用于车辆动力学实时仿真的转向力输入模型

用于车辆动力学实时仿真的转向力输入模型
用于车辆动力学实时仿真的转向力输入模型

面向汽车动力学控制的汽车仿真软件开发

面向汽车动力学控制的汽车仿真软件开发1 李幼德,刘巍, 李静 吉林大学汽车工程学院 (130022) E-mail :aweii_liu@https://www.360docs.net/doc/9a13830780.html, 摘 要:汽车动力学仿真软件对汽车电控系统的开发具有重要意义。本文利用Matlab/Simulink 软件编制适用于汽车电控制系统开发的汽车动力学模型,并编制了图形用户界面,并针对样车进行了不同工况的模拟。 关键词:汽车动力学,图形用户界面,仿真 1.引言 随着汽车电子控制系统的发展,特别是汽车电控制系统开发手段的发展,以Matlab/Simulink 和Dspace 为开发平台的V 流程的电控系统开发方法已被越来越多的开发商所采用。在汽车电控制系统的开发中,例如汽车牵引力控制系统(TCS )、汽车制动防抱死控制系统(ABS )和汽车稳定性控制系统(ESP )等,为了研究汽车各控制系统的控制算法,汽车动力学仿真模型是必不可少的。而传统的汽车动力学仿真模型(如Adams 和Simpack 等),由于仿真的实时性较差,并不能够满足汽车电控制系统开发的要求。因此,开发基于Matlab/Simulink 平台的汽车动力学仿真软件对于汽车电控系统具有重要的使用价值。 2.汽车动力学模型 考虑汽车动力学模型运行实时性的要求,汽车动力学模型需要进行适当的简化。因此,忽略汽车的侧倾和俯仰运动,以及悬架的影响,但是考虑了汽车载荷的转移。在汽车动力学模型中,包括:发动机模型、传动系模型、轮胎模型、车轮模型以及整车模型等。 2.1发动机模型 发动机模型的输入包括:油门开度、反馈的发动机转速。整个的发动机将简化为一个一阶惯性环节系统[1]。 1 2 1sT e e T e M sT ?= + (1) 其中:e M 发动机的动态输出力矩;为发动机的静态输出力矩,为系统时间常数,为系统滞后时间常数而拉氏变换变量。 e T 2T 1T s 2.2制动器模型 制动器模型采用的是盘式制动器模型,公式如下: b w T A n s P b μη=????? (2) 1 本课题得到高等学校博士学科点专项科研基金(项目编号:20020183025)资助 - 1 -

弹簧阻尼系统动力学模型ams仿真

弹簧阻尼系统动力学模 型a m s仿真 集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

震源车系统动力学模型分析报告一、项目要求 1)独立完成1个应用Adams软件进行机械系统静力、运动、动力学分析问题,并完成一份分析报告。分析报告中要对所计算的问题和建模过程做简要分析,以图表形式分析计算结果。 2)上交分析报告和Adams的命令文件,命令文件要求清楚、简洁。 二、建立模型 1)启动admas,新建模型,设置工作环境。 对于这个模型,网格间距需要设置成更高的精度以满足要求。在ADAMS/View菜单栏中,选择设置(Setting)下拉菜单中的工作网格(WorkingGrid)命令。系统弹出设置工作网格对话框,将网格的尺寸(Size)中的X和Y分别设置成750mm和500mm,间距(Spacing)中的X和Y都设置成50mm。然后点击“OK”确定。如图2-1所表示。 图2-1设置工作网格对话框 2)在ADAMS/View零件库中选择矩形图标,参数选择为“onGround”,长度(Length)选择40cm高度Height为1.0cm,宽度Depth为30.0cm,建立系统的平台,如图2-2所示。以同样的方法,选择参数“NewPart”建立part-2、part-3、part-4,得到图形如2-3所示, 图2-2图2-3创建模型平台 3)施加弹簧拉力阻尼器,选择图标,根据需要输入弹簧的刚度系数K和粘滞阻尼系数C,选择弹簧作用的两个构件即可,施加后的结果如图2-4 图2-4创建弹簧阻尼器

4)添加约束,选择棱柱副图标,根据需要选择要添加约束的构件,添加约束后的模型如2-5所示。 图2-5添加约束 至此模型创建完成 三、模型仿真 1)、在无阻尼状态下,系统仅受重力作用自由振动,将最下层弹簧的刚度系数K设置为10,上层两个弹簧刚度系数均设置为3,小物块的支撑弹簧的刚度系数为4,阻尼均为0,进行仿真,点击图标,设置EndTime为5.0,StepSize为0.01,Steps为50,点击图标,开始仿真对所得数据进行分析。 选择物块的位移、速度、加速度与时间的图像如图3-1、3-2、3-3所示,经过傅里叶变换之后我们可以清楚地看到系统的各阶固有频率。 图3-1位移与时间图像以及FFT变换图像 图3-2速度与时间图像以及FFT变换图像 图3-3加速度与时间图像以及FFT变换图像 通过傅里叶变换,从图中可以看出系统为三阶系统,表现出三阶的固有频率,通过测量得到w1=2.72,w2=4.29,w3=6.15.。 2)为了更进一步验证系统的各阶固有频率,我们给系统施加一定频率的正弦激振力,使系统做受迫振动,观察系统的振动情况, (a)F1=50*sin(2*3.14*w1*time)时,物块振动的速度与时间的图像如3-4所示。 图3-4 F1作用下速度与时间图像以及FFT变换图像

