热管利用技术

合集下载

热管技术及原理

热管技术及原理

热管原理热管技术是1963年美国LosAlamos国家实验室的G.M.Grover发明的一种称为“热管”的传热元件,它充分利用了热传导原理与致冷介质的快速热传递性质,透过热管将发热物体的热量迅速传递到热源外,其导热能力超过任何已知金属的导热能力。

热管技术以前被广泛应用在宇航、军工等行业,自从被引入散热器制造行业,使得人们改变了传统散热器的设计思路,摆脱了单纯依靠高风量电机来获得更好散热效果的单一散热模式,采用热管技术使得散热器即便采用低转速、低风量电机,同样可以得到满意效果,使得困扰风冷散热的噪音问题得到良好解决,开辟了散热行业新天地。

从热力学的角度看,为什么热管会拥有如此良好的导热能力呢?物体的吸热、放热是相对的,凡是有温度差存在的时候,就必然出现热从高温处向低温处传递的现象。

从热传递的三种方式:辐射、对流、传导,其中热传导最快。

热管就是利用蒸发制冷,使得热管两端温度差很大,使热量快速传导。

一般热管由管壳、吸液芯和端盖组成。

热管内部是被抽成负压状态,充入适当的液体,这种液体沸点低,容易挥发。

管壁有吸液芯,其由毛细多孔材料构成。

热管一段为蒸发端,另外一段为冷凝端,当热管一段受热时,毛细管中的液体迅速蒸发,蒸气在微小的压力差下流向另外一端,并且释放出热量,重新凝结成液体,液体再沿多孔材料靠毛细力的作用流回蒸发段,如此循环不止,热量由热管一端传至另外一端。

这种循环是快速进行的,热量可以被源源不断地传导开来。

热管的基本工作典型的热管由管壳、吸液芯和端盖组成,将管内抽成1•3×(10负1---10负4)Pa的负压后充以适量的工作液体,使紧贴管内壁的吸液芯毛细多孔材料中充满液体后加以密封。

管的一端为蒸发段(加热段),另一端为冷凝段(冷却段),根据应用需要在两段中间可布置绝热段。

当热管的一端受热时毛纫芯中的液体蒸发汽化,蒸汽在微小的压差下流向另一端放出热量凝结成液体,液体再沿多孔材料靠毛细力的作用流回蒸发段。

热管制冷原理的应用

热管制冷原理的应用

热管制冷原理的应用热管制冷概述热管制冷是一种利用热管的传热和传质特性来实现制冷的技术。

热管是一种热传递器件,由工作介质填充的密封通道组成。

它利用工作介质在管道内的汽化和冷凝过程来完成热量传递。

热管制冷技术以其高效、节能的特点,被广泛应用于航天器、电子设备以及工业制冷等领域。

热管制冷原理热管制冷的原理基于热管运载的工作介质的汽化和冷凝。

当热管的一端加热时,工作介质在热管内汽化成气体,从而产生大量的蒸汽。

蒸汽被压缩到热管的另一端,通过冷凝器将热量传递给外部环境。

冷凝后的工作介质液化成液体,被毛细力或重力送回到加热端,循环往复。

这样循环运行下去,实现了热量的传递和制冷效果。

热管制冷的优势热管制冷技术相比传统的制冷技术具有以下优势:•高效能:热管制冷技术利用工作介质的汽化和冷凝过程进行热量传递,具有很高的传热效率。

•节能环保:热管制冷过程中无需使用机械压缩制冷剂,没有动力设备产生噪音和振动,因此具有低能耗和环保的特点。

•可靠性高:热管制冷技术无机械运动部件,减少了故障发生的可能性,具有很高的可靠性。

•体积小巧:热管结构紧凑,适合小型化应用,可以节约空间。

•适应性广泛:热管制冷技术可适用于各种工况下的制冷需求,并且具有很好的稳定性和温度控制性。

热管制冷的应用领域热管制冷技术已经在许多领域得到了广泛的应用,下面列举了其中的几个典型应用领域:航天器制冷在航天器中,由于外部环境的极端温度条件,需要对设备和宇航员的生活空间进行冷却。

