⊥AB,过O作OH⊥BC于H,设OH=BR=x,设HQ=y, 则OM=OP=OQ=4-1-y=3-y,由勾股定理得,2222223331y x yy x y,解得163032x(舍去),263032x,∴OM=35630,∴O半径为35630.如图4,当O与矩形ABCD边AB相切于点P,过O作OG⊥BC于G,则四边形AFCG为矩形,设OF=CG=x,,则OP=OQ=x+4,由勾股定理得(x+4)2=32+(x+3)2,解得,x=1,∴OP=5,∴O半径为5.综上所述,若O与矩形ABCD的一边相切,为O的半径53,255,35630,5.【点睛】本题考查圆的相关性质,涉及圆周角定理,垂径定理,切线的性质等,综合性较强,利用分类思想画出对应图形,化繁为简是解答此题的关键.26.(1)见解析;(2【解析】【分析】(1)根据条件得出AD=AC,推出∠AFC=∠ACD,结合公共角得出三角形相似;(2)根据已知条件证明△ACF≌△DEF,得出AC=DE,利用勾股定理计算出AE的长度,再根据(1)中△AFC∽△ACE,得出AFAC=ACAE,从而计算出AF的长度.【详解】(1)∵CD⊥AB,AB是⊙O的直径∴AD=AC∴∠AFC=∠ACD.∵在△ACF和△AEC中,∠AFC=∠ACD,∠CAF=∠EAC∴△AFC ∽△ACE(2)∵四边形ACDF内接于⊙O∴∠AFD+∠ACD=180°∵∠AFD+∠DFE=180°∴∠DFE=∠ACD∵∠AFC=∠ACD∴∠AFC=∠DFE.∵△AFC∽△ACE∴∠ACF=∠DEF.∵F为AC的中点∴AF=DF.∵在△ACF和△DEF中,∠ACF=∠DEF,∠AFC=∠DFE,AF=DF ∴△ACF≌△DEF.∴AC=DE=5.∵CD⊥AB,AB是⊙O的直径∴CH=DH=3.∴EH=8在Rt△AHC中,AH2=AC2-CH2=16,在Rt△AHE中,AE2=AH2+EH2=80,∴AE=∵△AFC∽△ACE∴AF AC =AC AE,即5AF =45, ∴AF =55. 【点睛】本题属于圆与相似三角形的综合,涉及了圆内接四边形的性质,勾股定理,等弧所对的圆周角相等,相似三角形的判定定理等,解题的关键是灵活运用所学知识,正确寻找全等三角形.27.(1)把平面内,以直角三角形的直角边所在直线为旋转轴,其余两边旋转而成的曲面所围成的几何体叫做圆锥;(2)①6π;②B.【解析】【分析】(1)根据平面内图形的旋转,给圆锥下定义;(2)①根据圆锥侧面积公式求容器盖铁皮的面积;②首先求得扇形的圆心角的度数,然后求得弓形的高就是矩形的宽,长就是圆的直径.【详解】解:(1)把平面内,以直角三角形的直角边所在直线为旋转轴,其余两边旋转而成的曲面所围成的几何体叫做圆锥;(2)①由题意,容器盖铁皮的面积即圆锥的侧面积∴==23=6S rl πππ⨯⨯母侧即容器盖铁皮的面积为6πcm²;②解:设圆锥展开扇形的圆心角为n 度,则2π×2=3180n π⨯ 解得:n=240°,如图:∠AOB=120°,则∠AOC=60°,∵OB=3,∴OC=1.5,∴矩形的长为6cm ,宽为4.5cm ,故选:B .【点睛】本题考查了圆锥的定义及其有关计算,根据题意作出图形是解答本题的关键.28.(1)ME =MD =MB =MC ;(2)证明见解析;(3)证明见解析.【解析】【分析】(1)要证四个点在同一圆上,即证明四个点到定点距离相等.(2)由“直角三角形斜边上的中线等于斜边的一半”,即能证ME=MD=MB=MC,得到四边形BCDE为圆内接四边形,故有对角互补.(3)根据内心定义,需证明DG、EG、FG分别平分∠EDF、∠DEF、∠DFE.由点B、C、D、E 四点共圆,可得同弧所对的圆周角∠CBD=∠CED.又因为∠BEG=∠BFG=90°,根据(2)易证点B、F、G、E也四点共圆,有同弧所对的圆周角∠FBG=∠FEG,等量代换有∠CED=∠FEG,同理可证其余两个内角的平分线.【详解】解:(1)根据圆的定义可知,当点B、C、D、E到点M距离相等时,即他们在圆M上故答案为:ME=MD=MB=MC(2)证明:连接MD、ME∵BD、CE是△ABC的高∴BD⊥AC,CE⊥AB∴∠BDC=∠CEB=90°∵M为BC的中点∴ME=MD=12BC=MB=MC∴点B、C、D、E在以点M为圆心的同一个圆上∴∠ABC+CDE=180°∵∠ADE+∠CDE=180°∴∠ADE=∠ABC(3)证明:取BG中点N,连接EN、FN∵CE、AF是△ABC的高∴∠BEG=∠BFG=90°∴EN=FN=12BG=BN=NG∴点B、F、G、E在以点N为圆心的同一个圆上∴∠FBG=∠FEG∵由(2)证得点B、C、D、E在同一个圆上∴∠FBG=∠CED∴∠FEG=∠CED同理可证:∠EFG=∠AFD,∠EDG=∠FDG∴点G是△DEF的内心【点睛】本题考查了直角三角形斜边中线定理、中点的性质、三角形内心的判定、圆周角定理、角平分线的定义,综合性较强,解决本题的关键是熟练掌握三角形斜边中线定理、圆周角定理,能够根据题意熟练掌握各个角之间的内在联系.29.(1)12;(2)23.【解析】【分析】(1)直接利用概率公式求解;(2)画树状图展示所有12种等可能的结果数,利用一次函数的性质,找出a、b异号的结果数,然后根据概率公式求解.【详解】(1)∵共由4种可能,抽到的数字大于0的有2种,∴从中任意抽取1张,抽到的数字大于0的概率是12,故答案为:1 2(2)画树状图为:共有12种等可能的结果数,其中a、b异号有8种结果,∴这个二次函数的图象的对称轴在y轴右侧的概率为812=23.【点睛】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的。

2020-2021学年山东省枣庄市薛城区九年级(上)期末数学试卷(解析版)

2020-2021学年山东省枣庄市薛城区九年级(上)期末数学试卷(解析版)