实验四 SIMULINK仿真模型的建立及仿真(完整资料).doc

【最新整理,下载后即可编辑】 实验四SIMULINK仿真模型的建立及仿真(一) 一、实验目的: 1、熟悉SIMULINK模型文件的操作。 2、熟悉SIMULINK建模的有关库及示波器的使用。 3、熟悉Simulink仿真模型的建立。 4、掌握用不同的输入、不同的算法、不同的仿真时间的系统仿真。 二、实验内容: 1、设计SIMULINK仿真模型。 2、建立SIMULINK结构图仿真模型。 3、了解各模块参数的设定。 4、了解示波器的使用方法。 5、了解参数、算法、仿真时间的设定方法。 例7.1-1 已知质量m=1kg,阻尼b=2N.s/m。弹簧系数k=100N/m,且质量块的初始位移x(0)=0.05m,其初始速度x’(0)=0m/s,要求创建该系统的SIMULINK模型,并进行仿真运行。 步骤: 1、打开SIMULINK模块库,在MATLAB工作界面的工具条单击SIMULINK图标,或在MATLAB指令窗口中运行simulink,就可引出如图一所示的SIMULINK模块浏览器。

图一:SIMULINK模块浏览器 2、新建模型窗,单击SIMULINK模块库浏览器工具条山的新建图标,引出如图二所示的空白模型窗。 图二:已经复制进库模块的新建模型窗 3、从模块库复制所需模块到新建模型窗,分别在模块子库中

找到所需模块,然后拖进空白模型窗中,如图二。 4、新建模型窗中的模型再复制:按住Ctrl键,用鼠标“点亮并拖拉”积分模块到适当位置,便完成了积分模块的再复制。 5、模块间信号线的连接,使光标靠近模块输出口;待光标变为“单线十字叉”时,按下鼠标左键;移动十字叉,拖出一根“虚连线”;光标与另一个模块输入口靠近到一定程度,单十字变为双十字;放开鼠标左键,“虚连线”变变为带箭头的信号连线。如图三所示: 图三:已构建完成的新模型窗 6、根据理论数学模型设置模块参数: ①设置增益模块参数,双击模型窗重的增益模块,引出如图四所示的参数设置窗,把增益栏中默认数字改为2,单击[OK]键,完成设置;

车辆系统动力学仿真大作业(带程序)

Assignment Vehicle system dynamics simulation 学院:机电学院 专业:机械工程及自动化 姓名: 指导教师:

The model we are going to analys: The FBD of the suspension system is shown as follow:

According to the New's second Law, we can get the equation: 2 )()(221211mg z z c z z k z m --+-=???? 221212)()(z k mg z z c z z k z m w +-----=? ??? 0)()()()(222111222111=-++--+-++--+? ? ? ? ? ? ? ?w w w w z L z k z L z k z L z c z L z c z m χχχχ 0)()()()(2222111122221111=-++----++---? ? ? ? ? ? ? ?w w w w z L z L k z L z L k z L z L c z L z L c J χχχχχ d w w w w Q z L z k z L z c z m ,111111111)()(-=------? ? ? ? ?χχ d w w w w Q z L z k z L z c z m ,222222222)()(-=-+--+-? ????χχ When there is no excitation we can get the equation: 2)()(221211mg z z c z z k z m --+-=???? 2 21212)()(z k mg z z c z z k z m w +-----=? ??? Then we substitude the data into the equation, we write a procedure to simulate the system: Date: ???? ?? ??? ??==?==?===MN/m 0.10k m 25.1s/m kN 0.20MN/m 0.1m kg 3020kg 2100kg 3250w 2l c k I m m by w b

机车系统动力学问题

问题: 1、 引起车辆振动的原因有很多,有些确定的,也有些随机的,请详细说明与车辆结构有关的激振因素有哪些? 答:引起车辆振动的原因主要可以从两方面考虑,一是与轨道有关的激振因素(详见《车辆工程》第三版P214-P216):(1)钢轨接头处的轮轨冲击,(2)轨道的垂向变形,(3)轨道的局部不平顺,(4)轨道的随机不平顺; 二是与车辆结构有关的激振因素。 车辆本身结构的特点会引起车辆振动,主要原因有以下几种。 (一)车轮偏心。车轮在制造或维修中,由于工艺或机床设备等原因,车轴中心和实际车轮中心之间可能存在一定的偏心,当车轮沿轨道运行时,车轮中心相对瞬时转动中心会出现上下和前后的运动。这些变化会激起车辆的上下振动和前后振动。设车轮中心与车轴中心之间的偏心为e ,则车轮转动时,车轴中心的上下运动量z t 为:z t =esin(t t r vt e t θθω+=+0 sin()),v-车辆运行速度;r 0-车轮名义半径;t-自某初始位置经历的时间;ω-车轮转动角速度;θt -初相角。 (二)车轮不均重。如果车轮的质量不均匀,车轮的质心与几何中心不一致,当车轮转动时车轮上会出现转动的不平衡力。设车轮的质量中心与几何中心 之偏差为e w ,则车轮转动时的不平衡力为:)sin()(0 20t w w w r vt e r v M F θ+=,式中,M w -每一车轮的质量,其他符号同上式。 车轮偏心和不均重,都会引起轮轨之间的动作用,车辆运行速度越高,则会引起的轮轨相互作用力越大。 (三)车轮踏面擦伤。车轮踏面存在擦伤时,车轮滚过擦伤处,轮轨间发生冲击,钢轨受到一个向下的冲量,而车轮受到一个向上的冲量。如果车轮擦伤长度与车轮中心所夹的圆心角为0θ,则车轮滚过踏面擦伤处的向上的冲量为:0θv M v M w w =?。车轮踏面擦伤后轮轨之间的冲击也是周期性的,其周期为:v r T 02π=。