热管制冷技术可以高效地将热量传递给航天器表面,从而实现冷却效果。

而且,由于热管制冷技术的微重力适应能力,使其在航天器中得到了广泛应用,大大提高了航天器的工作效率和可靠性。

电子设备冷却电子设备的工作过程中会产生大量的热量,如果无法及时散热,会导致电子设备的性能下降甚至损坏。

热管制冷技术可以将电子设备内的热量传递给外部环境,实现设备的有效冷却。

与传统冷却技术相比,热管制冷技术可以提供更高的冷却效率和更静音的工作环境。

工程热力学热管技术在热力循环中的应用

工程热力学热管技术在热力循环中的应用

工程热力学热管技术在热力循环中的应用工程热力学热管技术是一种基于传热、传质、传动和传感的研究方法和工程应用技术。

它利用液体在热管内循环流动的特性,实现热的传递、驱动和控制。

热管技术广泛应用于工业生产中,特别是在热力循环中,具有诸多优势。

本文将以几个方面来介绍工程热力学热管技术在热力循环中的应用。

一、热管在热力循环中的原理热力循环是一种能量转换过程,通过热源使工质的温度和热量变化,从而实现能量转换。

而热管作为热力循环中的一个重要组成部分,起到传热、传质和传动的作用。

热管的基本结构由内外两层金属管壳组成,内层为蒸发段,外层为冷凝段。

其中,内层充满工质,通过蒸发和冷凝循环流动,实现热的传递;外层则起到隔热的作用,保证热管的热效率。

当热管的一端受到热源的加热,蒸发段内的工质蒸发成气态向另一端的冷凝段传递热量,在冷凝段被冷却介质吸收热量并变为液态,然后再次返回蒸发段进行循环。

二、热管在热力循环中的应用1. 热管在核电厂中的应用热管技术在核电厂中具有广泛的应用前景。

核电厂需要对核反应堆进行冷却,而传统的冷却方式有许多问题,如过热、不均匀、温度梯度大等。

而利用热管技术可以解决这些问题,提高核电厂的安全性和效率。

2. 热管在太阳能热能利用中的应用太阳能热能是一种绿色、清洁的能源,利用太阳能进行热能转换可以有效减少能源消耗和环境污染。

而热管技术可以提高太阳能的热能利用效率,将太阳能转化为实用的热能,广泛应用于太阳能热水器、太阳能空调等领域。

3. 热管在航空航天中的应用热管技术在航空航天领域中有着重要的应用价值。

在宇宙空间中,传统的传导和对流传热方式受到限制,而热管技术可以通过液体流动的方式实现热量的传输和均衡,提高航空航天器的散热效果,保证设备的正常运行。

4. 热管在工业生产中的应用热管技术在工业生产中有着广泛的应用。

例如,在钢铁冶炼过程中,热管技术可以用于冷凝和回收高温废气中的热能,提高能源利用效率。

此外,在工业热处理、电子设备制造等领域,热管技术也可以用于温度控制和热能回收。

热管技术在工业锅炉余热回收上的运用

热管技术在工业锅炉余热回收上的运用

热管技术在工业锅炉余热回收上的运用热管技术是一种基于热管原理的传热技术,利用热管的热导性能,将高温热源处的热能传递到低温处,实现了热能的有效利用。

在工业锅炉中,热管技术可以被用来回收排放出的高温烟气中的余热,将其转化为有用的热能,用于加热水或发电等用途。

下面我们将从热管技术在工业锅炉余热回收中的运用、优势及发展趋势等方面进行分析。

在工业锅炉中,热管技术可以应用在烟气余热回收系统中。

当工业锅炉燃烧燃料时,会产生大量的高温烟气,其中蕴含着大量的热能。

传统的余热回收设备多采用换热器,但常常存在换热效率低、结构复杂、维修成本高等问题。

而采用热管技术可以有效地解决这些问题。

热管技术可以将高温烟气中的余热迅速传递到工业锅炉需要加热的介质中,实现了热能的有效回收利用。

热管技术具有结构简单、传热效率高、维护方便等优点,能够有效地提高能源利用率,减少能源消耗。

热管技术还可以在工业锅炉烟气脱硫、除尘等设备中发挥重要作用。

利用热管技术将高温烟气中的余热用于辅助设备加热,不仅可以提高设备的效率,还可以降低设备运行成本,延长设备寿命。

热管技术的优势热管技术具有结构简单、体积小、重量轻的特点,可以方便地嵌入到现有的工业锅炉系统中,无需改变原有的结构。

这为工业锅炉的现场改造提供了便利。

热管技术工作稳定可靠。

热管内部没有运动部件,无需外部动力输入,因此工作稳定可靠,维护成本低。

热管技术适用于高温、高压等工况下的热能回收。

在工业锅炉中,热管技术可以适应高温高压的工作环境,具有很强的适用性和稳定性。

热管技术在工业锅炉余热回收中的发展趋势第一,热管技术的智能化发展。

随着传感技术和智能控制技术的不断成熟,热管技术的智能化水平将会不断提高,能够更好地根据工业锅炉的工况和需求进行自适应调整,提高系统的整体性能。

第二,热管技术的多元化应用。

热管技术不仅可以用于工业锅炉余热回收,还可以应用于石化、电力、冶金等多个行业的余热回收及传热领域,将会得到更广泛的应用。

热管技术 (2)

热管技术 (2)