2020-2021学年山东省枣庄市薛城区九年级第一学期期末数学试卷一、选择题(每题3分,共36分)1.若关于x的一元二次方程ax2+bx+6=0(a≠0)的其中一个解是x=1,则2021﹣a﹣b的值是()A.2022B.2025C.2027D.20282.如图,空心圆柱的左视图是()A.B.C.D.3.平行四边形ABCD的对角线AC和BD交于点O,添加一个条件不能使平行四边形ABCD 变为矩形的是()A.OD=OC B.∠DAB=90°C.∠ODA=∠OAD D.AC⊥BD4.关于x的一元二次方程x2﹣x+sinα=0有两个相等的实数根,则锐角α等于()A.15°B.30°C.45°D.60°5.在函数y=(a为常数)的图象上有三点(﹣3,y1),(﹣1,y2),(2,y3),则函数值y1,y2,y3的大小关系为()A.y3<y1<y2B.y1<y2<y3C.y3<y2<y1D.y2<y1<y36.如图,AB是⊙O的直径,CD是⊙O的弦,∠ACD=20°,则∠BAD为()A.40°B.50°C.60°D.70°7.由若干个完全相同的小正方体组成一个立体图形,它的左视图和俯视图如图所示,则小正方体的个数不可能是()A.5B.6C.7D.88.如图所示,在正方形ABCD中,G为CD边中点,连接AG并延长交BC边的延长线于E 点,对角线BD交AG于F点.已知FG=2,则线段AE的长度为()A.6B.8C.10D.129.把函数y=(x﹣1)2+2图象向左平移1个单位长度,平移后图象的函数解析式为()A.y=x2+2B.y=(x﹣1)2+1C.y=(x﹣2)2+2D.y=(x﹣1)2+3 10.已知抛物线y=x2+2x+k+1与x轴有两个不同的交点,则一次函数y=kx﹣k与反比例函数y=在同一坐标系内的大致图象是()A.B.C.D.11.如图,正方形ABCD的顶点A的坐标为(﹣1,0),点D在反比例函数y=的图象上,B点在反比例函数y=的图象上,AB的中点E在y轴上,则m的值为()A.﹣2B.﹣3C.﹣6D.﹣812.二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣1,n),其部分图象如图所示.以下结论错误的是()A.abc>0B.4ac﹣b2<0C.3a+c>0D.关于x的方程ax2+bx+c=n+1无实数根二、填空题(每题4分,共24分)13.小明沿着坡度i为1:的直路向上走了50m,则小明沿垂直方向升高了m.14.如图,设点P在函数的图象上,PC⊥x轴于点C,交函数y=的图象于点A,PD ⊥y轴于点D,交函数y=的图象于点B,则四边形PAOB的面积为.15.若二次函数:y=ax2+bx+c的x与y的部分对应值如表,则当x=1时,y的值为.x﹣7﹣6﹣5﹣4﹣3﹣2y﹣27﹣13﹣3353 16.如图,弦CD垂直于⊙O的直径AB,垂足为H,且OB=13,CD=24,则OH的长是.17.在菱形ABCD中,DE⊥AB,,BE=2,则tan∠DBE的值是.18.如图,在边长为6的正方形ABCD中,点M为对角线BD上一动点,ME⊥BC于E,MF⊥CD于F,则EF的最小值为.三、解答题(本题共7道大题满分60分)19.计算:4sin60°﹣|﹣2|+20210﹣+()﹣1.20.如图,AB是公园的一圆形桌面的主视图,MN表示该桌面在路灯下的影子;CD则表示一个圆形的凳子.(1)请你在图中标出路灯O的位置,并画出CD的影子PQ(要求保留画图痕迹,光线用虚线表示);(2)若桌面直径和桌面与地面的距离均为1.2m,测得影子的最大跨度MN为2m,求路灯O与地面的距离.21.如图,直线l:y=x﹣1与反比例函数y=相交于点A、B两点,过点A作AC⊥x轴,垂足为点C,且AC=1.(1)求反比例函数y=的解析式;(2)观察图象,直接写出不等式x﹣>1的解集.22.枣庄某学校为了解全校学生线上学习情况,随机选取该校部分学生,调查学生居家学习时每天学习时间(包括线上听课及完成作业时间).如图是根据调查结果绘制的统计图表.请你根据图表中的信息完成下列问题:频数分布表学习时间分组频数频率A组(0≤x<1)9mB组(1≤x<2)180.3C组(2≤x<3)180.3D组(3≤x<4)n0.2E组(4≤x<5)30.05(1)频数分布表中m=,n=,并将频数分布直方图补充完整;(2)若该校有学生1000名,现要对每天学习时间低于2小时的学生进行提醒,根据调查结果,估计全校需要提醒的学生有名.(3)已知调查的E组学生中有2名男生1名女生,老师随机从中选取2名学生进一步了解学生居家学习情况,请用树状图或列表求所选2名学生恰为一男生一女生的概率.23.如图所示,制作一种产品的同时,需将原材料加热,设该材料温度为y℃,从加热开始计算的时间为x分钟.据了解,该材料在加热过程中温度y与时间x成一次函数关系,已知该材料在加热前的温度为15℃,加热5分钟使材料温度达到60℃时停止加热,停止加热后,材料温度逐渐下降,这时温度y与时间x成反比例函数关系.(1)分别求出该材料加热和停止加热过程中y与x的函数关系(要写出x的取值范围);(2)根据工艺要求,在材料温度不低于30℃的这段时间内,需要对该材料进行特殊处理,那么对该材料进行特殊处理所用的时间为多少分钟?24.如图,已知四边形ABCD和四边形DEFG为正方形,点E在线段DC上,点A,D,G 在同一直线上,且AD=3,DE=1,连接AC,CG,AE,并延长AE交CG于点H.(1)求sin∠EAC的值.(2)求线段AH的长.25.如图,在平面直角坐标系中,正方形OABC的边长为4,顶点A、C分别在x轴、y轴的正半轴,抛物线y=﹣+bx+c经过B、C两点,点D为抛物线的顶点,连接AC、BD、CD.(1)求此抛物线的解析式;(2)根据图象直接写出﹣+bx+c>4时自变量x的取值范围;(3)求此抛物线顶点D的坐标和四边形ABDC的面积.四、能力拓展题(满分20分)26.如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(﹣1,1),B(0,﹣2),C(1,0),点P(0,2)绕点A旋转180°得到点P1,P1绕点B旋转180°得到点P2,P2绕点C旋转180°得到点P3,P3绕点A旋转180°得到点P4,…,按此作法进行下去,则点P2021的坐标为.27.如图,在正方形ABCD中,点M、N为边BC和CD上的动点(不含端点),∠MAN =45°,下列四个结论:①当MN=MC时,则∠BAM=22.5°;②2∠AMN﹣∠MNC =90°;③△MNC的周长不变;④∠AMN﹣∠AMB=60°.其中正确结论的序号是.28.阅读以下材料:如果两个正数a,b,即a>0,b>0,则有下面的不等式:≥,当且仅当a=b 时取到等号,我们把叫做正数a,b的算术平均数,把叫做正数a,b的几何平均数,于是上述不等式可表述为:两个正数的算术平均数不小于(即大于或等于)它们的几何平均数.它在数学中有广泛的应用,是解决最大(小)值问题的有力工具,下面举一例子:例:已知x>0,求函数y=x+的最小值.解:令a=x,b=,则由a+b≥2,得y=x+≥2=4,当且仅当x=时,即x=2时,函数有最小值,最小值为4.根据上面回答下列问题:①已知x>0,则当x=时,函数y=2x+取到最小值,最小值为;②已知x>0,则自变量x取何值时,函数y=有最大值,并求出最大值.参考答案一、选择题(每题3分,共36分)1.若关于x的一元二次方程ax2+bx+6=0(a≠0)的其中一个解是x=1,则2021﹣a﹣b的值是()A.2022B.2025C.2027D.2028解:∵关于x的一元二次方程ax2+bx+6=0(a≠0)的一个解是x=1,∴a+b+6=0,∴a+b=﹣6,∴2021﹣a﹣b=2021﹣(a+b)=2021﹣(﹣6)=2021+6=2027,故选:C.2.如图,空心圆柱的左视图是()A.B.C.D.解:圆柱的左视图是矩形,里面有两条用虚线表示的看不到的棱,故选:C.3.平行四边形ABCD的对角线AC和BD交于点O,添加一个条件不能使平行四边形ABCD 变为矩形的是()A.OD=OC B.∠DAB=90°C.∠ODA=∠OAD D.AC⊥BD解:∵四边形ABCD是平行四边形,∴OA=OC=AC,OB=OD=BD,A、OD=OC时,AC=BD,∴平行四边形ABCD是矩形,故选项A不符合题意;B、四边形ABCD是平行四边形,∠DAB=90°,∴平行四边形ABCD是矩形,故选项B不符合题意;C、∵∠ODA=∠OAD,∴OA=OD,∴AC=BD,∴平行四边形ABCD是矩形,故选项C不符合题意;D、四边形ABCD是平行四边形,AC⊥BD,∴平行四边形ABCD是菱形,故选项D符合题意;故选:D.4.关于x的一元二次方程x2﹣x+sinα=0有两个相等的实数根,则锐角α等于()A.15°B.30°C.45°D.60°解:∵关于x的一元二次方程x2﹣x+sinα=0有两个相等的实数根,∴△=﹣4sinα=2﹣4sinα=0,解得:sinα=,∵α为锐角,∴α=30°.故选:B.5.在函数y=(a为常数)的图象上有三点(﹣3,y1),(﹣1,y2),(2,y3),则函数值y1,y2,y3的大小关系为()A.y3<y1<y2B.y1<y2<y3C.y3<y2<y1D.y2<y1<y3解:∵﹣a2﹣1<0,∴函数y=(a为常数)的图象在二、四象限,且在每一象限内y随x的增大而增大,∵﹣3<﹣1<0,∴点(﹣3,y1),(﹣1,y2)在第二象限,∴y2>y1>0,∵2>0,∴点(2,y3)在第四象限,∴y3<0,∴y3<y1<y2.故选:A.6.如图,AB是⊙O的直径,CD是⊙O的弦,∠ACD=20°,则∠BAD为()A.40°B.50°C.60°D.70°解:连接BD,如图,∵AB是⊙O的直径,∴∠ADB=90°,∵∠B=∠ACD=20°,∴∠BAD=90°﹣∠B=70°.故选:D.7.由若干个完全相同的小正方体组成一个立体图形,它的左视图和俯视图如图所示,则小正方体的个数不可能是()A.5B.6C.7D.8解:由左视图可得,第2层上至少一个小立方体,第1层一共有5个小立方体,故小正方体的个数最少为:6个,故小正方体的个数不可能是5个.故选:A.8.如图所示,在正方形ABCD中,G为CD边中点,连接AG并延长交BC边的延长线于E 点,对角线BD交AG于F点.已知FG=2,则线段AE的长度为()A.6B.8C.10D.12解:∵四边形ABCD为正方形,∴AB=CD,AB∥CD,∴∠ABF=∠GDF,∠BAF=∠DGF,∴△ABF∽△GDF,∴==2,∴AF=2GF=4,∴AG=6.∵CG∥AB,AB=2CG,∴CG为△EAB的中位线,∴AE=2AG=12.故选:D.9.把函数y=(x﹣1)2+2图象向左平移1个单位长度,平移后图象的函数解析式为()A.y=x2+2B.y=(x﹣1)2+1C.y=(x﹣2)2+2D.y=(x﹣1)2+3解:∵原抛物线的顶点为(1,2),∴向左平移1个单位后,得到的顶点为(0,2),∴平移后图象的函数解析式为y=x2+2.故选:A.10.已知抛物线y=x2+2x+k+1与x轴有两个不同的交点,则一次函数y=kx﹣k与反比例函数y=在同一坐标系内的大致图象是()A.B.C.D.解:∵抛物线y=x2+2x+k+1与x轴有两个不同的交点,∴△=4﹣4(k+1)>0,解得k<0,∴一次函数y=kx﹣k的图象经过第一二四象限,反比例函数y=的图象在第二四象限,故选:D.11.如图,正方形ABCD的顶点A的坐标为(﹣1,0),点D在反比例函数y=的图象上,B点在反比例函数y=的图象上,AB的中点E在y轴上,则m的值为()A.﹣2B.﹣3C.﹣6D.﹣8解:作DM⊥x轴于M,BN⊥x轴于N,如图,∵点A的坐标为(﹣1,0),∴OA=1,∵AE=BE,BN∥y轴,∴OA=ON=1,∴AN=2,B的横坐标为1,把x=1代入y=,得y=2,∴B(1,2),∴BN=2,∵四边形ABCD为正方形,∴AD=AB,∠DAB=90°,∴∠MAD+∠BAN=90°,而∠MAD+∠ADM=90°,∴∠BAN=∠ADM,在△ADM和△BAN中,∴△ADM≌△BAN(AAS),∴DM=AN=2,AM=BN=2,∴OM=OA+AM=1+2=3,∴D(﹣3,2),∵点D在反比例函数y=的图象上,∴m=﹣3×2=﹣6,故选:C.12.二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣1,n),其部分图象如图所示.以下结论错误的是()A.abc>0B.4ac﹣b2<0C.3a+c>0D.关于x的方程ax2+bx+c=n+1无实数根解:A.∵抛物线开口向下,∴a<0,∵对称轴为直线x=﹣=﹣1,∴b=2a<0,∵抛物线与y轴交于正半轴,∴c>0,∴abc>0,故A正确;B.∵抛物线与x轴有两个交点,∴b2﹣4ac>0,即4ac﹣b2<0,故B正确;C.∵抛物线的对称轴为直线x=﹣1,抛物线与x轴的一个交点在(﹣3,0)和(﹣2,0)之间,∴抛物线与x轴的另一个交点在(0,0)和(1,0)之间,∴x=1时,y<0,即a+b+c<0,∵b=2a,∴3a+c<0,故C错误;D.∵抛物线开口向下,顶点为(﹣1,n),∴函数有最大值n,∴抛物线y=ax2+bx+c与直线y=n+1无交点,∴一元二次方程ax2+bx+c=n+1无实数根,故D正确.故选:C.二、填空题(每题4分,共24分)13.小明沿着坡度i为1:的直路向上走了50m,则小明沿垂直方向升高了25m.解:如图,过点B作BE⊥AC于点E,∵坡度:i=1:,∴tan∠A=1:=,∴∠A=30°,∵AB=50m,∴BE=AB=25(m).∴他升高了25m.故答案为:25.14.如图,设点P在函数的图象上,PC⊥x轴于点C,交函数y=的图象于点A,PD ⊥y轴于点D,交函数y=的图象于点B,则四边形PAOB的面积为3.解:根据题意,S四边形PCOD=PC•PD=5,S△OBD=S△OAC=×2=1,所以,四边形PAOB的面积=S四边形PCOD﹣S△OBD﹣S△OAC=5﹣1﹣1=3.故答案为:3.15.若二次函数:y=ax2+bx+c的x与y的部分对应值如表,则当x=1时,y的值为﹣27.x﹣7﹣6﹣5﹣4﹣3﹣2y﹣27﹣13﹣3353解:由表中数据当x=﹣2,﹣4时对应的y值相等,故对称轴为直线x=﹣3,则x=1时与x=﹣7时对应的y的值相等,故当x=1时,y的值为﹣27.故答案为:﹣27.16.如图,弦CD垂直于⊙O的直径AB,垂足为H,且OB=13,CD=24,则OH的长是5.解:连接OC,如图所示:∵AB是⊙O的直径,CD⊥AB,∴CH=CD=12,在Rt△OCH中,OH===5,故答案为:5.17.在菱形ABCD中,DE⊥AB,,BE=2,则tan∠DBE的值是2.解:设菱形ABCD边长为t,∵BE=2,∴AE=t﹣2,∵cos A=,∴,∴=,∴t=5,∴AE=5﹣2=3,∴DE==4,∴tan∠DBE===2.故答案为:2.18.如图,在边长为6的正方形ABCD中,点M为对角线BD上一动点,ME⊥BC于E,MF⊥CD于F,则EF的最小值为3.解:连接MC,如图所示:∵四边形ABCD是正方形,∴∠C=90°,∠DBC=45°,∵ME⊥BC于E,MF⊥CD于F,∴四边形MECF为矩形,∴EF=MC,当MC⊥BD时,MC取得最小值,此时△BCM是等腰直角三角形,∴MC=BC=×6=3,∴EF的最小值为3;故答案为:3.三、解答题(本题共7道大题满分60分)19.计算:4sin60°﹣|﹣2|+20210﹣+()﹣1.解:原式=4×﹣(2﹣)+1﹣2+4=2﹣2++1﹣2+4=+3.20.如图,AB是公园的一圆形桌面的主视图,MN表示该桌面在路灯下的影子;CD则表示一个圆形的凳子.(1)请你在图中标出路灯O的位置,并画出CD的影子PQ(要求保留画图痕迹,光线用虚线表示);(2)若桌面直径和桌面与地面的距离均为1.2m,测得影子的最大跨度MN为2m,求路灯O与地面的距离.解:(1)如图,延长MA、NB,它们的交点为O的,再连接OC、OD,并延长交地面与P、Q点,则PQ为CD的影子,所以点O和PQ为所作;(2)作OF⊥MN交AB于E,如图,AB=1.2m,EF=1.2m,MN=2m,∵AB∥MN,∴△OAB∽△OMN,∴AB:MN=OE:OF,即1.2:2=(OF﹣1.2):OF,解得OF=3(m).答:路灯O与地面的距离为3m.21.如图,直线l:y=x﹣1与反比例函数y=相交于点A、B两点,过点A作AC⊥x轴,垂足为点C,且AC=1.(1)求反比例函数y=的解析式;(2)观察图象,直接写出不等式x﹣>1的解集.解:(1)∵AC=1,故点A的纵坐标为1,则x﹣1=1,解得x=3,故点A(3,1),将点A的坐标代入y=得,1=,解得k=3,故反比例函数表达式为y=;(2)观察函数图象知,不等式x﹣>1的解集为﹣<x<0或x>3.22.枣庄某学校为了解全校学生线上学习情况,随机选取该校部分学生,调查学生居家学习时每天学习时间(包括线上听课及完成作业时间).如图是根据调查结果绘制的统计图表.请你根据图表中的信息完成下列问题:频数分布表学习时间分组频数频率A组(0≤x<1)9mB组(1≤x<2)180.3C组(2≤x<3)180.3D组(3≤x<4)n0.2E组(4≤x<5)30.05(1)频数分布表中m=0.15,n=12,并将频数分布直方图补充完整;(2)若该校有学生1000名,现要对每天学习时间低于2小时的学生进行提醒,根据调查结果,估计全校需要提醒的学生有450名.(3)已知调查的E组学生中有2名男生1名女生,老师随机从中选取2名学生进一步了解学生居家学习情况,请用树状图或列表求所选2名学生恰为一男生一女生的概率.解:(1)根据频数分布表可知:m=1﹣0.3﹣0.3﹣0.2﹣0.05=0.15,∵18÷0.3=60(人),∴n=60﹣9﹣18﹣18﹣3=12(人),补充完整的频数分布直方图如下:故答案为:0.15,12;(2)根据题意可知:1000×(0.15+0.3)=450(名),答:估计全校需要提醒的学生有450名;(3)设2名男生用A,B表示,1名女生用C表示,根据题意,画出树状图如下:根据树状图可知:等可能的结果共有6种,符合条件的有4种,所以所选2名学生恰为一男生一女生的概率为=.23.如图所示,制作一种产品的同时,需将原材料加热,设该材料温度为y℃,从加热开始计算的时间为x分钟.据了解,该材料在加热过程中温度y与时间x成一次函数关系,已知该材料在加热前的温度为15℃,加热5分钟使材料温度达到60℃时停止加热,停止加热后,材料温度逐渐下降,这时温度y与时间x成反比例函数关系.(1)分别求出该材料加热和停止加热过程中y与x的函数关系(要写出x的取值范围);(2)根据工艺要求,在材料温度不低于30℃的这段时间内,需要对该材料进行特殊处理,那么对该材料进行特殊处理所用的时间为多少分钟?解:(1)设加热过程中一次函数表达式为y=kx+b(k≠0),该函数图象经过点(0,15),(5,60),即,∴一次函数的表达式为y=9x+15(0≤x≤5),设加热停止后反比例函数表达式为y=(a≠0),该函数图象经过点(5,60),即=60,解得:a=300,所以反比例函数表达式为y=(x≥5);(2)由题意得:,解得x1=,,解得x2=10,则x2﹣x1=10﹣=,所以对该材料进行特殊处理所用的时间为分钟.24.如图,已知四边形ABCD和四边形DEFG为正方形,点E在线段DC上,点A,D,G 在同一直线上,且AD=3,DE=1,连接AC,CG,AE,并延长AE交CG于点H.(1)求sin∠EAC的值.(2)求线段AH的长.解:(1)作EM⊥AC于M.∵四边形ABCD是正方形,∴∠ADC=90°,AD=DC=3,∠DCA=45°,∴在RT△ADE中,∵∠ADE=90°,AD=3,DE=1,∴AE==,在RT△EMC中,∵∠EMC=90°,∠ECM=45°,EC=2,∴EM=CM=,∴在RT△AEM中,sin∠EAM===.(2)在△GDC和△EDA中,,∴△GDC≌△EDA,∴∠GCD=∠EAD,GC=AE=,∵∠DAE+∠AED=90°,∠DEA=∠CEH,∴∠DCG+∠HEC=90°,∴∠EHC=90°,∴AH⊥GC,∵S△AGC=•AG•DC=•GC•AH,∴×4×3=××AH,∴AH=.25.如图,在平面直角坐标系中,正方形OABC的边长为4,顶点A、C分别在x轴、y轴的正半轴,抛物线y=﹣+bx+c经过B、C两点,点D为抛物线的顶点,连接AC、BD、CD.(1)求此抛物线的解析式;(2)根据图象直接写出﹣+bx+c>4时自变量x的取值范围;(3)求此抛物线顶点D的坐标和四边形ABDC的面积.解:(1)∵正方形OABC的边长为4,∴OC=BC=AB=OA=4,∴C(0,4),B(4,4),∵抛物线y=﹣x2+bx+c经过B,C两点,∴,解得,∴抛物线解析式为y=﹣x2+2x+4;(2)由图象可知,﹣+bx+c>4时自变量x的取值范围是0<x<4;(3)∵y=﹣x2+2x+4=﹣(x﹣2)2+6,∴D(2,6),∴D到BC的距离为6﹣4=2,∴S四边形ABDC=S△ABC+S△BCD=×4×4+×4×2=12.四、能力拓展题(满分20分)26.如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(﹣1,1),B(0,﹣2),C(1,0),点P(0,2)绕点A旋转180°得到点P1,P1绕点B旋转180°得到点P2,P2绕点C旋转180°得到点P3,P3绕点A旋转180°得到点P4,…,按此作法进行下去,则点P2021的坐标为(2,﹣2).解:画图可知:P1(﹣2,0),P2(2,﹣4),P3(0,4),P4(﹣2,﹣2),P5(2,﹣2),P6(0,2),∵6次一个循环,2021÷6=336…5,∴P2021(2,﹣2).故答案为:(2,﹣2).27.如图,在正方形ABCD中,点M、N为边BC和CD上的动点(不含端点),∠MAN =45°,下列四个结论:①当MN=MC时,则∠BAM=22.5°;②2∠AMN﹣∠MNC =90°;③△MNC的周长不变;④∠AMN﹣∠AMB=60°.其中正确结论的序号是①②③.解:①:∵正方形ABCD中,AB=AD,∠B=∠ADC=∠C=90°∴MN2=MC2+NC2当MN=MC时,MN2=2MC2,∴MC2=NC2,∴MC=NC,∴BM=DN,∴△ABM≌△ADN(SAS)∴∠BAM=∠DAN,∵∠MAN=45°,∴∠BAM=22.5°,故①正确;②:如图,将△ABM绕点A顺时针旋转90°得△ADE,则∠EAN=∠EAM﹣∠MAN=90°﹣45°=45°,则在△EAN和△MAN中,,∴△EAN≌△MAN(SAS)∴∠AMN=∠AED,∴∠AED+∠EAM+∠ENM+∠AMN=360°,∴2∠AMN+90°+(180°﹣∠MNC)=360°,∴2∠AMN﹣∠MNC=90°,故②正确;③:∵△EAN≌△MAN,∴MN=EN=DE+DN=BM+DN,∴△MNC的周长为:MC+NC+MN=(MC+BM)+(NC+DN)=DC+BC,∵DC和BC均为正方形ABCD的边长,故△MNC的周长不变.故③正确;④如图,将△ADN绕点A逆时针旋转90°得△ABF,∴∠MAF=90°﹣∠MAN=45°,∴∠MAN=∠MAF,在△MAN和△MAF中,,∴△MAN≌△MAF(SAS),∴∠AMN=∠AMB,故④错误.综上①②③正确.故答案为:①②③.28.阅读以下材料:如果两个正数a,b,即a>0,b>0,则有下面的不等式:≥,当且仅当a=b 时取到等号,我们把叫做正数a,b的算术平均数,把叫做正数a,b的几何平均数,于是上述不等式可表述为:两个正数的算术平均数不小于(即大于或等于)它们的几何平均数.它在数学中有广泛的应用,是解决最大(小)值问题的有力工具,下面举一例子:例:已知x>0,求函数y=x+的最小值.解:令a=x,b=,则由a+b≥2,得y=x+≥2=4,当且仅当x=时,即x=2时,函数有最小值,最小值为4.根据上面回答下列问题:①已知x>0,则当x=时,函数y=2x+取到最小值,最小值为2;②已知x>0,则自变量x取何值时,函数y=有最大值,并求出最大值.解:①∵x>0,则2x>0,>0,故y=2x+≥2=2,当且仅当2x=,即x=时,函数有最小值为2,故答案为,2;②设y′===x+﹣2,∵x>0,则>0,故y′===x+﹣2≥2﹣2=4,当且仅当x=,即x=3时,y′的最小值为4,则y的最大值为,故自变量x=3时,函数y=最大值是.。