车辆动力学相关的软件及特点

SIMPACK车辆动力学习仿真系统 SIMPACK软件是德国INTEC Gmbh公司(于2009年正式更名为SIMPACK AG)开发的针对机械/机电系统运动学/动力学仿真分析的多体动力学分析软件包。它以多体系统计算动力学(Computational Dynamics of Multibody Systems)为基础,包含多个专业模块和专业领域的虚拟样机开发系统软件。SIMPACK软件的主要应用领域包括:汽车工业、铁路、航空/航天、国防工业、船舶、通用机械、发动机、生物运动与仿生等。 SIMPACK是机械系统运动学/动力学仿真分析软件。SIMPACK软件可以分析如:系统振动特性、受力、加速度,描述并预测复杂多体系统的运动学/动力学性能等。 SIMPACK的基本原理就是通过搭建CAD风格的模型(包括铰、力元素等)来建立机械系统的动力学方程,并通过先进的解算器来获取系统的动力学响应。 SIMPACK软件可以用来仿真任何虚拟的机械/机电系统,从仅仅只有几个自由度的简单系统到诸如一个庞大的火车。SIMPACK软件可以应用在我们产品设计、研发或优化的任何阶段。 SIMPACK软件独具有的全代码输出功能可以将我们的模型输出成Fortran或C代码,从而可以实现与任意仿真软件的联合。 车辆动力学仿真carsim CarSim是专门针对车辆动力学的仿真软件,CarSim模型在计算机上运行的速度比实时快3-6倍,可以仿真车辆对驾驶员,路面及空气动力学输入的响应,主要用来预测和仿真汽车整车的操纵稳定性、制动性、平顺性、动力性和经济性,同时被广泛地应用于现代汽车控制系统的开发。CarSim可以方便灵活的定义试验环境和试验过程,详细的定义整车各系统的特性参数和特性文件。 CarSim软件的主要功能如下: 适用于以下车型的建模仿真:轿车、轻型货车、轻型多用途运输车及SUV; 可分析车辆的动力性、燃油经济性、操纵稳定性、制动性及平顺性; 可以通过软件如MATLAB,Excel等进行绘图和分析; 可以图形曲线及三维动画形式观察仿真的结果;包括图形化数据管理界面,车辆模型求解器,绘图工具,三维动画回放工具,功率谱分析模块;程序稳定可靠; CarSim软件可以扩展为CarSim RT, CarSim RT 是实时车辆模型,提供与一些硬件实时系统的接口,可联合进行HIL仿真;

系统动力学模型

第10 章系统动力学模型 系统动力学模型(System Dynamic)是社会、经济、规划、军事等许多领域进行战略研究的重要工具,如同物理实验室、化学实验室一样,也被称之为战略研究实验室,自从问世以来,可以说是硕果累累。 1 系统动力学概述 2 系统动力学的基础知识 3 系统动力学模型 第1 节系统动力学概述 1.1 概念系统动力学是一门分析研究复杂反馈系统动态行为的系统科学方法,它是系统科学的一个分支,也是一门沟通自然科学和社会科学领域的横向学科,实质上就是分析研究复杂反馈大系统的计算仿真方法。 系统动力学模型是指以系统动力学的理论与方法为指导,建立用以研究复杂地理系统动态行为的计算机仿真模型体系,其主要含义如下: 1 系统动力学模型的理论基础是系统动力学的理论和方法; 2 系统动力学模型的研究对象是复杂反馈大系统; 3 系统动力学模型的研究内容是社会经济系统发展的战略与决策问题,故称之为计算机仿真法的“战略与策略实验室” ; 4 系统动力学模型的研究方法是计算机仿真实验法,但要有计算 机仿真语言DYNAMIC勺支持,如:PD PLUS VENSIM等的支持; 5 系统动力学模型的关键任务是建立系统动力学模型体系; 6 系统动力学模型的最终目的是社会经济系统中的战略与策略决策问题计

算机仿真实验结果,即坐标图象和二维报表; 系统动力学模型建立的一般步骤是:明确问题,绘制因果关系图,绘制系统动力学模型流图,建立系统动力学模型,仿真实验,检验或修改模型或参数,战略分析与决策。 地理系统也是一个复杂的动态系统,因此,许多地理学者认为应用系统动力学进行地理研究将有极大潜力,并积极开展了区域发展,城市发展,环境规划等方面的推广应用工作,因此,各类地理系统动力学模型即应运而生。 1.2 发展概况 系统动力学是在20世纪50年代末由美国麻省理工学院史隆管理学院教授福雷斯特(JAY.W.FORRESTERI出来的。目前,风靡全世界,成为社会科学重要实验手段,它已广泛应用于社会经济管理科技和生态灯各个领域。福雷斯特教授及其助手运用系统动力学方法对全球问题,城市发展,企业管理等领域进行了卓有成效的研究,接连发表了《工业动力学》,《城市动力学》,《世界动力学》,《增长的极限》等著作,引起了世界各国政府和科学家的普遍关注。 在我国关于系统动力学方面的研究始于1980 年,后来,陆续做了大量的工作,主要表现如下: 1 )人才培养 自从1980年以来,我国非常重视系统动力学人才的培养,主要采用“走出去,请进来”的办法。请进来就是请国外系统动力学专家来华讲学,走出去就是派留学生,如:首批派出去的复旦大学管理学院的王其藩教授等,另外,还多次举办了全国性的讲习班。 2 )编译编写专著