热管技术1. 简介热管技术是一种使用液体在闭合的金属管道中进行传热和传质的技术。

热管由蒸汽和液体组成,通过液体在内部与外部之间的传热传质来实现冷却或加热的目的。

热管技术广泛应用于各种领域,包括电子设备散热、空调系统、航天器热控等。

2. 原理热管内部通常填充着工作介质,如水、铵、乙醇等。

当热管的一端受热时,工作介质在高温处蒸发成为蒸汽,然后蒸汽通过内部的毛细结构传输到低温处,再由于低温损失能量而冷凝成为液体。

液体由于重力或毛细力作用返回热源端,形成一个封闭系统。

这样循环往复,使得热能能够通过液体的相变和气液传导来传递。

3. 优势3.1 高传热效率由于热管内部液体的相变和气液传导,热管的传热效率相对较高。

相比于传统的散热方式,热管技术能够更有效地将热量传递到远离热源的部分,提高散热效果。

3.2 紧凑型设计热管技术相对于其他传热装置具有较小的体积和重量,可以实现更紧凑的设计。

这对于有空间限制的应用非常有优势,如电子设备和航天器上的散热系统。

3.3 没有机械运动部件热管技术没有机械运动部件,因此具有较低的噪音和振动,提高了系统的可靠性和寿命。

3.4 高可靠性热管技术采用封闭的设计,能够在各种环境条件下稳定运行。

由于没有机械部件,热管技术具有较高的可靠性和寿命。

4. 应用领域4.1 电子设备散热电子设备的高功率密度和紧凑设计使得散热成为一个重要的问题。

热管技术可以高效地将散热器与热源连接起来,提高散热效果,保证电子设备的稳定性和可靠性。

4.2 空调系统热管技术可以应用于空调系统中,通过传热传质来调节室内温度。

热管技术的高传热效率和紧凑设计使得空调系统更加高效和节能。

4.3 航天器热控航天器在太空中的温度变化较大,需要进行热控以保证航天器内部设备的正常工作。

热管技术可以通过吸热和放热来调节航天器内部的温度,实现热平衡。

5. 局限性5.1 温度限制热管技术的工作温度通常在-50℃到100℃之间,超过这个温度范围可能会造成热管的性能损害。

热管技术的应用研究与发展

热管技术的应用研究与发展

热管技术的应用研究与发展热管技术是一种热传导技术,它利用物质的蒸发和冷凝原理,将热量从一个位置传输到另一个位置,被广泛应用于电子设备、军事、航空航天等领域。

随着科技的不断进步和应用需求的不断增加,热管技术的应用和研究得到了持续的推进和发展。

热管技术最早出现在1960年代后期,主要应用于太空技术中,用于控制卫星上电子设备的温度。

随着该技术的不断成熟和发展,其应用领域不断拓宽。

目前,热管技术已经应用于各种电子设备,例如笔记本电脑、手机、平板电脑等,通过热管技术的热导性能实现散热降温,提高设备稳定性和寿命。

同时,在军事、航空航天领域,热管技术也被广泛用于控制和维持各种设备的温度,提高设备性能和稳定性。

热管技术的基本原理是利用工作流体的液态和气态相变过程来传导热量。

工作流体的蒸发和冷凝是热传导的基本形式,热量从热源端向工作流体传递,利用蒸汽的扩散浸渍到蒸汽空腔壁面上,再通过冷凝放出潜热释放给冷源。

通过工作流体的流动达到传递热量的效果。

与其他传热技术相相比,热管技术具有以下优点:1.高热传导能力。

热管技术可以跨越较长距离传输热量,具有很强的热传导能力。

2.自控制效应。

热管在工作过程中,由于相变过程的自发控制,具有自控制效应,可以有效地控制热源温度。

3.可靠性高。

由于热管内无运动部件和润滑剂等机械结构,所以热管寿命长,可靠性高。

热管技术的应用越来越广泛,其优越的热传导性能和可靠性也引起了越来越多的研究和发展。

其中一个关键的发展方向是优化热管结构和材料,以达到更高的热传导性能和工作温度范围。

现代材料科学的发展为热管技术的进一步发展提供了重要的支撑。

例如,高温热管技术能够解决高温条件下热量传递的问题,提高了热管的工作温度范围。

有学者提出了高温热管技术的基础元件,包括压缩机、蒸发器、冷凝器和热管本体等。

在热管本体方面,研发团队采用了碳化硅纳米材料作为热管主体,大大提高了热传导速度和传导能力,极大地拓展了高温热管技术的应用领域。

热管冷却原理

热管冷却原理

热管冷却原理
一、热管冷却原理
热管冷却原理是利用热管内部的热变形作用而实现冷却的原理。

热管内部的热变形可以将外界的热量转换为热量的表面传递,并发放到外界。

通过热变形的作用,将热量散发到外界,实现对外部物体的冷却,从而实现冷却功能。

热管可以热电转换,也可以热传导,通过热管内部的热变形,将外部热量转变为热电转换和热传导,实现对外部物体的冷却。

二、热管冷却技术
热管冷却技术是指利用热管内部的热变形而实现冷却的技术。

热管冷却技术主要集中在热管的结构、材料和技术参数等方面,以改善热管内部的热变形,以及提高热管内部的热传输效率,从而达到更好的冷却效果。

热管冷却技术的主要原理,就是利用热管内部的热变形作用,将外界的热量转化为热电转换和热传导,将热量散发到外界,实现对外部物体的冷却,从而实现冷却功能。

三、热管冷却应用
热管冷却技术可以用于许多应用,如电脑处理器冷却,激光技术冷却等。

1、电脑处理器冷却:热管冷却技术可以用于电脑处理器的冷却。

主板中的热管内部的热变形会将封装在电脑处理器中的热量转换为热量,并发热到外界,实现对处理器的冷却。

2、激光技术冷却:热管冷却技术也可以用于激光技术的冷却。

激光技术会产生很多热量,热量变形可以将激光技术内部的热量转换为热电转换和热传导,将热量散发到外界,实现对激光技术的冷却。

热管技术及其工程应用z

热管技术及其工程应用z
热管应用领域的多样性挑战
热管的应用领域广泛,涉及到不同的行业和领域,需要针 对不同的应用场景进行定制化设计和优化,以满足多样化 的需求。
热管技术的发展趋势与前景
高效化
随着科技的发展,对热管传热效率的要求越来越高,未来 热管技术将不断向高效化方向发展,提高热管的传热性能 和效率。
长寿命化
热管的使用寿命是衡量其性能的重要指标之一,未来热管 技术将不断追求长寿命化,提高热管的使用寿命和稳定性 。
微型化
随着微型化技术的发展,未来热管技术将向微型化方向发 展,应用于更小规模和更高精度的领域,如微型电子器件 散热等。
智能化
随着智能化技术的发展,未来热管技术将与智能化技术相 结合,实现热管的自适应调节和智能控制,提高热管的传 热热的案例分析
热管内部的相变过程
总结词
相变过程是热管内部传热的关键环节。
详细描述
在热管内部,工作液体在加热条件下发生相变,由液态变为气态,产生蒸汽流动 。这个相变过程伴随着大量热量的吸收和释放,是热管实现高效传热的关键。
热管的传热过程分析
总结词
热管的传热过程涉及多个物理现象。
详细描述
热管的传热过程包括工作液体的汽化、蒸汽的流动、蒸汽的冷凝和回流等环节。这些环节相互作用, 共同实现高效的热量传递。此外,热管内部的传热还受到管壁导热、蒸汽与管壁的对流换热等因素的 影响。
热管在余热回收和热能利用中的应用
总结词:节能环保
详细描述:热管技术广泛应用于余热回收和热能利用,将废弃的热量转化为可利用的能源,提高能源 利用效率,降低能耗和排放,符合节能环保的理念。
热管在新能源领域的应用
总结词:创新驱动
详细描述:随着新能源技术的不断发展,热管技术在太阳能 、风能等新能源领域得到广泛应用。热管能够高效地转换和 利用新能源产生的热能,推动新能源技术的创新和发展。

