纳米陶瓷材料的研究现状及应用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
纳米陶瓷材料的研究现状及应用
李杨20090560
材料科学与工程学院090201
摘要:综述了纳米陶瓷材料的力学性能、热学性能、光学性能和电磁学性能及其在各个领域的应用。
关键词:纳米陶瓷,性能,应用
刖言
陶瓷材料在日常生活、工业生产及国防领域中起着举足轻重的作用。但是,由于传统陶瓷材料质地较脆,韧性、强度较差,因而使其应用受到了很大限制。随着纳米技术的广泛应用,纳米陶瓷随之产生,希望以此来克服传统陶瓷的脆性,使其具有像金属一样的柔韧性和可加工性。与传统陶瓷相比。纳米陶瓷的原子在外力变形条件下自己容易迁移,因此表现出较好的韧性与一定的延展性,因而从根本上解决了陶瓷材料的脆性问题。英国著名材料科学家卡恩在Nature杂志上
撰文道:“纳米陶瓷是解决陶瓷脆性的战略途径。”
所谓纳米陶瓷,是指陶瓷材料的显微结构中,晶粒尺寸、晶界宽度、第二相分布、气孔尺寸、缺陷尺寸都限于100nm以下,是上世纪80年代中期发展起来的新型陶瓷材料。由于纳米陶瓷晶粒的细化,品界数量大幅度增加,可使材料的韧性和塑性大为提高并对材料的电学、热学、磁学、光学等性能产生重要的影响,从而呈现出与传统陶瓷不同的独特性能,成为当今材料科学研究的热点。
一、纳米陶瓷材料的性能
纳米陶瓷材料的结构与常规材料相比发生了很大变化,颗粒组元细小到纳米数量级,界面组元大幅度增加,可使材料的强度、韧性和超塑性等力学性能大为提高,并对材料的热学、光学、磁学、电学等性能产生重要的影响。
1.力学性能
硬度和断裂韧度:对纳米晶TiO2进行研究,发现在室温压缩时,纳米颗粒已有很好的结合,高于500 r很快致密化,而晶粒大小只有稍许的增加,所得的硬度和断裂韧度值与单晶TiO2或粗颗粒压缩体的相应值比,性能相当或更好。纳米晶TiO2其硬度和断裂韧度随烧结温度的增加(即空隙度的降低)而增加,在800~900C温度范围烧结,与经优化烧结的块状陶瓷相比,两者的硬度和断裂韧度值相符。低温烧结后,纳米晶TiO2就能获得好的力学性能。通常硬化处理材料变脆,造成断裂韧度的降低,而就纳米晶而言,硬化和韧化由空隙的消除来形成,这样就增加了材料的整体强度。纳米晶TiO2经800r烧结后,维氏硬度H=63Q 断裂韧度Kic(Mpam/2)为2.8,空隙度为10%;而1000r烧结后,空隙度为5%。
塑性与超塑性:纳米晶陶瓷的塑性看来与残余空隙度无关。TiO2开槽样品作了试验,表明不需裂纹生长,即可显示塑性形变。料的开槽样品的断裂,没有塑性形变。
最感兴趣的是结构超塑性,对超塑性起关键作用的是晶粒边界滑H=925, Kic=2.8 ,
对弯曲时的纳米脆性多孔材
移、晶粒转动和扩散过程中晶粒形状的调节。事实上陶瓷的超塑性早有报导,由于温度太高,技术上难以达到。已知AI2Q在1750~1950C, AI2Q用Cr2Q和Y2O3掺杂在1500C, 以及MgQ用AI2O3掺杂在1420r都具有高应变的蠕变。仅在界面具有液相的陶瓷在较低温度下可显示超塑性流动。而纳米陶瓷含有超细晶粒,普通陶瓷相比,推知其呈现结构超塑性的温度要低得多。
2.热学性能
(1)比热,纳米材料的界面结构中原子分布比较混乱,与常规材料相比,界面体积分数较大,因而纳米材料熵对比热的贡献比常规材料大得多。如对应粒径为80nmA2Q的比热,比常规粗晶AI2Q高8%。
⑵ 热膨胀,纳米非晶氮化硅热膨胀系数比常规晶态Si3N4高1〜26倍。其原因是纳米非晶氮化硅的结构与常规晶态Si3N4有很大差别,前者是由短程有序的非晶态小颗粒构成的,它们之间的界面占很大比例,界面原子的排列较之非晶颗粒内部更为混乱。在相同条件下,原子和键的非线性热振动比常规晶态显著得多,因此对热膨胀的贡献也必然很大。
(3)导热或超绝热,绝热材料目前在我国尚处于实验研究与工业实验的中间阶段。由于气孔尺寸小到纳米级,主要产生如下纳米效应:当轻质材料中的气孔尺寸小于50nm 时,气孔中的空气分子就失去了自由流动的能力,因此相当于抽了真空,称为“零对流效应”。由于材料的体积密度较小,气孔尺寸很小,这时气孔壁的数目趋于“无穷多”。对于每一个气孔壁来说都具有遮热板的作用,因而产生近于“无穷多遮热板”的效应,从而使辐射传热下降到最小的极限。由于近于无穷多纳米孔的存在.热流在固体中传递时就只能沿着气孔壁传递,近于无穷多的气孔壁构成了近于“无穷多路径”效应,使固体热传导的能力下降到接近最低极限。
将硅酸钙复合纳米孔超级绝热材料用于钢结构防火可使防火时间从目前一般厚质防火涂料的2h左右延长到15h,给灭火赢得充足的时间。将该材料用于太阳能热水器,可使其集热效率提高一倍以上,而散热损失下降到现在的30 %。
3.光学性能
材料的光学性能与其内部的微观结构,特别是电子态、缺陷态和能级态结构有关。纳米材料在结构上与常规材料有很大差别,突出表现在小尺寸颗粒和庞大体积分数的界面,界面原子排列和键的组态的无规则性较大,使纳米材料的光学性能出现一些与常规材料不同的新现象。
(1)红外吸收:对纳米材料红外吸收的研究表明,红外吸收谱中出现蓝移和
宽化。纳米相Al2O3,红外吸收谱在400〜1000cm波数范围内有一个宽广的吸收带,与A12Q 单晶相比,红外吸收峰有明显的宽化,其中对应单晶的637cm和442cm1的吸收峰,在纳米相中蓝移到639.7cm-1和442.5cm-1。
(2)荧光现象:用紫外光激发掺Cr和Fe的纳米相AIQ时,在可见光范围观察到新的荧光现象。
(3)光致发光:退火温度低于673K时,纳米非晶氮化硅块体在紫外光到可见
光范围的发光现象与常规非晶氮化硅不同,出现6个分立的发光带,而常规非晶
氮化硅在紫外光到可见光很宽的波长范围的发光呈现一个很宽的发光带。
4.电磁学性能
纳米材料与常规材料在结构上,特别是在磁结构上有很大差别,因此在磁性方面会有其独特的性能。除磁结构和磁化特点不同外,纳米晶材料颗粒组元小到