永磁同步电机控制系统仿真模型的建立与实现资料

永磁同步电机控制系统仿真模型的建立与 实现

电机的控制 本文设计的电机效率特性如图 转矩(Nm) 转速(rpm) 异步电机效率特性 PMSM 电机效率特性 本文设计的电动汽车电机采用SVPWM 控制技术是一种先进的控制技术,它是以“磁链跟踪控制”为目标,能明显减少逆变器输出电流的谐波成份及电机的谐波损耗,能有效降低脉动转矩,适用于各种交流电动机调速,有替代传统SPWM 的趋势[2]。 基于上述原因,本文结合0=d i 和SVPWM 控制技术设计PMSM 双闭环PI 调速控制。其中,内环为电流环[3],外环为速度环,根据经典的PID 控制设计理论,将内环按典型Ⅰ系统,外环按典型Ⅱ系统设计PI 控制器参数[4]。 1. PMSM 控制系统总模型 首先给出PMSM 的交流伺服系统矢量控制框图。忽略粘性阻尼系数的影响, PMSM 的状态方程可表示为 ??????????-+????????????????????----=??????????J T L u L u i i P J P L R P P L R i i L q d m q d f n f n m n m n m q d ///002/30//ωψψωωω& && (1) 将0=d i 带入上式,有 ???? ??????-+??????????? ??? ??--=????? ?????J T L u L u i J P P L R P i i L q d m q f n f n m n m q d ///02/3/0ωψψωω& && (2) 转 矩 (N m )转速 (n /(m i n )) 效率 转速 (rpm) 转矩 (N m )

动力学主要仿真软件

车辆动力学主要仿真软件 I960年,美国通用汽车公司研制了动力学软件DYNA主要解决多自由度 无约束的机械系统的动力学问题,进行车辆的“质量一弹簧一阻尼”模型分析。作为第一代计算机辅助设计系统的代表,对于解决具有约束的机械系统的动力学问题,工作量依然巨大,而且没有提供求解静力学和运动学问题的简便形式。 随着多体动力学的谨生和发展,机械系统运动学和动力学软件同时得到了迅速的发展。1973年,美国密西根大学的N.Orlandeo和,研制的ADAM 软件,能够简单分析二维和三维、开环或闭环机构的运动学、动力学问题,侧重于解决复杂系统的动力学问题,并应用GEAR刚性积分算法,采用稀疏矩阵技术提高计算效率° 1977年,美国Iowa大学在,研究了广义坐标分类、奇异值分解等算法并编制了DADS软件,能够顺利解决柔性体、反馈元件的空间机构运动学和动力学问题。随后,人们在机械系统动力学、运动学的分析软件中加入了一些功能模块,使其可以包含柔性体、控制器等特殊元件的机械系统。 德国航天局DLF早在20世纪70年代,Willi Kort tm教授领导的团队就开始从事MBS软件的开发,先后使用的MBS软件有Fadyna (1977)、MEDYNA1984),以及最终享誉业界的SIMPAC( 1990).随着计算机硬件和数值积分技术的迅速发展,以及欧洲航空航天事业需求的增长,DLR决定停止开发基于频域求解技术的MED YN软件,并致力于基于时域数值积分技术的发展。1985年由DLR开发的相对坐标系递归算法的SIMPACI软件问世,并很快应用到欧洲航空航天工业,掀起了多体动力学领域的一次算法革命。 同时,DLR首次在SIMPAC嗽件中将多刚体动力学和有限元分析技术结合起来,开创了多体系统动力学由多刚体向刚柔混合系统的发展。另外,由于SIMPACI算法技术的优势,成功地将控制系统和多体计算技术结合起来,发

动力学模型

月球软着陆控制系统综合仿真及分析(课程设计) 在月球探测带来巨大利益的驱使下,世界各国纷纷出台了自己的探月计划,再一次掀起了新一轮探月高潮。在月球上着陆分为两种,一种称为硬着陆,顾名思义,就是探测器在接近月球时不利用制动发动机减速而直接撞击月球。另一种称为软着陆,这种着陆方式要求探测器在距月面一定高度时开启制动系统,把探测器的速度抵消至零,然后利用小推力发动机把探测器对月速度控制在很小的范围内,从而使其在着陆时的速度具有几米每秒的数量级。显然,对于科学研究,对探测器实施月球软着陆的科学价值要大于硬着陆。 1月球软着陆过程分析 目前月球软着陆方式主要有以下两种方式: 第一种就是直接着陆的方式。探测器沿着击中轨道飞向月球,然后在适当的月面高度实施制动减速,最终使探测器软着陆于月球表面。采用该方案时,探测器需要在距离目标点很远时就选定着陆点,并进行轨道修正。不难发现,该方法所选的着陆点只限于月球表面上接近轨道能够击中的区域,所以能够选择的月面着陆点的区域是相当有限的。 第二种方法就是先经过一条绕月停泊轨道,然后再伺机制动下降到月球表面,如图17-1所示。探测器首先沿着飞月轨道飞向月球,在距月球表面一定高度时,动力系统给探测器施加一制动脉冲,使其进入一条绕月运行的停泊轨道;然后根据事先选好的着陆点,选择霍曼变轨起始点,给探测器施加一制动脉冲,使其进入一条椭圆形的下降轨道,最后在近月点实施制动减速以实现软着陆。 主制动段 开始点 图17-1 月球软着陆过程示意图 与第一种方法相比,第二种方法有以下几个方面较大的优越性: 1)探测器可以不受事先选定着陆点的约束,可以在停泊轨道上选择最佳的着陆点,具有很大的选择余地。