热管技术的原理及应用

热管技术的原理及应用

热管技术的原理及应用1. 什么是热管技术热管技术是一种利用液体蒸发和凝结的原理,实现热量传输和温度调控的先进技术。

通过利用液体在蒸发器中的蒸发和在冷凝器中的凝结,热管可以将热量迅速从高温区域传输到低温区域,实现高效的热量传递。

2. 热管技术的原理热管技术的原理可以简单概括为以下几个步骤:1.液体蒸发:热源作用下,液体在蒸发器内部迅速蒸发,吸收热量并变为气体。

2.气体传输:气体通过热管中空心管道内部的蒸汽管道,从蒸发器传输到冷凝器。

3.气体冷凝:在冷凝器中,气体发生冷凝,释放热量,并变为液体。

4.液体返流:液体在内部管道作用下,返回到蒸发器,并再次蒸发,循环往复。

3. 热管技术的应用热管技术在各个领域具有广泛的应用,包括但不限于以下几个方面:3.1. 电子器件散热热管技术可以有效地解决电子器件散热问题。

通过将热管放置在电子器件的散热片上,热量可以迅速从散热片传输到其他部分,以保持器件的温度在安全范围内。

热管的高效散热性能可以大幅度提高电子器件的工作稳定性和寿命。

3.2. 航空航天领域热管技术在航空航天领域的应用也非常广泛。

例如,在航天器热控系统中,热管可以用于传递和分散热量,保证航天器各个部分的温度均衡和稳定。

此外,热管技术还可用于航空发动机的冷却和热管理。

3.3. 医疗设备和制药行业热管技术在医疗设备和制药行业的应用也非常重要。

例如,热管可以用于医疗设备的温控和热管理,确保设备的稳定性和可靠性。

在制药行业中,热管可以用于控制反应器温度,提高药物合成的效率和质量。

3.4. 太阳能与可再生能源热管技术在太阳能和其他可再生能源领域有广泛应用。

例如,在太阳能热水器中,热管可以将太阳能吸收器中的热量传输到储水罐中,实现热水的供应。

热管还可以用于太阳能光伏板的冷却,提高光伏发电效率。

4. 热管技术的优势热管技术相比传统的热传导方法具有以下几个优势:•高热传导效率:热管可以实现高效的热量传递,使得热量可以迅速从高温区域传输到低温区域。

热管技术及其工程应用

热管技术及其工程应用

热管技术及其工程应用
热管技术是空气压缩器的现代化技术,它是一种新型的节能和环境保护技术,具有结构简单、体积小、可靠性高等优点。

热管技术可以用来生产多种温度不同的空气压缩机,以满足客户的不同需求。

热管技术的工作原理是在高温条件下利用金属热管发挥其能量
转移的作用,通过热管内壁的热能传输,实现空气压缩机蓄热,把空气转变成较高压力的低温空气。

热管技术的应用非常多,它可以用在空调压缩机、冷却器和加热器等应用领域,其中,最常用的就是空调压缩机,它可以将空气从一端压缩到另一端,达到加热和冷却的效果。

此外,热管技术可以用在工业或者冶金等行业中,用来冷却或加热水,以便进行进一步的处理。

热管技术具有节能、高效、稳定性等优点,可以有效提高生产效率。

相比传统技术,热管技术工作效率更高,耗电量较低,更加环保。

此外,它的结构简单,体积小,可靠性高,可以有效满足客户的需求。

总的来说,热管技术是一种新型的节能和环保技术。

它具有节能高效、体积小、可靠性高等优点,目前已经广泛应用于空调压缩机、冷却器和加热器等多种领域,并可以为用户提供高质量的产品和服务,从而满足客户的需求。

随着科学技术的发展,热管技术将会发挥更大的作用,同时也将会持续研发出更多能够满足客户需求的新型热管产品。

我们相信,未来热管技术在不断推进中将会引领着更高水平的节能和环保技术,为社会发展和经济发展做出更大的贡献。

地热能发电中的热管技术应用

地热能发电中的热管技术应用

地热能发电中的热管技术应用热管是一种利用热传导的原理,将热量从一个位置传递到另一个位置的热传导装置。

它由一个密闭的金属管道组成,管内充满工质,通过利用工质在低温区蒸发吸热,然后在高温区冷凝释放热量的循环流动,实现热量传递。

地热能发电中,热管技术的应用对于提高发电效率、降低成本具有重要意义。

首先,热管技术可以改善地热能发电系统的热量传递效率。

在传统的地热能发电中,地下储热层与发电机组之间通过地热液体管路实现热量传递。

然而,由于管路传热过程中存在热阻、渗漏等问题,导致热量传递效率不高。

而热管作为一种新型的热传导装置,具有传热速度快、传热效率高等优势,可以有效地改善地热能发电系统的热量传递效果。

通过在地热能发电系统中引入热管,可以大大提高热能的传递效率,从而提高发电效率。

其次,热管技术可以实现地热能发电系统的热量分配优化。

在地热能发电中,地下储热层的温度分布不均匀,导致热量在不同区域的利用效率存在差异。

而热管技术可以根据实际需求,将热量从局部高温区域传递到其他区域,实现热量的重分配,从而优化地热能发电系统中的热量利用效果。

这种优化分配的热管技术,可以提高系统的整体效率,从而提高地热能发电的发电量。

此外,热管技术还可以解决地热能发电系统中的热损失问题。

在地热能发电中,由于热阻等原因,会导致热量的损失,降低系统的热能利用效率。

而利用热管技术,可以将热量从系统中迅速传递出来,减少了热能的损失,提高了系统的热能利用效率。

通过在地热能发电系统中应用热管技术,可以在一定程度上降低其热能损失,提高系统的有效利用率。

此外,热管技术还可以改善地热能发电系统的热交换效果。

在地热能发电系统中,各个部件之间的热交换效果直接影响着系统的整体效率。

而热管技术的应用可以在各个部件之间实现高效热量传递,提高热交换效果,从而提高地热能发电系统的整体效率。

这种热交换优化的热管技术,可以减少各个部件之间的热阻,提高热量传递效率,降低系统能源消耗,更好地利用地热能源。

高效冷却系统热管技术提高发动机散热效果

高效冷却系统热管技术提高发动机散热效果

高效冷却系统热管技术提高发动机散热效果在现代车辆工业中,发动机冷却是一个非常重要的问题。

由于发动机运行时会产生大量的热量,有效的散热系统对于维持发动机的正常运行至关重要。

在过去的几十年里,科学家和工程师们一直在不断改进发动机冷却技术,以提高散热效果和发动机性能。

热管技术是一种被广泛应用于高效冷却系统的技术之一,本文将重点探讨热管技术在提高发动机散热效果方面的应用。

1. 热管技术概述热管是一种利用液体在封闭空间内的自然循环现象来传递热量的设备。

它由内壁光滑的金属管道以及内部填充的工作流体组成。

当热源作用于热管的一侧时,该侧的工作流体会蒸发并通过管道自然向另一侧传递,然后在另一侧冷却并变成液体,通过重力或毛细作用力返回到热源一侧,循环往复。

由于热管具有高导热性、快速响应和无需外部能量输入等特点,因此被广泛应用于各种领域的热管理系统中。

2. 热管技术在汽车领域的应用在汽车领域,热管技术主要应用于汽车散热系统,特别是发动机冷却系统。

传统的发动机冷却系统主要依靠水泵循环冷却剂进行散热,但在高温和高负荷条件下,传统冷却系统的散热效果有限。

而热管技术的应用可以显著提高散热效果,将热量快速有效地传递到散热器上,从而降低发动机的温度。

3. 热管技术提高发动机散热效果的原理通过在发动机和散热器之间安装热管,可以利用热管的高导热性,快速将发动机产生的热量传递到散热器上。

相比传统的冷却系统,热管技术在散热过程中无需依赖于水泵和冷却剂流动,因此具有更高的散热效率和更迅速的响应速度。

此外,热管技术还可以有效地解决传统冷却系统中的温差不均和冷却剂流动受限等问题。

4. 热管技术的优势和挑战热管技术在提高发动机散热效果方面具有显著的优势。

首先,热管可以大幅度降低发动机的温度,提高发动机的工作效率和寿命。

其次,热管的结构简单紧凑,易于集成到现有的冷却系统中。

此外,热管的运行无需外部能量输入,能够减少动力损失。

然而,热管技术也存在一些挑战,例如热管的选择和设计需要根据具体的应用场景进行优化,而且热管的成本相对较高。

热管的应用及原理

热管的应用及原理

热管的应用及原理1. 热管的应用热管是一种热传导和热控制装置,广泛应用于各个领域。

以下是热管的主要应用领域:1.电子器件散热:热管可以将电子器件产生的热量传导到远离器件的散热器上,提高散热效率,有效保护电子器件的工作稳定性。

2.航天航空工业:热管在航天航空领域中广泛应用,可以用于航天器的温度控制和热管理,提高航天器的可靠性和性能。

3.能源领域:热管在核能、太阳能和化学能等能源领域的转换和利用过程中起着重要的作用,可以提高能源转换效率和能量利用率。

4.家电电器:热管在家电电器中的应用也很常见,如电冰箱、空调、热水器等,可以提高设备的能效和使用寿命。

5.医疗器械:热管在医疗器械中被广泛应用,如医用激光设备、核磁共振设备等,可以提高设备的性能和稳定性。

2. 热管的原理热管是一种利用液体的相变和循环来传热的装置。

其基本原理如下:1.工作介质:热管通常由内部充满工作介质的密封管道组成,工作介质一般为易于相变的液体,如水、乙醇、铵等。

2.热力学循环:热管的工作过程是一个闭合的热力学循环过程。

首先,在热管的一端,工作介质吸收热量并蒸发成气体;然后,气体通过压力差的作用将热量传导到热管的另一端;最后,在热管的另一端,气体冷却并凝结成液体,释放热量。

3.热传导:在热管的工作过程中,热量通过工作介质的相变和循环传导,从而实现热量的传递。

4.热阻和热导率:热管的热传导效果主要由热阻和热导率决定。

热阻指的是热量在热管中传导过程中的阻碍程度,而热导率则指的是热量在工作介质中的传导性能。

3. 热管的优势热管具有以下几个优势,使其成为热传导和热控制领域中的重要装置:1.高热传导效率:热管内部的工作介质可以高效传导热量,因此热管具有很高的热传导效率。