山东省枣庄市2020版九年级上学期数学期末考试试卷(I)卷

山东省枣庄市2020版九年级上学期数学期末考试试卷(I)卷

山东省枣庄市 2020 版九年级上学期数学期末考试试卷(I)卷姓名:________班级:________成绩:________一、 选择题(本大题共 6 题,每题 4 分,满分 24 分) (共 6 题;共 24 分)1. (4 分) (2017 九上·孝南期中) 对于二次函数 y=3(x-1)2+2 的图象,下列说法正确的是( )A . 开口向下B . 对称轴是直线 x=-1C . 顶点坐标是(1,2)D . 与 x 轴有两个交点2. (4 分) (2017·兰州模拟) 在平面直角坐标系中,抛物线 y=x2﹣1 与 x 轴交点的个数( )A.3B.2C.1D.03. (4 分) 如图,点 P 是 ABCD 边 AB 上的一点,射线 CP 交 DA 的延长线于点 E , 则图中相似的三角形有()A . 0对 B . 1对 C . 2对 D . 3对 4. (4 分) (2018·达州) 平面直角坐标系中,点 P 的坐标为(m,n),则向量可以用点 P 的坐标表示为=(m,n);已知=(x1 , y1),=(x2 , y2),若 x1x2+y1y2=0,则与互相垂直.下面四组向量:①=(3,﹣9),=(1,﹣ );②=(2,π0),=(2﹣1 , ﹣1);③=(cos30°,tan45°),=(sin30°,tan45°);④=(中互相垂直的组有( )A . 1组B . 2组C . 3组第 1 页 共 23 页+2, ),=( ﹣2, ).其D . 4组 5. (4 分) 已知⊙O1 和⊙O2 的半径分别为 3cm 和 4cm, 且 O1 O2 = 8cm,则⊙O1 与⊙O2 的位置关系是( ) A . 外离 B . 相交 C . 相切 D . 内含 6. (4 分) 如图,等腰直角△ABC 的直角边长为 3,P 为斜边 BC 上一点,且 BP=1,D 为 AC 上一点,且∠APD=45°, 则 CD 的长为A.B.C. D.二、 填空题(本大题共 12 题,每题 4 分,满分 48 分) (共 12 题;共 48 分)7. (4 分) (2019 九上·东台月考) 已知,则 的值为________.8. (4 分) (2019 九上·崇明期末) 化简: 9. (4 分) (2019 九上·禹城期中) 二次函数 值如下表:…-1________. 中的自变量 与函数值 的部分对应01……-2-2则的解为________.0…10. (4 分) (2020 九上·南通月考) 在平面直角坐标系中,与抛物线 抛物线的解析式是________关于 x 轴成轴对称的11. (4 分) (2019 九上·孝感月考) 二次函数的顶点坐标为________.12. (4 分) 两个相似三角形的对应高的比是 1:3,其中一个三角形的面积是 9cm2 , 则另一个三角形的面积为________cm2。

山东省枣庄市九年级上学期期末数学试卷

山东省枣庄市九年级上学期期末数学试卷

山东省枣庄市九年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2019九上·金凤期中) 下列方程中,是一元二次方程的是()A . ax2=0B . x2+y+3=0C . (x﹣1)(x+1)=1D . (x+2)(x﹣1)=x22. (2分)(2020·眉山) 如图所示的几何体的主视图为()A .B .C .D .3. (2分)如图,已知△ADE与△ABC的相似比为1:2,则△ADE与△ABC的面积比为()A . 1:2B . 1:4C . 2:1D . 4:14. (2分)已知:如图,⊙O的半径为9,弦AB⊥半径OC于H,sin∠BOC=,则AB的长度为()A . 6B . 9C . 12D . 35. (2分)(2017·兰陵模拟) 如图,菱形ABCD的周长为8,∠ABC=120°,则AC的长为()A . 2B . 2C .D . 16. (2分)(2015·江岸) 如图, 山坡AC与水平面AB成30°的角,沿山坡AC每往上爬100米,则竖直高度上升()米A . 50B . 50C . 50D . 307. (2分) (2020九上·无锡月考) 一元二次方程的根的情况是()A . 无实数根B . 有一个实根C . 有两个相等的实数根D . 有两个不相等的实数根8. (2分)如图,直线y=x+2与双曲线y=相交于点A,点A的纵坐标为3,k的值为().A . 1B . 2C . 3D . 49. (2分) (2015九上·潮州期末) 下列命题中正确的是()A . 有一组邻边相等的四边形是菱形B . 有一个角是直角的平行四边形是矩形C . 对角线垂直的平行四边形是正方形D . 一组对边平行的四边形是平行四边形10. (2分)(2017·石家庄模拟) 定义新运算:a※b= ,则函数y=3※x的图象大致是()A .B .C .D .二、填空题 (共6题;共11分)11. (1分) (2015九上·崇州期末) 已知a、b是方程x2﹣2015x+1=0的两根,则a2﹣2014a+b的值为________.12. (5分)在读书月活动中,学校准备购买一批课外读物.为使课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学只选一类),如图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了________ 名同学;(2)条形统计图中,m=________ ,n=________ ;(3)扇形统计图中,艺术类读物所在扇形的圆心角是________ 度;(4)学校计划购买课外读物6000册,请根据样本数据,估计学校购买其他类读物________ 册比较合理 .13. (1分) (2019九上·顺德月考) 如图线段AB=20cm,若点P是AB的黄金分割点(PA>PB),则线段PA的长为________cm。

九年级上册枣庄数学全册期末复习试卷测试与练习(word解析版)

九年级上册枣庄数学全册期末复习试卷测试与练习(word解析版)

