图形初步认识知识点总结,七年级上册数学图形初步认识专题题型例题讲解与答案解析
人教版七年级上册数学:《图形认识初步》全章复习与巩固(基础)知识讲解(含答案)
![人教版七年级上册数学:《图形认识初步》全章复习与巩固(基础)知识讲解(含答案)](https://img.taocdn.com/s3/m/1d5f568bf18583d048645907.png)
《图形认识初步》全章复习与巩固(基础)知识讲解【学习目标】1认识一些简单的几何体的平面展开图及三视图,初步培养空间观念和几何直观;2•掌握直线、射线、线段、角这些基本图形的概念、性质、表示方法和画法;3 •初步学会应用图形与几何的知识解释生活中的现象及解决简单的实际问题;4•逐步掌握学过的几何图形的表示方法,能根据语句画出相应的图形,会用语句描述简单的图形.【高清课堂:图形认识初步章节复习399079 本章知识结构】【知识网络】【要点梳理】要点一、多姿多彩的图形1. 几何图形的分类立体图形:棱柱、棱锥、圆柱、圆锥、球等•几何图形平面图形:三角形、四边形、圆等•要点诠释:在给几何体分类时,不同的分类标准有不同的分类结果.2. 立体图形与平面图形的相互转化(1)立体图形的平面展开图:把立体图形按一定的方式展开就会得到平面图形,把平面图形按一定的途径进行折叠就会得到相应的立体图形,通过展开与折叠能把立体图形和平面图形有机地结合起来.要点诠释:①对一些常见立体图形的展开图要非常熟悉,例如正方体的等的展开图;②不同的几何体展成不同的平面图形,同一几何体沿不同的棱剪开,可得到不同的平面图形,那么排除障碍的方法就是:联系实物,展开想象,建立“模型”,整体构想,动手实践(2)从不同方向看:主(正)视图--------- 从正面看几何体的三视图(左、右)视图-----从左(右)边看俯视图------------ 从上面看要点诠释:①会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图②能根据三视图描述基本几何体或实物原型(3)几何体的构成元素及关系几何体是由点、线、面构成的•点动成线,线与线相交成点;线动成面,面与面相交成线;面动成体,体是由面组成•要点二、直线、射线、线段1. 直线,射线与线段的区别与联系ettA S 1J 8 ;責示方进①禹心归写爭毋;②一牛屮坊字母溺來大写字呼,表示工袁禾两晞血杓两个大写字母;②一个小馬丰*1 +2牛向眄才无限延伸囱一方无朋逐伸不可庭沖前点瑜定一条立啟itte可以作圈報述过A出柞直A.H以4肖端点柞射践連2. 基本性质(1)直线的性质:两点确定一条直线.(2)线段的性质:两点之间,线段最短.要点诠释:①本知识点可用来解释很多生活中的现象•女口:要在墙上固定一个木条,只要两个钉子就可以了,因为如果把木条看作一条直线,那么两点可确定一条直线②连接两点间的线段的长度,叫做两点的距离3. 画一条线段等于已知线段(1 )度量法:可用直尺先量出线段的长度,再画一条等于这个长度的线段11种展开图,三棱柱,圆柱(2 )用尺规作图法:用圆规在射线AC上截取AB=a,如下图:4. 线段的比较与运算 (1 )线段的比较:比较两条线段的长短,常用两种方法,一种是度量法;一种是叠合法(2 )线段的和与差:如下图,有AB+BC=AC 或AC=a+b AD=AB-BDA aB b C(3)线段的中点:1 把一条线段分成两条相等线段的点,叫做线段的中点.如下图,有:AM MB AB2要点诠释:1①线段中点的等价表述:如上图,点M在线段上,且有AM - AB,则点M为线段AB2的中点•②除线段的中点(即二等分点)外,类似的还有线段的三等分点、四等分点等•如下图,点M,N,P均为线段AB的四等分点•1AM MN NP PB AB4要点三、角1. 