六年级奥数试题-递推与归纳(学生版)
高斯小学奥数六年级上册含答案第03讲递推计数
第三讲递推计数换个月fl.方忸就有许多计数问题很复杂,直接处理比较困难,此时硬碰硬是不行的.一个比较有效的策略是退而求其次:先考虑该问题的简单情形,看看简单情形如何处理;在解决了简单情形后,再考虑如何利用简单情形的结论来解决更复杂的问题……这个由简单到复杂的推导过程就叫“递推”.那如何利用“递推法”来解决计数问题呢?下面我们就来看几个例子.例1.老师给小高布置了12篇作文,规定他每天至少写1篇.如果小高每天最多能写3篇,那么共有多少种不同的完成方法?(小高每天只能写整数篇)「分析」从简单情况入手,看看能否找到合适的突破口 .如果老师只布置1篇作文,小高有多少种不同的完成方法?如果老师布置2篇作文,小高有多少种不同的完成方法?如果老师布置3篇、4篇、……小高又分别有多少种不同的完成方法?篇数由少到多,完成方法数也会逐渐变多,这其中有什么规律呢?练习1、一个楼梯共有12级台阶,规定每步可以迈二级台阶或三级台阶.走完这12级台阶,共有多少种不同的走法?10 3的方格表,共有多少种覆盖方法?例2.用10个1 3的长方形纸片覆盖一个「分析」与例1的类似,我们还是从简单情形入手找递推关系. 可具体从什么样的情形入手呢?练习2、用7个1 2的长方形纸片覆盖一个7 2的方格表,共有多少种覆盖方法?例3.在一个平面上画出100条直线,最多可以把平面分成几个部分?「分析」当直线数量不多时,画图数一数即可.但现在有100条,画图数并不现实.我们不妨在纸上将直线逐一画出,并在画的过程中仔细观察:每增加一条直线,平面被分成的部分会增加多少?这个增量有什么变化规律?练习3、如果在一个圆内画出 50条直线,最多可以把圆分成多少部分?卜面我们来学习一类很经典的递推计数问题一一传球问题.例4.四个人分别穿着红、黄、绿、蓝四种颜色的球衣练习传球,每人都可以把球传给另外三个人中的任意一个. 先由红衣人发球, 并作为第1次传球,经过8次传球后球仍然回 到红衣人手中.请问:整个传球过程共有多少种不同的可能?「分析」看到这个问题,很多同学可能想通过树形图来求解,我们不妨来试一试.设穿 着红、黄、绿、蓝四种颜色球衣的人分别是A 、B 、C 、D.如下图,最开始时,球在 A手上,第一次传球由 A 传给B 、C 、D,也就是第一层有三个字母就够了.然后B 、C 、D 都会继续往下传球,各有 3种传法,传到第二层需要 9个字母.再传到第三层,需要 27个字母……每一层需要的字母增加迅猛! 如果传8次球,到最后一层会用到 38 6 561个字母,这要多大的一个树形图啊!可见画树形图的方案不可行. 但树形图对这道题就没有用了吗?并非如此. 它可以帮助我们找出传球过程中所隐藏的递推关系. 事实上,我们并不关心树形图长啥样,我们关心的是数量一一树形图每一层分支的数量.因此,只要知道每一层各字母出现的次数就可以了,我们不妨制作一个表格来统计这个次数.如下表,我们用第一列来表示层数, 第一行来表示每个人, 其余空格用于填写字母在该层中出现的次数.请你从上方的树形图中数一数,填出表格中的前几行. 然后思考一下:这其中隐藏着什么样的递推关系?ABCD12345BCD ABDABC BCD ACDABC BCD练习4、三个人分别穿着红、黄、蓝三种颜色的球衣练习传球,每人都可以把球传给另外两个人中的任意一个. 先由红衣人发球,并作为第1次传球,经过7次传球后传到蓝衣人手中.请问:整个传球过程共有多少种不同的可能?解传球问题的方法称为“传球法” .“传球法”是递推法的一种特殊形式,是一种极其实用的数表累加计数法.例5. 一个七位数,每一位都是1、2或者3,而且没有连续的两个1,这样的七位数一共有多少个?「分析」这道题与前面两道题有何异同?应该如何求解呢?前面的计数问题,递推关系都表现为数列、数表的简单累加,但这不是递推的全部.简单累加只是递推的一种表现形式,递推还有很多其它形式. 下面我们就来看一道无法通过简单累加求解的计数问题.例6.圆周上有10个点A i、A2、L、A10,以这些点为端点连接5条线段,要求线段之间没有公共点,共有多少种连接方式?「分析」圆周上10个点,连5条线段,连法很多,很难直接画出来枚举. 像这类问题,我们同样还是从简单的情况入手.那么是应该按1个点、2个点、3个点、……这样依次计数,来找递推关系吗?课堂内外神奇的汉诺塔一位法国数学家曾编写过一个印度的古老传说:在世界中心贝拿勒斯(在印度北部)的圣庙里,一块黄铜板上插着三根宝石针. 印度教的主神梵天在创造世界的时候,在其中一根针上从下到上地穿好了由大到小的64片金片,这就是所谓的汉诺塔.不论白天黑夜,总有一个僧侣在按照下面的法则移动这些金片:一次只移动一片,不管在哪根针上,小片必须在大片上面.僧侣们预言,当所有的金片都从梵天穿好的那根针上移到另外一根针上时,世界就将在一声霹雳中消灭,而梵塔、庙宇和众生也都将同归于尽.不管这个传说的可信度有多大,如果考虑一下把64片金片,由一根针上移到另一根针上,并且始终保持上小下大的顺序.这需要多少次移动呢?这里需要递归的方法.假设有n 片,移动次数是f(n).显然f(1) 1, f(2) 3, f(3) 7,且f(k 1) 2f(k) 1 .此后不难证明f(n) 2n 1. n 64 时,f (64) 264 1 18446744073709551615.假如每秒钟一次,共需多长时间呢?一个平年365天有31536000秒,闰年366天有31622400 秒,平均每年31556952 秒,计算一下,18446744073709551615/31556952=584554049253.855 年.这表明移完这些金片需要5845亿年以上,而地球存在至今不过45亿年,太阳系的预期寿命据说也就是数百亿年.真的过了5845亿年,不说太阳系和银河系,至少地球上的一切生命,连同梵塔、庙宇等,都早已经灰飞烟灭.作业1.有10个蛋黄派,萱萱每天吃1个或2个,那么共有多少种不同的吃法?2.甲、乙两人玩抓石子游戏,共有12个石子,甲先乙后轮流抓取.每次可以抓取其中的2个、3个或4个,直到最后抓取完毕为止.那么共有多少种抓取石子的方案?3.用直线把一个平面分成100部分,至少要在平面上画几条直线?4. 一个七位数,它由数字0、1、2、3、4组成,相邻位置上的数字不相同,并且个位数字是2.这样的七位数有多少个?5.用8个1 2的长方形纸片覆盖下面的方格表,共有多少种覆盖方法?第五讲进位制问题例题:例7.答案:(1) 31023、3735、11B9、7DD; (2) 257; (3) 1742详解:(1)5 3 (3)16 2013 ......13 16 125 ......13 16 7 (7)(2) 2 53 0 52 1 5 2 50257; (3) 2 123 0 122 1 12 2 120 1742 .例8.答案:(1) 5; (2) 13121、731详解:三进制转九进制从右往左两位两位转换; 二进制转四进制从右往左两位两位转换;二进制转八进制从右往左三位三位转换.例9.答案:15031详解:列竖式计算.例10.答案:212. a=5、b=5、c=2例11.答案:10个详解:若要称量1克的重量必须有1克的祛码,若要称量2克的重量必须有2克的祛码, 依次类推可得:1+2+4+8+16+32+64+128+256+512 ,此时可以称量 1克到1023克的所 有重量,此时需要10个祛码.例12. 答案:125 2013 ……3八 5 402 ……2 580 ……1 5|16…… 0 8 2013 8 251 831 8 32 +3 7 312 2013 1216712 13 12 19 八 12 1 1详解:所看页数列为1、1、2、4、8、256、512、989.练习:6.答案:554;2781;195;7227.答案:161578.答案:212349.答案:248.a=5、b=0、c=3作业:1.答案:(1)354;(2)458;(3)C30;(4)14443;(5)433;(6)852.答案:(1)1131 ;(2)123123.答案:100简答:a 很容易知道只能为 1 ,再根据进位制展开解方程得出b、c 均为0,所以原数十进制是100.4.答案:22简答:由题意有abc 3 cba 4 ,其中a、b、c 均小于3,则有 9a 3b c 16c 4b a ,化简得8a b 15c,符合条件的a、b、c为2、1、1,化成十进制是22.5.答案:24简答:由题意有47 a 74 b ,其中a、b 均要大于7,则有4a 7 7b 4 ,符合条件的最小的a、b 为15、9,和是24.。
六年级第7讲 归纳与推递(学生版)
第七讲归纳与递推1、早在公元前300多年前,古希腊著名科学家欧几里德就在他的旷世名著<几何原本》一书中记载了几何学中最基本、最引人人胜的一条著名定理:“三角形的内角和等于180度”,我们的问题是:①四边形的内角和等于多少度(见下图)?答:五边形的内角和等于多少度(见下图)?答:②进一步,如果把多边形的边数记作n,你能够归纳出n边形的内角和的计算公式吗?答:公式为__ __.③在家庭装修中,经常采用各种正多边形(注:正多边形就是各条边均相等且各内角也相等的多边形)的瓷砖搭配出各式各样的地面图案.小明家装修时采用了三种正多边形瓷砖铺地面,这三种型号的瓷砖可以围绕着地面上的一点既不重叠又不产生漏洞的拼接起来.其中一种型号是正方形,另一种型号是正六边形,你知道第三种型号的多边形瓷砖的边数是多少吗?请写出你的计算过程.2、一条直线分一个平面为两部分,二条直线最多分一张平面为四部分,问:五条直线最多分一个平面为多少部分?3、将一个圆形纸片用直线划分成大小不限的若干小纸片,如果要分成不少于50个小纸片,至少要画多少条直线?请说明.、一个长方形把平面分成两部分,那么三个长方形最多把平面分成部分.5、 n个平面最多钝将空间分成多少个部分?6、如下图所示,第一个三角形的面积是256,取三角形的3条边的中点,连成一个三角形,将中间的三角形挖去,得到第二个图,再将第二个图中每个三角形按照前一个做法得到第三个图,如此下去……,求第五个图形的面积是。
7、在一张长方形纸片内有n个点,加上四个顶点共,n+4个点,这些点中任意三点都不在同一条直线上,(1)n=4时,将长方形纸片剪开,最多可以剪成多少个以这些点为顶点的三角形(画出一个示意图即可作答).(2)n=2010时,最多可以剪成多少个以这些点为顶点的三角形?并作简要说明.(注意:(1)、(2)中任意两个三角形不重叠)8、在一个圆周上标出一些数,第一次先把圆周二等分,在两个分点旁分别标上和,如图a所示;第二次把两段半圆弧二等分,在分点旁标上相邻两分点旁所标两数的和,如图b 所示,=+;第三次把4段圆弧二等分,并在4个分点旁标上相邻两分点旁所标两数的和,如图c所示,1=+,1=+;如此继续下去,当第八次标完数以后,圆周上所有已标的数的总和是____.9、小凯家住二楼,从一楼到二楼的楼梯共有9阶,小凯上楼时每步可跨1阶、跨2阶、或跨3阶.请问他共有多少种不同的方法上楼?10、仅由数字1和2组成一些数,其中至少有两个数字1相连的数称为“学而思数”,如11,112,1211等都是“学而思数”,而12212就不是“掌而思数”.那么所有六位的学而思数共多少个?11、用1×2小长方形或1×3的小长方形覆盖2×6的方格网(如下图所示),共有不同的盖法。