九年级上册枣庄数学全册期末复习试卷测试与练习(word 解析版)一、选择题1.入冬以来气温变化异常,在校学生患流感人数明显增多,若某校某日九年级8个班因病缺课人数分别为2、6、4、6、10、4、6、2,则这组数据的众数是( ) A .5人B .6人C .4人D .8人2.某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到红灯的概率是( ) A .13B .512C .12D .13.一元二次方程x 2=-3x 的解是( ) A .x =0 B .x =3 C .x 1=0,x 2=3 D .x 1=0,x 2=-3 4.已知圆锥的底面半径为5cm ,母线长为13cm ,则这个圆锥的全面积是( ) A .265cm π B .290cm π C .2130cm π D .2155cm π 5.下列方程有两个相等的实数根是( )A .x 2﹣x +3=0B .x 2﹣3x +2=0C .x 2﹣2x +1=0D .x 2﹣4=06.如图,在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,点M 是AB 上的一点,点N 是CB 上的一点,43=BM CN ,当∠CAN 与△CMB 中的一个角相等时,则BM 的值为( )A .3或4B .83或4C .83或6D .4或67.二次函数()20y ax bx c a =++≠的图像如图所示,它的对称轴为直线1x =,与x 轴交点的横坐标分别为1x ,2x ,且110x -<<.下列结论中:①0abc <;②223x <<;③421a b c ++<-;④方程()2200ax bx c a ++-=≠有两个相等的实数根;⑤13a >.其中正确的有( )A .②③⑤B .②③C .②④D .①④⑤8.二次函数2y ax bx c =++(a ,b ,c 为常数,且0a ≠)中的x 与y 的部分对应值如下表:x2- 1-0 1 2y5 03-4-3-以下结论:①二次函数2y ax bx c =++有最小值为4-; ②当1x <时,y 随x 的增大而增大;③二次函数2y ax bx c =++的图象与x 轴只有一个交点;④当13x 时,0y <.其中正确的结论有( )个A .1B .2C .3D .49.抛物线y =x 2先向右平移1个单位,再向上平移3个单位,得到新的抛物线解析式是( ) A .y =(x+1)2+3 B .y =(x+1)2﹣3 C .y =(x ﹣1)2﹣3D .y =(x ﹣1)2+310.一个袋子中装有6个黑球3个白球,这些球除颜色外,形状、大小、质地等完全相同,在看不到球的条件下,随机地从这个袋子中摸出一个球,摸到白球的概率为( ) A .19B .13C .12D .2311.如图,P 、Q 是⊙O 的直径AB 上的两点,P 在OA 上,Q 在OB 上,PC ⊥AB 交⊙O 于C ,QD ⊥AB 交⊙O 于D ,弦CD 交AB 于点E ,若AB=20,PC=OQ=6,则OE 的长为( )A .1B .1.5C .2D .2.512.在同一坐标系内,一次函数y ax b =+与二次函数2y ax 8x b =++的图象可能是A .B .C .D .13.我国传统文化中的“福禄寿喜”图(如图)由四个图案构成.这四个图案中既是轴对称图形,又是中心对称图形的是( )A .B .C .D .14.“一般的,如果二次函数y =ax 2+bx +c 的图象与x 轴有两个公共点,那么一元二次方程ax 2+bx +c =0有两个不相等的实数根.——苏科版《数学》九年级(下册)P 21”参考上述教材中的话,判断方程x 2﹣2x =1x﹣2实数根的情况是 ( ) A .有三个实数根 B .有两个实数根 C .有一个实数根 D .无实数根 15.抛物线y =(x ﹣2)2+3的顶点坐标是( )A .(2,3)B .(﹣2,3)C .(2,﹣3)D .(﹣2,﹣3)二、填空题16.如图所示,在正方形ABCD 中,G 为CD 边中点,连接AG 并延长交BC 边的延长线于E 点,对角线BD 交AG 于F 点.已知FG =2,则线段AE 的长度为_____.17.已知一组数据为1,2,3,4,5,则这组数据的方差为_____.18.已知矩形ABCD ,AB=3,AD=5,以点A 为圆心,4为半径作圆,则点C 与圆A 的位置关系为 __________.19.若记[]x 表示任意实数的整数部分,例如:[]4.24=,21=,…,则123420192020⎡⎡⎡⎤⎡⎡⎡⎤-+-+⋅⋅⋅⋅⋅⋅+-⎣⎣⎣⎦⎣⎣⎣⎦(其中“+”“-”依次相间)的值为______.20.如图,用一张半径为10 cm 的扇形纸板做一个圆锥形帽子(接缝忽略不计),如果做成的圆锥形帽子的高为8 cm,那么这张扇形纸板的弧长是________cm.21.如图,AB是⊙O的直径,点C是⊙O上的一点,若BC=6,AB=10,OD⊥BC于点D,则OD的长为______.22.如图,在ABCD中,13BE DF BC==,若1BEGS∆=,则ABFS∆=__________.23.已知线段a、b、c,其中c是a、b的比例中项,若a=2cm,b=8cm,则线段c=_____cm.24.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径2r cm=,扇形的圆心角120θ=,则该圆锥的母线长l为___cm.25.如图,正方形ABCD的顶点A、B在圆O上,若23AB=cm,圆O的半径为2cm,则阴影部分的面积是__________2cm.(结果保留根号和π)26.把函数y=2x2的图象先向右平移3个单位长度,再向下平移2个单位长度得到新函数的图象,则新函数的表达式是_____.27.在某市中考体考前,某初三学生对自己某次实心球训练的录像进行分析,发现实心球飞行高度y (米)与水平距离x (米)之间的关系为21251233y x x =-++,由此可知该生此次实心球训练的成绩为_______米.28.在一块边长为30 cm 的正方形飞镖游戏板上,有一个半径为10 cm 的圆形阴影区域,则飞镖落在阴影区域内的概率为__________.29.有4根细木棒,它们的长度分别是2cm 、4cm 、6cm 、8cm .从中任取3根恰好能搭成一个三角形的概率是_____.30.如图,四边形ABCD 中,∠A =∠B =90°,AB =5cm ,AD =3cm ,BC =2cm ,P 是AB 上一点,若以P 、A 、D 为顶点的三角形与△PBC 相似,则PA =_____cm .三、解答题31.画图并回答问题:(1)在网格图中,画出函数2y x x 2=--与1y x =+的图像;(2)直接写出不等式221x x x -->+的解集.32.习总书记在2020新年贺词中讲到“垃圾分类引领新时尚”为积极响应号召,普及垃圾分类知识,某社区工作人员在一个小区随机抽取了若干名居民,开展垃圾分类知识有奖问答,并用得到的数据绘制了如图所示条形统计图.请根据图中信息,解答下列问题: (1)本次调查一共抽取了______名居民(2)求本次调查获取的样本数据的平均数______:中位数______;(3)杜区决定对该小区2000名居民开展这项有奖问答活动,得10分者设为一等奖.根据调查结果,估计社区工作人员需准备多少份一等奖奖品?33.我们不妨约定:如图①,若点D 在△ABC 的边AB 上,且满足∠ACD=∠B (或∠BCD=∠A ),则称满足这样条件的点为△ABC 边AB 上的“理想点”.(1)如图①,若点D 是△ABC 的边AB 的中点,AC=22AB=4.试判断点D 是不是△ABC 边AB 上的“理想点”,并说明理由.(2)如图②,在⊙O 中,AB 为直径,且AB=5,AC=4.若点D 是△ABC 边AB 上的“理想点”,求CD 的长.(3)如图③,已知平面直角坐标系中,点A(0,2),B(0,-3),C 为x 轴正半轴上一点,且满足∠ACB=45°,在y 轴上是否存在一点D ,使点A 是B ,C ,D 三点围成的三角形的“理想点”,若存在,请求出点D 的坐标;若不存在,请说明理由.34.表是2019年天气预报显示宿迁市连续5天的天气气温情况.利用方差判断这5天的日最高气温波动大还是日最低气温波动大.12月17日12月18日 12月19日 12月20日 12月21日最高气温(℃) 10 67 8 9最低气温(℃)1 0 ﹣1 0 335.如图,AD 、A ′D ′分别是△ABC 和△A ′B ′C ′的中线,且AB BD ADA B B D A D ==''''''.判断△ABC 和△A ′B ′C ′是否相似,并说明理由.四、压轴题36.如图1:在Rt △ABC 中,AB =AC ,D 为BC 边上一点(不与点B ,C 重合),试探索AD ,BD ,CD 之间满足的等量关系,并证明你的结论.小明同学的思路是这样的:将线段AD 绕点A 逆时针旋转90°,得到线段AE ,连接EC ,DE .继续推理就可以使问题得到解决.(1)请根据小明的思路,试探索线段AD ,BD ,CD 之间满足的等量关系,并证明你的结论;(2)如图2,在Rt △ABC 中,AB =AC ,D 为△ABC 外的一点,且∠ADC =45°,线段AD ,BD ,CD 之间满足的等量关系又是如何的,请证明你的结论;(3)如图3,已知AB 是⊙O 的直径,点C ,D 是⊙O 上的点,且∠ADC =45°. ①若AD =6,BD =8,求弦CD 的长为 ;②若AD+BD =14,求2AD BD CD ⎛⎫⋅+ ⎪ ⎪⎝⎭的最大值,并求出此时⊙O 的半径.37.如图①,O 经过等边ABC 的顶点A ,C (圆心O 在ABC 内),分别与AB ,CB 的延长线交于点D ,E ,连结DE ,BF EC ⊥交AE 于点F .(1)求证:BD BE =.(2)当:3:2AF EF =,6AC =,求AE 的长.(3)当:3:2AF EF =,AC a =时,如图②,连结OF ,OB ,求OFB △的面积(用含a 的代数式表示).38.问题发现:(1)如图①,正方形ABCD的边长为4,对角线AC、BD相交于点O,E是AB上点(点E 不与A、B重合),将射线OE绕点O逆时针旋转90°,所得射线与BC交于点F,则四边形OEBF的面积为.问题探究:(2)如图②,线段BQ=10,C为BQ上点,在BQ上方作四边形ABCD,使∠ABC=∠ADC =90°,且AD=CD,连接DQ,求DQ的最小值;问题解决:(3)“绿水青山就是金山银山”,某市在生态治理活动中新建了一处南山植物园,图③为南山植物园花卉展示区的部分平面示意图,在四边形ABCD中,∠ABC=∠ADC=90°,AD=CD,AC=600米.其中AB、BD、BC为观赏小路,设计人员考虑到为分散人流和便观赏,提出三条小路的长度和要取得最大,试求AB+BD+BC的最大值.39.如图,已知矩形ABCD中,BC=2cm,AB3,点E在边AB上,点F在边AD上,点E由A向B运动,连结EC、EF,在运动的过程中,始终保持EC⊥EF,△EFG为等边三角形.(1)求证△AEF∽△BCE;(2)设BE的长为xcm,AF的长为ycm,求y与x的函数关系式,并写出线段AF长的范围;(3)若点H是EG的中点,试说明A、E、H、F四点在同一个圆上,并求在点E由A到B 运动过程中,点H移动的距离.40.如图,在边长为5的菱形OABC中,sin∠AOC=45,O为坐标原点,A点在x轴的正半轴上,B,C两点都在第一象限.点P以每秒1个单位的速度沿O→A→B→C→O运动一周,设运动时间为t(秒).请解答下列问题:(1)当CP⊥OA时,求t的值;(2)当t<10时,求点P的坐标(结果用含t的代数式表示);(3)以点P为圆心,以OP为半径画圆,当⊙P与菱形OABC的一边所在直线相切时,请直接写出t的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】找出这组数据出现次数最多的那个数据即为众数.【详解】解:∵数据2、6、4、6、10、4、6、2,中数据6出现次数最多为3次,∴这组数据的众数是6.故选:B.【点睛】本题考查众数的概念,出现次数最多的数据为这组数的众数.2.C解析:C【解析】 【分析】根据随机事件A 的概率P(A)=事件A 可能出现的结果数÷所有可能出现的结果数,据此用红灯亮的时间除以以上三种灯亮的总时间,即可得出答案. 【详解】解:∵每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒, ∴红灯的概率是:301302552=++.故答案为:C. 【点睛】本题考查的知识点是简单事件的概率问题,熟记概率公式是解题的关键.3.D解析:D 【解析】 【分析】先移项,然后利用因式分解法求解. 【详解】 解:(1)x 2=-3x , x 2+3x=0, x (x+3)=0, 解得:x 1=0,x 2=-3. 故选:D . 【点睛】本题考查了解一元二次方程-因式分解法,熟练掌握因式分解的方法是解题的关键.4.B解析:B 【解析】 【分析】先根据圆锥侧面积公式:S rl π=求出圆锥的侧面积,再加上底面积即得答案. 【详解】解:圆锥的侧面积=251365cm ππ⨯⨯=,所以这个圆锥的全面积=2265590cm πππ+⨯=. 故选:B. 【点睛】本题考查了圆锥的有关计算,属于基础题型,熟练掌握圆锥侧面积的计算公式是解答的关键.5.C解析:C 【解析】【分析】先根据方程求出△的值,再根据根的判别式的意义判断即可.【详解】A 、x 2﹣x+3=0,△=(﹣1)2﹣4×1×3=﹣11<0,所以方程没有实数根,故本选项不符合题意;B 、x 2﹣3x+2=0,△=(﹣3)2﹣4×1×2=1>0,所以方程有两个不相等的实数根,故本选项不符合题意;C 、x 2﹣2x+1=0,△=(﹣2)2﹣4×1×1=0,所以方程有两个相等的实数根,故本选项符合题意;D 、x 2﹣4=0,△=02﹣4×1×(﹣4)=16>0,所以方程有两个不相等的实数根,故本选项不符合题意;故选:C .【点睛】本题考查了根的判别式,能熟记根的判别式的意义是解此题的关键.6.D解析:D【解析】【分析】分两种情形:当CAN B ∠=∠时,CAN CBA ∆∆∽,设3CN k =,4BM k =,可得CN AC AC CB=,解出k 值即可;当CAN MCB ∠=∠时,过点M 作MH CB ⊥,可得CAN BAC ∆∆∽,得出125MH k =,165BH k =,则1685CH k =-,证明ACN CHM ∆∆∽,得出方程求解即可.【详解】解:在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,∴CMB CAB CAN ∠>∠>∠,AB=10,CAN CAB ∴∠≠∠,设3CN k =,4BM k =,①当CAN B ∠=∠时,可得CAN CBA ∆∆∽, ∴CN AC AC CB=, ∴3668k =, 32k ∴=,6BM∴=.②当CAN MCB∠=∠时,如图2中,过点M作MH CB⊥,可得BMH BAC∆∆∽,∴BM MH BHBA AC BC==,∴41068k MH BH==,125MH k∴=,165BH k=,1685CH k∴=-,MCB CAN∠=∠,90CHM ACN∠=∠=︒,ACN CHM∴∆∆∽,∴CN MHAC CH=,∴123516685kkk=-,1k∴=,4BM∴=.综上所述,4BM=或6.故选:D.【点睛】本题考相似三角形的判定和性质,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造相似三角形解决问题.7.A解析:A【解析】【分析】利用抛物线开口方向得到a<0,利用对称轴位置得到b>0,利用抛物线与y轴的交点在x 轴下方得c<0,则可对①进行判断;根据二次函数的对称性对②③进行判断;利用抛物线与直线y=2的交点个数对④进行判断,利用函数与坐标轴的交点列出不等式即可判断⑤.【详解】∵抛物线开口向下,∴a<0,∵对称轴为直线1x =∴b=-2a >0∵抛物线与y 轴的交点在x 轴下方,∴c <-1,∴abc >0,所以①错误;∵110x -<<,对称轴为直线1x =∴1212x x +=故223x <<,②正确; ∵对称轴x=1,∴当x=0,x=2时,y 值相等,故当x=0时,y=c <0,∴当x=2时,y=421a b c ++<-,③正确;如图,作y=2,与二次函数有两个交点,故方程()2200ax bx c a ++-=≠有两个不相等的实数根,故④错误; ∵当x=-1时,y=a-b+c=3a+c >0,当x=0时,y=c <-1∴3a >1,故13a >,⑤正确; 故选A.【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y =ax 2+bx +c (a ≠0),二次项系数a 决定抛物线的开口方向和大小.当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置. 当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c ).也考查了二次函数的性质.8.B解析:B【解析】【分析】根据表中数据,可获取相关信息:抛物线的顶点坐标为(1,-4),开口向上,与x 轴的两个交点坐标是(-1,0)和(3,0),据此即可得到答案.①由表格给出的数据可知(0,-3)和(2,-3)是一对对称点,所以抛物线的对称轴为202+=1,即顶点的横坐标为x=1,所以当x=1时,函数取得最小值-4,故此选项正确; ②由表格和①可知当x <1时,函数y 随x 的增大而减少;故此选项错误;③由表格和①可知顶点坐标为(1,-4),开口向上,∴二次函数2y ax bx c =++的图象与x 轴有两个交点,一个是(-1,0),另一个是(3,0);故此选项错误;④函数图象在x 轴下方y<0,由表格和③可知,二次函数2y ax bx c =++的图象与x 轴的两个交点坐标是(-1,0)和(3,0),∴当13x时,y<0;故此选项正确;综上:①④两项正确,故选:B .【点睛】本题综合性的考查了二次函数的性质,解题的关键是能根据二次函数的对称性判断:纵坐标相同两个点的是一对对称点. 9.D解析:D【解析】【分析】按“左加右减,上加下减”的规律平移即可得出所求函数的解析式.【详解】抛物线y =x 2先向右平移1个单位得y =(x ﹣1)2,再向上平移3个单位得y =(x ﹣1)2+3.故选D.【点睛】本题考查了二次函数图象的平移,其规律是是:将二次函数解析式转化成顶点式y=a (x -h )2+k (a ,b ,c 为常数,a ≠0),确定其顶点坐标(h ,k ),在原有函数的基础上“h 值正右移,负左移; k 值正上移,负下移”.10.B解析:B【解析】【分析】让白球的个数除以球的总数即为摸到白球的概率.【详解】解:6个黑球3个白球一共有9个球,所以摸到白球的概率是3193=. 故选:B .【点睛】本题考查了概率,熟练掌握概率公式是解题的关键.解析:C【解析】【分析】因为OCP和ODQ为直角三角形,根据勾股定理可得OP、DQ、PQ的长度,又因为CP//DQ,两直线平行内错角相等,∠PCE=∠EDQ,且∠CPE=∠DQE=90°,可证CPE∽DQE,可得CP DQ=PE EQ,设PE=x,则EQ=14-x,解得x的取值,OE= OP-PE,则OE的长度可得.【详解】解:∵在⊙O中,直径AB=20,即半径OC=OD=10,其中CP⊥AB,QD⊥AB,∴OCP和ODQ为直角三角形,根据勾股定理:,,且OQ=6,∴PQ=OP+OQ=14,又∵CP⊥AB,QD⊥AB,垂直于用一直线的两直线相互平行,∴CP//DQ,且C、D连线交AB于点E,∴∠PCE=∠EDQ,(两直线平行,内错角相等)且∠CPE=∠DQE=90°,∴CPE∽DQE,故CP DQ=PE EQ,设PE=x,则EQ=14-x,∴68=x14-x,解得x=6,∴OE=OP-PE=8-6=2,故选:C.【点睛】本题考察了勾股定理、相似三角形的应用、两直线平行的性质、圆的半径,解题的关键在于证明CPE与DQE相似,并得出线段的比例关系.12.C解析:C【解析】【分析】x=0,求出两个函数图象在y轴上相交于同一点,再根据抛物线开口方向向上确定出a>0,然后确定出一次函数图象经过第一三象限,从而得解.【详解】x=0时,两个函数的函数值y=b,所以,两个函数图象与y轴相交于同一点,故B、D选项错误;由A、C选项可知,抛物线开口方向向上,所以,a>0,所以,一次函数y=ax+b经过第一三象限,所以,A选项错误,C选项正确.故选C.13.B解析:B【解析】试题分析:根据轴对称图形与中心对称图形的概念求解.解:A、不是轴对称图形,也不是中心对称图形.故错误;B、是轴对称图形,也是中心对称图形.故正确;C、是轴对称图形,不是中心对称图形.故错误;D、不是轴对称图形,也不是中心对称图形.故错误.故选B.点睛:掌握中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.14.C解析:C【解析】试题分析:由得,,即是判断函数与函数的图象的交点情况.因为函数与函数的图象只有一个交点所以方程只有一个实数根故选C.考点:函数的图象点评:函数的图象问题是初中数学的重点和难点,是中考常见题,在压轴题中比较常见,要特别注意.15.A解析:A【解析】【分析】根据抛物线的顶点式可直接得到顶点坐标.【详解】解:y=(x﹣2)2+3是抛物线的顶点式方程,根据顶点式的坐标特点可知,顶点坐标为(2,3).故选:A.【点睛】本题考查了二次函数的顶点式与顶点坐标,顶点式y=(x-h)2+k,顶点坐标为(h,k),对称轴为直线x=h,难度不大.二、填空题16.12【解析】【分析】根据正方形的性质可得出AB∥CD,进而可得出△ABF∽△GDF,根据相似三角形的性质可得出2,结合FG=2可求出AF、AG的长度,由CG∥AB、AB=2CG可得出CG 为△E解析:12【解析】【分析】根据正方形的性质可得出AB∥CD,进而可得出△ABF∽△GDF,根据相似三角形的性质可得出AF ABGF GD==2,结合FG=2可求出AF、AG的长度,由CG∥AB、AB=2CG可得出CG为△EAB的中位线,再利用三角形中位线的性质可求出AE的长度,此题得解.【详解】∵四边形ABCD为正方形,∴AB=CD,AB∥CD,∴∠ABF=∠GDF,∠BAF=∠DGF,∴△ABF∽△GDF,∴AF ABGF GD==2,∴AF=2GF=4,∴AG=6.∵CG∥AB,AB=2CG,∴CG为△EAB的中位线,∴AE=2AG=12.故答案为:12.【点睛】本题考查了相似三角形的判定与性质、正方形的性质以及三角形的中位线,利用相似三角形的性质求出AF的长度是解题的关键.17.【解析】试题分析:先根据平均数的定义确定平均数,再根据方差公式进行计算即可求出答案.由平均数的公式得:(1+2+3+4+5)÷5=3,∴方差=[(1﹣3)2+(2﹣3)2+(3﹣3)2+(4解析:【解析】试题分析:先根据平均数的定义确定平均数,再根据方差公式进行计算即可求出答案.由平均数的公式得:(1+2+3+4+5)÷5=3,∴方差=[(1﹣3)2+(2﹣3)2+(3﹣3)2+(4﹣3)2+(5﹣3)2]÷5=2.考点:方差.18.点C在圆外【解析】【分析】由r和CA,AB、DA的大小关系即可判断各点与⊙A的位置关系.【详解】解:∵AB=3厘米,AD=5厘米,∴AC=厘米,∵半径为4厘米,∴点C在圆A外【点解析:点C在圆外【解析】【分析】由r和CA,AB、DA的大小关系即可判断各点与⊙A的位置关系.【详解】解:∵AB=3厘米,AD=5厘米,∴AC=22+=厘米,3534∵半径为4厘米,∴点C在圆A外【点睛】本题考查了对点与圆的位置关系的判断.关键要记住若半径为r,点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上,当d<r时,点在圆内.19.-22【解析】【分析】先确定的整数部分的规律,根据题意确定算式的运算规律,再进行实数运算. 【详解】解:观察数据12=1,22=4,32=9,42=16,52=25,62=36的特征,得出数解析:-22【解析】【分析】2020的整数部分的规律,根据题意确定算式-+-+⋅⋅⋅⋅⋅⋅+-的运算规律,再进行实数运算.【详解】解:观察数据12=1,22=4,32=9,42=16,52=25,62=36的特征,得出数据1,2,3,4 (2020)中,算术平方根是1的有3个,算术平方根是2的有5个,算数平方根是3的有7个,算数平方根是4的有9个,…其中432=1849,442=1936,452=2025,所以在、⋅⋅⋅⋅⋅⋅中,算术平方根依次为1,2,3……43的个数分别为3,5,7,9……个,均为奇数个,最大算数平方根为44的有85个,所以-+-+⋅⋅⋅⋅⋅⋅+-=1-2+3-4+…+43-44= -22【点睛】本题考查自定义运算,通过正整数的算术平方根的整数部分出现的规律,找到算式中相同加数的个数及符号的规律,方能进行运算.20.【解析】【分析】首先求出圆锥的底面半径,然后可得底面周长,问题得解.【详解】解:∵扇形的半径为10cm,做成的圆锥形帽子的高为8cm,∴圆锥的底面半径为cm,∴底面周长为2π×6=12解析:12π【解析】【分析】首先求出圆锥的底面半径,然后可得底面周长,问题得解.【详解】解:∵扇形的半径为10cm,做成的圆锥形帽子的高为8cm,=cm,6∴底面周长为2π×6=12πcm,即这张扇形纸板的弧长是12πcm,故答案为:12π.【点睛】本题考查圆锥的计算,用到的知识点为:圆锥的底面周长=侧面展开扇形的弧长.21.4【解析】【分析】根据垂径定理求得BD,然后根据勾股定理求得即可.【详解】解:∵OD⊥BC,∴BD=CD=BC=3,∵OB=AB=5,∴在Rt△OBD中,OD==4.故答案为4.解析:4【解析】【分析】根据垂径定理求得BD,然后根据勾股定理求得即可.【详解】解:∵OD⊥BC,∴BD=CD=1BC=3,2∵OB=1AB=5,2∴在Rt△OBD中,=4.故答案为4.【点睛】本题考查垂径定理及其勾股定理,熟记定理并灵活应用是本题的解题关键.22.6【解析】【分析】先根据平行四边形的性质证得△BEG∽△FAG,从而可得相似比,然后根据同高的两个三角形的面积等于底边之比可求得,根据相似三角形的性质可求得,进而可得答案.解:∵四解析:6【解析】【分析】先根据平行四边形的性质证得△BEG ∽△FAG ,从而可得相似比,然后根据同高的两个三角形的面积等于底边之比可求得ABG S ∆,根据相似三角形的性质可求得AFG S ∆,进而可得答案.【详解】解:∵四边形ABCD 是平行四边形,∴AD=BC ,AD ∥BC ,∴△BEG ∽△FAG , ∵13BE DF BC ==, ∴12EG BE AG AF ==, ∴211,24BEG BEG ABG AFG S S EG BE S AG S AF ∆∆∆∆⎛⎫==== ⎪⎝⎭, ∵1BEG S ∆=,∴2ABG S ∆=,4AFG S ∆=,∴6ABF ABG AFG S S S ∆∆∆=+=.故答案为:6.【点睛】本题考查了平行四边形的性质、相似三角形的判定和性质以及三角形的面积等知识,属于常考题型,熟练掌握平行四边形的性质和相似三角形的判定与性质是解答的关键. 23.4【解析】【分析】根据比例中项的定义,列出比例式即可求解.【详解】∵线段c 是a 、b 的比例中项,线段a =2cm ,b =8cm ,∴=,∴c2=ab =2×8=16,∴c1=4,c2=﹣4(舍解析:4【解析】【分析】根据比例中项的定义,列出比例式即可求解.∵线段c 是a 、b 的比例中项,线段a =2cm ,b =8cm , ∴a c =c b, ∴c 2=ab =2×8=16,∴c 1=4,c 2=﹣4(舍去),∴线段c =4cm .故答案为:4【点睛】本题考查了比例中项的概念:当两个比例内项相同时,就叫比例中项.这里注意线段不能是负数.24.【解析】【分析】易得圆锥的底面周长,也就是侧面展开图的弧长,进而利用弧长公式即可求得圆锥的母线长.【详解】圆锥的底面周长cm ,设圆锥的母线长为,则: ,解得,故答案为.【点睛】本解析:【解析】【分析】易得圆锥的底面周长,也就是侧面展开图的弧长,进而利用弧长公式即可求得圆锥的母线长.【详解】圆锥的底面周长224ππ=⨯=cm ,设圆锥的母线长为R ,则:1204180R ππ⨯=, 解得6R =,故答案为6.【点睛】本题考查了圆锥的计算,用到的知识点为:圆锥的侧面展开图的弧长等于底面周长;弧长公式为: 180n r π. 25.【解析】设AD 和BC 分别与圆交于点E 和F ,连接AF 、OE ,过点O 作OG⊥AE,根据90°的圆周角对应的弦是直径,可得AF 为圆的直径,从而求出AF ,然后根据锐角三角函数和勾股定理,即可求解析:412333π-- 【解析】【分析】设AD 和BC 分别与圆交于点E 和F ,连接AF 、OE ,过点O 作OG ⊥AE ,根据90°的圆周角对应的弦是直径,可得AF 为圆O 的直径,从而求出AF ,然后根据锐角三角函数和勾股定理,即可求出∠AFB 和BF ,然后根据平行线的性质、锐角三角函数和圆周角定理,即可求出OG 、AG 和∠EOF ,最后利用S 阴影=S 梯形AFCD -S △AOE -S 扇形EOF 计算即可.【详解】解:设AD 和BC 分别与圆交于点E 和F ,连接AF 、OE ,过点O 作OG ⊥AE∵四边形ABCD 是正方形∴∠ABF=90°,AD ∥BC ,BC=CD=AD=23AB =∴AF 为圆O 的直径∵23AB =cm ,圆O 的半径为2cm ,∴AF=4cm在Rt △ABF 中sin ∠AFB=3AB AF ,BF=222AF AB -= ∴∠AFB=60°,FC=BC -BF=()232cm∴∠EAF=∠AFB=60°∴∠EOF=2∠EAF=120°在Rt △AOG 中,OG=sin ∠EAF ·3cm ,AG= cos ∠EAF ·AO=1cm根据垂径定理,AE=2AG=2cm∴S 阴影=S 梯形AFCD -S △AOE -S 扇形EOF=()21112022360OE CD FC AD AE OG π•+-•- =()211120223232232322360π•⨯+-⨯=24123cm π⎛⎫- ⎪⎝⎭故答案为:4123π-. 【点睛】 此题考查的是求不规则图形的面积,掌握正方形的性质、90°的圆周角对应的弦是直径、垂径定理、勾股定理和锐角三角函数的结合和扇形的面积公式是解决此题的关键.26.y =2(x ﹣3)2﹣2.【解析】【分析】利用二次函数平移规律即可求出结论.【详解】解:由函数y =2x2的图象先向右平移3个单位长度,再向下平移2个单位长度得到新函数的图象,得新函数的表达解析:y =2(x ﹣3)2﹣2.【解析】【分析】利用二次函数平移规律即可求出结论.【详解】解:由函数y =2x 2的图象先向右平移3个单位长度,再向下平移2个单位长度得到新函数的图象,得新函数的表达式是y =2(x ﹣3)2﹣2,故答案为y =2(x ﹣3)2﹣2.【点睛】本题主要考查的是二次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键.27.10【解析】【分析】根据铅球落地时,高度,把实际问题可理解为当时,求x 的值即可.【详解】解:当时,,解得,(舍去),.故答案为10.【点睛】本题考查了二次函数的实际应用,解析式中自解析:10【解析】【分析】根据铅球落地时,高度0y =,把实际问题可理解为当0y =时,求x 的值即可.【详解】解:当0y =时,212501233y x x =-++=, 解得,2x =-(舍去),10x =.故答案为10.【点睛】本题考查了二次函数的实际应用,解析式中自变量与函数表达的实际意义;结合题意,选取函数或自变量的特殊值,列出方程求解是解题关键.28.【解析】【分析】分别计算半径为10cm 的圆的面积和边长为30cm 的正方形ABCD 的面积,然后计算即可求出飞镖落在圆内的概率;【详解】解:(1)∵半径为10cm 的圆的面积=π•102=100 解析:9π 【解析】【分析】 分别计算半径为10cm 的圆的面积和边长为30cm 的正方形ABCD 的面积,然后计算S S 半圆正方形即可求出飞镖落在圆内的概率;【详解】解:(1)∵半径为10cm 的圆的面积=π•102=100πcm 2,边长为30cm 的正方形ABCD 的面积=302=900cm 2, ∴P (飞镖落在圆内)=100==9009S S ππ半圆正方形,故答案为:9π. 【点睛】本题考查了几何概率,掌握概率=相应的面积与总面积之比是解题的关键.29.【解析】【分析】根据题意列举出所有4种等可能的结果数,再根据题意得出能够构成三角形的结果数,最后根据概率公式即可求解.【详解】从中任取3根共有4种等可能的结果数,它们为2、4、6;2、4、 解析:14【解析】【分析】根据题意列举出所有4种等可能的结果数,再根据题意得出能够构成三角形的结果数,最后根据概率公式即可求解.【详解】从中任取3根共有4种等可能的结果数,它们为2、4、6;2、4、8;2、6、8;、4、6、8,其中恰好能搭成一个三角形为4、6、8, 所以恰好能搭成一个三角形的概率=14. 故答案为14. 【点睛】本题考查列表法或树状图法和三角形三边关系,解题的关键是通过列表法或树状图法展示出所有等可能的结果数及求出构成三角形的结果数. 30.2或3【解析】【分析】根据相似三角形的判定与性质,当若点A ,P ,D 分别与点B ,C ,P 对应,与若点A ,P ,D 分别与点B ,P ,C 对应,分别分析得出AP 的长度即可.【详解】解:设AP =xcm .则解析:2或3【解析】【分析】根据相似三角形的判定与性质,当若点A ,P ,D 分别与点B ,C ,P 对应,与若点A ,P ,D 分别与点B ,P ,C 对应,分别分析得出AP 的长度即可.【详解】解:设AP =xcm .则BP =AB ﹣AP =(5﹣x )cm以A ,D ,P 为顶点的三角形与以B ,C ,P 为顶点的三角形相似,①当AD :PB =PA :BC 时,352x x =-, 解得x =2或3.。