角的度量(1)角的定义:有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边;此外,角也可以看作由一条射线绕着它的端点旋转而形成的图形(2)角的表示方法:角通常有三种表示方法:一是用三个大写英文字母表示,二是用角的顶点的一个大写英文字母表示,三是用一个小写希腊字母或一个数字表示•例如下图:要点诠释:①角的两种定义是从不同角度对角进行的定义;②当一个角的顶点有多个角的时候,不能用顶点的一个大写字母来表示(3)角度制及角度的换算1周角=360°, 1平角=180°, 1° =60', 1' =60〃,以度、分、秒为单位的角的度量制,叫做角度制.要点诠释:①度、分、秒的换算是60进制,与时间中的小时分钟秒的换算相同②度分秒之间的转化方法:由度化为度分秒的形式(即从高级单位向低级单位转化)时用乘法逐级进行;由度分秒的形式化成度(即低级单位向高级单位转化)时用除法逐级进行.③同种形式相加减:度加(减)度,分加(减)分,秒加(减)秒;超60进一,减一成60.(4 )角的分类锐角直角钝角平角周角范围0<zp< 90°zp =90 °90°<Zp <180°Zp =180 °zp =360°(5)画一个角等于已知角(1)借助三角尺能画出15°的倍数的角,在0〜180°之间共能画出11个角.(2)借助量角器能画出给定度数的角.(3)用尺规作图法.2. 角的比较与运算(1)角的比较方法:①度量法;②叠合法.(2)角的平分线:从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线,例1女口:如下图,因为OC是/ AOB勺平分线,所以/ 仁/2=—/ AOB或/ AOB=Z 1=2/2.23•角的互余互补关系余角补角(1)若/ 1 + / 2=90 °,则/ 1与/ 2互为余角.其中/ 1是/ 2的余角,/ 2是/ 1的余角.(2)若/ 1 + Z 2=180°,则/ 1与/ 2互为补角.其中/ 1是/ 2的补角,/ 2是/ 1的补角.(3)结论:同角(或等角)的余角相等;同角(或等角)的补角相等要点诠释:①余角(或补角)是两个角的关系,是成对出现的,单独一个角不能称其为余角(或补角).②一个角的余角(或补角)可以不止一个,但是它们的度数是相同的,③只考虑数量关系,与位置无关.④“等角是相等的几个角”,而“同角是同一个角”4•方位角以正北、正南方向为基准,描述物体运动的方向,这种表示方向的角叫做方位角•要点诠释:(1)方位角还可以看成是将正北或正南的射线旋转一定角度而形成的•所以在应用中一要确定其始边是正北还是正南•二要确定其旋转方向是向东还是向西,三要确定旋转角度的大小.(2)北偏东45。
人教版初中七年级数学上册第四单元《几何图形初步》知识点总结(含答案解析)
![人教版初中七年级数学上册第四单元《几何图形初步》知识点总结(含答案解析)](https://img.taocdn.com/s3/m/0e07acd5ed630b1c58eeb5e0.png)
一、选择题1.如图,∠AOB=12∠BOD,OC平分∠AOD,下列四个等式中正确的是()①∠BOC=13∠AOB;②∠DOC=2∠BOC;③∠COB=12∠BOA;④∠COD=3∠COB.A.①②B.②③C.③④D.①④2.如图所示的四个几何体中,从正面、上面、左面看得到的平面图形都相同的有()A.1个B.2个C.3个D.4个3.有3块积木,每一块的各面都涂上不同的颜色,3块的涂法完全相同.现把它们摆放成不同的位置(如图),请你根据图形判断涂成绿色一面的对面涂的颜色是( )A.白B.红C.黄D.黑4.将如图所示的直角三角形绕直线l旋转一周,得到的立体图形是()A.B.C.D.5.点 A、B、C 在同一条数轴上,其中点 A、B 表示的数分别为﹣3、1,若 BC=2,则 AC 等于()A.3 B.2 C.3 或 5 D.2 或 66.已知∠α与∠β互补,且∠α>∠β,则∠β的余角可以表示为( )A .12α∠B .12β∠C .()12αβ∠-∠D .()1+2αβ∠∠ 7.