六年级数学思维训练专题7 归纳与推递(原卷+解析)
小学六年级思维训练专题之7 归纳与推递1、早在公元前300多年前,古希腊著名科学家欧几里德就在他的旷世名著<几何原本》一书中记载了几何学中最基本、最引人人胜的一条著名定理:“三角形的内角和等于180度”,我们的问题是:①四边形的内角和等于多少度(见下图)?答:五边形的内角和等于多少度(见下图)?答:②进一步,如果把多边形的边数记作n,你能够归纳出n边形的内角和的计算公式吗?答:公式为__ __.③在家庭装修中,经常采用各种正多边形(注:正多边形就是各条边均相等且各内角也相等的多边形)的瓷砖搭配出各式各样的地面图案.小明家装修时采用了三种正多边形瓷砖铺地面,这三种型号的瓷砖可以围绕着地面上的一点既不重叠又不产生漏洞的拼接起来.其中一种型号是正方形,另一种型号是正六边形,你知道第三种型号的多边形瓷砖的边数是多少吗?请写出你的计算过程.2、一条直线分一个平面为两部分,二条直线最多分一张平面为四部分,问:五条直线最多分一个平面为多少部分?3、将一个圆形纸片用直线划分成大小不限的若干小纸片,如果要分成不少于50个小纸片,至少要画多少条直线?请说明.4、一个长方形把平面分成两部分,那么三个长方形最多把平面分成部分.5、 n个平面最多钝将空间分成多少个部分?6、如下图所示,第一个三角形的面积是256,取三角形的3条边的中点,连成一个三角形,将中间的三角形挖去,得到第二个图,再将第二个图中每个三角形按照前一个做法得到第三个图,如此下去……,求第五个图形的面积是。
7、在一张长方形纸片内有n个点,加上四个顶点共,n+4个点,这些点中任意三点都不在同一条直线上,(1)n=4时,将长方形纸片剪开,最多可以剪成多少个以这些点为顶点的三角形(画出一个示意图即可作答).(2)n=2010时,最多可以剪成多少个以这些点为顶点的三角形?并作简要说明.(注意:(1)、(2)中任意两个三角形不重叠)8、在一个圆周上标出一些数,第一次先把圆周二等分,在两个分点旁分别标上和,如图a所示;第二次把两段半圆弧二等分,在分点旁标上相邻两分点旁所标两数的和,如图b 所示,=+;第三次把4段圆弧二等分,并在4个分点旁标上相邻两分点旁所标两数的和,如图c所示,1=+,1=+;如此继续下去,当第八次标完数以后,圆周上所有已标的数的总和是____.9、小凯家住二楼,从一楼到二楼的楼梯共有9阶,小凯上楼时每步可跨1阶、跨2阶、或跨3阶.请问他共有多少种不同的方法上楼?10、仅由数字1和2组成一些数,其中至少有两个数字1相连的数称为“学而思数”,如11,112,1211等都是“学而思数”,而12212就不是“掌而思数”.那么所有六位的学而思数共多少个?11、用1×2小长方形或1×3的小长方形覆盖2×6的方格网(如下图所示),共有不同的盖法。
小学生6年级数学奥数试题与答案.pdf
习题一 1.一项工程,甲单独做 12 天可以完成.如果甲单独做 3 天,余下工 作由乙去做,乙再用 6 天可以做完.问若甲单独做 6 天,余下工作乙要做 几天? 2.一条水渠,甲乙两队合挖 30 天完工.现在合挖 12 天后,剩下的 由乙队挖,又用 24 天挖完.这条水渠由乙单独挖,需要多少天? 3.客车与货车同时从甲、乙两站相对开出,经 2 小时 24 分钟相遇, 相遇时客车比货车多行 9.6 千米.已知客车从甲站到乙站行 4 小时 30 分 钟,求客车与货车的速度各是多少? 4.水箱上装有甲、乙两个注水管.单开甲管 20 分钟可以注满全箱.现
甲 1 天能完成全工程的几分之几?
乙 1 天可完成全工程的几分之几?
这批零件共多少个?
答:这批零件共 360 个.
例 10 一项工程,甲单独做要 12 小时完成,乙单独做要 18 小时完 成.若甲先做 1 小时,然后乙接替甲做 1 小时,再由甲接替乙做 1 小时,…, 两人如此交替工作,问完成任务时,共用了多少小时?
分析 要求共用多少小时?可以设想把这些小时重新分配:甲做 1 小 时,乙做 1 小时,它们相当于合作 1 小时,也即是每 2 小时,相当于合做 1 小时.这样先大致算一下一共进行了多少个这样的 2 小时,余下部分问 题就好解决了.
解:①若甲、乙两人合作共需多少小时?
②甲、乙两人各单独做 7 小时后,还剩多少?
好排完.
一 半,最后余下的部分由甲、乙合作,还需要多少时间才能完成?
分析 这道题是工程问题与分数应用题的复合题.解题时先要分别求 出甲、乙工作效率,再把余下的工作量转化为占单位“1”(总工作量) 的几分之几?
如 果二人一起干,完成任务时乙比甲多植树 36 棵,这批树一共多少棵?
六年级奥数试题-公式与通项归纳(学生版)
第十四讲公式与通项归纳通项简单的说就是一个数列的规律,通过题目中的数据与等差数列,等比数列的通项公式之间的联系,推导出新数列的规律。
通项归纳法需要借助于代数,将算式化简,将“形似”的复杂算式及数列,用字母表示后化简为常见的一般形式。
1.能用数列的通项公式解题。
2.用代数的形式表示数,并通过化简代数式来化简算式。
例1:12481632641282565121024++++++++++=________ 。
例2:在一列数:135********L ,,,,,中,从哪一个数开始,1与每个数之差都小于11000?例3:计算:111112123122007+++⋯+++++⋯例4:22446688101013355779911⨯⨯⨯⨯⨯++++⨯⨯⨯⨯⨯例5:计算:222222129911005000220050009999005000+++=-+-+-+L .例6:计算:222222222357211*********++++=+++++L LA1. 计算:111133535735721+++++++++++L L2.计算: 111111224246246824681024681012++++++++++++++++++++3.1113199921111111(1)(1)(1)(1)(1)223231999+++++⨯++⨯+⨯⨯+L L4. 2221111112131991⎛⎫⎛⎫⎛⎫+⨯+⨯⨯+ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭L5. 计算:22222223992131991⨯⨯⨯=---LB6. 12123123412350 2232342350 ++++++++++⨯⨯⨯⨯++++++LLL7.计算:1111 121223122334122334910 ++++⨯⨯+⨯⨯+⨯+⨯⨯+⨯+⨯++⨯LL8.计算:22222222 12232004200520052006 12232004200520052006 ++++ ++++⨯⨯⨯⨯L9.12389 (1)(2)(3)(8)(9)234910 -⨯-⨯-⨯⨯-⨯-L10.2222222222222 3333333333333 11212312341226 11212312341226 ++++++++⋯+ -+-+⋯-++++++++⋯+C11.⎪⎭⎫⎝⎛+++++++-⎪⎭⎫⎝⎛⨯++⨯+⨯⨯22222210211211112120154132124ΛΛΛ12.计算:22222222 2461998 31517119991⨯⨯⨯⨯= ----L13.计算:222222222 1232348910 3353517 +++++++++++++LL14.计算:2323233---M(共2010条分数线)=1.下面的算式是按一定规律排列的,那么第100个算式的得数是多少?4+3,5+6,6+9,7+12,…2. 若干人围成8圈,一圈套一圈,从外向内各圈人数依次少4人.如果共有304人,最外圈有几人?3. 在1~100这一百个自然数中所有不能被11整除的奇数的和是多少?4. 在2949,2950,2951,…2997,2998这五十个自然数中,所有偶数之和比所有奇数之和多多少?5. 求一切除以4后余1的两位数的和?1.在1000到2000之间,所有个位数字是7的自然数之和是多少?2.在1~100这一百个自然数中,所有不能被9整除的数的和是多少?3.在1~100这一百个自然数中,所有不能被9整除的奇数的和是多少?4.在1~200这二百个自然数中,所有能被4整除或能被11整除的数的和是多少?5.有一列数:1,1993,1992,1,1991,1990,1,……,从第三个数起,每一个数都是它前面两个数中大数减小数的差。
高斯小学奥数六年级上册含答案第03讲递推计数
第三讲递推计数有许多计数问题很复杂,直接处理比较困难,此时硬碰硬是不行的.一个比较有效的策略是退而求其次:先考虑该问题的简单情形,看看简单情形如何处理;在解决了简单情形后,再考虑如何利用简单情形的结论来解决更复杂的问题……这个由简单到复杂的推导过程就叫“递推”.那如何利用“递推法”来解决计数问题呢?下面我们就来看几个例子.例1.老师给小高布置了12篇作文,规定他每天至少写1篇•如果小高每天最多能写3篇,那么共有多少种不同的完成方法?(小高每天只能写整数篇)「分析」从简单情况入手,看看能否找到合适的突破口.如果老师只布置1篇作文,小高有多少种不同的完成方法?如果老师布置2篇作文,小高有多少种不同的完成方法?如果老师布置3篇、4篇、……小高又分别有多少种不同的完成方法?篇数由少到多,完成方法数也会逐渐变多,这其中有什么规律呢?练习1、一个楼梯共有12级台阶,规定每步可以迈二级台阶或三级台阶•走完这12级台阶,共有多少种不同的走法?「分析」与例1的类似,我们还是从简单情形入手找递推关系. 可具体从什么样的情形入手呢?练习2、用7个1 2的长方形纸片覆盖一个7 2的方格表,共有多少种覆盖方法?例3.在一个平面上画出100条直线,最多可以把平面分成几个部分?「分析」当直线数量不多时,画图数一数即可.但现在有100条,画图数并不现实.我们不妨在纸上将直线逐一画出,并在画的过程中仔细观察:每增加一条直线,平面被分成的部分会增加多少?这个增量有什么变化规律?练习3、如果在一个圆内画出50条直线,最多可以把圆分成多少部分?下面我们来学习一类很经典的递推计数问题------ 传球问题.例4.四个人分别穿着红、黄、绿、蓝四种颜色的球衣练习传球,每人都可以把球传给另外三个人中的任意一个. 先由红衣人发球,并作为第1次传球,经过8次传球后球仍然回到红衣人手中•请问:整个传球过程共有多少种不同的可能?「分析」看到这个问题,很多同学可能想通过树形图来求解,我们不妨来试一试.设穿着红、黄、绿、蓝四种颜色球衣的人分别是A、B、C、D .如下图,最开始时,球在A手上,第一次传球由A传给B、C、D,也就是第一层有三个字母就够了•然后B、C、D都会继续往下传球,各有3种传法,传到第二层需要9个字母•再传到第三层,需要27个字母……每一层需要的字母增加迅猛!如果传8次球,到最后一层会用到38 6 561个字母,这要多大的一个树形图啊!BCD A B D A B C BCD A C D ABC BCD A C D A B D可见画树形图的方案不可行. 