薛城区初三期末数学试卷

薛城区初三期末数学试卷

一、选择题(每题3分,共30分)1. 下列各数中,无理数是()A. √2B. 3.14C. 1/2D. -1/32. 下列各式中,正确的是()A. a^2 = aB. (a + b)^2 = a^2 + b^2C. (a - b)^2 = a^2 - b^2D. (a + b)(a - b) = a^2 - b^23. 下列函数中,为一次函数的是()A. y = √xB. y = x^2C. y = 2x + 1D. y = 3/x4. 已知二次函数y = ax^2 + bx + c的图像开口向上,且顶点坐标为(-2, 3),则a、b、c的值分别为()A. a > 0,b = -4,c = -1B. a > 0,b = 4,c = -1C. a < 0,b = -4,c = -1D. a < 0,b = 4,c = -15. 下列各式中,正确的是()A. sin^2x + cos^2x = 1B. tan^2x + 1 = sec^2xC. cot^2x + 1 = csc^2xD. cos^2x - sin^2x = 2sinx6. 下列各式中,正确的是()A. a^3 × a^4 = a^7B. (a^2)^3 = a^6C. (a^3)^2 = a^6D. a^2 × a^3 = a^57. 下列各式中,正确的是()A. log2(8) = 3B. log2(1/2) = -1C. log2(1/4) = -2D. log2(1/8) = -38. 下列各式中,正确的是()A. (3a)^2 = 9a^2B. (-2b)^3 = -8b^3C. (5c)^4 = 625c^4D. (-4d)^2 = 16d^29. 下列各式中,正确的是()A. 2^3 × 3^2 = 18B. 5^2 × 7^3 = 245C. 2^4 × 3^2 = 72D. 3^3 × 5^2 = 13510. 下列各式中,正确的是()A. √(25 + 16) = 9B. √(49 - 9) = 4C. √(36 - 25) = 3D. √(64 - 16) = 8二、填空题(每题3分,共30分)11. 已知a = -3,b = 4,则a^2 + b^2 = _______。

薛城初三期末数学试卷

薛城初三期末数学试卷

一、选择题(每题3分,共30分)1. 下列各数中,不是有理数的是()A. 3.14B. -5C. √4D. π2. 已知a,b是实数,若a + b = 0,则下列选项中正确的是()A. a = bB. a = -bC. a > bD. a < b3. 下列各式中,能被2整除的是()A. 3x^2 + 4x - 5B. 5x^2 + 6x + 7C. 2x^2 + 3x - 4D. 4x^2 - 5x + 64. 下列函数中,是奇函数的是()A. y = x^2B. y = x^3C. y = |x|D. y = x^45. 在等腰三角形ABC中,若AB = AC,且∠BAC = 40°,则∠ABC的度数是()A. 40°B. 50°C. 70°D. 80°6. 下列命题中,正确的是()A. 所有平行四边形都是矩形B. 所有等边三角形都是等腰三角形C. 所有圆都是椭圆D. 所有正方形都是矩形7. 若等差数列{an}的首项为a1,公差为d,则第n项an=()A. a1 + (n-1)dB. a1 - (n-1)dC. a1 + ndD. a1 - nd8. 已知x + y = 5,x - y = 1,则x^2 + y^2的值为()A. 14B. 15C. 16D. 179. 下列函数中,是反比例函数的是()A. y = 2x + 3B. y = 3/xC. y = x^2D. y = √x10. 在平面直角坐标系中,点P(2, -3)关于原点对称的点是()A. (2, -3)B. (-2, 3)C. (2, 3)D. (-2, -3)二、填空题(每题3分,共30分)11. 若方程2x - 5 = 3x + 1的解为x = ,则该方程的解集是。