如图,点O 在直线AB 上,射线OC ,OD 在直线AB 的同侧,∠AOD =40°,∠BOC =50°,OM ,ON 分别平分∠BOC 和∠AOD ,则∠MON 的度数为( )A .135°B .140°C .152°D .45°8.如图,已知线段12AB =,延长线段AB 至点C ,使得12BC AB =,点D 是线段AC 的中点,则线段BD 的长是( ).A .3B .4C .5D .6 9.计算:135333030306︒︒''''⨯-÷的值为( ) A .335355︒''' B .363355︒''' C .63533︒''' D .53533︒''' 10.如图,AD 是△ABC 的角平分线,点O 在AD 上,且OE ⊥BC 于点E ,∠BAC=60°,∠C=80°,则∠EOD 的度数为( )A .20°B .30°C .10°D .15° 11.平面内有两两相交的七条直线,若最多有m 个交点,最少有n 个交点,则m+n 等于( )A .16B .22C .20D .1812.某正方体的平面展开图如下图所示,这个正方体可能是下面四个选项中的( ).A .B .C .D . 13.已知柱体的体积V =S•h ,其中S 表示柱体的底面面积,h 表示柱体的高.现将矩形ABCD 绕轴l 旋转一周,则形成的几何体的体积等于( )A .2 r h πB .22?r h πC .23?r h πD .24?r h π 14.如图,点A 、B 、C 是直线l 上的三个定点,点B 是线段AC 的三等分点,AB =BC +4m ,其中m 为大于0的常数,若点D 是直线l 上的一动点,M 、N 分别是AD 、CD 的中点,则MN 与BC 的数量关系是( )A .MN =2BCB .MN =BC C .2MN =3BCD .不确定 15.已知∠AOB=40°,∠BOC=20°,则∠AOC 的度数为( )A .60°B .20°C .40°D .20°或60° 二、填空题16.如图,点C 、D 在线段AB 上,D 是线段AB 的中点,AC =13AD ,CD=4cm ,则线段AB 的长为_____cm17.植树节,只要定出两棵树的位置,就能确定这一行树所在的直线,这是因为两点确定_______条直线.18.看图填空.(1)AC =AD -_______=AB +_______,(2)BC +CD =_______=_______-AB ,(3)AD =AC+___.19.如图,C 为线段AB 的中点,线段AB=12cm ,CD=2cm .则线段DB 的长为_______20.要整齐地栽一行树,只要确定了两端的树坑的位置,就能确定这一行树坑所在的直线,这里用到的数学知识是_________.21.如图,在自来水管道AB 的两旁有两个住宅小区C ,D ,现要在主水管道上开一个接口P 往C ,D 两小区铺设水管,为节约铺设水管的用料,接口P 应在如图所示的位置,请说明依据的数学道理是:___________________________________________________________________.22.按照图填空:(1)可用一个大写字母表示的角有____________.(2)必须用三个大写字母表示的角有_____________________.(3)以B 为顶点的角共有______个,分别表示为_______________________.23.已知点B 在直线AC 上,AB=6cm ,AC=10cm ,P 、Q 分别是AB 、AC 的中点,则PQ=_____24.如图,折一张长方形纸的一角,使角的顶点落在A′处,且使得∠ABA′=90°,BC 为折痕,若BD 为∠A′BE 的平分线,则∠CBD =________°.25.一个几何体,从不同方向看到的图形如图所示.拼成这个几何体的小正方体的个数为______.26.有高度相同的一段方木和一段圆木,体积之比是1:1.