但树形图对这道题就没有用了吗?并非如此. 它可以帮助我们找出传球过程中所隐藏的递推关系. 事实上,我们并不关心树形图长啥样,我们关心的是数量一一树形图每一层分支的数量. 因此,只要知道每一层各字母出现的次数就可以了,我们不妨制作一个表格来统计这个次数.如下表,我们用第一列来表示层数,第一行来表示每个人,其余空格用于填写字母在该层中出现的次数. 请你从上方的树形图中数一数,填出表格中的前几行. 然后思考一下:这其中隐藏着什么样的递推关系?练习4、三个人分别穿着红、黄、蓝三种颜色的球衣练习传球,每人都可以把球传给另外两个人中的任意一个. 先由红衣人发球,并作为第1次传球,经过7次传球后传到蓝衣人手中.请问:整个传球过程共有多少种不同的可能?解传球问题的方法称为“传球法” •“传球法”是递推法的一种特殊形式,是一种极其实用的数表累加计数法.例5. 一个七位数,每一位都是1、2或者3,而且没有连续的两个1,这样的七位数一共有多少个?「分析」这道题与前面两道题有何异同?应该如何求解呢?前面的计数问题,递推关系都表现为数列、数表的简单累加,但这不是递推的全部.简单累加只是递推的一种表现形式,递推还有很多其它形式. 下面我们就来看一道无法通过简单累加求解的计数问题.例6.圆周上有10个点A1、A2、L、A10,以这些点为端点连接5条线段,要求线段之间没有公共点,共有多少种连接方式?「分析」圆周上10个点,连5条线段,连法很多,很难直接画出来枚举. 像这类问题,我们同样还是从简单的情况入手.那么是应该按1个点、2个点、3个点、……这样依次计数,来找递推关系吗?课堂内外神奇的汉诺塔一位法国数学家曾编写过一个印度的古老传说:在世界中心贝拿勒斯(在印度北部)的圣庙里,一块黄铜板上插着三根宝石针. 印度教的主神梵天在创造世界的时候,在其中一根针上从下到上地穿好了由大到小的64片金片,这就是所谓的汉诺塔•不论白天黑夜,总有一个僧侣在按照下面的法则移动这些金片:一次只移动一片,不管在哪根针上,小片必须在大片上面.僧侣们预言,当所有的金片都从梵天穿好的那根针上移到另外一根针上时,世界就将在一声霹雳中消灭,而梵塔、庙宇和众生也都将同归于尽.不管这个传说的可信度有多大,如果考虑一下把64片金片,由一根针上移到另一根针上,并且始终保持上小下大的顺序•这需要多少次移动呢?这里需要递归的方法•假设有n 片,移动次数是f(n).显然f(1) 1 , f(2) 3, f(3) 7,且f(k 1) 2f(k) 1 .此后不难证明f(n) 2n 1 . n 64 时,f (64) 264 1 18446744073709551615 .假如每秒钟一次,共需多长时间呢?一个平年365天有31536000秒,闰年366天有31622400 秒,平均每年31556952 秒,计算一下,18446744073709551615/31556952=584554049253.855 年.这表明移完这些金片需要5845亿年以上,而地球存在至今不过45亿年,太阳系的预期寿命据说也就是数百亿年•真的过了5845亿年,不说太阳系和银河系,至少地球上的一切生命,连同梵塔、庙宇等,都早已经灰飞烟灭.作业1. 有10个蛋黄派,萱萱每天吃1个或2个,那么共有多少种不同的吃法?2. 甲、乙两人玩抓石子游戏,共有12个石子,甲先乙后轮流抓取•每次可以抓取其中的2个、3个或4个,直到最后抓取完毕为止•那么共有多少种抓取石子的方案?3. 用直线把一个平面分成100部分,至少要在平面上画几条直线?4. 一个七位数,它由数字0、1、2、3、4组成,相邻位置上的数字不相同,并且个位数字是2 .这样的七位数有多少个?5. 用8个1 2的长方形纸片覆盖下面的方格表,共有多少种覆盖方法?第五讲进位制问题例题:例7.答案:(1) 31023、3735、11B9、7DD ; (2) 257; ( 3) 1742详解: (1)(2) 2 53 0 52 1 5 232(3) 2 12 0 121 12例& 答案:(1) 5; (2) 13121、731详解:三进制转九进制从右往左两位两位转换; 二进制转四进制从右往左两位两位转换;二进制转八进制从右往左三位三位转换.例9.答案:15031详解:列竖式计算.例 10. 答案:212. a=5、b=5、c=2例11 . 答案:10个详解:若要称量1克的重量必须有1克的砝码,若要称量2克的重量必须有2克的砝码,依次类推可得:1+2+4+8+16+32+64+128+256+512,此时可以称量 1克到1023克的所 有重量,此时需要10个砝码.例12 . 答案:1250 257 ;2 1201742 .详解:所看页数列为1、1、2、4、8、……、256、512、989.练习:6. 答案:554;2781;195;7227. 答案:161578. 答案:212349. 答案:248. a=5、b=0、c=3作业:1. 答案:(1)354;(2)458;(3)C30;(4)14443;(5)433;(6)852. 答案:(1)1131;(2)123123. 答案:100简答:a 很容易知道只能为1 ,再根据进位制展开解方程得出b、c 均为0,所以原数十进制是100.4. 答案:22 简答:由题意有abc 3 cba 4 ,其中a、b、c 均小于3,则有9a 3b c 16c 4b a ,化简得8a b 15c,符合条件的a、b、c为2、1、1,化成十进制是22.5. 答案:24简答:由题意有47 a 74 b ,其中a、b 均要大于7,则有4a 77b 4 ,符合条件的最小的a、b为15、9,和是24.。
六年级奥数优胜教育第5讲:递推与归纳含答案
第五讲 递推与归纳A1. 100 条直线最多能把一个平面分成 _____ 个部分。
2. 熊大叔是一个卖烧饼的师傅 ,他用一个平底锅煎饼 ,他是这样煎饼的 : 每次只能放两个饼 每个饼正反面都要煎 ,煎每一面都要 1分钟 ,问他煎 10个这样的饼需要 ______ 分钟。
3. 上一段 11阶楼梯,规定每一步只能上一级或两级 ,那么要登上第 11级台阶有 ______ 种不同 的走法。
4. 请先计算 11× 11,111 × 111,1111 × 1111, 你能根据以上结果 , 不经过计算而直接写出 11111111×11111111= ________ 。
例 1: 999⋯999×999⋯999 的乘积中有多少个数字是奇数?10 个 9 10 个 9例 2:如图所示:线段 同的线段? AB 上共有 10 个点(包括两个端点)那么这条线段上一共有多少条不 a 1 a 2 a 3 a 4 a 5 a 6 a 7 B a 8 例 3:计算 13+23+33+43+53+63+73+83+93+103 得值。
例 4: 2000 个学生排成一行,依次从左到右编上 1~2000 号,然后从右到左按一、二报数,报一的离开队伍,剩下的人继续按一、二报数,报一的人离开队伍,⋯⋯按这个规律如 此例 5:圆周上两个点将圆周分为两半,在这两点上写上数 1 ;然后将两段半圆弧对分,在两个分点上写上相邻两点上的数之和; 再把 4 段圆弧等分, 在分点上写上相邻两点上的数 之和,如此继续下去,问第 6 步后,圆周上所有点上的之和是多少? 例 6: 4 个人进行篮球训练, 互相传球接球, 要求每个人接球后马上传给别人, 开始由甲发 球,并作为第一次传球,第五次传球后,球又回到甲手中,问有多少种传球方式?5. __ 我们知道三角形的内角和是180度,长方形的内角和是360 度,那么正十边形的内角和是____ 度。
高斯小学奥数六年级上册含答案第03讲 递推计数
第三讲递推计数有许多计数问题很复杂,直接处理比较困难,此时硬碰硬是不行的.一个比较有效的策略是退而求其次:先考虑该问题的简单情形,看看简单情形如何处理;在解决了简单情形后,再考虑如何利用简单情形的结论来解决更复杂的问题……这个由简单到复杂的推导过程就叫“递推”.那如何利用“递推法”来解决计数问题呢?下面我们就来看几个例子.例1.老师给小高布置了12篇作文,规定他每天至少写1篇.如果小高每天最多能写3篇,那么共有多少种不同的完成方法?(小高每天只能写整数篇)「分析」从简单情况入手,看看能否找到合适的突破口.如果老师只布置1篇作文,小高有多少种不同的完成方法?如果老师布置2篇作文,小高有多少种不同的完成方法?如果老师布置3篇、4篇、……小高又分别有多少种不同的完成方法?篇数由少到多,完成方法数也会逐渐变多,这其中有什么规律呢?练习1、一个楼梯共有12级台阶,规定每步可以迈二级台阶或三级台阶.走完这12级台阶,共有多少种不同的走法?⨯的方格表,共有多少种覆盖方法?例2.用10个13⨯的长方形纸片覆盖一个103「分析」与例1的类似,我们还是从简单情形入手找递推关系.可具体从什么样的情形入手呢?⨯的方格表,共有多少种覆盖方法?练习2、用7个12⨯的长方形纸片覆盖一个72例3.在一个平面上画出100条直线,最多可以把平面分成几个部分?「分析」当直线数量不多时,画图数一数即可.但现在有100条,画图数并不现实.我们不妨在纸上将直线逐一画出,并在画的过程中仔细观察:每增加一条直线,平面被分成的部分会增加多少?这个增量..有什么变化规律?练习3、如果在一个圆内画出50条直线,最多可以把圆分成多少部分?下面我们来学习一类很经典的递推计数问题——传球问题.例4.四个人分别穿着红、黄、绿、蓝四种颜色的球衣练习传球,每人都可以把球传给另外三个人中的任意一个.先由红衣人发球,并作为第1次传球,经过8次传球后球仍然回到红衣人手中.请问:整个传球过程共有多少种不同的可能?「分析」看到这个问题,很多同学可能想通过树形图来求解,我们不妨来试一试.设穿着红、黄、绿、蓝四种颜色球衣的人分别是A 、B 、C 、D .如下图,最开始时,球在A 手上,第一次传球由A 传给B 、C 、D ,也就是第一层有三个字母就够了.然后B 、C 、D 都会继续往下传球,各有3种传法,传到第二层需要9个字母.再传到第三层,需要27个字母……每一层需要的字母增加迅猛!如果传8次球,到最后一层会用到836561 个字母,这要多大的一个树形图啊!可见画树形图的方案不可行.但树形图对这道题就没有用了吗?并非如此.它可以帮助我们找出传球过程中所隐藏的递推关系.事实上,我们并不关心树形图长啥样,我们关心的是数量——树形图每一层分支的数量.因此,只要知道每一层各字母出现的次数就可以了,我们不妨制作一个表格来统计这个次数.如下表,我们用第一列来表示层数,第一行来表示每个人,其余空格用于填写字母在该层中出现的次数.请你从上方的树形图中数一数,填出表格中的前几行.然后思考一下:这其中隐藏着什么样的递推关系?BC DACDABDABCAB C D A B D A B C B C D A C D A B C B C D A C D A B D练习4、三个人分别穿着红、黄、蓝三种颜色的球衣练习传球,每人都可以把球传给另外两个人中的任意一个.先由红衣人发球,并作为第1次传球,经过7次传球后传到蓝衣人手中.请问:整个传球过程共有多少种不同的可能?解传球问题的方法称为“传球法”.