12. 已知等比数列{an}的首项为a1,公比为q,若a1 = 2,q = 3,则第5项an = 。

山东省枣庄市九年级上学期数学期末考试试卷

山东省枣庄市九年级上学期数学期末考试试卷

山东省枣庄市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)在比例尺为1:5000的地图上,量得甲、乙两地的距离为25cm,则甲、乙两地的实际距离是()A . 1 250 kmB . 125 kmC . 12.5 kmD . 1.25 km【考点】2. (2分) (2019九上·岑溪期中) 抛物线y=(x-2)2+3的对称轴是()A . 直线x=3B . 直线x=-3C . 直线x=-2D . 直线x=2【考点】3. (2分)在下列事件中,随机事件是()A . 通常温度降到0℃以下,纯净的水会结冰B . 随意翻到一本书的某页,这页的页码是奇数C . 明天的太阳从东方升起D . 在一个不透明的袋子里装有完全相同的6个红色小球,随机抽取一个白球【考点】4. (2分)如图,AB是的直径,CD是的弦,连结AC,AD,BD,若,则的度数为()B .C .D .【考点】5. (2分) (2018九上·汨罗期中) 一元二次方程,用配方法解该方程,配方后的方程为()A .B .C .D .【考点】6. (2分) (2019九上·沙坪坝期末) 若△ABC∽△DEF,相似比为5:4,则对应中线的比为()A . 5:4B . :2C . 25:16D . 16:25【考点】7. (2分)已知二次函数的对称轴是直线x=﹣1及部分图像(如图所示),由图像可知关于x的一元二次方程的两个根分别是和()A . ﹣1.3B . ﹣2.3C . ﹣3.3【考点】8. (2分)圆锥的高h、母线长l满足l=2h,底面半径为r,则其侧面展开图形的面积为()A . πh2B . 2πh2C . πhr2D . πhr2【考点】二、填空题 (共8题;共8分)9. (1分) (2020九上·长春月考) 关于x的一元二次方程的根的判别式的值为________.【考点】10. (1分) (2019九上·深圳期末) 如图,小明周末晚上陪父母在锦江绿道上散步,他由灯下A处前进4米到达B处时,测得影子BC长为1米,已知小明身高1.6米,他若继续往前走4米到达D处,此时影子DE长为________米.【考点】11. (1分)(2014·镇江) 如图,将△OAB绕着点O逆时针连续旋转两次得到△OA″B″,每次旋转的角度都是50°.若∠B″OA=120°,则∠AOB=________.12. (1分)从﹣1、、1这三个数中任取两个不同的数作为点A的坐标,则点A在第二象限的概率是________.【考点】13. (1分) (2020九上·沭阳月考) 若一元二次方程ax2﹣bx﹣2020=0有一根为x=﹣1,则a+b=________.【考点】14. (1分)(2018·遵义) 如图,在菱形ABCD中,∠ABC=120°,将菱形折叠,使点A恰好落在对角线BD上的点G处(不与B、D重合),折痕为EF,若DG=2,BG=6,则BE的长为________.【考点】15. (1分) (2018九上·东河月考) 下列命题:①所有的等腰三角形都相似;②所有的等边三角形都相似;③所有的等腰直角三角形都相似;④所有的直角三角形都相似;其中真命题是________(把所有真命题的序号都填上).【考点】16. (1分)当x=m或x=n(m≠n)时,代数式x2﹣2x+3的值相等,则x=m+n时,代数式x2﹣2x+3的值为________【考点】三、解答题 (共10题;共122分)17. (10分)解方程(1) x2﹣6x+8=0(2) x2﹣5x﹣6=0.18. (25分)在直角坐标平面内,已知点A (3,y1),点B(x2 , 5),根据下列条件,求出x2 , y1的值.(1) A、B关于x轴对称;(2) A、B关于y轴对称;(3) A、B关于原点对称;(4) AB平行于x轴;(5) AB平行于y轴.【考点】19. (5分)(2015·天津) 已知A、B、C是⊙O上的三个点.四边形OABC是平行四边形,过点C作⊙O的切线,交AB的延长线于点D.(Ⅰ)如图①,求∠ADC的大小.(Ⅱ)如图②,经过点O作CD的平行线,与AB交于点E ,与交于点F ,连接AF ,求∠FAB的大小.【考点】20. (10分)(2020·双柏模拟) 如图,转盘A的三个扇形面积相等,分别标有数字1,2,3,转盘B的四个扇形面积相等,分别标有数字1,2,3,4.转动A、B转盘各一次,当转盘停止转动时,将指针所落扇形中的两个数字相乘(当指针落在四个扇形的交线上时,重新转动转盘).(1)用树状图或列表法列出所有可能出现的结果;(2)若规定两个数字的积为偶数时甲赢,两个数字的积为奇数时乙赢,请问这个游戏对甲、乙两人是否公平?【考点】21. (10分) (2019·上海模拟) 已知:如图,在△ABC中,AB = 4,BC = 5,点P在边AC上,且,联结BP ,以BP为一边作△BPQ(点B、P、Q按逆时针排列),点G是△BPQ的重心,联结BG ,∠PBG =∠BCA ,∠QBG =∠BAC ,联结CQ并延长,交边AB于点M .设PC = x ,.(1)求的值;(2)求y关于x的函数关系式.【考点】22. (10分) (2019九上·呼兰期中) 如图,依靠一面长18米的墙,用36米长的篱笆围成一个矩形场地,设长为x米矩形的面积为S平方米.(1)用含有x的代数式表示S,并直接写出x的取值范围;(2)当矩形场地的面积为160平方米时,求的长.【考点】23. (12分) (2019九上·新田期中) 定义:在平面直角坐标系中,把点先向右平移1个单位,再向上平移2个单位的平移称为一次斜平移.已知点A(1,0),点A经过n次斜平移得到点B,点M是线段AB的中点.(1)当n=3时,点B的坐标是________,点M的坐标是________;(2)如图1,当点M落在的图像上,求n的值;(3)如图2,当点M落在直线上,点C是点B关于直线的对称点,BC与直线相交于点N.①求证:△ABC是直角三角形②当点C的坐标为(5,3)时,求MN的长.【考点】24. (15分) (2019八上·蓬江期末) 如图,△ABC中,AB=BC=AC=24cm,现有两点M、N分别从点A、点B 同时出发,沿三角形的边运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N第一次到达B点时,M、N 同时停止运动.(1)点M,N运动几秒后,M、N两点重合?(2)点M、N运动几秒后,可得到等边三角形△AMN?(3)当点M、N在BC边上运动时,能否得到以MN为底边的等腰三角形AMN?如存在,请求出此时M、N运动的时间.【考点】25. (10分)(2020·苏州模拟) 如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交BC于点D,交CA的延长线于点E,过点D作DH⊥AC,垂足为点H,连接DE,交AB于点F.(1)求证:DH是⊙O的切线;(2)若⊙O的半径为4,①当AE=FE时,求的长(结果保留π);②当时,求线段AF的长.【考点】26. (15分)如图,顶点M在y轴上的抛物线与直线y=x+1相交于A、B两点,且点A在x轴上,点B的横坐标为2,连结AM、BM.(1)求抛物线的函数关系式;(2)判断△ABM的形状,并说明理由(3)把抛物线与直线y=x的交点称为抛物线的不动点.若将(1)中抛物线平移,使其顶点为(m,2m),当m 满足什么条件时,平移后的抛物线总有不动点.【考点】参考答案一、单选题 (共8题;共16分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:二、填空题 (共8题;共8分)答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:三、解答题 (共10题;共122分)答案:17-1、答案:17-2、考点:解析:答案:18-1、答案:18-2、答案:18-3、答案:18-4、答案:18-5、考点:解析:答案:19-1、考点:解析:答案:20-1、答案:20-2、考点:解析:答案:21-1、答案:21-2、考点:解析:答案:22-1、答案:22-2、考点:解析:答案:23-1、答案:23-2、答案:23-3、考点:解析:答案:24-1、答案:24-2、答案:24-3、考点:解析:答案:25-1、考点:解析:答案:26-1、答案:26-2、答案:26-3、考点:解析:。

山东省枣庄市九年级上学期数学期末考试试卷

山东省枣庄市九年级上学期数学期末考试试卷

山东省枣庄市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题(本大题共6小题,共24.0分) (共6题;共24分)1. (4分)对于线段a,b,如果a∶b=2∶3,那么下列四个选项一定正确的是()A . 2a=3bB . b-a=1C .D .2. (4分) (2019九上·定安期末) 如图,P是∠α的边OA上一点,且点P的横坐标为3,sinα=,则tanα=()A .B .C .D .3. (4分) (2020九上·昭平期末) 下列二次函数的开口方向一定向上的是()A . y=-3x2-1B . y=- x2+1C . y= x2+3D . y=-x2-54. (4分)下列各组图形必相似的是()A . 任意两个等腰三角形B . 有两边对应成比例,且有一个角对应相等的两三角形C . 两边为4和5的直角三角形与两边为8和10的直角三角形D . 两边及其中一边上的中线对应成比例的两三角形5. (4分)(2019·黄浦模拟) 下列等式成立的是()A .B .C .D .6. (4分) (2018九上·崇明期末) 如果两圆半径分别为5和8,圆心距为3,那么这两个圆的位置关系是()A . 外离B . 外切C . 相交D . 内切二、填空题(本大题共12小题,共48.0分) (共12题;共48分)7. (4分) (2019九上·普陀期末) 化简: =________.8. (4分)实数3与6的比例中项是________9. (4分)(2018·枣庄) 如图,某商店营业大厅自动扶梯AB的倾斜角为31°,AB的长为12米,则大厅两层之间的高度为________米.(结果保留两个有效数字)【参考数据;sin31°=0.515,cos31°=0.857,tan31°=0.601】10. (4分) (2020七下·南京期中) 小林从P点向西直走12米后向左转,转动的角度为α,再直走12米,又向左转α,如此重复,小林共走了108米后回到点P,则α=________.11. (4分) (2018九上·深圳开学考) 已知△ABC∽△DEF,若△ABC与△DEF的相似比为3∶4,则△ABC与△DEF的面积比为________.12. (4分) (2017八下·徐州期末) 若点P是线段AB的黄金分割点(PA>PB),且AB=10cm,则PA≈________cm.(精确到0.01cm)13. (4分) (2019九上·鸠江期中) 把二次函数化为形如的形式为________.14. (4分) (2019九上·保山期中) 已知二次函数,则该二次函数的对称轴为________.15. (4分) (2017九上·鸡西期末) 已知△ABC与△DEF相似,且对应边的比为1:2,则△ABC与△DEF的面积比为________.16. (4分)(2016·贺州) 在矩形ABCD中,∠B的角平分线BE与AD交于点E,∠BED的角平分线EF与DC交于点F,若AB=9,DF=2FC,则BC=________(结果保留根号)17. (4分) (2016九上·永城期中) 已知圆的半径为3,直线l与圆有两个公共点,则圆心到直线l的距离d的取值范围为________.18. (4分)(2018·上海) 如图,已知平行四边形ABCD,E是边BC的中点,联结DE并延长,与AB的延长线交于点F.设 = , = 那么向量用向量、表示为________.三、解答题(本大题共7小题,共78.0分) (共7题;共78分)19. (6分)(2019·怀化模拟) 计算:.20. (12分) (2019九上·龙岗期中) 已知:如图,在Rt△ACB中,∠C=90°,BC=3cm,AC=3 cm,点P 由B点出发沿BA方向向点A匀速运动,速度为2cm/s;点Q由A点出发沿AC方向向点C匀速运动,速度为 cm/s;若设运动的时间为t(s)(0<t<3),解答下列问题:(1)如图①,连接PC,当t为何值时△APC∽△ACB,并说明理由;(2)如图②,当点P,Q运动时,是否存在某一时刻t,使得点P在线段QC的垂直平分线上,请说明理由;(3)如图③,当点P,Q运动时,线段BC上是否存在一点G,使得四边形PQGB为菱形?若存在,试求出BG 长;若不存在请说明理由.21. (12分) (2017九上·东台期末) 如图,已知是⊙ 的直径,是⊙ 上一点,∠ 的平分线交⊙ 于点,交⊙ 的切线于点,过点作⊥ ,交的延长线于点.(1)求证:是⊙ 的切线;(2)若.求值.22. (12分)(2018·柳州) 如图,为的内接三角形,为的直径,过点作的切线交的延长线于点.(1)求证:;(2)过点作的切线交于点,求证:;(3)若点为直径下方半圆的中点,连接交于点,且,,求的长.23. (12分) (2018九下·滨湖模拟) 如图,在Rt△ABC中,∠ACB=90°,BC=3,AC=4,G是边AB的中点,平行于AB的动直线l分别交△ABC的边CA、CB于点M、N,设CM=m.(1)当m=1时,求△MNG的面积;(2)若点G关于直线l的对称点为点G′,请求出点G′ 恰好落在△ABC的内部(不含边界)时,m的取值范围;(3)△MNG是否可能为直角三角形?如果能,请求出所有符合条件的m的值;如果不能,请说明理由.24. (12分)(2019·平谷模拟) 现有一次函数y=mx+n和二次函数y=mx2+nx+1,其中m≠0,(1)若二次函数y=mx2+nx+1经过点(2,0),(3,1),试分别求出两个函数的解析式.(2)若一次函数y=mx+n经过点(2,0),且图象经过第一、三象限.二次函数y=mx2+nx+1经过点(a,y1)和(a+1,y2),且y1>y2 ,请求出a的取值范围.(3)若二次函数y=mx2+nx+1的顶点坐标为A(h,k)(h≠0),同时二次函数y=x2+x+1也经过A点,已知﹣1<h<1,请求出m的取值范围.25. (12分)(2016·丽水) 如图,矩形ABCD中,点E为BC上一点,F为DE的中点,且∠BFC=90°.(1)当E为BC中点时,求证:△BCF≌△DEC;(2)当BE=2EC时,求的值;(3)设CE=1,BE=n,作点C关于DE的对称点C′,连结FC′,AF,若点C′到AF的距离是,求n 的值.参考答案一、选择题(本大题共6小题,共24.0分) (共6题;共24分) 1-1、2-1、3-1、4-1、5-1、6-1、二、填空题(本大题共12小题,共48.0分) (共12题;共48分) 7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题(本大题共7小题,共78.0分) (共7题;共78分)19-1、20-1、20-2、20-3、21-1、21-2、22-1、22-2、22-3、23-1、23-2、23-3、24-1、24-2、24-3、25-1、25-2、25-3、。

山东省枣庄市2020年九年级上学期数学期末考试试卷B卷

山东省枣庄市2020年九年级上学期数学期末考试试卷B卷

山东省枣庄市2020年九年级上学期数学期末考试试卷B卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2013八下·茂名竞赛) 在下列平面图形中,是中心对称图形的是()A .B .C .D .2. (2分)设有反比例函数y=,(x1 , y1)、(x2 , y2)为其图象上的两点,若x1<0<x2时y1>y2 ,则k的取值范围是()A . k>0B . k<0C . k>-1D . k<-13. (2分) (2017九下·萧山开学考) 将抛物线y=x2﹣2向左平移1个单位后再向上平移1个单位所得抛物线的表达式为()A .B .C .D .4. (2分)如图,一个正六边形转盘被分成6个全等的正三角形,任意旋转这个转盘1次,当旋转停止时,指针指向阴影区域的概率是().A .B .C .D .5. (2分) (2016九上·栖霞期末) 如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,O是△ABC的内心,以O 为圆心,r为半径的圆与线段AB有交点,则r的取值范围是()A . r≥1B . 1≤r≤C . 1≤r≤D . 1≤r≤46. (2分)已知a,b是一元二次方程x2﹣2x﹣1=0的两个实数根,则代数式(a﹣b)(a+b﹣2)+ab的值等于()A . ﹣1B . 1C . ±8﹣1D . ±8+17. (2分)二元二次方程组的解的个数是()A . 1B . 2C . 3D . 48. (2分)下列说法正确的是()A . 圆内接正六边形的边长与该圆的半径相等B . 在平面直角坐标系中,不同的坐标可以表示同一点C . 一元二次方程ax2+bx+c=0(a≠0)一定有实数根D . 将△ABC绕A点按顺时针方向旋转60°得△ADE,则△ABC与△ADE不全等9. (2分)一次函数与反比例函数,在同一直角坐标系中的图象如图所示,若,则x的取值范围是()A . 或B . 或C .D .10. (2分) (2016九上·大石桥期中) 如图,从地面竖直向上抛出一个小球,小球的高度h(单位:m )与小球运动时间t(单位:s)之间的函数关系式为h=30t﹣5t2 ,那么小球从抛出至回落到地面所需的时间是()A . 6 sB . 4 sC . 3 sD . 2 s二、填空题 (共6题;共6分)11. (1分)(2020·黄石模拟) 甲、乙两位同学各抛掷一枚质地均匀的骰子,他们抛掷的点数分别记为、,则能被整除的概率为________.12. (1分) (2018八上·巍山期中) 点P(1,-1)关于原点对称的点的坐标是________.13. (1分)(2018·天河模拟) 如图,用一个圆心角为120°的扇形围成一个无底的圆锥,如果这个圆锥底面圆的半径为1 cm,则这个扇形的半径是________cm.14. (1分)(2019·无锡) 如图,在△ABC中,AC:BC:AB=5:12:13,⊙O在△ABC内自由移动,若⊙O的半径为1,且圆心O在△ABC内所能到达的区域的面积为,则△ABC的周长为________.15. (1分)(2019·乌鲁木齐模拟) 如图,正比例函数y=kx与反比例函数y= 的图象有一个交点A(2,m),AB⊥x轴于点B,平移直线y=kx使其经过点B,得到直线l,则直线l对应的函数表达式是________ .16. (1分)若m是方程x2﹣2x=2的一个根,则2m2﹣4m+2010的值是________.三、解答题 (共9题;共97分)17. (10分)解下列方程(1)x2﹣8x+9=0(2)(2x﹣3)(x﹣4)=0(3)2(x﹣3)2=方程可变为:2x﹣3=0,x﹣4=0,解得:x1= ,x2=4x﹣3.18. (5分)一个宽为2cm的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单位:cm),那么该光盘的直径是多少?19. (10分) (2019九上·大丰月考) 如图,在边长为1的正方形组成的网格中,的顶点均在格点上,绕点顺时针旋转后得到 .(1)画出;(其中、对应点分别是、)(2)分别画出旋转过程中,点点经过的路径;①求点经过的路径的长;②求线段所扫过的面积.20. (11分) (2018九上·来宾期末) 中华文明,源远流长;中华汉字,寓意深广.为传承中华优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛.为了解本次大赛的成绩,校团委随机抽取了其中200名学生的成绩作为样本进行统计,制成如下不完整的统计图表:频数频率分布表成绩x(分)频数(人)频率50≤x<60100.0560≤x<70300.1570≤x<8040n80≤x<90m0.3590≤x≤100500.25根据所给信息,解答下列问题:(1) m=________,n=________;(2)补全频数分布直方图;(3)这200名学生成绩的中位数会落在________分数段;(4)若成绩在90分以上(包括90分)为“优”等,请你估计该校参加本次比赛的3000名学生中成绩是“优”等的约有多少人?21. (10分)(2018·濮阳模拟) 如图,一次函数y=kx+b的图象与反比例函数y= 的图象交于点A(﹣3,m+8),B(n,﹣6)两点.(1)求一次函数与反比例函数的解析式;(2)求△AOB的面积.22. (11分) (2019九上·东台月考) 已知二次函数 .(1)求抛物线顶点M的坐标;(2)设抛物线与x轴交于A、B两点,与y轴交于C点,求A、B、C的坐标(点A在点B的左侧),并画出函数图像的大致示意图;(3)根据图像,写出不等式的解集.23. (10分)(2014·无锡) 如图,二次函数y=ax2+bx(a<0)的图象过坐标原点O,与x轴的负半轴交于点A,过A点的直线与y轴交于B,与二次函数的图象交于另一点C,且C点的横坐标为﹣1,AC:BC=3:1.(1)求点A的坐标;(2)设二次函数图象的顶点为F,其对称轴与直线AB及x轴分别交于点D和点E,若△FCD与△AED相似,求此二次函数的关系式.24. (15分) (2020八上·苍南期末) 如图,直角坐标系中,点C是直线y= x上第一象限内的点点A(1,0),以AC为边作等腰Rt△ACB,AC=BC点B在x轴上,且位于点A的右边,直线BC交y轴于点D。