在高度不变的情况下,如果将方木加工成尽可能大的圆柱,将圆木加工成尽可能大的长方体,则得到的圆柱和长方体的体积之比为____.三、解答题27.已知:O 是直线AB 上的一点,COD ∠是直角,OE 平分BOC ∠.(1)如图1.若30AOC ∠=︒.求DOE ∠的度数;(2)在图1中,AOC a ∠=,直接写出DOE ∠的度数(用含a 的代数式表示); (3)将图1中的DOC ∠绕顶点O 顺时针旋转至图2的位置,探究AOC ∠和DOE ∠的度数之间的关系.写出你的结论,并说明理由.28.如图,∠AOB=∠DOC=90°,OE平分∠AOD,反向延长射线OE至F.(1)∠AOD和∠BOC是否互补?说明理由;(2)射线OF是∠BOC的平分线吗?说明理由;(3)反向延长射线OA至点G,射线OG将∠COF分成了4:3的两个角,求∠AOD.29.如图所示,∠AOB=35°,∠BOC=50°,∠COD=22°,OE平分∠AOD,求∠BOE的度数.30.如图是由几个完全相同的小立方体所搭成的几何体从上面看到的形状图,小正方形中的数字表示在该位置的小立方体的个数,请你画出这个几何体从正面和左面看到的形状图.。
整理七年级数学上册第四章几何图形初步带答案常考点
![整理七年级数学上册第四章几何图形初步带答案常考点](https://img.taocdn.com/s3/m/7fd1857e580102020740be1e650e52ea5518ce3e.png)
(名师选题)整理七年级数学上册第四章几何图形初步带答案常考点单选题1、己知点M 是线段AB 上一点,若AM =14AB ,点N 是直线AB 上的一动点,且AN −BN =MN ,则MN AB的( )A .34B .12C .1或12D .34或22、如图,小明从A 处沿南偏西65∘30′方向行走至点B 处,又从点B 处沿北偏西72∘30′方向行走至点E 处,则∠ABE =( )A .114∘30′B .108∘C .137∘D .138∘3、下列几何体都是由4个相同的小正方体搭成的,其中从正面和左面看到的形状图相同的是( )A .B .C .D .4、桌面上有一个正方体,每个面均有一个不同的编号(1,2,3,…,6),且每组相对面上的编号和为7.将其按顺时针方向滚动(如图),每滚动90°算一次,则滚动第2022次后,正方体朝下一面的数字是( )A .5B .4C .3D .25、若∠A =23°,则∠A 的补角是( ) A .57°B .67°C .157°D .167°6、正方体的截面形状不可能是( )A.三角形B.五边形C.六边形D.七边形7、如图是一个正方体的展开图,把展开图折叠成小正方体后,和“建”字所在面相对的面上的字是()A.跟B.百C.走D.年8、如图,某正方体三组相对的两个面的颜色相同,分别为红,黄,蓝三色,其展开图不可能是()A.B.C.D.9、我们知道过平面上两点可以画一条直线,过平面上3点最多可以画3条直线,过平面上4点最多可以画6条直线,过平面上5点最多可以画10条直线.如果平面上有6个点,且任意3个点均不在同一直线上,那么最多可以画多少条直线?()A.15B.21C.30D.3510、如图,从∠AOB的顶点引出两条射线OC,OD,图中的角共有()A.3个B.4个C.6个D.7个解答题11、十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型,解答下列问题:(1)根据上面多面体模型得__________________.(2)一个多面体的面数比顶点数大8,且有30条棱,则这个多面体的面数是__________.(3)某个玻璃饰品的外形是简单多面体,它的外表面是由三角形和八边形两种多边形拼接而成,且有24个顶点,每个顶点处都有3条棱,设该多面体外表三角形的个数为x个,八边形的个数为y个,求x+y的值.12、如图,C是线段AB外一点,用没有刻度的直尺和圆规画图.