“传球法”是递推法的一种特殊形式,是一种极其实用的数表累加计数法.例5.一个七位数,每一位都是1、2或者3,而且没有连续的两个1,这样的七位数一共有多少个?「分析」这道题与前面两道题有何异同?应该如何求解呢?前面的计数问题,递推关系都表现为数列、数表的简单累加,但这不是递推的全部.简单累加只是递推的一种表现形式,递推还有很多其它形式.下面我们就来看一道无法通过简单累加求解的计数问题.例6.圆周上有10个点A1、A2、L、A10,以这些点为端点连接5条线段,要求线段之间没有公共点,共有多少种连接方式?「分析」圆周上10个点,连5条线段,连法很多,很难直接画出来枚举.像这类问题,我们同样还是从简单的情况入手.那么是应该按1个点、2个点、3个点、……这样依次计数,来找递推关系吗?神奇的汉诺塔一位法国数学家曾编写过一个印度的古老传说:在世界中心贝拿勒斯(在印度北部)的圣庙里,一块黄铜板上插着三根宝石针.印度教的主神梵天在创造世界的时候,在其中一根针上从下到上地穿好了由大到小的64片金片,这就是所谓的汉诺塔.不论白天黑夜,总有一个僧侣在按照下面的法则移动这些金片:一次只移动一片,不管在哪根针上,小片必须在大片上面.僧侣们预言,当所有的金片都从梵天穿好的那根针上移到另外一根针上时,世界就将在一声霹雳中消灭,而梵塔、庙宇和众生也都将同归于尽.不管这个传说的可信度有多大,如果考虑一下把64片金片,由一根针上移到另一根针上,并且始终保持上小下大的顺序.这需要多少次移动呢?这里需要递归的方法.假设有n 片,移动次数是()f n .显然(1)1f =,(2)3f =,(3)7f =,且(1)2()1f k f k +=+.此后不难证明()21n f n =-.64n =时,64(64)2118446744073709551615f =-=.假如每秒钟一次,共需多长时间呢?一个平年365天有31536000 秒,闰年366天有31622400秒,平均每年31556952秒,计算一下,18446744073709551615/31556952=584554049253.855年.这表明移完这些金片需要5845亿年以上,而地球存在至今不过45亿年,太阳系的预期寿命据说也就是数百亿年.真的过了5845亿年,不说太阳系和银河系,至少地球上的一切生命,连同梵塔、庙宇等,都早已经灰飞烟灭.课 堂 内 外作业1. 有10个蛋黄派,萱萱每天吃1个或2个,那么共有多少种不同的吃法?2. 甲、乙两人玩抓石子游戏,共有12个石子,甲先乙后轮流抓取.每次可以抓取其中的2个、3个或4个,直到最后抓取完毕为止.那么共有多少种抓取石子的方案?3. 用直线把一个平面分成100部分,至少要在平面上画几条直线?4. 一个七位数,它由数字0、1、2、3、4组成,相邻位置上的数字不相同,并且个位数字是2.这样的七位数有多少个?5. 用8个的长方形纸片覆盖下面的方格表,共有多少种覆盖方法?12第五讲 进位制问题例题:例7. 答案:(1)31023、3735、11B9、7DD ;(2)257;(3)1742详解: (1)(2)32025051525257⨯+⨯+⨯+⨯=; (3)3202120121122121742⨯+⨯+⨯+⨯=.例8.答案:(1)5;(2)13121、731 详解:三进制转九进制从右往左两位两位转换;二进制转四进制从右往左两位两位转换;二进制转八进制从右往左三位三位转换.例9.答案:15031 详解:列竖式计算.例10. 答案:212.a =5、b =5、c =2例11. 答案:10个详解:若要称量1克的重量必须有1克的砝码,若要称量2克的重量必须有2克的砝码,依次类推可得:1+2+4+8+16+32+64+128+256+512,此时可以称量1克到1023克的所有重量,此时需要10个砝码.例12. 答案:12...... 3 ...... 2 ...... 1 0 (3)...... 2 ...... 3 (7) (3)…… 9 ……12 (1) (1)...... 13 ...... 13 (7)详解:所看页数列为1、1、2、4、8、……、256、512、989.练习:6. 答案:554;2781;195;7227. 答案:161578. 答案:212349. 答案:248.a =5、b =0、c =3作业:1. 答案:(1)354;(2)458;(3)C 30;(4)14443;(5)433;(6)852. 答案:(1)1131;(2)123123. 答案:100简答:a 很容易知道只能为1,再根据进位制展开解方程得出b 、c 均为0,所以原数十进制是100.4. 答案:22简答:由题意有,其中a 、b 、c 均小于3,则有,化简得,符合条件的a 、b 、c 为2、1、1,化成十进制是22.5. 答案:24简答:由题意有,其中a 、b 均要大于7,则有,符合条件的最小的a 、b 为15、9,和是24.4774a b +=+ ()()4774a b = 815a b c =+ 93164a b c c b a ++=++ ()()34abc cba =。
六年级下册数学试题-小升初:第07讲:计数综合三(递推法)(含答案)全国通用
1、基本递推计数2、经典传球法3、综合题型例题1:老师给冬冬布置了12篇作文,规定他每天至少写1篇。
如果冬冬每天最多能写3篇,那么共有多少种写完作文的方法?计数综合三 --递推法 授课提纲 情 课 堂激 模块一:基本递推计数一个楼梯共有12级台阶,规定每步可以迈2级台阶或3级台阶。
走完这12级台阶,一共可以有多少种不同的走法?例题2:用10个1×3的长方形纸片覆盖一个10×3的方格表,共有多少种覆盖方法?【练习2】用7个1×2的长方形纸片覆盖一个7×2的方格表,共有多少种覆盖方法?例题3:如果在一个平面上画出8条直线,最多可以把平面分成几个部分?如果画8个圆,最多可以分成几个部分?如果在一个平面上画出100条直线,最多可以把平面分成几个部分?例题4:用1至9这9个数字组成一个没有重复数字的九位数,满足以下要求:每一位上的数字要么大于它前面的所有数字,要么小于它前面的所有数字。
请问:这样的九位数共有多少个?模块二:经典传球法例题5:四个人分别穿着红、黄、绿、蓝四种颜色的球衣练习传球,每人都可以把球传给另外三个人中的任意一个。
先由红衣人发球,并作为第1次传球,经过8次传球后球仍然回到红衣人手中。
请问:整个传球过程共有多少种不同的可能?三个人分别穿着红、黄、绿三种颜色的球衣练习传球,每人都可以把球传给另外两个人中的任意一个。
先由红衣人发球,并作为第1次传球,经过7次传球后球后传到绿衣人手中。
请问:整个传球过程共有多少种不同的可能?例题6:一个七位数,每一位都是1、2或者3,而且没有连续的两个1,这样的七位数一共有多少个?【练习5】一个九位数,每一位都是0或1,而且没有连续的两个1,这样的九位数一共有多少个。
例题7:如下图所示,一个圆环被分成8部分,现将每一部分染上红、黄、蓝三种颜色之一,要求相邻两部分颜色不同,共有多少种染色方法?【练习6】如下图所示,一个正六边形被分成6部分,现将每一部分染上红、黄、蓝三种颜色之一,要求相邻两部分颜色不同,共有多少种染色方法?模块三:综合题型例题8:圆周上有10个点A1、A2、A3、……、A10,以这些点为端点连接5条线段,要求线段之间没有公共点,共有多少种连接方式?圆周上有12个点A1、A2、A3、··· ···、A11、A12 。
六年级奥数-递推的方法
递推的方法有时,我们会遇上一些具有规律性的数学问题,这就需要我们在解题时根据已知条件尽快地去发现规律,并利用这一规律去解决问题。
例如:按规律填数:1,4,9,16,25,(),49,64。
分析:要在括号内填上适当的数,就要正确判断出题目所呈现出的规律。
若你仔细地观察这一数列,就会发现这些数之间的规律:(1)先考虑相邻两个数之间的差,依次是3,5,7,9,…,15;可以看到相邻两数的差从3开始呈现递增2的规律,所以括号里的数应是25+11=36,再看36+13=49得到验证。
(2)如果我们换一个角度去考虑,那么我们还可以发现,这数列的第一项是1的平方,第二项是2的平方,第三项是3的平方……从这些事实中,发现规律是第n项是n的平方。
那么所求的第六项是6²=36。
我们把相邻数之间的关系称为递归关系,有了递归关系可以利用前面的数求出后面的未知数。
像这种解题方法称为递推法。
例1 999…999×999…999的乘积中有多少个数字是奇数?10个10个分析我们可以从最简单的9×9的乘积中有几个奇数着手寻找规律。
解 9×9=81,有1个奇数;99×99=99×(100-1)=9900-99=9801,有2个奇数;999×999=999×(1000-1)=999000-999=998001,有3个奇数;……从而可知,999…999×999…999的乘积中共有10个数字是奇数。
10个10个例2 如图所示:线段AB上共有10个点(包括两个端点),那么这条线段上一共有多少条不同的线段?1234 5 678分析先从AB之间只有一个点开始,再逐步增加AB之间的点数,找出点和线段之间的规律。
我们可以采用列表的方法清楚地表示出点和线段数之间的规律。
解AB之间只有1个点:线段有1+2=3(条);AB之间只有2个点:线段有1+2+3=6(条);AB之间只有3个点:线段有1+2+3+4=10(条);AB之间只有4个点:线段有1+2+3+4+5=15(条);……不难发现,当AB之间有8个点时,线段有1+2+3+4+5+6+7+8+9=45(条)。
六年级奥数-递推的方法
递推的方法有时,我们会遇上一些具有规律性的数学问题,这就需要我们在解题时根据已知条件尽快地去发现规律,并利用这一规律去解决问题。
例如:按规律填数:1,4,9,16,25,(),49,64。
分析:要在括号内填上适当的数,就要正确判断出题目所呈现出的规律。
若你仔细地观察这一数列,就会发现这些数之间的规律:(1)先考虑相邻两个数之间的差,依次是3,5,7,9,…,15;可以看到相邻两数的差从3开始呈现递增2的规律,所以括号里的数应是25+11=36,再看36+13=49得到验证。
(2)如果我们换一个角度去考虑,那么我们还可以发现,这数列的第一项是1的平方,第二项是2的平方,第三项是3的平方……从这些事实中,发现规律是第n项是n的平方。
那么所求的第六项是6²=36。
我们把相邻数之间的关系称为递归关系,有了递归关系可以利用前面的数求出后面的未知数。
像这种解题方法称为递推法。
例1 999…999×999…999的乘积中有多少个数字是奇数?10个10个分析我们可以从最简单的9×9的乘积中有几个奇数着手寻找规律。
解 9×9=81,有1个奇数;99×99=99×(100-1)=9900-99=9801,有2个奇数;999×999=999×(1000-1)=999000-999=998001,有3个奇数;……从而可知,999…999×999…999的乘积中共有10个数字是奇数。
10个10个例2 如图所示:线段AB上共有10个点(包括两个端点),那么这条线段上一共有多少条不同的线段?1234 5 678分析先从AB之间只有一个点开始,再逐步增加AB之间的点数,找出点和线段之间的规律。