薛城区初三期末数学试卷

薛城区初三期末数学试卷

一、选择题(每题3分,共30分)1. 若a、b、c是等差数列,且a+b+c=12,则a+c的值为()A. 6B. 8C. 10D. 122. 已知函数f(x) = 2x - 3,则f(-1)的值为()A. -5B. -1C. 1D. 53. 在△ABC中,若∠A=60°,∠B=45°,则∠C的度数为()A. 75°B. 90°C. 105°D. 120°4. 下列命题中,正确的是()A. 如果a>b,那么a²>b²B. 如果a²>b²,那么a>bC. 如果a²=b²,那么a=bD. 如果a²=b²,那么a≠b5. 已知一元二次方程x²-5x+6=0的解为x₁和x₂,则x₁+x₂的值为()A. 5B. 6C. 2D. 86. 下列函数中,在定义域内是单调递增的是()A. f(x) = x²B. f(x) = 2xC. f(x) = x³D. f(x) = -x7. 已知等差数列{an}的公差为d,且a₁=3,a₃=9,则d的值为()A. 2B. 3C. 4D. 68. 在直角坐标系中,点A(2,3)关于x轴的对称点为()A. (2,-3)B. (-2,3)C. (-2,-3)D. (2,3)9. 若log₂x + log₂y = 3,则xy的值为()A. 2³B. 2⁴C. 2⁵D. 2⁶10. 下列等式中,正确的是()A. (a+b)² = a² + b²B. (a-b)² = a² - b²C. (a+b)² = a² + 2ab + b²D. (a-b)² = a² - 2ab + b²二、填空题(每题5分,共25分)11. 若等差数列{an}的首项a₁=2,公差d=3,则第10项a₁₀=________。

枣庄市2020年九年级上学期数学期末考试试卷(II)卷

枣庄市2020年九年级上学期数学期末考试试卷(II)卷

枣庄市2020年九年级上学期数学期末考试试卷(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2020·铜川模拟) 如图,下面几何体是由一个圆柱被经过上下底面圆心的平面截得的,则它的左视图是()A .B .C .D .2. (2分)用配方法将x2﹣8x﹣1=0变形为(x﹣4)2=m,下列选项中,m的值是正确的是()A . 17B . 15C . 9D . 73. (2分) (2016九上·南开期中) 已知二次函数y=3x2+c与正比例函数y=4x的图象只有一个交点,则c的值为()A .B .C . 3D . 44. (2分) (2019八下·沙雅期中) 下列哪组条件能够判别四边形ABCD是平行四边形?()A . AB∥CD,AD=BCB . AB=CD,AD=BCC . ∠A=∠B,∠C=∠DD . AB=AD,CB=CD5. (2分) (2020七下·涡阳月考) 面积为3的正方形的边长范围在()A . 0和1之间B . 1和2之间C . 2和3之间D . 3和4之间6. (2分)下列命题正确的是()A . 三视图是中心投影B . 小华观察牡丹花,牡丹花就是视点C . 球的三视图均是半径相等的圆D . 阳光从矩形窗子里照射到地面上,得到的光区仍是矩形7. (2分)(2019·营口) 反比例函数的图象位于()A . 第一象限B . 第二象限C . 第三象限D . 第四象限8. (2分)如图,已知点D、E分别在△ABC的边AB、AC上,DE∥BC,点F在CD延长线上,AF∥BC,则下列结论错误的是()A . =B . =C . =D . =9. (2分)如图所示,已知AB=CD,AD=CB,AC、BD相交于O,则图中全等三角形有()A . 2对B . 3对C . 4对D . 5对10. (2分)(2017·沭阳模拟) 若菱形两条对角线的长分别为6和8,则这个菱形的周长为()A . 20B . 16C . 12D . 10二、填空题 (共8题;共9分)11. (1分)(2017·眉山) 已知一元二次方程x2﹣3x﹣2=0的两个实数根为x1 , x2 ,则(x1﹣1)(x2﹣1)的值是________.12. (1分)如图,在△ABC中有菱形AMPN,如果,那么=________.13. (2分) (2020九下·镇江月考) 如图,△ABC与△A'B'C'是以坐标原点O为位似中心的位似图形,且= ,已知点A(﹣1,0),点C(,1),则A'C'=________.14. (1分)形成投影应具备的条件有:________、________、________15. (1分) (2016九上·鼓楼期末) 若线段AB=6cm,点C是线段AB的一个黄金分割点(AC>BC),则AC的长为________cm(结果保留根号).16. (1分)(2018·江都模拟) 如图,点A是反比例函数y= (x>0)的图象上任意一点,AB∥x轴交反比例函数y=﹣的图象于点B,以AB为边作平行四边形ABCD,其中C、D在x轴上,则S▱ABCD为________.17. (1分) (2020·营口模拟) 分解因式:a3b+2a2b2+ab3=________.18. (1分)如图,在△ABC中,∠C=90°,D是AC上一点,DE⊥AB于点E,若AC=8,BC=6,DE=3,则AD的长为.三、解答题 (共8题;共59分)19. (5分) (2018八上·兴义期末) 先化简,再求值:,其中x=2.20. (5分) (2019八上·浦东新月考) 解方程.21. (10分) (2019九上·兴化月考) 某商场销售一批衬衫,平均每天可售出20件,每件盈利40元.为了扩大销售,增加盈利,商场采取了降价措施.假设在一定的范围内,衬衫的单价每降1元,商场平均每天可多售出2件.设销售单价降了x元.据此规律,请回答:(1)商场平均每天销售量为________件,每件衬衫盈利________元(用含x的代数式表示);(2)如果降价后商场销售这批衬衫每天要盈利1250元,那么衬衫的单价降了多少元?22. (10分)(2011·苏州) 如图所示的方格地面上,标有编号1、2、3的3个小方格地面是空地,另外6个小方格地面是草坪,除此以外小方格地面完全相同(1)一只自由飞翔的小鸟,将随意地落在图中所示的方格地面上,求小鸟落在草坪上的概率;(2)现准备从图中所示的3个小方格空地中任意选取2个种植草坪,则编号为1、2的2个小方格空地种植草坪的概率是多少(用树状图或列表法求解)?23. (2分)某水库大坝的横截面是如图所示的四边形ABCD,其中AB∥CD.瞭望台PC正前方水面上有两艘渔船M,N,观察员在瞭望台顶端P处观测渔船M的俯角α=31°,观测渔船N的俯角β=45°.已知MN所在直线与PC所在直线垂直,垂足为点E,PE长为30米.(1)求两渔船M,N之间的距离(结果精确到1米);(2)已知坝高24米,坝长100米,背水坡AD的坡度i=1:0.25.为提高大坝防洪能力,某施工队在大坝的背水坡填筑土石加固,加固后坝顶加宽3米,背水坡FH的坡度为i=1:1.5.施工12天后,为尽快完成加固任务,施工队增加了机械设备,工作效率提高到原来的1.5倍,结果比原计划提前20天完成加固任务.施工队原计划平均每天填筑土石方多少立方米?(参考数据:tan31°≈0.60,sin31°≈0.52)24. (10分)(2017·青岛) 已知:如图,在菱形ABCD中,点E,O,F分别为AB,AC,AD的中点,连接CE,CF,OE,OF.(1)求证:△BCE≌△DCF;(2)当AB与BC满足什么关系时,四边形AEOF是正方形?请说明理由.25. (2分)在矩形纸片ABCD中,AB=6,BC=8,(1)将矩形纸片沿BD折叠,点A落在点E处(如图①),设DE与BC相交于点F,试说明△DBF是等腰三角形,并求出其周长.(2)将矩形纸片折叠,使点B与点D重合(如图②),求折痕GH的长.26. (15分) (2020八下·重庆月考) 如图,在平行四边形ABCD中,点H为DC上一点,BD、AH交于点O,△ABO为等边三角形,点E在线段AO上,OD=OE,连接BE,点F为BE的中点,连接AF并延长交BC于点G,且∠GAD =60°.(1)若CH=2,AB=4,求BC的长;(2)求证:BD=AB+AE.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共9分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共59分)19-1、20-1、21-1、21-2、22-1、22-2、23-1、23-2、24-1、24-2、25-1、25-2、26-2、。

薛城九年级期末数学试卷

薛城九年级期末数学试卷

一、选择题(每题5分,共50分)1. 已知函数f(x) = 2x - 3,则f(-1)的值为()A. -5B. -1C. 1D. 52. 在△ABC中,若a=3,b=4,c=5,则cosA的值为()A. 1/3B. 1/2C. 2/3D. 3/43. 下列函数中,定义域为全体实数的是()A. y = √xB. y = x^2C. y = 1/xD. y = log2x4. 若方程x^2 - 4x + 3 = 0的解为x1和x2,则x1 + x2的值为()A. 2B. 3C. 4D. 55. 在平面直角坐标系中,点P(2,3)关于直线y=x的对称点为()A. (2,3)B. (3,2)C. (3,-2)D. (-2,3)6. 已知正方体的棱长为a,则其体积为()A. a^2B. a^3C. 2a^2D. 2a^37. 若等差数列{an}的公差为d,首项为a1,则第n项an的值为()A. a1 + (n-1)dB. a1 - (n-1)dC. a1 + ndD. a1 - nd8. 下列不等式中,正确的是()A. |x| < 2B. |x| ≤ 2C. |x| > 2D. |x| ≥ 29. 若函数y = kx + b(k≠0)的图象经过点(1,2),则k+b的值为()A. 3B. 1C. 0D. -110. 已知等比数列{an}的公比为q,首项为a1,则第n项an的值为()A. a1 q^(n-1)B. a1 / q^(n-1)C. a1 q^nD. a1 / q^n二、填空题(每题5分,共50分)1. 已知函数f(x) = 3x^2 - 2x + 1,则f(2)的值为______。