2.无需外部动力驱动:热管通过工作介质的相变和循环实现热量的传递,无需外部动力驱动,省去了能源消耗和故障风险。

3.可靠性高:热管的结构简单,传热过程中无机械运动,因此具有较高的可靠性和稳定性。

空调箱中热管式热回收工作原理

空调箱中热管式热回收工作原理

空调箱中热管式热回收工作原理热管式热回收是一种用于空调箱中的热回收技术,通过利用热管的工作原理,实现能量的回收和再利用。

该技术可以有效地提高空调系统的能效,减少能源的浪费,达到节能环保的目的。

热管是一种利用液体汽化和凝结的物理原理来传递热量的装置。

它由内部充满工质的密封管道以及两端的蒸发段和冷凝段组成。

热管工作时,内部的工质在蒸发段受热蒸发,蒸汽在管道中传递到冷凝段,然后在冷凝段释放热量并凝结成液体,最后通过重力或毛细作用力返回蒸发段。

在空调箱中,热管式热回收主要是通过将排出室内的废热与进入室内的新鲜空气进行热交换来实现能量回收。

具体而言,废热通过空调系统中的热交换器流过,使其与流动的工质发生热交换。

热管的蒸发段接触到废热,废热的热量使工质在蒸发段蒸发,并形成蒸汽。

蒸汽在热管中传递到冷凝段,然后在冷凝段释放热量并凝结成液体。

同时,进入室内的新鲜空气经过热交换器,与热管的冷凝段接触,使其与冷凝段的液体发生热交换。

新鲜空气从热交换器中吸收热量,而冷凝段的液体则重新获得热量并再次进入热管的蒸发段。

通过这样的热交换过程,废热中的热量被回收并用于加热新鲜空气,从而实现能量的再利用。

热管式热回收技术不仅能够提高空调系统的能效,降低能源消耗,还能够改善室内空气质量,减少对外界环境的污染。

热管式热回收技术的应用范围非常广泛。

除了在空调箱中,它还可以应用于其他领域,如工业生产过程中的余热回收、电子设备散热等。

通过利用热管的高效传热性能,可以将大量的废热转化为可利用的能源,提高能源利用率,降低能源消耗。

热管式热回收是一种高效的能量回收技术,通过利用热管的工作原理,实现废热与新鲜空气之间的热交换,从而提高空调系统的能效,减少能源的浪费。

该技术的应用可以有效地改善空调系统的性能,减少对环境的影响,达到节能环保的目的。

随着技术的不断进步和发展,热管式热回收技术将在更多领域得到应用,并为人们创造更加舒适和环保的生活环境。

热管技术原理

热管技术原理

热管技术原理
热管技术是一种高效的热传递技术,它利用液体在管内的蒸发和凝结过程,将热量从一个地方传递到另一个地方。

热管由内部充满工作流体的密闭管道组成,工作流体通常是一种易于蒸发和凝结的液体,如水、乙醇、氨等。

热管的工作原理可以简单地概括为:热管的一端吸收热量,使工作流体蒸发,蒸汽在管内传递到另一端,然后在那里冷却凝结,释放热量。

热管技术的优点在于它具有高效、可靠、轻便、无噪音、无污染等特点。

热管可以在各种环境下工作,包括真空、重力、高温、低温等条件下。

热管还可以用于各种应用,如电子散热、太阳能热水器、空调、冷却器等。

热管的工作原理可以通过以下几个步骤来解释:
1. 蒸发:当热管的一端吸收热量时,工作流体开始蒸发。

蒸发过程中,工作流体从液态变为气态,吸收热量。

2. 传热:蒸汽在管内传递到另一端,这个过程中,蒸汽会带走热量,从而将热量从一端传递到另一端。

3. 冷凝:当蒸汽到达另一端时,它会冷却凝结成液态,释放热量。

这个过程中,工作流体从气态变为液态,释放热量。

4. 回流:凝结后的工作流体会通过毛细作用回流到热管的另一端,
重新开始蒸发过程。

热管技术是一种高效、可靠、轻便、无噪音、无污染的热传递技术,它可以在各种环境下工作,并且可以用于各种应用。

热管技术的应用前景非常广阔,它将在未来的各个领域中发挥重要作用。

热管技术在油田加热炉节能改造中的应用

热管技术在油田加热炉节能改造中的应用

1. 引言热管技术是一种利用热管在高温热源和工艺设备之间传递热量的先进技术,已经在许多领域得到了广泛应用。

其中,在油田加热炉节能改造中的应用尤为突出。

本文将从热管技术的基本原理、在油田加热炉中的应用、节能改造效果以及未来发展前景等方面展开探讨。

2. 热管技术的基本原理热管是一种利用液体的汽化和凝结来传递热量的装置。

其基本原理是利用液体在热管内部蒸汽化形成蒸气,然后在冷却段凝结成液体,从而完成热量的传递。

这种独特的传热方式使得热管技术在能源转换、热管理和节能领域具有广泛的应用前景。

3. 热管技术在油田加热炉中的应用在油田加热炉中,热管技术可以被应用于燃烧室、换热器和回收装置等部分。

通过将热管技术应用于油田加热炉中,可以实现燃料的高效利用和能量的有效回收,从而实现节能降耗的目的。

4. 节能改造效果经过热管技术的应用,油田加热炉的节能改造效果十分可观。

由于热管技术能够实现热能的高效传递和回收,因此可以大大减少能源的浪费。

通过热管技术的应用,油田加热炉的工作温度和燃烧效率都得到了有效提高,进一步实现了能源的节约和环境的保护。

5. 未来发展前景随着工业技术的不断发展和创新,热管技术在油田加热炉中的应用前景愈发广阔。

未来,我们可以预见热管技术将在油田加热炉的节能改造中发挥越来越重要的作用,为能源的可持续利用和环境的可持续发展提供更加坚实的技术支持。

6. 个人观点和理解作为一种先进的传热技术,热管技术在油田加热炉中的应用对于节能减排具有重要意义。

它不仅能有效提高油田加热炉的能源利用率,还能减少对环境的负面影响。

我对热管技术在油田加热炉中的应用前景充满信心,相信它将在未来发展中发挥越来越重要的作用。

7. 总结热管技术在油田加热炉节能改造中的应用已经取得了显著的成果,而且在未来发展中仍具有巨大的潜力。

通过深入探讨热管技术的基本原理、在油田加热炉中的应用、节能改造效果以及未来发展前景,我们可以更好地认识到热管技术在能源领域的重要作用,为其持续发展提供更好的技术支持和指导。