我们可以采用列表的方法清楚地表示出点和线段数之间的规律。
解AB之间只有1个点:线段有1+2=3(条);AB之间只有2个点:线段有1+2+3=6(条);AB之间只有3个点:线段有1+2+3+4=10(条);AB之间只有4个点:线段有1+2+3+4+5=15(条);……不难发现,当AB之间有8个点时,线段有1+2+3+4+5+6+7+8+9=45(条)。
六年级下册数学试题-能力提升:第02讲 归纳与递推(解析版)全国通用
六年级下册数学试题-能力提升:第02讲 归纳与递推(解析版)全国通用【简述】归纳:从个别事实→普遍的推理(特殊→一般),总结规律,找出通项递推:有点枚举的感觉,知道前面的才能知道后面的【复习常见数列】【一】等差数列 (一)4个基本公式1、求第N 项/通项:通项首项(项数1)×公差 / =+-1(1)n a a n d =+-⨯2、求项数:项数(末项-首项)÷公差 1 / =+1()1n n a a d =-÷+3、求和:和(首项末项)×项数÷2 / =+1()2n n S a a n =+⨯÷ 当项数为奇数:和中项×项数= 当项数为偶数:和首末平均×项数=4、中项定理:项数为奇数:中项(首项末项)÷2=+项数为偶数:隐藏中项(首项末项)÷2=+ (二)2个引申公式1、天下无双,项数平方: 2135(21)n n n n ++++-=⨯= 例如: 2135+7+9+11+13+15888=64++=⨯= 2、山顶数列求和,山顶平方:2123(1)(1)321n n n n n n ++++-++-++++=⨯=例如:212350321505050=2500++++++++=⨯= 【二】其他数列1、等比数列(末项的2倍 - 首项)0123880124825622222222+++++=+++++=⨯-【思维导图】【正文】【一】图形中的找规律1:如图⑴所示,是一个正方形,分别连接这个正方形各边中点得到图⑵,再分别连接图⑵中的小正方形各边的中点,得到图⑶(1)填写下表:(2)按上面的方法继续下去,第n个图形中有多少个正方形?多少个三角形?{解析}(1)+(2)2:如图,①、②、③、④四个图都称作平面图,观察图①和表中对应数值,探究计数的方法并答:(1)数一数每个图各有多少个顶点,多少条边,这些边围出多少区域,并将结果填入下表:(2)根据表中数值,写出平面图的顶点数m 、边数n 、区域数f 之间的一种关系:(3)如果一个平面图有20个顶点和11个区域,那么根据(2)那么中得出的关系,则这个平面图有________条边.{解析}(1)填表(2)1m f n +=+(3)2011130+-= 3:如下图是用棋子摆成的“上”字:第一个“上”字,第二个“上”字,第三个“上”字,如果按照以上规律继续摆下去,那么通过观察,可以发现:第90 个“上”字分别需用________枚棋子.+⨯-={解析}把图形转换为数列,首项为6,公差为4,即:64(901)362 4:按下图的方式,用火柴搭成三角形当三角形个数变为7 时,火柴棒的根数为________.{解析}把图形转换为数列,如下表:第一个图第二个图第三个图第四个图第N个图火柴棒个数35792n+1即当n=7时,火柴棒个数为15.5:图①是一个三角形,分别连接这个三角形三边的中点得到图②,再分别连接图②的中间的小三角形三边的中点,得到图③.按上边的方法继续下去,第100 个图有________个三角形.{解析}把图形转换为数列,如下表:操作次数1234n三角形个数11+4142+⨯143+⨯14(1)n +⨯-即当n =100时,三角形个数为298个.6:把同样大小的黑色棋子按如图所示的方式摆放,则第 10 个图形需要黑色棋子的个数是________.{解析}如下表:7:有一块地坪,需要铺红砖和白砖,按图示规律排列,已知每个小等边三角形边长为一分米,这块等边三角形地坪的边长为103 分米,问共需多少块红砖?{解析}除第一层以外,每两层有六边形红色砖,六边形红色砖依次增加,即为1、2、3、……最后一层:,即最后一层有51个红色正六边形.(1031)251-÷=总共有:(块).6(12351)7956⨯++++= 8:根据下图中的图形和字母的关系,将 bc 的图补上.{解析}观察:a表示大圆,b表示小三角,c表示大三角,d表示小圆.即:9:有A、B、C、D,4 张透明胶片,请你根据字母与图形关系将4 幅图补充完整.{解析}10:4个人进行篮球训练,互相传球接球,要求每个人接球后马上传给别人;开始由甲发球,并作为第一次传球;第五次传球后,球又回到甲手中,问有多少种传球方法?【二】兔子数列+兔子数列型(一)兔子数列1:每对雌雄小兔子在出生后一个月就长成大兔子,而每对雌雄大兔子每个月能生出一对雌雄小兔子来.如果一个人在一月份买了一对雌雄小兔子,那么十二月份的时候他共有多少对兔子?{解析}第一个月,有1对小兔子;第二个月,长成大兔子,所以还是1对;第三个月,大兔子生下一对小兔子,所以共有2对;第四个月,刚生下的小兔子长成大兔子,而原来的大兔子又生下一对小兔子,共有3对;第五个月,两对大兔子生下2 对小兔子,共有5 对;……这个特点的说明每月的大兔子数为上月的兔子数,每月的小兔子数为上月的大兔子数,即上上月的兔子数,所以每月的兔子数为上月的兔子数与上上月的兔子数相加.依次类推可以列出下表:经过月数123456789101112兔子对数1123581321345589144所以十二月份的时候共有144对小兔子.2:一棵树一年后长出一条新枝,新枝隔一年后成为老枝,老枝便可每年长出一条新枝,如此下去,十年后树枝将有多少?{解析}将每年的枝条情况列表如下经过年数12345678910新枝数101123581321老枝数0112358132134总枝数11235813213455今年的新枝数等于去年的老枝数,今年的老枝数等于去年的新枝加去年的老枝这就造成了三个数列都呈现出斐波那契数列的样子,其中总枝数数列正是斐波那契数列:从第3 个数开始,每个数都是它前面两个相邻数的和.(二)兔子数列型(三)走台阶1:一楼梯共10级,规定每步只能跨上一级或两级,要登上第10级,共有多少种不同走法?{解析}89台阶012345678910方法11235813213455892:一楼梯共10 级,规定每步只能跨上一级或三级,要登上第10 级,共有多少种不同走法?{解析}28台阶012345678910方法11123469131928 3:一楼梯共10级,规定每步只能跨上一级、两级或三级,要登上第10级,共有多少种不同走法?{解析}274台阶012345678910方法11247132444811492744:一楼梯共10级,规定每步只能跨上一级或两级,要登上第10级且必过第5级,共有多少种不同走法?{解析}64台阶012345678910方法1123588162440645:一楼梯共10级,规定每步只能跨上一级或两级,要登上第10级且不过第5级,共有多少种不同走法?{解析}25台阶012345678910方法112350551015256:一楼梯共10级,规定每步只能跨质数级,要登上第10级,共有多少种不同走法?{解析}16台阶012345678910方法10111326610167:大白有18个鸡蛋,妈妈规定他每天吃2个或3个,吃完共有多少种不同的吃法?{解析}65鸡蛋1817161514131211109876543210方法101112234579121621283749658:老师给冬冬布置了12篇作文,规定他每天至少写1篇。
小学奥数 计数之递推法 精选练习例题 含答案解析(附知识点拨及考点)
前面在讲加法原理、乘法原理、排列组合时已经穿插讲解了计数中的一些常用的方法,比如枚举法、树形图法、标数法、捆绑法、排除法、插板法等等,这里再集中学习一下计数中其他常见的方法,主要有归纳法、整体法、对应法、递推法.对这些计数方法与技巧要做到灵活运用.对于某些难以发现其一般情形的计数问题,可以找出其相邻数之间的递归关系,有了这一递归关系就可以利用前面的数求出后面未知的数,这种方法称为递推法. 【例 1】 每对小兔子在出生后一个月就长成大兔子,而每对大兔子每个月能生出一对小兔子来.如果一个人在一月份买了一对小兔子,那么十二月份的时候他共有多少对兔子? 【考点】计数之递推法 【难度】3星 【题型】解答【解析】 第一个月,有1对小兔子;第二个月,长成大兔子,所以还是1对;第三个月,大兔子生下一对小兔子,所以共有2对;第四个月,刚生下的小兔子长成大兔子,而原来的大兔子又生下一对小兔子,共有3对;第五个月,两对大兔子生下2对小兔子,共有5对;……这个特点的说明每月的大兔子数为上月的兔子数,每月的小兔子数为上月的大兔子数,即上上月的兔子数,所以每月的兔子数为上月的兔子数与上上月的兔子数相加. 依次类推可以列出下表: 经过月数:---1---2---3---4---5---6---7---8---9---10---11---12兔子对数:---1---1---2---3---5---8--13--21--34--55--89—144,所以十二月份的时候总共有144对兔子.【答案】144【例 2】 树木生长的过程中,新生的枝条往往需要一段“休息”时间供自身生长,而后才能萌发新枝.一棵树苗在一年后长出一条新枝,第二年新枝“休息”,老枝依旧萌发新枝;此后,老枝与“休息”过一年的枝同时萌发,当年生的新枝则依次“休息”.这在生物学上称为“鲁德维格定律”.那么十年后这棵树上有多少条树枝? 【考点】计数之递推法 【难度】3星 【题型】解答【解析】 一株树木各个年份的枝桠数,构成斐波那契数列:1,2,3,5,8,13,21,34,55,89,……所以十年后树上有89条树枝.【答案】89【例 3】 一楼梯共10级,规定每步只能跨上一级或两级,要登上第10级,共有多少种不同走法? 【考点】计数之递推法 【难度】4星 【题型】解答例题精讲教学目标7-6-4.计数之递推法【解析】 登 1级 2级 3级 4级 ...... 10级1种方法 2种 3种 5种 ...... ?我们观察每级的种数,发现这么一个规律:从第三个数开始,每个数是前面两个数的和;依此规律我们就可以知道了第10级的种数是89.其实这也是加法的运用:假如我们把这个人开始登楼梯的位置看做A 0,那么登了1级的位置是在A 1,2级在A 2... A 10级就在A 10.到A 3的前一步有两个位置;分别是A 2 和A 1 .在这里要强调一点,那么A 2 到A 3 既然是一步到了,那么A 2 、A 3之间就是一种选择了;同理A 1 到A 3 也是一种选择了.同时我们假设到n 级的选择数就是An .那么从A 0 到A 3 就可以分成两类了:第一类:A 0 ---- A 1 ------ A 3 ,那么就可以分成两步.有A 1×1种,也就是A 1 种;(A 1 ------ A 3 是一种选择)第二类:A 0 ---- A 2 ------ A 3, 同样道理 有A 2 .类类相加原理:A 3 = A 1 +A 2,依次类推An = An -1 + An -2.【答案】89【巩固】一楼梯共10级,规定每步只能跨上一级或三级,要登上第10级,共有多少种不同走法? 