(1)画射线CB;(2)画直线AC;(3)①延长线段AB到点E,使AE=3AB;②在①的条件下,如果AB=5cm,那么BE的长为__________.13、【感受新知】如图1,射线OC在∠AOB在内部,图中共有3个角:∠AOB、∠AOC和∠BOC,若其中一个角的度数是另一个角度数的三倍,则称射线OC是∠AOB的“和谐线”.[注:本题研究的角都是小于平角的角.](1)一个角的角平分线_______这个角的“和谐线”.(填是或不是)(2)如图1,∠AOB=60°,射线OC是∠AOB的“和谐线”,求∠AOC的度数.【运用新知】(3)如图2,若∠AOB=90°,射线OM从射线OA的位置开始,绕点O按逆时针方向以每秒15°的速度旋转,同时射线ON从射线OB的位置开始,绕点O按顺时针方向以每秒7.5°的速度旋转,当一条射线回到出发位置的时候,整个运动随之停止,旋转的时间为t(s),问:当射线OM、ON旋转到一条直线上时,求t的值.【解决问题】(4)在(3)的条件下,请直接写出当射线ON是∠BOM的“和谐线”时t的值.整理七年级数学上册第四章几何图形初步带答案(四十三)参考答案1、答案:C分析:根据N在线段AB上和线段AB外分情况讨论,再结合线段关系即可解题.当N在射线BA上时,AN<BN,不合题意当N在射线AB上时,AN−BN=AB=MN,此时MNAB=1当N在线段AB上时,由图可知AN=MN+AM,BN=BM−MN∴AN−BN=MN+AM−BM+MN=2MN+AM−BM=MN,∴MN=BM−AM∵AM=14AB∴BM=34AB∴MN=BM−AM=12AB∴MNAB =12故选:C.小提示:本题考查线段和差计算,解题的关键是画出图形根据图像找到线段直接的和差关系.2、答案:D分析:先根据方位角以及平行线的性质可得∠2=∠3=65∘30′、∠1=72∘30′,则∠ABE=∠1+∠2,最后计算即可.解:如图:∵小明从A处沿南偏西65∘30′方向行走至点B处,又从点B处沿北偏西72∘30′方向行走至点E处∴∠2=∠3=65∘30′,∠1=72∘30′∴∠ABE=∠1+∠2=138°.故答案为D.小提示:本题主要考查了方位角和角的运用,正确认识方位角成为解答本题的关键.3、答案:A分析:分别画出四个选项从正面看和从左面看的形状,即可得到答案.解:A、从正面看的形状,从左面看的形状,故A符合题意;B、从正面看的形状,从左面看的形状,故B不符合题意;C、从正面看的形状,从左面看的形状,故C 不符合题意;D、从正面看的形状,从左面看的形状,故D 不符合题意;故选A.小提示:本题主要考查了小正方块组成的几何体的三视图,熟知三视图的定义是解题的关键.4、答案:B分析:先找出正方体相对的面,然后从数字找规律即可解答.解:由图可知:3和4相对,2和5相对,1和6相对,将骰子沿如图所示的顺时针方向滚动,每滚动90°算一次,骰子朝下一面的点数依次为5,4,2,3,且依次循环,∵2022÷4=505......2,∴滚动第2022次后,骰子朝下一面的点数是:4,故选:B.小提示:本题考查了正方体相对两个面上的文字,先找出正方体相对的面,然后从数字找规律是解题的关键.5、答案:C分析:根据补角的定义,即若两个角的和等于180°,就称这两个角互补,即可解答.解:∵∠A=23°,∴∠A的补角等于180°−∠A=180°−23°=157°,故选:C小提示:本题主要考查了补角的定义,解题的关键是熟练掌握若两个角的和等于180°,就称这两个角互补.6、答案:D分析:正方体有六个面,截面与其六个面相交最多得六边形,不可能是七边形或多于七边的图形.解:用平面去截正方体,得的截面可能为三角形、四边形、五边形、六边形,不可能为七边形.故选:D.小提示:本题考查正方体的截面.熟记正方体的截面的四种情况是解题的关键.7、答案:B分析:正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,据此作答.