车辆动力学仿真

车辆动力学仿真 课程编码:202060 课程英文译名:Dynamics Simulation of Vehicle System 课程类别:专业课 开课对象:车辆工程专业开课学期:第7学期 学分:2.5学分;总学时: 40学时;理论课学时:32学时;上机学时: 8学时 先修课程:理论力学、材料力学、机械原理、机械设计、机械振动 教材:车辆动力学模拟及其方法,威鲁麦特(德),北京理工大学出版社, 1998.5 ,第1版 参考书:【1】汽车系统动力学,张洪欣,同济大学出版社, 1996 ,第1版【2】汽车系统动力学及仿真,雷雨成,国防工业出版社, 1997 ,第1版一、课程的性质、目的和任务 《车辆系统动力学仿真》是车辆工程专业理论性较强的专业课。本课程的目的是,使学生初步学会汽车动力学分析方法,能够解决工程实际问题,以便增强其研究和解决车辆动力学问题的能力。本课程的任务,是以数学力学模型为基础,结合虚拟样机仿真技术,讲授汽车的垂直动力学、横向动力学、纵向动力学,为继续学习和掌握汽车新科技创造条件。 二、课程的基本要求 对汽车动力学有一定的了解,掌握有关的基本概念、基本理论和基本方法及其应用,掌握汽车多体动力学仿真的方法。具体要求为: 1.对汽车动力学仿真的基本概念和基本分析方法有明确的认识; 2.掌握单自由度系统的振动系统,自由振动、强迫振动的微分方程的建立方法; 3.掌握多自由度系统的振动系统的微分方程,初步掌握多自由度系统振动的模态分析方法; 4.了解随机振动的一些基本概念,掌握路面不平度功率谱密度的概念及其计算方法; 5.掌握汽车垂直动力学模型的建立方法,以及路面激励对汽车振动的影响; 6.掌握汽车弹簧、减震器、橡胶金属部件、轮胎等部件垂向动力学的特性; 7.掌握汽车纵向动力学微分方程,掌握滚动阻力、爬坡阻力、加速阻力的计算方法; 8.掌握驱动附着率、制动附着率对行驶极限的影响; 9.掌握汽车横向动力学的微分方程建立方法,及其横向动力学微分方程的特性; 10.掌握汽车操作稳定性的概念及其影响汽车操作稳定性的因素; 11.掌握轮胎的真实特性,初步掌握轮胎动力学的初步概念。

实验四-SIMULINK仿真模型建立及仿真

实验四 SIMULINK仿真模型的建立及仿真(一) 一、实验目的: 1、熟悉SIMULINK模型文件的操作。 2、熟悉SIMULINK建模的有关库及示波器的使用。 3、熟悉Simulink仿真模型的建立。 4、掌握用不同的输入、不同的算法、不同的仿真时间的系统 仿真。 二、实验内容: 1、设计SIMULINK仿真模型。 2、建立SIMULINK结构图仿真模型。 3、了解各模块参数的设定。 4、了解示波器的使用方法。 5、了解参数、算法、仿真时间的设定方法。 例7.1-1 已知质量m=1kg,阻尼b=2N.s/m。弹簧系数k=100N/m,且质量块的初始位移x(0)=0.05m,其初始速度x’(0)=0m/s,要求创建该系统的SIMULINK 模型,并进行仿真运行。 步骤: 1、打开SIMULINK模块库,在MATLAB工作界面的工具条单击SIMULINK图标,或在MATLAB指令窗口中运行simulink,就可引出如图一所示的SIMULINK模块浏览器。

图一:SIMULINK模块浏览器 2、新建模型窗,单击SIMULINK模块库浏览器工具条山的新建图标,引出如图二所示的空白模型窗。 图二:已经复制进库模块的新建模型窗 3、从模块库复制所需模块到新建模型窗,分别在模块子库中找到所需模块,然后拖进空白模型窗中,如图二。 4、新建模型窗中的模型再复制:按住Ctrl键,用鼠标“点亮并拖拉”积分模块到适当位置,便完成了积分模块的再复制。 5、模块间信号线的连接,使光标靠近模块输出口;待光标变为“单线十字叉”时,按下鼠标左键;移动十字叉,拖出一根“虚连线”;光标与另一个模块输入口靠近到一定程度,单十字变为双十字;放开鼠标左键,“虚连线”变变为带箭头的信号连线。如图三所示:

创建基于DLL的Proteus仿真模型

创建基于DLL的Proteus VSM仿真模型 作者:silingsong 一、Proteus VSM仿真模型简介 在使用Proteus仿真单片机系统的过程中,经常找不到所需的元件,这就需要自己编写。Proteus VSM 的一个主要特色是使用基于DLL组件模型的可扩展性。这些模型分为两类:电气模型(Electrical Model)和绘图模型(Graphical Model)。电气模型实现元件的电气特性,按规定的时序接收数据和输出数据;绘图模型实现仿真时与用户的交互,例如LCD的显示。一个元件可以只实现电气模型,也可以都实现电气和绘图模型。 Proteus为VSM模型提供了一些C++抽象类接口,用户创建元件时需要在DLL中实现相应的抽象类。VSM模型和Proteus系统通信的原理如下图: 绘图模型接口抽象类: ICOMPONENT――ISIS内部一个活动组件对象,为VSM模型提供在原理图上绘图和用户交互的服务。 IACTIVEMODEL――用户实现的VSM绘图模型要继承此类,并实现相应的绘图和键盘鼠标事件处理。 电气模型接口抽象类: IINSTANCE――一个PROSPICE仿真原始模型,为VSM模型提供访问属性、模拟节点和数据引脚的服务,还允许模型通过仿真日志发出警告和错误信息。 ISPICECKT(模拟)――SPICE拥有的模拟元件,提供的服务:访问、创建和删除节点,在稀疏矩阵上分配空间,同时还允许模型在给定时刻强制仿真时刻点的发生和挂起仿真。 ISPICEMODEL(模拟)――用户实现的VSM模拟元件要继承此类,并实现相应的载入数据,在完成的时间点处理数据等。 IDSIMCKT(数字)――DSIM拥有的数字元件,提供的服务:访问数字系统的变量,创建回调函数和挂起仿真。