【考点】计数之递推法 【难度】4星 【题型】解答【解析】 登 1级 2级 3级 4级 5级 ...... 10级1种方法 1种 2种 3种 4种...... ?我们观察每级的种数,发现这么一个规律:从第三个数开始,每个数是前面相隔的两个数的和;依此规律我们就可以知道了第10级的种数是28.【答案】28【例 4】 1×2的小长方形(横的竖的都行)覆盖2×10的方格网,共有多少种不同的盖法. 【考点】计数之递推法 【难度】4星 【题型】解答【解析】 如果用12⨯的长方形盖2n ⨯的长方形,设种数为n a ,则11a =,22a =,对于3n ≥,左边可能竖放1个12⨯的,也可能横放2个12⨯的,前者有-1n a 种,后者有-2n a 种,所以-1-2n n n a a a =+,所以根据递推,覆盖210⨯的长方形一共有89种.【例 5】 用13⨯的小长方形覆盖38⨯的方格网,共有多少种不同的盖法? 【考点】计数之递推法 【难度】5星 【题型】解答【解析】 如果用13⨯的长方形盖3n ⨯的长方形,设种数为n a ,则11a =,21a =,32a =,对于4n ≥,左边可能竖放1个13⨯的,也可能横放3个13⨯的,前者有-1n a 种,后者有-3n a 种,所以-1-3n n n a a a =+,依照这【答案】13【例 6】 有一堆火柴共12根,如果规定每次取1~3根,那么取完这堆火柴共有多少种不同取法? 【考点】计数之递推法 【难度】4星 【题型】解答【解析】 取1根火柴有1种方法,取2根火柴有2种方法,取3根火柴有4种取法,以后取任意根火柴的种【答案】927【巩固】 一堆苹果共有8个,如果规定每次取1~3个,那么取完这堆苹果共有多少种不同取法? 【考点】计数之递推法 【难度】4星 【题型】解答【解析】 取1个苹果有1种方法,取2个苹果有2种方法,取3个苹果有4种取法,以后取任意个苹果的种【答案】81【例 7】 有10枚棋子,每次拿出2枚或3枚,要想将10枚棋子全部拿完,共有多少种不同的拿法? 【考点】计数之递推法 【难度】4星 【题型】解答【解析】 本题可以采用递推法,也可以进行分类讨论,当然也可以直接进行枚举.(法1)递推法.假设有n 枚棋子,每次拿出2枚或3枚,将n 枚棋子全部拿完的拿法总数为n a 种. 则21a =,31a =,41a =.由于每次拿出2枚或3枚,所以32n n n a a a --=+(5n ≥).所以,5232a a a =+=;6342a a a =+=;7453a a a =+=;8564a a a =+=;9675a a a =+=;10787a a a =+=.即当有10枚棋子时,共有7种不同的拿法. (法2)分类讨论.由于棋子总数为10枚,是个偶数,而每次拿2枚或3枚,所以其中拿3枚的次数也应该是偶数.由于拿3枚的次数不超过3次,所以只能为0次或2次. 若为0次,则相当于2枚拿了5次,此时有1种拿法;若为2次,则2枚也拿了2次,共拿了4次,所以此时有246C =种拿法. 根据加法原理,共有167+=种不同的拿法.【例 8】 如下图,一只蜜蜂从A 处出发,回到家里B 处,每次只能从一个蜂房爬向右侧邻近的蜂房而不准逆行,共有多少种回家的方法? 【考点】计数之递推法 【难度】4星 【题型】解答BA AB 1357946821235813213455891【解析】 蜜蜂“每次只能从一个蜂房爬向右侧邻近的蜂房而不准逆行”这意味着它只能从小号码的蜂房爬近相邻大号码的蜂房.明确了行走路径的方向,就可以运用标数法进行计算.如右图所示,小蜜蜂从A 出发到B 处共有89种不同的回家方法.【答案】89【巩固】小蜜蜂通过蜂巢房间,规定只能由小号房间进入大号房间问小蜜蜂由A 房间到达B 房间有多少种方法? 【考点】计数之递推法 【难度】4星 【题型】解答 【解析】 斐波那契数列第八项.21种.【答案】21【例 9】 如下图,一只蜜蜂从A 处出发,回到家里B 处,每次只能从一个蜂房爬向右侧邻近的蜂房而不准逆行,共有多少种回家的方法? 【考点】计数之递推法 【难度】4星 【题型】解答【解析】 按照蜜蜂只能从小号码的蜂房爬近相邻大号码的蜂房的原则,运用标号法进行计算.如右图所示,小蜜蜂从A 出发到B 处共有296种不同的回家方法.【答案】296【例 10】 对一个自然数作如下操作:如果是偶数则除以2,如果是奇数则加1,如此进行直到得数为1操作停止.问经过9次操作变为1的数有多少个? 【考点】计数之递推法 【难度】4星 【题型】解答 【解析】 可以先尝试一下,倒推得出下面的图:2410131112514302831643215167683421其中经1次操作变为1的1个,即2, 经2次操作变为1的1个,即4, 经3次操作变为1的2个,是一奇一偶,以后发现,每个偶数可以变成两个数,分别是一奇一偶,每个奇数变为一个偶数,于是,经1、2、…次操作变为1的数的个数依次为:1,1,2,3,5,8,…这一串数中有个特点:自第三个开始,每一个等于前两个的和,即即经过9次操作变为1的数有34个.为什么上面的规律是正确的呢?道理也很简单. 设经过n 次操作变为1的数的个数为n a ,则1a =1,2a =1,3a =2,… 从上面的图看出,1n a +比n a 大.一方面,每个经过n 次操作变为1的数,乘以2,就得出一个偶数,经过1n +次操作变为1;反过来,每个经过1n +次操作变为1的偶数,除以2,就得出一个经过n 次操作变为1的数. 所以经过n 次操作变为1的数与经过1n +次操作变为1的偶数恰好一样多.前者的个数是n a ,因此后者也是n a 个. 另一方面,每个经过n 次操作变为1的偶数,减去1,就得出一个奇数,它经过1n +次操作变为1,反过来.每个经过1n +次操作变为1的奇数,加上1,就得出一个偶数,它经过n 次操作变为1. 所以经过n 次操作变为1的偶数经过1n +次操作变为1的奇数恰好一样多. 而由上面所说,前者的个数就是1n a -,因此后者也是1n a -.经过n +1次操作变为1的数,分为偶数、奇数两类,所以11n n n a a a +-=+,即上面所说的规律的确成立.【答案】34【例 11】 有20个石子,一个人分若干次取,每次可以取1个,2个或3个,但是每次取完之后不能留下质数个,有多少种方法取完石子?(石子之间不作区分,只考虑石子个数) 【考点】计数之递推法 【难度】5星 【题型】解答【解析】 如果没有剩下的不能使质数这个条件,那么递推方法与前面学过的递推法相似,只不过每次都是前面3个数相加.现在剩下的不能是质数个,可以看作是质数个的取法总数都是0,然后再进行递推.【答案】25【考点】计数之递推法 【难度】5星 【题型】填空【解析】 把20、0和20以内不是3或4的倍数的数写成一串,用递推法把所有的方法数写出来:【答案】54【例 12】 4个人进行篮球训练,互相传球接球,要求每个人接球后马上传给别人,开始由甲发球,并作为第一次传球,第五次传球后,球又回到甲手中,问有多少种传球方法? 【考点】计数之递推法 【难度】5星 【题型】解答【解析】 设第n 次传球后,球又回到甲手中的传球方法有n a 种.可以想象前1n -次传球,如果每一次传球都任选其他三人中的一人进行传球,即每次传球都有3种可能,由乘法原理,共有11333333n n --⨯⨯⨯=()个…(种)传球方法.这些传球方法并不是都符合要求的,它们可以分为两类,一类是第1n -次恰好传到甲手中,这有1n a -种传法,它们不符合要求,因为这样第n 次无法再把球传给甲;另一类是第1n -次传球,球不在甲手中,第n 次持球人再将球传给甲,有n a 种传法.根据加法原理,有11133333n n n n a a ---+=⨯⨯⨯=(个…).由于甲是发球者,一次传球后球又回到甲手中的传球方法是不存在的,所以10a =.利用递推关系可以得到:2303a =-=,33336a =⨯-=,4333621a =⨯⨯-=,533332160a =⨯⨯⨯-=.这说明经过5次传球后,球仍回到甲手中的传球方法有60种. 本题也可以列表求解.由于第n 次传球后,球不在甲手中的传球方法,第1n +次传球后球就可能回到甲手中,所以只需求出第四次传球后,球不在甲手中的传法共有多少种.从表中可以看出经过五次传球后,球仍回到甲手中的传球方法共有60种.【答案】60【巩固】五个人互相传球,由甲开始发球,并作为第一次传球,经过4次传球后,球仍回到甲手中.问:共有多少种传球方式? 【考点】计数之递推法 【难度】5星 【题型】解答【解析】 递推法.设第n 次传球后球传到甲的手中的方法有n a 种.由于每次传球有4种选择,传n 次有4n 次可能.其中有的球在甲的手中,有的球不在甲的手中,球在甲的手中的有n a 种,球不在甲的手中的,下一次传球都可以将球传到甲的手中,故有1n a +种.所以14n n n a a ++=.由于10a =,所以12144a a =-=,232412a a =-=,343452a a =-=.即经过4次传球后,球仍回到甲手中的传球方法有52种.【答案】52点A出发恰好跳10次后落到E的方法总数为种.【考点】计数之递推法【难度】5星【题型】填空【关键词】清华附中【解析】可以使用递推法.回到A跳到B或H跳到C或G跳到D或F停在E 1步 12步 2 13步 3 14步 6 4 25步10 46步20 14 87步34 148步68 48 289步116 48其中,第一列的每一个数都等于它的上一行的第二列的数的2倍,第二列的每一个数都等于它的上一行的第一列和第三列的两个数的和,第三列的每一个数都等于它的上一行的第二列和第四列的两个数的和,第四列的每一个数都等于它的上一行的第三列的数,第五列的每一个数都等于都等于它的上一行的第四列的数的2倍.这一规律很容易根据青蛙的跳动规则分析得来.所以,青蛙第10步跳到E有48296⨯=种方法.【答案】96【巩固】在正五边形ABCDE上,一只青蛙从A点开始跳动,它每次可以随意跳到相邻两个顶点中的一个上,一旦跳到D点上就停止跳动.青蛙在6次之内(含6次)跳到D点有种不同跳法.【考点】计数之递推法【难度】5星【题型】填空ABEC D【解析】采用递推的方法.列表如下:跳到A跳到B跳到C停在D跳到E1步 1 12步 2 1 13步 3 1 24步 5 3 25步8 3 56步13 8 5其中,根据规则,每次可以随意跳到相邻两个顶点中的一个上,一旦跳到D点上就停止跳动.所以,每一步跳到A的跳法数等于上一步跳到B和E的跳法数之和,每一步跳到B的跳法数等于上一步跳到A和C的跳法数之和,每一步跳到C的跳法数等于上一步跳到B的跳法数,每一步跳到E的跳法数等于上一步跳到A的跳法数,每一步跳到D的跳法数等于上一步跳到C或跳到E的跳法数.【答案】12【例 14】 有6个木箱,编号为1,2,3,……,6,每个箱子有一把钥匙,6把钥匙各不相同,每个箱子放进一把钥匙锁好.先挖开1,2号箱子,可以取出钥匙去开箱子上的锁,如果最终能把6把锁都打开,则说这是一种放钥匙的“好”的方法,那么“好”的方法共有 种. 【考点】计数之递推法 【难度】5星 【题型】填空 【关键词】迎春杯,中年级组,决赛【解析】 (法1)分类讨论.