热管散热器原理

热管散热器原理

热管散热器原理
热管散热器是一种利用热管技术进行散热的设备,其原理是利用热管的热传导
和相变特性,将热量从热源传导到散热器表面,再通过散热器表面的散热片将热量散发到空气中,从而达到散热的目的。

热管是一种利用液体在低温端蒸发、在高温端凝结的原理,将热量从一个地方
传导到另一个地方的热传导设备。

热管内部充满了一定量的工质,通常是一种低沸点的液体,如水、乙醇等。

当热管的一端受热时,工质在低温端蒸发,形成高压蒸汽,蒸汽压力推动蒸汽流向高温端,然后在高温端凝结成液体,释放出潜热。

这样,热量就被有效地从低温端传导到高温端。

热管散热器的工作原理是将热管与散热片相结合,形成一个整体的散热系统。

热管的一端与热源接触,通过热传导将热量传导到热管的另一端,而热管的另一端与散热片相连接,通过热传导将热量传递给散热片。

散热片的表面积较大,能够更快地将热量散发到周围的空气中,从而实现散热的效果。

热管散热器具有散热效率高、体积小、重量轻、可靠性高等优点。

由于热管本
身是一种 passively driven 的热传导元件,不需要外部能源,因此可以在各种恶劣
的环境下工作。

同时,热管散热器的结构简单,制造成本低,易于集成和安装,因此在各种电子设备和工业设备中得到了广泛的应用。

总的来说,热管散热器利用热管的热传导和相变特性,通过热传导将热量从热
源传导到散热器表面,再通过散热器表面的散热片将热量散发到空气中,从而实现散热的效果。

其优点是散热效率高、体积小、重量轻、可靠性高,适用于各种恶劣环境下的散热需求。

因此,在电子设备和工业设备中具有广泛的应用前景。

热管空调的工作原理及应用

热管空调的工作原理及应用

热管空调的工作原理及应用1. 什么是热管空调热管空调是一种利用热管技术实现空调系统制冷或供暖的设备。

热管是一种高效传热元件,由密封的金属管内部充满工质组成,通过热量传导和相变传热的方式,将热量从一个位置传递到另一个位置,从而实现空调的制冷或供暖功能。

2. 热管空调的工作原理2.1 热管的基本原理热管是利用工质在管内的汽化和凝结实现热量传输的装置。

热管由两个端口(蒸发端和冷凝端)组成,内部充满了工质。

在蒸发端,工质由液态转变为气态,吸收热量;在冷凝端,工质由气态转变为液态,释放热量。

通过这种汽化和凝结的循环,热量可以从热源传递到冷源。

2.2 热管空调的工作过程热管空调通常由蒸发器、冷凝器、压缩机和膨胀阀等部件组成。

其工作过程如下:1.压缩机将低温、低压的制冷剂气体吸入并压缩成高温、高压的气体。

2.高温、高压的气体通过冷凝器流动,在与外部空气接触时散热,从而将热量释放给外界。

3.冷凝器中的高温、高压气体通过膨胀阀进入蒸发器。

4.在蒸发器内,高温、高压气体因为减压而变为低温、低压的气体。

5.低温、低压的气体在蒸发器内吸热,从而冷却了周围的空气。

6.冷却后的空气通过风扇循环,在室内形成制冷效果。

7.冷却后的制冷剂气体再次经过压缩机,重新开始循环。

3. 热管空调的应用3.1 家庭空调热管空调可以应用于家庭空调系统,提供高效的制冷和供暖功能。

由于热管具有较高的传热效率和均匀的温度分布特点,可以提供更舒适的室内温度。

3.2 商业建筑空调热管空调也广泛应用于商业建筑空调系统中。

商业建筑通常需要大量的供暖和制冷能力,热管空调能够提供高效的能源利用和准确的温度控制,满足不同的商业需求。

3.3 工业制冷在一些工业领域中,需要实现特定温度的控制,如冷冻仓库、制药厂等。

热管空调可以根据需要提供稳定的低温环境,确保工业生产的正常进行。

3.4 车载空调热管空调还可以应用于汽车、船舶等交通工具的空调系统中。

通过热管技术,可以实现车内温度的准确控制,提供舒适的乘坐环境。

热管热回收工作原理

热管热回收工作原理

热管热回收工作原理
热管热回收(heat pipe heat recovery) 是一种新型的可再生能源利用技术,它可以从工业废气和废水中回收可利用的热量,再利用到原有的过程或其他位置。

热管热回收系统的工作原理如下:
首先,将要回收的源(例如,废气或废水)接入到热管中,源中的热量会经过热管界面进入热管系统中。

热管系统中的热量会进行收集和累积,然后被输送到排气口,它可以将热量输送到其他需要热量的系统中。

因此,热管热回收系统可以实现有效利用热量并实现节能减排,减少能源消耗和污染物排放。

热管热回收系统是一种采用多种技术来实现的有效热回收系统。

首先要提到的就是热交换器的使用,它能将多余的热量收集起来,并将其转移到另一个低温位置,从而释放更多的热量。

另外,还可以使用真空技术并采用真空隔离的方式来实现热管的有效封装。

此外,在热管热回收系统中还可以使用润滑技术、纳米材料和其他有效的密封技术,提高封装密封性能,减少渗漏,进而提高热回收系统的效率和稳定性。

热管热回收系统可以有效改善工业企业的能效,降低热源的温度,它比一般的真空热回收系统相比具有更高的热回收率,从而可以更加有效地利用热量来节约能源,减少污染排放,改善工业环境。