铁道车辆系统动力学作业及试地的题目详解

作业题 1、车辆动力学的具体内容是研究车辆及其主要零部件在各种运用情况下,特别是在高速运行时的位移、加速度和由此而产生的动作用力。 2、车辆系统动力学目的在于解决下列主要问题: ①确定车辆在线路上安全运行的条件; ②研究车辆悬挂装置和牵引缓冲装置的结构、参数和性能对振动及 动载荷传递的影响,并为这些装置提供设计依据,以保证车辆高速、安全和平稳地运行; ③确定动载荷的特征,为计算车辆动作用力提供依据。 3、铁路车辆在线路上运行时,构成一个极其复杂的具有多自由度的振动系统。 4、动力学性能归根结底都是车辆运行过程中的振动性能。 5、线路不平顺不是一个确定量,它因时因地而有不同值,它的变化规律是随机的,具有统计规律,因而称为随机不平顺。 (1)水平不平顺; (2)轨距不平顺; (3)高低不平顺; (4)方向不平顺。 6、车轮半径越大、踏面斜度越小,蛇行运动的波长越长,即蛇行运动越平缓。 7、自由振动的振幅,振幅大小取决于车辆振动的初始条件:初始位移和初始速度(振动频率)。

8、转向架设计中,往往把车辆悬挂的静挠度大小作为一项重要技术指标。 9、具有变摩擦减振器的车辆,当振动停止时车体的停止位置不是一个点,而是一个停滞区。 10、在无阻尼的情况下共振时振幅随着时间增加,共振时间越长,车辆的振幅也越来越大,一直到弹簧全压缩和产生刚性冲击。 11、出现共振时的车辆运行速度称为共振临界速度 12、在车辆设计时一定要尽可能避免激振频率与自振频率接近,避免出现共振。 13、弹簧簧条之间要留较大的间距以避免在振动过程中簧条接触而出现刚性冲击 14、两线完全重叠时,摩擦阻力功与激振力功在任何振幅条件下均相等。 15、在机车车辆动力学研究中,把车体、转向架构架(侧架)、轮对等基本部件近似地视为刚性体,只有在研究车辆各部件的结构弹性振动时,才把他们视为弹性体。 16、簧上质量:车辆支持在弹性元件上的零部件,车体(包括载重)及摇枕质量 17、簧下质量:车辆中与钢轨直接刚性接触的质量,如轮对、轴箱装置和侧架,客车转向架构架,一般是簧上质量。 18、一般车辆(结构对称)的垂向振动与横向振动之间是弱耦合,因此车辆的垂向和横向两类振动可以分别研究。 19、若车体质心处于纵垂对称面上,但不处于车体的横垂对称面上,则车体的浮沉振动将和车体的点头振动耦合起来。

汽车动力学仿真模型的发展

!汽车动力学发展历史简介 汽车动力学是伴随着汽车的出现而发展起来的 一门专业学科。人们很早就认识到“$%&’()*+”转向和应用弹性悬架可使乘客感到更加舒适等基本原 理[,],但那只是一种感性的认识。在各国学者的不懈 努力下,这门学科逐渐发展成熟。-’.’/在,00#年1)’%23举行的题为“车辆平顺性和操纵稳定性”的会议上发表的论文,对,00"年以前汽车动力学的发 展做了较为全面的总结[ !],见表,。近年来汽车动力学又有了进一步发展,大量的高水平学术论文和经典的汽车动力学专著相继被发表,而且开发出许多专为汽车动力学研究建立模型的软件,如美国密西根大学开发的$456%*(、$45678)等商业软件。汽车是一复杂的连续体系统,要想对其进行动力特性的预测和优化需建立经合理简化的抽象汽车模型,以达到缩短产品开发周期、保证整车性能指标和降低产品成本的目的。 "汽车动力学模型的发展 汽车动力学从严格意义上来讲包括对一切与车 辆系统相关运动的研究,然而最为核心的是平顺性和操纵稳定性这两大领域,一般认为平顺性主要研究影响车身的垂向跳跃、俯仰、侧倾振动的因素,而操纵稳定性主要研究车辆的横向、横摆和侧倾运动。建模时一般假设平顺性和操纵稳定性之间无偶合关系。 "#!汽车平顺性模型 在汽车平顺性的早期研究阶段,限于当时数学、 力学理论、计算手段及试验方法,把系统简化成集中质量—弹簧—阻尼模型,如图,所示。 图,整车集中质量—弹簧—阻尼模型 此类模型一般先以函数的形式给出其动能!和势能"以及表达系统阻尼性质的物理量耗散能 !的表达式: 【摘要】汽车动力学包括对一切与车辆系统相关运动的研究,其最核心的是平顺性和操纵稳定性这两大领域。在简要说明了汽车动力学发展过程的基础上介绍了平顺性和操纵稳定性两大领域的模型发展过程。平顺性模型主要经过集中质量—弹簧—阻尼模型、有限元模型和动态子结构模型阶段;而操纵稳定性模型从低自由度线性模型、非线性多自由度模型发展到多体模型。最后提出了汽车动力学仿真模型的发展动向。 主题词:汽车动力学模型发展 中图分类号:9:;,<,文献标识码:$ 文章编号:,"""=#>"#(!""#)"!=""",=": $%&%’()*%+,(-.%/01’%$2+3*0140*5’3,0(+6(7%’ ?2*+.@’8A?2*+.B8+.2*8AC48D*8/8+AB8*D6+.E’8 (B8/8+9+8F’(785G ) 【89:,;31,】H’28%/’IG+*)8%7754I8’7*//)6F’)’+57(’/’F*+556F’28%/’7G75’)*+I 857%6(’8752’5J6E8’/I76E (8I’K *L8/85G *+I 2*+I/8+.75*L8/85G<1+52’M*M’(AI’F’/6M8+.M(6%’776E )6I’/76E F’28%/’(8I’*L8/85G *+I 2*+I/8+.75*L8/85G *(’8+K 5(6I4%’I *E5’(I’F’/6M)’+5%64(7’6E F’28%/’IG+*)8%78778)M/G 8+5(6I4%’I