如果1,2号箱中恰好放的就是1,2号箱的钥匙,显然不是“好”的方法,所以“好”的方法有两种情况:⑴1,2号箱的钥匙恰有1把在1,2号箱中,另一箱装的是3~6箱的钥匙. ⑵1,2号箱的钥匙都不在1,2号箱中.对于⑴,从1,2号箱的钥匙中选1把,从3~6号箱的钥匙中选1把,共有248⨯=(种)选法,每一种选法放入1,2号箱各有2种放法,共有8216⨯=(种)放法.不妨设1,3号箱的钥匙放入了1,2号箱,此时3号箱不能装2号箱的钥匙,有3种选法,依次类推,可知此时不同的放法有3216⨯⨯=(种). 所以,第⑴种情况有“好”的方法16696⨯=(种).对于⑵,从3~6号箱的钥匙中选2把放入1,2号箱,有4312⨯=(种)放法.不妨设3,4号箱的钥匙放入了1,2号箱.此时1,2号箱的钥匙不可能都放在3,4号箱中,也就是说3,4号箱中至少有1把5,6号箱的钥匙.如果3,4号箱中有2把5,6号箱的钥匙,也就是说3,4号箱中放的恰好是5,6号箱的钥匙,那么1,2号箱的钥匙放在5,6号箱中,有224⨯=种放法;如果3,4号箱中有1把5,6号箱的钥匙,比如3,4号箱中放的是5,1号箱的钥匙,则只能是5号箱放6号箱的钥匙,6号箱放2号箱的钥匙,有212⨯=种放法;同理,3,4号箱放5,2号箱或6,1号箱或6,2号箱的钥匙,也各有2种放法. 所以,第⑵种情况有“好”的放法()1242222144⨯++++=(种). 所以“好”的方法共有96144240+=(种).(法2)递推法.设第1,2,3,…,6号箱子中所放的钥匙号码依次为1k ,2k ,3k ,…,6k .当箱子数为n (2n ≥)时,好的放法的总数为n a .当2n =时,显然22a =(11k =,22k =或12k =,21k =).当3n =时,显然33k ≠,否则第3个箱子打不开,从而13k =或23k =,如果13k =,则把1号箱子和3号箱子看作一个整体,这样还是锁着1,2两号钥匙,撬开1,2两号箱子,那么方法有2a 种;当23k =也是如此.于是2n =时的每一种情况对应13k =或23k =时的一种情况,这样就有3224a a ==.当4n ≥时,也一定有n k n ≠,否则第n 个箱子打不开,从而1k 、2k 、……、1n k -中有一个为n ,不论其中哪一个是n ,由于必须要把该箱子打开才能打开n 号箱子,所以可以将锁着这把钥匙的箱子与第n 号箱子看作1个箱子,于是还是锁着1k 、2k 、……、1n k -这()1n -把钥匙,需要撬开1,2两号箱子,所以每种情况都有1n a -种.所以()11n n a n a -=-. 所以,6542554543225!240a a a a ==⨯==⨯⨯⨯=⨯=,即好的方法总数为240种.【答案】240开,则说这是一种放钥匙的“好”的方法,那么“好”的方法共有 种.【考点】计数之递推法 【难度】5星 【题型】填空【解析】 递推法.设第1,2,3,…,6号箱子中所放的钥匙号码依次为1k ,2k ,3k ,…,6k .当箱子数为n (2n ≥)时,好的放法的总数为n a .当2n =时,显然22a =(11k =,22k =或12k =,21k =).当3n =时,显然33k ≠,否则第3个箱子打不开,从而13k =或23k =,如果13k =,则把1号箱子和3号箱子看作一个整体,这样还是锁着1,2两号钥匙,撬开1,2两号箱子,那么方法有2a 种;当23k =也是如此.于是2n =时的每一种情况对应13k =或23k =时的一种情况,这样就有3224a a ==.当4n ≥时,也一定有n k n ≠,否则第n 个箱子打不开,从而1k 、2k 、……、1n k -中有一个为n ,不论其中哪一个是n ,由于必须要把该箱子打开才能打开n 号箱子,所以可以将锁着这把钥匙的箱子与第n 号箱子看作1个箱子,于是还是锁着1k 、2k 、……、1n k -这()1n -把钥匙,需要撬开1,2两号箱子,所以每种情况都有1n a -种.所以()11n n a n a -=-. 所以,109829989876543229!=725760a a a a ==⨯==⨯⨯⨯⨯⨯⨯⨯=⨯,即好的方法总数为725760种.【答案】725760。
小学五六年级奥数学竞赛第6讲计数方法之标数法、递推法
【例3】(★★★★) 在下图中,左下角有1枚棋子,每次可以向上,向右,或沿对角 线的方向向右上走任意多步,但不能不走。那么走到右上角一共 有多少种方法?
【例4】(★★★★★) 中10片莲叶如右图排列.青蛙在莲叶间跳跃,每次只能从一 , 池塘中 片莲叶跳到相邻的另一片莲叶.一只青蛙盘算着从其中一片莲叶 上起跳,连跳4步,那么它有 种不同的跳法.
【例6】(★★★) 如下图,一只蜜蜂从A处出发,回到家里B处,每次只能从一个蜂 房爬向右侧邻近的蜂房而不准逆行,共有多少种回家的方法?
A
B
【例7】(★★★) 一个楼梯共有12级台阶,规定每步可以迈1级台阶或2级台阶,最 多可以迈3级台阶,从地面到最阶 一共可以有多少种 不同的走法?
重点例题:例3、例4、例5、例7、例8
2
【例8】(★★★) 在平面上画8个圆,最多可以把平面分成_______部分。
本讲总结 ①标数法与递推法都是加法原理 ②按最后一步进行分类,做加法 ③标数时要注意限制条件 ④ 平 ④分平面问题要确定交点个数 要确 点个
【例9】(★★★★) 一个长方形把平面分成两部分,那么 个长方形把平面分成两部分 那么10个长方形最多把平面分成 _______部分.
计数方法之标数法、递推法
【例1】(★★) 如图所示 科学家“爱因斯坦”的英文名拼写为“ 如图所示,科学家 爱因斯坦 的英文名拼写为 Einstein Einstein”,按 按 图中箭头所示方向有______种不同的方法拼出英文单词 “Einstein”。
【例2】(★★) 如图,为一幅街道图,从A出发经过十字路口B,但 不经过C走到D的不同的最短路线有多少条?
○
1
【例5】(★★★★★) 游乐园门票1元1张,每人限购1张.现有10个小朋友排队购买,其 中5个小朋友只有1元的钞票,另外5个小朋友只有2元的钞票, 售票员没有零钱。10个小朋友排队,不同的排队方法总共有10! =3628800种,问其中有 种 问其中有______种排队方法,售票员总能找的开 种排队方法 售票员总能找的开 零钱。
小学奥数题目-六年级-计数类-归纳递推与逆推
归纳递推:归纳递推的方法在解决一些周期问题、数列问题等数量较大或者思路比较复杂的题目的时候非常有用,按照题目给出的要求,从0或者1,或者从较小的数开始进行递推,然后推出数量较大时的规律,进而解决问题逆推:逆向思维,由问题的结果入手,进行分析,在解决一些题目的时候往往会有一些意想不到的效果,使得问题变得十分简单,容易解决。
一只青蛙在井底,每天白天爬上4米,晚上又滑下3米,这井有90米深。
那么爬上这口井的上面一共需要多少天?1. 1.一个数是20,现在先加30,再减20,再加30 ,再减20,反复这样操作,如果每加、减一次算两次操作,请问至少经过______次操作结果是500?2. 2.有一类自然数,其数码只能是2或者3,并且没有两个3是相邻的。
请问:满足这些条件的10位数共有______个?有一个圆,其上有两个点将圆周分成两半,并且这两个点上写有数字1,我们进行一下的操作,第1步将两段圆弧对分,在这两个分点上写上相邻的两点上的数字之和,如此继续下去,问:第6步后,圆周上所有的点的数的和是______?有一段楼梯有10级台阶,规定每一步只能跨一级或者两级,问:要登上第十级台阶有多少种不同的走法?1.2. 1.从学校到少年宫有4条东西的马路和3条南北的马路相通,李楠从学校出发,步行到少年宫,学校在东南方而少年宫在西北方,走的路径最短的不同的走法有______种?3. 2.根据各个数之间的关系,在括号内填上一个恰当的数1,2,6,24,(),720;1,2,4,7,11,16,()。
(分别回答以上两道题目,中间用一个空格隔开)4. 3.在2×8的棋盘每个格编号。
现在用8张1×2的长方形卡片去覆盖棋盘。
问:有多少种方法将棋盘完全盖住?视频描述一串数1,1,1,2,2,3,4,5,7,9,12,16,21,……称为帕多瓦数列,请问这个数列第14个数和第18个数分别是什么?已知用一根线段能将一个矩形分成两部分,现在问:8条线段最多能将一个矩形分成______段?2. 2.仅由字母XY组成的长度为n的“单词”恰好有2^n个(因为每个位置都有2个选择),设这些单词中至少有两个X相连的有an个,比如XXYY,YXXX,XXXY等。
顺推 小学六年级奥数难题及答案
顺推小学六年级奥数难题及答案(最新版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如故事大全、作文大全、教案大全、游戏大全、句子大全、诗词大全、家庭教育、幼儿教育、小学教育、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this store provides various types of classic sample essays, such as stories, composition, lesson plans, games, sentences, poems, family education, early childhood education, primary education, other models, etc. If you want to know the difference Please pay attention to the format and writing of the sample essay!顺推小学六年级奥数难题及答案奥数学习有利于训练孩子的思维能力,让孩子在解题的过程中能够从不同的角度进行思考。
小六数学第5讲:递推与归纳(学生版)
第五讲 递推与归纳知识梳理递推法:教学重难点1. 理解递推法的概念。
2. 会用递推法解题特色讲解:例1:999…999×999…999的乘积中有多少个数字是奇数?例2:如图所示:线段AB 上共有10个点(包括两个端点)那么这条线段上一共有多少条不同的线段?例3:计算13+23+33+43+53+63+73+83+93+103得值。
例4:2000个学生排成一行,依次从左到右编上1~2000号,然后从右到左按一、二报数,报一的离开队伍,剩下的人继续按一、二报数,报一的人离开队伍,……按这个规律如此下去,直至当队伍只剩下一人为止。
问:最后留下的这个人原来的号码是多少?例5:圆周上两个点将圆周分为两半,在这两点上写上数1;然后将两段半圆弧对分,在两个分点上写上相邻两点上的数之和;再把4段圆弧等分,在分点上写上相邻两点上的数之和,如此继续下去,问第6步后,圆周上所有点上的之和是多少?例6: 4个人进行篮球训练,互相传球接球,要求每个人接球后马上传给别人,开始由甲发球,并作为第一次传球,第五次传球后,球又回到甲手中,问有多少种传球方式?当堂练习A1. 100条直线最多能把一个平面分成_____个部分。