总而言之,热管热回收系统是一种高效可靠的可再生能源利用技术,它可以从工业废气和废水中回收可利用的热量,有助于减少能源消耗,改善减少污染排放,促进绿色环保。

热管工作原理

热管工作原理

热管工作原理引言概述:热管是一种热传导设备,利用液体在低温端蒸发吸热,蒸汽在高温端凝结释放热量的原理,实现热量的传递。

热管在许多领域有着广泛的应用,如电子设备散热、航天器件冷却等。

下面将详细介绍热管的工作原理。

一、热管的基本结构1.1 热管由内管、外管和工作流体组成,内管和外管之间充满了工作流体。

1.2 内管表面通常采用特殊涂层,以增强表面张力,减小液滴的尺寸。

1.3 工作流体通常为高导热性的液体,如水、乙醇等。

二、热管的工作原理2.1 当热管的低温端受热时,工作流体在内管内蒸发,吸收热量,形成蒸汽。

2.2 蒸汽在热管中向高温端传输,并在高温端凝结释放热量,将热量传递给外部环境。

2.3 凝结后的液体由于表面张力的作用,会沿着内管壁流回低温端,完成热量传递循环。

三、热管的优点3.1 热管具有高效的热传导性能,能够快速传递热量。

3.2 热管结构简单、可靠,使用寿命长。

3.3 热管可以实现热量的定向传递,适用于复杂的热传导环境。

四、热管的应用领域4.1 电子设备散热:热管可以有效地将电子设备产生的热量传递到散热器中,提高散热效率。

4.2 航天器件冷却:在太空环境中,热管可以帮助航天器件快速散热,确保器件正常工作。

4.3 工业生产:热管在工业生产中也有着广泛的应用,可以用于加热、冷却等工艺。

五、热管的发展趋势5.1 热管的材料和结构不断改进,提高了热传导效率。

5.2 热管在微型化和集成化方面有着更广阔的应用前景。

5.3 随着技术的不断进步,热管将在更多领域得到应用,为人类社会的发展做出更大的贡献。

总结:热管作为一种高效的热传导设备,具有许多优点和广泛的应用领域。

通过不断的技术改进和创新,热管将在未来发展中发挥更加重要的作用,为各行各业提供更好的热传导解决方案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

热管利用技术代课老师:胡广涛学生姓名:赵岩学生学号:1005300151学生专业:热能与动力工程1 引言传统散热方式主要是空气冷却、强制风冷散热以及水冷散热。

(1)空气冷却也称自然冷却,一般是将电子元器件的发热核心部位与型材散热器相接触,通空气的自然对流方式将热传导出来。

其优点是结构简单、安装方便、成本低廉。

缺点是散热功率低(2)风冷散热这传导出来,然后再通过风扇转动,来加强空气的流动,通过强制对流的方式将散热片上的热传至周围的环境。

优点:结构简单,价格低廉,安全可靠,技术成熟。

缺点:降温的效果有限,不能达到令人满意的程度,并且具有噪音,风扇的使用寿命也有限制。

(3)水冷散热其原理是利用水泵驱动水流经过热源,进行吸热传递。

优点:水冷散热效率高,热传导率为传统风冷方式的20倍以上,可以解决几百至数千瓦的散热问题,是风冷效果所不能比拟的。

因为即使是散热效率最高的涡轮风扇风冷散热,其温度比水冷散热也要高大约10℃;相比于风冷散热,水冷散热因为没有风扇,所以不会产生振动现象,也无风冷散热的高噪音。

缺点:需要良好的通风环境,并且体积大,安装和维护不方便,容易滴漏、安全性不高,价格一般也相对较高。

(4) 热管散热热管是一种具有极高导热性能的新型传热元件,它通过在全封闭真空管内的液体的蒸发与凝结来传递热量,它利用毛吸作用等流体原理,起到良好的制冷效果。

具有极高的导热性、良好的等温性、冷热两侧的传热面积可任意改变、可远距离传热、温度可控制等特点。

将热管散热器的基板与晶闸管、igbt、igct 等大功率电力电子器件的管芯紧密接触,可直接将管芯的热量快速导出。

通过对上述几种散热方式的分析,我们不难看出,热管散热相对于其他几种传统散热方式存在以下的优势:●热管散热技术具有散热效果好,热阻相对小,使用寿命长,传热快的优点。

热管的热导系数是普通金属的100倍以上;●传热方向可逆,不管任何一端都能成为蒸发端和冷凝端;●优良的热响应性。

热管内汽化的蒸汽能以接近音速的速度传输,从而有效的提高了导热效果;●结构简单紧凑,重量轻,体积小,维护方便;●无功耗、无噪音、符合工业“绿色”的要求;●可以在无重力场的环境下使用。

综上所述:热管传热利用热传导原理与致冷介质的快速热传递性质,通过热管将发热物体的热量迅速传递到热源以外。

采用热管技术使得散热器即便采用低转速、低风量电机,甚至不需风机,完全采用自冷方式,同样可以得到满意的散热效果,使得困扰风冷散热的噪音问题以及大功率电力模块散热问题得到良好解决,随着热管加工工艺的不断改善,其可靠性、安全性、耐用性将会更加提高,而成本和价格也会进一步降低。

热管散热器将有着传统散热器所无法比拟的优势,它的出现开辟了散热行业的新天地。

2 热管的基本工作原理2.1 工作原理物体的吸热、放热是相对的,凡是有温度差存在的时候,就必然出现热从高温处向低温处传递的现象。

热传递有三种方式:辐射、对流、传导,其中热传导最快。

热管就是利用蒸发制冷,使得热管两端温度差很大,使热量快速传导。

一般热管由管壳、吸液芯和端盖组成。

热管内部被抽成负压状态,充入适当的液体(即工质),这种液体沸点低,容易挥发。

管壁有吸液芯,其由毛细多孔材料构成。

热管一端为蒸发段(简称热端),另外一端为冷凝段(简称冷端),当热管蒸发段受热时,毛细管中的液体迅速蒸发,蒸气在微小的压力差下流向另外一端,并且释放出热量,重新凝结成液体,液体再沿多孔材料靠毛细力的作用流回蒸发段,如此循环不止,热量由热管一端传至另外一端。

这种循环是快速进行的,热量可以被源源不断地传导开来。

2.2 组成与工作过程典型的热管由管壳、吸液芯和端盖组成,将管内抽成1.3×(10-1~10-4)pa 的负压后充以适量的工作液体(即工质),使紧贴管内壁毛细多孔材料中的吸液芯充满液体后加以密封。

管的一端为蒸发段(加热段),另一端为冷凝段(冷却段),根据应用需要在两段中间可布置绝热段。

当热管的一端受热时毛细芯中的液体蒸发汽化,蒸汽在微小的压差下流向另一端,放出热量凝结成液体,液体再沿多孔材料靠毛细力的作用流回蒸发段。

如此循环不己,热量由热管的一端传至另—端。

热管在实现这一热量转移的过程中,包含了以下六个相互关联的主要过程:(1)热量从热源通过热管管壁和充满工作液体的吸液芯传递到(液-汽)分界面;(2)液体在蒸发段内的(液-汽)分界面上蒸发;(3)蒸汽腔内的蒸汽从蒸发段流到冷凝段;(4)蒸汽在冷凝段内的(汽-液)分界面上凝结;(5)热量从(汽-液)分界面通过吸液芯、液体和管壁传给冷源;(6)在吸液芯内由于毛细作用使冷凝后的工作液体回流到蒸发段。