∵正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,∴在此正方体上与“建”字相对的面上的汉字是“百”.故选B.小提示:本题考查了正方体的展开图形,解题关键是从相对面入手进行分析及解答问题.8、答案:C分析:利用正方体的展开图中,间隔是对面判断即可.解:根据正方体的展开图中,间隔是对面可知,选项A、B、D中都符合正方体三组相对的两个面的颜色相同,只有选项C中,蓝与蓝是相邻的面,故选:C.小提示:本题考查了正方体的展开图中间隔是对面的规律,理解掌握该规律是解题的关键.9、答案:A分析:根据图示的规律用代数式表示即可.根据图形得:第①组最多可以画3条直线;第②组最多可以画6条直线;第③组最多可以画10条直线.条直线.如果平面上有n(n≥3)个点,且每3个点均不在1条直线上,那么最多可以画1+2+3+…+n-1=n(n−1)2当n=6时,6×5=15=15.2即:最多可以画15条直线.故选:A.小提示:本题考查了图形的变化类问题,解题的关键是仔细的观察图形并找到其中的规律.10、答案:C分析:按一定的规律数角的个数即可.解:以OA为一边的角有:∠AOD,∠AOC,∠AOB,以OD为一边的角有:∠DOC,∠DOB,以OC为一边的角有:∠COB,所以,图中共有6个角,故选:C.小提示:本题通过数角的个数,巩固角的概念,难度适中.11、答案:(1)V+F−E=2;(2)20;(3)14分析:(1)根据表格中的数据分析即可得出顶点数(V)、面数(F)、棱数(E)之间存在的关系;(2)根据(1)的结论求解即可;(3)先求得棱数,再代入(1)的关系式求解即可.(1)∵4+4−6=2,8+6−12=2,6+8−12=2,20+12−30=2,∴V+F−E=2,所以答案是:V+F−E=2;(2)由题意得:F−8+F−30=2,解得F=20,所以答案是:20;(3)∵有24个顶点,每个顶点处都有3条棱,两点确定一条直线,∴共有24×3÷2=36条棱,∴24+F−36=2,解得F=14;设该多面体外表三角形的个数为x个,八边形的个数为y个,则x+y即为多面体的面数,∴x+y=14.小提示:本题考查了多面体的顶点数,面数,棱数之间的关系,理解题意,找到规律是解题的关键.12、答案:10cm.分析:(1)根据射线的概念作图可得;(2)根据直线的概念作图可得;(3)①在射线AB上用圆规截取AE=3AB即可;②先求出AE的长,再根据BE=AE-AB求解即可.解:(1)如图所示,射线CB即为所求;(2)如图所示,直线AC即为所求;(3)①如图所示,线段AE即为所求;②∵AB=5cm,AE=3AB,∴AE=15cm.则BE=AE﹣AB=10cm.所以答案是:10cm.小提示:本题主要考查了作图知识及把几何语言转化为几何图形的能力,比较简单,要求同学们一定要认真作图,特别是直线向两方无限延伸,不需要延长,射线向一方无限延伸,不需延长,但可以反向延长;而线段不延伸,既可以延长,也可以反向延长.13、答案:(1)不是;(2)15°,45°,20°,40°;(3)4,12,20;(4)7.2,6,10.8,727分析:(1)结合“和谐线”和角平分线的定义,即可得到答案;(2)分四种情况讨论,由“和谐线”的定义,列出方程可求∠AOC的度数;(3)根据题意,分三种情况讨论,列出方程可求t的值;(4)根据题意,分四种情况进行讨论,列出方程,分别解方程,即可求出t的值.