2. 熊大叔是一个卖烧饼的师傅,他用一个平底锅煎饼,他是这样煎饼的:每次只能放两个饼,每个饼正反面都要煎,煎每一面都要1分钟,问他煎10个这样的饼需要_____分钟。
3. 上一段11阶楼梯,规定每一步只能上一级或两级,那么要登上第11级台阶有_____种不同的走法。
4.请先计算11×11,111×111,1111×1111,你能根据以上结果,不经过计算而直接写出11111111×11111111=________。
10个9 10个9 1 2 3 4 5 6 7 8 B5.我们知道三角形的内角和是180度,长方形的内角和是360度,那么正十边形的内角和是_____度。
六年级奥数作找规律学生版
操作找规律知识点拨六年级奥数作找规律学生版在奥数中有一类“不讲道理”的题目,我们称之为“简单操作找规律”。
有一些对小学生来说很难证明的,但与证明相比,发现却是比较容易的。
这也是数学中的一种重要的思想,在以后的数学学习中会有一种先猜后证的解题方法。
这类题主要考查孩子们的发现能力。
例题精讲模块一,周期规律【例 1】四个小动物换座位.一开始,小鼠坐在第1号位子,小猴坐在第2号,小兔坐在第3号,小猫坐在第4号.以后它们不停地交换位子.第一次上下两排交换.第二次是在第一次交换后再左右两排交换.第三次再上下两排交换.第四次再左右两排交换……这样一直换下去.问:第十次交换位子后,小兔坐在第几号位子上?〈参看下图〉【考点】操作找规律【难度】2星【题型】解答【关键词】华杯赛,初赛【解析】根据题意将小兔座位变化的规律找出来.可以看出:每一次交换座位,小兔的座位按顺时针方向转动一格,每4次交换座位,小兔的座位又转回原处.知道了这个规律,答案就不难得到了.第十次交换座位后,小兔的座位应该是第2号位子。
【答案】第2号【例 2】在1989后面写一串数字。
从第5个数字开始,每个数字都是它前面两个数字乘积的个位数字。
这样得到一串数字:1 9 8 9 2 8 6 8 8 42 ……那么这串数字中,前2005个数字的和是____________。
【考点】操作找规律【难度】2星【题型】填空【关键词】迎春杯,中年级,初试【解析】由题意知,这串数字从第5个数字开始,只要后面的连续两个数字与前面的连续两个数字相同,后面的数字将会循环出现。
1989︱286884︱28……由上图知,从第5个数字开始,按2,8,6,8,8,4循环出现。
()-÷=⋯,前2005个数字和是2005463333()()()+++++++++⨯+++271198816120311989286884333286=++=。
【答案】12031【例 3】先写出一个两位数62,接着在62右端写这两个数字的和8,得到628,再写末两位数字2和8的和10,得到62810,用上述方法得到一个有2006位的整数:628101123…,则这个整数的数字之和是。
六年级奥数优胜教育第5讲:递推与归纳含答案
第五讲 递推与归纳例1:999…999×999…999的乘积中有多少个数字是奇数?例2:如图所示:线段AB 上共有10个点(包括两个端点)那么这条线段上一共有多少条不同的线段?例3:计算13+23+33+43+53+63+73+83+93+103得值。
例4:2000个学生排成一行,依次从左到右编上1~2000号,然后从右到左按一、二报数,报一的离开队伍,剩下的人继续按一、二报数,报一的人离开队伍,……按这个规律如此下去,直至当队伍只剩下一人为止。
问:最后留下的这个人原来的号码是多少?例5:圆周上两个点将圆周分为两半,在这两点上写上数1;然后将两段半圆弧对分,在两个分点上写上相邻两点上的数之和;再把4段圆弧等分,在分点上写上相邻两点上的数之和,如此继续下去,问第6步后,圆周上所有点上的之和是多少?例6: 4个人进行篮球训练,互相传球接球,要求每个人接球后马上传给别人,开始由甲发球,并作为第一次传球,第五次传球后,球又回到甲手中,问有多少种传球方式?A1. 100条直线最多能把一个平面分成_____个部分。
2. 熊大叔是一个卖烧饼的师傅,他用一个平底锅煎饼,他是这样煎饼的:每次只能放两个饼,每个饼正反面都要煎,煎每一面都要1分钟,问他煎10个这样的饼需要_____分钟。
3. 上一段11阶楼梯,规定每一步只能上一级或两级,那么要登上第11级台阶有_____种不同的走法。
4.请先计算11×11,111×111,1111×1111,你能根据以上结果,不经过计算而直接写出10个9 10个9 A a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 8 B11111111×11111111=________。
5.我们知道三角形的内角和是180度,长方形的内角和是360度,那么正十边形的内角和是_____度。
B6.有一列数,第一个数是0.第二个数是100,从第三个数开始,每个数都是前两个数的平均数,问第2005个数的整数部分是_____。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五讲递推与归纳
递推法:
1. 理解递推法的概念。
2. 会用递推法解题
例1:999…999×999…999的乘积中有多少个数字是奇数?
10个910个9
例2:
如图所示:线段AB 上共有10个点(包括两个端点)那么这条线段上一共有多少条不同的线段?
例3:计算13+23+33+43+53+63+73+83+93+103得值。
例4:2000个学生排成一行,依次从左到右编上1~2000号,然后从右到左按一、二报数,
报一的离开队伍,剩下的人继续按一、二报数,报一的人离开队伍,……按这个规律如此下去,直至当队伍只剩下一人为止。
问:最后留下的这个人原来的号码是多少?
例5:圆周上两个点将圆周分为两半,在这两点上写上数1;然后将两段半圆弧对分,在两
个分点上写上相邻两点上的数之和;再把4段圆弧等分,在分点上写上相邻两点上的数之和,如此继续下去,问第6步后,圆周上所有点上的之和是多少?
例6: 4个人进行篮球训练,互相传球接球,要求每个人接球后马上传给别人,开始由甲发
球,并作为第一次传球,第五次传球后,球又回到甲手中,问有多少种传球方式?
A
1. 100条直线最多能把一个平面分成_____个部分。
2. 熊大叔是一个卖烧饼的师傅,他用一个平底锅煎饼,他是这样煎饼的:每次只能放两个饼,每个饼正反面都要煎,煎每一面都要1分钟,问他煎10个这样的饼需要_____分钟。
3. 上一段11阶楼梯,规定每一步只能上一级或两级,那么要登上第11级台阶有_____种不同的走法。
4.请先计算11×11,111×111,1111×1111,你能根据以上结果,不经过计算而直接写出11111111×11111111=________。
5.我们知道三角形的内角和是180度,长方形的内角和是360度,那么正十边形的内角和是_____度。
B
6.有一列数,第一个数是0.第二个数是100,从第三个数开始,每个数都是前两个数的平均数,问第2005个数的整数部分是_____。
7.小华过生日,邀请了班上的16名同学参加他的生日聚会,小华买了一个单层的大蛋糕,要保证每个人都能吃到蛋糕,问至少要切_____刀。
8.一对刚出生的雌雄小兔,在喂养两个月后就生下一对雌雄小兔,并且以后每个月都能生一对雌雄小兔,张大伯现在喂养一对雌雄小兔,一年后一共有_____对小兔。
1 2 3 4 5 6 7 8 B
9.两个自然数的差是5,它们的最小公倍数与最大公约数的差是203,则这两个数的和是_____。
10.两个自然数它们的最小公倍数是60。
那么它们的差有_____种可能。
C
11.一只猎狗正在追赶前方20米处的兔子,已知狗一跳前进3米,兔子一跳前进2.1米,狗跳3次的时间兔子跳4次。
兔子跑出_____米远将被猎狗追上。
12.甲、乙二人分别从A,B两地同时出发,两人同向而行,甲26分钟赶上乙;两人相向而行,6分钟可相遇。
已知乙每分钟行50米,求A,B两地的距离是_____米。
13.小轿车、面包车和大客车的速度分别为60千米/时、48千米/时和42千米/时,小轿车和大客车从甲地、面包车从乙地同时相向出发,面包车遇到小轿车后30分钟又遇到大客车。
问:甲、乙两地相距_____千米远。
14.A、B两辆汽车同时从甲、乙两站相对开出,两车第一次在距甲站32千米处相遇,相遇后两车继续行驶,各自到达乙、甲两站后,立即沿原路返回,第二次在距甲站64千米处相遇,甲、乙两站间相距_____千米。
15.AB两地相距98千米,甲从A地出发汽车速度为30千米/时,乙从B地出发开车速度为40千米/时,问甲乙第三次迎面相遇距离A地_____米远。
1.平面上有10条直线,这10条直线最多有多少个交点?
2.小明有5块水果糖,妈妈规定:每天只能吃一块或两块,小明吃完这5块糖有多少种不同方法?
3.小蜜蜂通过蜂巢房间,规定:只能从小号房间进入大号房间,问小蜜蜂由1号房间走到8号房间有多少种方法?(2007年东直门中学试题)
4. (21012)3=()10
5. 11(a2+b2)=b
a0求b
a0=()
6.求1×2×3×4×……×50末尾有多少个连续的零?
1357
2468
1. 下列数是按一定规律排列的。
3、8、15、2
4、3
5、48、63、……,那么,它的第36个数是()。
2. 图中最上面的空格中应填()。
3. 333…33×333…33的乘积中有几个数字是奇数?
4. 把一张长16厘米、宽8厘米的长方形纸对折后裁成两半,再把其中的一张对折并裁成两半,…,继续这样裁下去,直到得到两个边长为1厘米的正方形纸片为止。
一共需要裁()次。
5. 如图,从A点到B点,最短路线共有多少条?
6. 将一根绳子连续对折3次,然后每隔一定长度剪一刀,共剪了6刀。
这样原来的绳子被剪成()段。
7. 在一张四边形纸上共有10个点,如果把四边形的顶点算在一起,则一共有14个点。
已知这些点中的任意三个点都不在同一直线上。
按照下面规定把这张纸片剪成一些三角形:
⑴每个三角形的顶点都是这14个点中的3个;⑵每个三角形内都不再有这些点。
那么,这张四边形的纸最多可以剪出()个三角形。
8. 某公共汽车线路上共有15个车站(包括起点站和终点站)。
在每个站上车的人中,恰好在以后各站下去一个。
要使行驶过程中每位乘客都有座位,车上至少要备有多少个座位?
9. 在平面内画五条直线和一个圆,最多能把平面分成多少部分?
10. 一个三位数,如果它的每一位数字都不小于另一个三位数对应数位上的数字,就称它“吃掉”后一个三位数,例如543吃掉432。
543吃掉543。
但是543不能吃掉534。
那么能吃掉587的三位数共有多少个?
小学数学文化知识
10个3
圆田术
刘徽(大约1700年前)是我国魏晋时期的数学家,他在《九章算术》方田章“圆田术”注中提出把割圆术作为计算圆的周长、面积以及圆周率的基础。
刘徽从圆内接六边形开始,将倍数逐次加倍,得到的圆内接正多边形就逐步逼近圆。
查票
老教授搭乘火车旅行,列车长前来查票时,他竟找不到票,老教授急得满头大汗,列车长说:找不到就算了,再补张票好了。
老教授:这怎么可以,找不到那张票,我就不知道我要去哪里啊!。