仓储物流中心的仿真模型

目录 项目概述 (1) 1课程设计内容 (2) 2.仿真的目标 (2) 3Flexsim仿真步骤 (3) 3.1模型建立 (3) 3.2参数设置 (4) 3.3模型运行 (8) 3.4模型优化 (9) 3.5仿真模型运行及结果统计 (10) 4结论 (12)

项目概述 随着计算机信息技术的发展,现代企业生产规模的不断扩大和竞争的日益加剧,市场对企业物流系统提出了新的要求,仓储型物流中心系统也越来越受到关注并得到广泛应用,对其运行效率的研究也成为企业关注的焦点。计算机仿真软件能够进行离散系统建模仿真,是仓储物流中心仿真分析的理想选择。根据仓储型物流中心基本组成和作业流程,将仓储型物流中心剖析为入库、存取、出库三个部分。通过模拟仓储物流中心系统,对仓库物流过程进行整体分析。结合各个作业特点,对仿真的总体流程进行研究,找出其瓶颈,并对其进行优化。

1课程设计内容 ①仓储型物流中心是指将进货的商品临时保存在仓库中,然后根据需要出库的物流中心。以仓储型物流中心的模型为例,学习自动立体仓库、处理器、暂存区、传送带、机器人、运输器等设备来建立模型的方法以及关于这些设备的设定方法。 ②系统描述:具有自动立体仓库的出货传送线的模型。从2处投入口进来的2种商品沿传送带流动,在合流点合流的商品在装货中转站由机器人堆放在货架上。存储在货架的经传送带传输,在卸货中转站由机器人将商品卸下投放到分流线上去。 2.仿真的目标 在进行系统仿真时,首先要确定仿真的目标,也就是仿真要解决的问题:然后是系统调研阶段,调研的目的是为了深入了解系统的总体流程、各种建模参数,以便建立系统模型:最后进入实际建模阶段总的说来可以将仿真过程分为三个部分:①系统分析阶段:②仿真模型建立:③仿真结果输出及分析。如图1所示: 图1

实验一 MATLAB 中控制系统模型的建立与仿真

实验一 MATLAB 中控制系统模型的建立与仿真 一、 实验目的 (1)熟悉MATLAB 控制系统工具箱中线性控制系统传递函数模型的相关函数。 (2)熟悉SIMULINK 模块库,能够使用SIMULINK 进行控制系统模型的建立及仿真。 二、 实验仪器 PC 计算机一台,MATLAB 软件1套 三、实验内容 1. 熟悉线性控制系统传递函数模型的相关函数。 (1)tf ( )函数可用来输入系统的传递函数 该函数的调用格式为 G = tf ( num , den ); 其中num , den 分别为系统传递函数的分子和分母多项式系数向量。返回的G 为系统的传递函数形式。 但如果分子或分母多项式给出的不是完全的展开的形式,而是若干个因式的乘积,则事先需要将其变换为完全展开的形式,两个多项式的乘积在MATLAB 下借用卷积求取函数conv( )得出,其调用格式为 p=conv(p1,p2) MATLAB 还支持一种特殊的传递函数的输入格式,在这样的输入方式下,应该先用s=tf(’s ’)定义传递函数算子,然后用数学表达式直接输入系统的传递函数。 请自己通过下面两个例子来演示和掌握tf ()和s=tf(’s ’)算子这两种输入方式。 例1 设系统传递函数 1 34223523423+++++++=s s s s s s s G 输入方式一:num = [1, 5, 3, 2]; den = [1, 2, 4, 3, 1]; %分子多项式和分母多项式系数向量 G = tf ( num , den ) %这样就获得系统的数学模型G 输入方式二:s=tf(’s ’); G=( s^3 + 5* s^2 + 3* s + 2)/( s^4 + 2*s^3 + 4* s^2 + 3* s + 1) 任务一:将下列传递函数分别采用上面两种输入方式进行输入,并记录命令。 ① 432534 ++++=s s s s G