3 热管的基本特性热管是依靠自身内部工作液体相变来实现传热的传热元件,具有以下基本特性。

3.1 很高的导热性热管内部主要靠工作液体的汽、液相变传热,热阻很小,因此具有很高的导热能力。

与银、铜、铝等金属相比,单位重量的热管可多传递几个数量级的热量。

当然,高导热性也是相对而言的,温差总是存在的,可能违反热力学第二定律,并且热管的传热能力受到各种因素的限制,存在着一些传热极限;热管的轴向导热性很强,径向并无太大的改善(径向热管除外)。

3.2优良的等温性热管内腔的蒸汽处于饱和状态,饱和蒸汽的压力决定于饱和温度,饱和蒸汽从蒸发段流向冷凝段所产生的压降很小,根据热力学中的方程式可知,温降亦很小,因而热管具有优良的等温性。

3.3 热流密度可变性热管可以独立改变蒸发段或冷却段的加热面积,即以较小的加热面积输入热量,而大的冷却面积输出热量,或者热管可以较大的传热面积输入热量,而以较小的冷却面积输出热量,这样即可以改变热流密度,解决一些其他方法难以解决的传热难题。

3.4 热流方向可逆性一根水平放置的有芯热管,由于其内部循环动力是毛细力,因此任意一端受热就可作为蒸发段,而另一端向外散热就成为冷凝段。

此特点可用于宇宙飞船和人造卫星在空间的温度展平,也可用于先放热后吸热的化学反应容器及其他装置。

3.5 热二极管与热开关性能热管可做成热二极管或热开关,所谓热二极管就是只允许热流向一个方向流动,而不允许向相反的方向流动;热开关则是当热源温度高于某一温度时,热管开始工作,当热源温度低于这一温度时,热管就不传热。

3.6 恒温特性(可控热管)普通热管的各部分热阻基本上不随加热量的变化而变,因此当加热量变化时,热管各部分的温度亦随之变化。

近年来出现了另一种新型热管——可变导热管,使得冷凝段的热阻随加热量的增加而降低、随加热量的减少而增加,这样可使热管在加热量大幅度变化的情况下,蒸汽温度变化极小,实现温度的控制,这就是热管的恒温特性。

3.7 环境的适应性热管状可随热源和冷源的条件而变化,热管可做成电机的转轴、燃气轮机的叶片、钻头、手术刀等等,热管也可做成分离式的,以适应长距离或冲热流体不能混合的情况下的换热;热管既可以用于地面(重力场),也可用于空间(无重力场)。

4 热管的分类由于热管的用途、种类和型式较多,再加上热管在结构、材质和工作液体等方面各有不同之处,故而对热管的分类也很多,常用的分类方法有以下几种。

(1)按照热管管内工作温度可分为:低温热管(-273~0℃)、常温热管(0~250℃)、中温热管(250~450℃)、高温热管(450~1000℃)等。

(2)按照工作液体回流动力可分为:有芯热管、两相闭式热虹吸管(又称重力热管)、重力辅助热管、旋转热管、电流体动力热管、磁流体动力热管、渗透热管等等。

(3)按管壳与工作液体的组合方式划分(这是一种习惯的划分方法)可分为:铜—水热管、碳钢—水热管、铜钢复合—水热管、铝—丙酮热管、碳钢—萘热管、不锈钢—钠热管等等。

(4)按结构形式区分可分为:普通热管、分离式热管、毛细泵回路热管、微型热管、平板热管、径向热管等。

(5)按热管的功用划分可分为:传输热量的热管、热二极管、热开关、热控制用热管、仿真热管、制冷热管等等。

5 热管的相容性及寿命热管的相容性是指热管在预期的设计寿命内,管内工作液体同壳体不发生显著的化学反应或物理变化,或有变化但不足以影响热管的工作性能。

相容性在热管的应用中具有重要的意义。

只有长期相容性良好的热管,才能保证稳定的传热性能、长期的工作寿命及工业应用的可能性。

碳钢-水热管正是通过化学处理的方法,有效地解决了碳钢与水的化学反应问题,才使得碳钢—水热管这种高性能、长寿命、低成本的热管得以在工业中大规模推广使用。

影响热管寿命的因素很多,归结起来,造成热管不相容的主要形式有以下三方面,即:产生不凝性气体,工作液体热物性恶化,管壳材料的腐蚀、溶解。

(1)产生不凝性气体(2)由于工作液体与热管材料发生化学反应或电化学反应,产生不凝性气体,在热管工作时,该气体被蒸汽流吹扫到冷凝段聚集起来形成气塞,从而使有效冷凝面积减小,热阻增大,传热性能恶化,传热能力降低甚至失效。

(3) 工作液体物性恶化(4)有机工作介质在一定温度下,会逐渐发生分解,这主要是由于有机工作液体的性质不稳定,或与热管壳体材料发生化学反应,使工作介质改变其物理性能,如甲苯、烷、烃类等有机工作液体易发生该类不相容现象。

(5) 管壳材料的腐蚀、溶解(6)工作液体在管壳内连续流动,同时存在着温差、杂质等因素,使管壳材料发生溶解和腐蚀,流动阻力增大,使热管传热性能降低。

当管壳被腐蚀后,引起强度下降,甚至引起管壳的腐蚀穿孔,使热管完全失效。

这类现象常发生在碱金属高温热管中。

6 热管制造热管的主要零部件为管壳、端盖(封头)、吸液芯、腰板(连接密封件)四部分。

不同类型的热管对这些零部件有不同的要求。

6.1管壳热管的管壳大多为金属无缝钢管,根据不同需要可以采用不同材料,如铜、铝、碳钢、不锈钢、合金钢等。

管子可以是标准圆形,也可以是异型的,如椭圆形、正方形、矩形、扁平形、波纹管等。

管径可以从2mm到200mm,甚至更大。

长度可以从几毫米到l00m以上。

低温热管换热器的管材在国外大多采用铜、铝作为原料。

采用有色金属作管材主要是为了满足与工作液体相容性的要求。

6.2 端盖热管的端盖具有多种结构形式,它与热管连接方式也因结构形式而异。

端盖外圆尺寸可稍小于管壳。

配合后,管壳的突出部分可作为氩弧焊的熔焊部分,不必再填焊条,焊口光滑平整、质量容易保证。

旋压封头是国内外常采用的一种形式,旋压封头是在旋压机上直接旋压而成,这种端盖形式外型美观,强度好、省材省工,是一种良好的端盖形式。

6.3 吸液芯结构吸液芯是热管的一个重要组成部分。

吸液芯的结构形式将直接影响到热管和热管换热器的性能。

近年来随着热管技术的发展,各国研究者在吸液芯结构和理论研究方面做了大量工作,下面对一些典型的结构作出简赂的介绍。

一个性能优良的管芯应具有:(1)足够大的毛细抽吸压力,或较小的管芯有效孔径;(2)较小的液体流动阻力,即有较高的渗透率;(3)良好的传热特性,即有小的径向热阻;(4)良好的工艺重复性及可靠性,制造简单,价格便宜。

相关文档
最新文档