2. 在△ABC中,若∠A = 60°,a = 6,b = 8,则c的值为______。

3. 若方程2x^2 - 5x + 2 = 0的解为x1和x2,则x1 x2的值为______。

4. 在平面直角坐标系中,点P(-3,4)关于y轴的对称点为______。

山东省枣庄市2020年九年级上学期数学期末考试试卷(II)卷

山东省枣庄市2020年九年级上学期数学期末考试试卷(II)卷

山东省枣庄市2020年九年级上学期数学期末考试试卷(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共8分)1. (1分) (2019八上·越秀期末) 下列图形中,是轴对称图形的是()A .B .C .D .2. (1分)一个不透明的盒子中装有3个白球、9个红球,这些球除颜色外,没有任何其他区别,现从这个盒子中随机摸出一个球,摸到红球的可能性是()A .B .C .D .3. (1分) (2016九上·仙游期末) 已知是一元二次方程的一个解,则的值是()A . -3B . 3C . 0D . 0或34. (1分)(2019·慈溪模拟) 如图,八个完全相同的小长方形拼成一个正方形网格,连结小长方形的顶点所得的四个三角形中是相似三角形的是()A . ①和②B . ②和③C . ①和③D . ①和④5. (1分) (2015九下·嘉峪关期中) 某学校准备修建一个面积为20m2的矩形花圃,它的长比宽多10m.设花圃的宽为xm,则可列方程为()A . x(x﹣10)=20B . 2x+2(x﹣10)=20C . x(x+10)=20D . 2x+2(x+10)=206. (1分)(2018·深圳模拟) 将抛物线向左平移3个单位得到的抛物线的解析式是()A .B .C .D .7. (1分)(2019·天山模拟) 如图,已知边长为2的正三角形ABC顶点A的坐标为(0,6),BC的中点D在y轴上,且在点A下方,点E是边长为2、中心在原点的正六边形的一个顶点,把这个正六边形绕中心旋转一周,在此过程中DE的最小值为()A . 3B . 4﹣C . 4D . 6﹣28. (1分)若圆锥侧面积是底面积的2倍,则这个圆锥的侧面展开图的圆心角是()A . 120˚B . 135˚C . 150˚D . 180˚二、填空题 (共6题;共6分)9. (1分)(2018·河北模拟) 如图,梯形AOBC的顶点A,C在反比例函数图象上,OA∥BC,上底边OA在直线y=x上,下底边BC交y轴于B(0,﹣4),则四边形AOBC的面积为________.10. (1分)(2016·长沙模拟) 在平面直角坐标系中,规定把一个点先绕原点逆时针旋转45°,再作出旋转后的点关于原点的对称点,这称为一次变换,已知点A的坐标为(﹣1,0),则点A经过连续2016次这样的变换得到的点A2016的坐标是________.11. (1分)(2017·安顺模拟) 关于x的一元二次方程x2﹣x+m=O没有实数根,则m的取值范围是________.12. (1分)甲乙两地的距离是300千米,在一幅比例尺是的地图上距离是________厘米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年山东省枣庄市薛城区九年级(上)期末数学试卷一.选择题(共12小题)1.方程(x+1)2=4的解是()A.x1=﹣3,x2=3B.x1=﹣3,x2=1C.x1=﹣1,x2=1D.x1=1,x2=32.已知a为锐角,且sin(a﹣10°)=,则a等于()A.50°B.60°C.70°D.80°3.已知反比例函数y=2x﹣1,下列结论中,不正确的是()A.点(﹣2,﹣1)在它的图象上B.y随x的增大而减小C.图象在第一、三象限D.若x<0时,y随x的增大而减小4.一个不透明的袋子里装有两双只有颜色不同的手套,小明已经摸出一只手套,他再任意摸取一只,恰好两只手套凑成同一双的概率为()A.B.C.D.15.某药品原价为100元,连续两次降价a%后,售价为64元,则a的值为()A.10B.20C.23D.366.将二次函数y=x2的图象向右平移一个单位长度,再向下平移3个单位长度所得的图象解析式为()A.y=(x﹣1)2+3B.y=(x+1)2+3C.y=(x﹣1)2﹣3D.y=(x+1)2﹣37.如图,在平面直角坐标系xOy中,正方形ABCD的顶点D在y轴上且A(﹣3,0),B(2,b),则正方形ABCD的面积是()A.20B.16C.34D.258.已知反比例函数y=﹣图象上三个点的坐标分别是A(﹣2,y1)、B(1,y2)、C(2,y3),能正确反映y1、y2、y3的大小关系的是()A.y1>y2>y3 B.y1>y3>y2 C.y2>y1>y3 D.y2>y3>y19.定义:在等腰三角形中,底边与腰的比叫做顶角的正对,顶角A的正对记作sadA,即sadA=底边:腰.如图,在△ABC中,AB=AC,∠A=2∠B.则sin B•sadA=()A.B.1C.D.210.用小立方块搭成的几何体,从正面和上面看的形状图如图,则组成这样的几何体需要立方块个数为()A.最多需要8块,最少需要6块B.最多需要9块,最少需要6块C.最多需要8块,最少需要7块D.最多需要9块,最少需要7块11.如图,在△ABC中,AD⊥BC交BC于点D,AD=BD,若AB=,tan C=,则BC=()A.8B.C.7D.12.已知二次函数y=ax2+bx+c的图象如图所示,下列结i论:①abc>0;②b2﹣4ac>0;③2a+b=0;④a ﹣b+c<0.其中正确的结论有()A.1个B.2个C.3个D.4个二.填空题(共6小题)13.若关于x的一元二次方程(a﹣1)x2﹣2x+2=0有实数根,则整数a的最大值为.14.已知点P是正方形ABCD内部一点,且△P AB是正三角形,则∠CPD=度.15.已知m,n是方程x2﹣x﹣2=0的两个根,则代数式2m2﹣3m﹣n的值等于.16.如图,从甲楼底部A处测得乙楼顶部C处的仰角是30°,从甲楼顶部B处测得乙楼底部D处的俯角是45°,已知甲楼的高AB是120m,则乙楼的高CD是m(结果保留根号)17.如图,点B是反比例函数上一点,矩形OABC的周长是20,正方形BCGH和正方形OCDF的面积之和为68,则反比例函数的解析式是.18.如图,一为运动员推铅球,铅球行进高度y(m)与水平距离x(m)之间的关系是y=﹣x2+x+,此运动员将铅球推出m.三.解答题(共7小题)19.(1)计算:|﹣|+cos30°﹣(﹣)﹣1﹣+(π﹣3)0(2)若=,求•(a﹣b)的值.20.小红想利用阳光下的影长测量学校旗杆AB的高度.如图,他在某一时刻在地面上竖直立一个2米长的标杆CD,测得其影长DE=0.4米.(1)请在图中画出此时旗杆AB在阳光下的投影BF.(2)如果BF=1.6,求旗杆AB的高.21.速滑运动受到许多年轻人的喜爱.如图,四边形BCDG是某速滑场馆建造的滑台,已知CD∥EG,滑台的高DG为5米,且坡面BC的坡度为1:1.后来为了提高安全性,决定降低坡度,改造后的新坡面AC 的坡度为.(1)求新坡面AC的坡角及AC的长;(2)原坡面底部BG的正前方10米处(EB=10)是护墙EF,为保证安全,体育管理部门规定,坡面底部至少距护墙7米.请问新的设计方案能否通过,试说明理由(参考数据:)22.某商场购进一种单价为10元的商品,根据市场调查发现:如果以单价20元售出,那么每天可卖出30个,每降价1元,每天可多卖出5个,若每个降价x(元),每天销售y(个),每天获得利润W(元).(1)写出y与x的函数关系式;(2)求W与x的函数关系式(不必写出x的取值范围)(3)若降价x元(x不低于4元)时,销售这种商品每天获得的利润最大为多少元?23.如图,在平面直角坐标系中,一次函数y=ax+b的图象与反比例函数y=的图象交于第二、四象限内的A,B两点,与x轴交于点C,与y轴交于点D,点B的坐标是(m,﹣4),连接AO,AO=5,sin∠AOC =.(1)求反比例函数和一次函数的解析式;(2)连接OB,求△AOB的面积.24.如图,在四边形ABCD中,AB⊥AD,=,对角线AC与BD交于点O,AC=10,∠ABD=∠ACB,点E在CB延长线上,且AE=AC.(1)求证:△AEB∽△BCO;(2)当AE∥BD时,求AO的长.25.如图,抛物线y=ax2+2x+c经过点A(0,3),B(﹣1,0),请解答下列问题:(1)求抛物线的解析式;(2)抛物线的顶点为点D,对称轴与x轴交于点E,连接BD,求BD的长;(3)点F在抛物线上运动,是否存在点F,使△BFC的面积为6,如果存在,求出点F的坐标;如果不存在,请说明理由.三、附加题26.已知p,q都是正整数,方程7x2﹣px+2009q=0的两个根都是质数,则p+q=.27.如图.正方形ABCD的边长为6.点E,F分别在AB,AD上.若CE=,且∠ECF=45°,则CF 的长为.28.已知在平面直角坐标中,点A(m,n)在第一象限内,AB⊥OA且AB=OA,反比例函数y=的图象经过点A,(1)当点B的坐标为(4,0)时(如图),求这个反比例函数的解析式;(2)当点B在反比例函数y=的图象上,且在点A的右侧时(如图2),用含字母m,n的代数式表示点B的坐标;(3)在第(2)小题的条件下,求的值.2019-2020学年山东省枣庄市薛城区九年级(上)期末数学试卷参考答案与试题解析一.选择题(共12小题)1.【解答】解:开方得:x+1=±2,解得:x1=﹣3,x2=1,故选:B.2.【解答】解:∵sin60°=,∴a﹣10°=60°,即a=70°.故选:C.3.【解答】解:A、把(﹣2,﹣1)代入y=2x﹣1得:左边=右边,故本选项正确,不符合题意;B、k=2>0,在每个象限内,y随x的增大而减小,故本选项错误,符合题意;C、k=3>0,图象在第一、三象限内,故本选项正确,不符合题意;D、若x<0时,y随x的增大而减小,故本选项正确,不符合题意;不正确的只有选项B,故选:B.4.【解答】解:设两双只有颜色不同的手套的颜色为红和绿,列表得:(红,绿)(红,绿)(绿,绿)﹣(红,绿)(红,绿)﹣(绿,绿)(红,红)﹣(绿,红)(绿,红)﹣(红,红)(绿,红)(绿,红)∵一共有12种等可能的情况,恰好是一双的有4种情况,∴恰好是一双的概率=.故选:B.5.【解答】解:当药品第一次降价%时,其售价为100﹣100a%=100(1﹣a%);当药品第二次降价x后,其售价为100(1﹣a%)2.∴100(1﹣a%)2=64.解得:a=20或a=﹣180(舍去),故选:B.6.【解答】解:将二次函数y=x2的图象向右平移一个单位长度,再向下平移3个单位长度所得的图象解析式为:y=(x﹣1)2﹣3.故选:C.7.【解答】解:作BM⊥x轴于M.∵四边形ABCD是正方形,∴AD=AB,∠DAB=90°,∴∠DAO+∠BAM=90°,∠BAM+∠ABM=90°,∴∠DAO=∠ABM,∵∠AOD=∠AMB=90°,∴在△DAO和△ABM中,∴△DAO≌△ABM(AAS),∴OA=BM,AM=OD,∵A(﹣3,0),B(2,b),∴OA=3,OM=2,∴OD=AM=5,∴AD==,∴正方形ABCD的面积=34,故选:C.8.【解答】解:将A(﹣2,y1),B(1,y2),C(2,y3)分别代入解析式y=﹣得,y1=3.5,y2=﹣7,y3=﹣3.5.于是可知y1>y3>y2.故选:B.9.【解答】解:∵AB=AC,∴∠B=∠C,∵∠A=2∠B,∴∠B=∠C=45°,∠A=90°,∴BC=AC,∴sin∠B•sadA=•=1,故选:B.10.【解答】解:有两种可能;由主视图可得:这个几何体共有3层,由俯视图可得:第一层正方体的个数为4,由主视图可得第二层最少为2块,最多的正方体的个数为3块,第三层只有一块,∴最多为3+4+1=8个小立方块,最少为个2+4+1=7小立方块.故选:C.11.【解答】解:∵AD⊥BC交BC于点D,AD=BD,∴△ABD是等腰直角三角形,∴AD=BD=AB=4,∵tan C==,∴CD=3,∴BC=BD+CD=7;故选:C.12.【解答】解:∵抛物线开口向下,∴a<0,∵对称轴x=﹣=1,∴b>0,∵抛物线与y轴的交点在x轴的上方,∴c>0,∴abc<0,故①错误;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故②正确;∵对称轴x=﹣=1,∴2a=﹣b,∴2a+b=0,故③正确;根据图象可知,当x=﹣1时,y=a﹣b+c<0,故④正确;故选:C.二.填空题(共6小题)13.【解答】解:∵关于x的一元二次方程(a﹣1)x2﹣2x+2=0有实数根,∴a﹣1≠0,△≥0,△=(﹣2)2﹣4(a﹣1)×2=﹣8a+12≥0,解得:a≤且a≠1,∴整数as的最大值为0,故答案为:0.14.【解答】解:如图,∵四边形ABCD是正方形,∴AD=AB=BC,∠DAB=∠ABC=90°,∵△ABP是等边三角形,∴AP=BP=AB,∠P AB=∠PBA=60°,∴AP=AD=BP=BC,∠DAP=∠CBP=30°.∴∠BCP=∠BPC=∠APD=∠ADP=75°,∴∠PDC=∠PCD=15°,∴∠CPD=180°﹣∠PDC﹣∠PCD=180°﹣15°﹣15°=150°.故答案为:150.15.【解答】解:∵m,n是方程x2﹣x﹣2=0的两个根,∴m+n=1,m2﹣m=2,则原式=2(m2﹣m)﹣(m+n)=2×2﹣1=4﹣1=3,故答案为:316.【解答】解:由题意可得:∠BDA=45°,则AB=AD=120m,又∵∠CAD=30°,∴在Rt△ADC中,tan∠CDA=tan30°==,解得:CD=40(m),故答案为:40.17.【解答】解:设B(a,b),∵正方形BCGH和正方形OCDF的面积之和为68,∴a2+b2=68,∵矩形OABC的周长是20,∴a+b=10,∴(a+b)2=100,a2+b2+2ab=100,68+2ab=100,ab=16,设反比例函数解析式为y=(k≠0),∵B在反比例函数图象上,∴k=ab=16,∴反比例函数解析式为y=,故答案为:y=.18.【解答】解:当y=0时,﹣x2+x+=0,解之得x1=10,x2=﹣2(不合题意,舍去),所以推铅球的距离是10米.故答案为:10.三.解答题(共7小题)19.【解答】解:(1)原式=+×+3﹣2+1=﹣+;(2)已知等式整理得:3b=a+b,即a=2b,则原式=•(a﹣b)===.20.【解答】解:(1)连结DE,过A点作AF∥CE交BD于F,则BF为所求,如图;(2)∵AF∥CE,∴∠AFB=∠CED,而∠ABF=∠CDE=90°,∴△ABF∽△CDE,∴=,即=,∴AB=8(m).答:旗杆AB的高为8m.21.【解答】解:(1)如图,过点C作CH⊥BG,垂足为H,∵新坡面AC的坡度为1:,∴tan∠CAH==,∴∠CAH=30°,即新坡面AC的坡角为30°,∴AC=2CH=10米;(2)新的设计方案不能通过.理由如下:∵坡面BC的坡度为1:1,∴BH=CH=5,∵tan∠CAH=,∴AH=CH=5,∴AB=5﹣5,∴AE=EB﹣AB=10﹣(5﹣5)=15﹣5≈6.35<7,∴新的设计方案不能通过.22.【解答】解:(1)根据题意,得y=30+5x.答:y与x的函数关系式y=30+5x.(2)根据题意,得W=(20﹣10﹣x)(30+5x)=﹣5x2+20x+300.答:W与x的函数关系式为W=﹣5x2+20x+300.(3)W=﹣5x2+20x+300=﹣5(x﹣2)2+320∵﹣5<0,对称轴x=2,∵x不低于4元即x≥4,在对称轴右侧,W随x的增大而减小,∴x=4时,W有最大值为300,答:降价4元(x不低于4元)时,销售这种商品每天获得的利润最大为300元.23.【解答】解:(1)过点A作AE⊥x轴于点E,则∠AEO=90°.在Rt△AEO中,AO=5,sin∠AOC==,∴AE=3,∴OE==4,∴点A的坐标为(﹣4,3).∵点A(﹣4,3)在反比例函数y=的图象上,∴3=,解得:k=﹣12.∴反比例函数解析式为y=﹣.(2)∵点B(m,﹣4)在反比例函数y=﹣的图象上,∴﹣4=﹣,解得:m=3,∴点B的坐标为(3,﹣4).将点A(﹣4,3)、点B(3,﹣4)代入y=ax+b中得:,解得:,∴一次函数解析式为y=﹣x﹣1.令一次函数y=﹣x﹣1中y=0,则0=﹣x﹣1,解得:x=﹣1,即点C的坐标为(﹣1,0).S△AOB=OC•(y A﹣y B)=×1×[3﹣(﹣4)]=.24.【解答】解:(1)∵AE=AC,∴∠E=∠ACE,∵∠ABD=∠ACB,∴∠E=∠ABD,∴∠EAB=180°﹣∠E﹣∠ABE,∠OBC=180°﹣∠ABE﹣∠ABD,∴∠EAB=∠OBC,∴△AEB∽△BCO;(2)过A作AF⊥BC于F,过O作OG⊥BC于G,∵AE∥BD,∴∠E=∠DBC,∠EAB=∠ABD,∵∠ABD=∠ACB,∴∠EAB=∠ACE,∵∠OBC=∠EAB,∴∠OBC=∠OCB,∴OB=OC,∵tan∠ABD=tan∠ACB===,∵AC=10,∴AF=6,CF=8,∵AE=AC,∴EC=2CF=16,∵∠EAB=∠ACE,∠E=∠E,∴△AEB∽△CEA,∴=,∴=,∴BE=,∴BC=EC﹣BE=16﹣=,∴CG=BC=,∵AF⊥BC,OG⊥BC,∴OG∥AF,∴=,∴=,∴AO=.25.【解答】解:(1)抛物线y=ax2+2x+c经过点A(0,3),B(﹣1,0),则c=3,将点B的坐标代入抛物线表达式并解得:b=2,故抛物线的表达式为:y=﹣x2+2x+3;(2)函数的对称轴为:x=1,则点D(1,4),则BE=2,DE=4,BD==2;(3)存在,理由:△BFC的面积=×BC×|y F|=2|y F|=6,解得:y F=±3,故:﹣x2+2x+3=±3,解得:x=0或2或1,故点F的坐标为:(0,3)或(2,3)或(1﹣,﹣3)或(1+,﹣3);三、附加题26.【解答】解:x1+x2=x1x2==287q=7×41×qx1和x2都是质数则只有x1和x2是7和41,而q=1所以7+41=p=336所以p+q=337故填:33727.【解答】解:如图,延长FD到G,使DG=BE;连接CG、EF;∵四边形ABCD为正方形,在△BCE与△DCG中,,∴△BCE≌△DCG(SAS),∴CG=CE,∠DCG=∠BCE,∴∠GCF=45°,在△GCF与△ECF中,,∴△GCF≌△ECF(SAS),∴GF=EF,∵CE=3,CB=6,∴BE===3,∴AE=3,设AF=x,则DF=6﹣x,GF=3+(6﹣x)=9﹣x,∴EF==,∴(9﹣x)2=9+x2,∴x=4,即AF=4,∴GF=5,∴DF=2,∴CF===2,故答案为:2.28.【解答】解:(1)过A作AC⊥OB,交x轴于点C,∵OA=AB,∠OAB=90°,∴△AOB为等腰直角三角形,∴AC=OC=BC=OB=2,∴A(2,2),将x=2,y=2代入反比例解析式得:2=,即k=4,则反比例解析式为y=;(2)过A作AE⊥x轴,过B作BD⊥AE,∵∠OAB=90°,∴∠OAE+∠BAD=90°,∵∠AOE+∠OAE=90°,∴∠BAD=∠AOE,在△AOE和△BAD中,,∴△AOE≌△BAD(AAS),∴AE=BD=n,OE=AD=m,∴DE=AE﹣AD=n﹣m,OE+BD=m+n,则B(m+n,n﹣m);(3)由A与B都在反比例图象上,得到mn=(m+n)(n﹣m),整理得:n2﹣m2=mn,即()2+﹣1=0,这里a=1,b=1,c=﹣1,∵△=1+4=5,∴=,∵A(m,n)在第一象限,∴m>0,n>0,则=.。

相关文档
最新文档