弹簧阻尼系统动力学模型adams仿真

震源车系统动力学模型分析报告 一、项目要求 1)独立完成1个应用Adams软件进行机械系统静力、运动、动力学分析问题,并完成一份分析报告。分析报告中要对所计算的问题和建模过程做简要分析,以图表形式分析计算结果。 2)上交分析报告和Adams的命令文件,命令文件要求清楚、简洁。 二、建立模型 1)启动admas,新建模型,设置工作环境。 对于这个模型,网格间距需要设置成更高的精度以满足要求。在ADAMS/View菜单栏中,选择设置(Setting)下拉菜单中的工作网格(Working Grid)命令。系统弹出设置工作网格对话框,将网格的尺寸(Size)中的X和Y分别设置成750mm和500mm,间距(Spacing)中的X和Y都设置成50mm。然后点击“OK”确定。如图2-1所表示。 图2-1 设置工作网格对话框

2)在ADAMS/View零件库中选择矩形图标,参数选择为“on Ground”,长度(Length)选择40cm高度Height为1.0cm,宽度Depth为30.0cm,建立系统的平台,如图2-2所示。以同样的方法,选择参数“New Part”建立part-2、part-3、part-4,得到图形如2-3所示, 图2-2 图2-3创建模型平台 3)施加弹簧拉力阻尼器,选择图标,根据需要输入弹簧的刚度系数K和粘滞阻尼系数C,选择弹簧作用的两个构件即可,施加后的结果如图2-4 图2-4 创建弹簧阻尼器 4)添加约束,选择棱柱副图标,根据需要选择要添加约束的构件,添加约束后的模型如2-5所示。

图2-5 添加约束 至此模型创建完成 三、模型仿真 1)、在无阻尼状态下,系统仅受重力作用自由振动,将最下层弹簧的刚度系数K设置为10,上层两个弹簧刚度系数均设置为3,小物块的支撑弹簧的刚度 系数为4,阻尼均为0,进行仿真,点击图标,设置End Time为5.0,Step Size为0.01,Steps为50,点击图标,开始仿真对所得数据进行分析。 选择物块的位移、速度、加速度与时间的图像如图3-1、3-2、3-3所示,经过傅里叶变换之后我们可以清楚地看到系统的各阶固有频率。 图3-1位移与时间图像以及FFT变换图像

汽车动力学特性仿真分析与ADAMS软件

汽车动力学特性仿真分析与ADAMS软件 封飚 内容提要:文章讨论了多体动力学的概念、方法在汽车设计领域中的应用,阐明了ADAMS软件的理论基础和计算、求解方法及其应用于整车系统动力学特性仿真模型建立、分析优化的关键步骤和原则。 关键词:汽车设计,多体动力学,仿真分析,ADAMS软件 20世纪80年代以来,汽车作为极其重要的工业产品,在交通运输领域和人民日常生活中的地位日益突出。国内、国际汽车市场的竞争变得空前激烈,用户对汽车安全性、行驶平顺性、操纵稳定性、乘坐舒适性的要求越来越高。然而,汽车本身是一个复杂的多体系统集合,外界载荷的作用更加复杂、多变,人、车、环境三位一体的相互作用,致使汽车动力学模型的建立、分析、求解始终是一个难题。基于以往的解决方法,需经过多轮样车试制,反复的道路模拟试验和整车性能试验,不仅花费大量的人力、物力,延长设计周期,而且有些试验因其危险性而难以进行。广大设计人员迫切希望找到一 种能在图纸设计阶段全面、准确地预测车辆动力学性能,并可对其性能进行优化分析的办法。ADAMS软件采用科所研究的问题囊括了宏观世界机械运动的主要问题。刚体系统与柔体系统的主要不同在于柔性部件的变形不可忽略,其逆运动是不确定的。柔体系统是一个时变、高度耦合、高度非线性的复杂系统。目前,比较系 统的研究方法有:牛顿—欧拉法、拉格朗日方程法、图论方法、凯恩方法、变分方法等。1.2 汽车多体动力学应用 多体动力学应用于汽车设计,并借以计算机仿真实现,是一项前沿技术。随着其理论研究的逐步深入,计算方法的日渐成熟以及计算机技术的迅猛发展,这门科学开始走向实用。我国目前有很多汽车制造厂家、科研 单位已经引进使用和开发了多体系统计算机仿真软件, 使我们在处理车辆复杂动态特性分析方面产生了质的飞 跃。 过去的许多情况下,不得不把计算模型简化(如单 自由度、双自由度模型),以便使用古典力学方法人工求解,对于汽车振动系统中大多数非线性原件(如轮胎、变刚度悬架、橡胶衬套等)也只能采用简易算法进行局部线性模拟,从而导致车辆的许多重要特性无法得到较精确的定量分析。现在,理论方法与计算手段的突破,使我们可以坐在办公室里研究开发“虚拟汽车”,建立“虚拟试验场”,在计算机上预测汽车的动力学性能。力学模型由线性模型发展到非线性模型,模型的自由度由 两自由度发展到数十个甚至数百个自由度。模拟计算由 稳态响应特性模拟发展到瞬态响应特性和转弯制动模拟 研究。 由车辆环境构成的开环控制系统也被具有驾驶员 13 2001-3综 述 虚拟样机模拟技术,提供了上述问题的解决方案,可以 用于指导和修正设计,按照并行工程的概念组织产品设 计到生产,从而在真正意义上实现优化的整车系统设计。1 多体动力学在汽车设计中的应用 1.1 多体动力学概述 多体动力学,包括多刚体系统动力学和多柔体系统动力学,是研究多体系统(由若干个柔性和刚性物体相互连接所组成)运动规律的科学。其中,多柔体动力学是多刚体动力学、分析力学、连续介质力学、结构动力学多学科交叉的结晶,也是航天工业、汽车工业,机器人制造业向高性能、高精度发展的必然。 这门边缘性学

相关文档
最新文档