解:∵一个角的平分线平分这个角,且这个角是所分两个角的2倍,∴一个角的角平分线不是这个角的“和谐线”;所以答案是:不是;(2)根据题意,∵∠AOB=60°,射线OC是∠AOB的“和谐线”,可分为四种情况进行分析:①当∠AOB=3∠AOC=60°时,∴∠AOC=20°;②当∠AOB=3∠BOC=60°时,∴∠BOC=20°,∴∠AOC=40°;③当∠AOC=3∠BOC时,∵∠AOC+∠BOC=∠AOB=60°,∴∠AOC=45°;④当∠BOC=3∠AOC时,∵∠AOC+∠BOC=∠AOB=60°,∴∠AOC=15°;(3)由题意得,∵360°÷15°=24(秒),∴运动时间范围为:0<t≤24,则有①当OM与ON第一次成一个平角时,90+15t+7.5t=180,解得:t=4(秒);②当OM与ON成一个周角时,90+15t+7.5t=360,解得:t=12(秒);③当OM与ON第二次成一个平角时,90+15t+7.5t=180+360,解得:t=20(秒)综上,t的值为4或12或20秒;(4)当OM与OB在同一条直线上时,有t=(180°−90°)÷15°=6(秒),当OM与ON成一个周角时,有t=12,∴6≤t≤12;根据“和谐线”的定义,可分为四种情况进行分析:①当∠MON=3∠BON时,如图:∵∠MON=360°−90°−15t−7.5t,∠BON=7.5t,∴360°−90°−15t−7.5t=3×7.5t,解得:t=6;②当∠BOM=3∠BON时,如图:∵∠BOM=360°−90°−15t,∠BON=7.5t,∴360°−90°−15t=3×7.5t,解得:t=7.2;③当∠BOM=3∠MON时,如图:∵∠BOM=360°−90°−15t,∠MON=(360°−90°)−(15t+7.5t)=270°−22.5t,∴360°−90°−15t=3×(270−22.5t),;解得:t=727④当∠BON=3∠MON时,如图:∵∠BON=7.5t,∠MON=270°−22.5t,∴7.5t=3×(270−22.5t),解得:t=10.8;小提示:本题考查一元一次方程的应用,和谐线的性质,角之间的和差关系,找等量关系列出方程是解决问题的关键,属于中考常考题型。
七年级数学上册第四章几何图形初步题型总结及解题方法
![七年级数学上册第四章几何图形初步题型总结及解题方法](https://img.taocdn.com/s3/m/a02b80d2b8d528ea81c758f5f61fb7360b4c2be7.png)
(名师选题)七年级数学上册第四章几何图形初步题型总结及解题方法单选题1、如图,某正方体三组相对的两个面的颜色相同,分别为红,黄,蓝三色,其展开图不可能是()A.B.C.D.答案:C分析:利用正方体的展开图中,间隔是对面判断即可.解:根据正方体的展开图中,间隔是对面可知,选项A、B、D中都符合正方体三组相对的两个面的颜色相同,只有选项C中,蓝与蓝是相邻的面,故选:C.小提示:本题考查了正方体的展开图中间隔是对面的规律,理解掌握该规律是解题的关键.2、我们知道过平面上两点可以画一条直线,过平面上3点最多可以画3条直线,过平面上4点最多可以画6条直线,过平面上5点最多可以画10条直线.如果平面上有6个点,且任意3个点均不在同一直线上,那么最多可以画多少条直线?()A.15B.21C.30D.35答案:A分析:根据图示的规律用代数式表示即可.根据图形得:第①组最多可以画3条直线;第②组最多可以画6条直线;第③组最多可以画10条直线.条直线.如果平面上有n(n≥3)个点,且每3个点均不在1条直线上,那么最多可以画1+2+3+…+n-1=n(n−1)2当n=6时,6×5=15=15.2即:最多可以画15条直线.故选:A.小提示:本题考查了图形的变化类问题,解题的关键是仔细的观察图形并找到其中的规律.3、往返于甲、乙两地的火车,中途停靠三站,每两站间距离各不相等,需要准备()种不同的车票A.4B.8C.10D.20答案:D分析:把甲乙两地看作是一条线段,线段上有3个点,先求出线段条数,再乘以2即是车票的种类.解:把甲乙两地看作是一条线段,线段上有3个点,如图,∴线段一共有1+2+3+4=10(条),而10×2=20,∴需要准备20种不同的车票,故选D小提示:本题主要考查运用数学知识解决生活中的问题;关键是需要掌握正确数线段的方法.4、如图,有一种电子游戏,电子屏幕上有一条直线,在直线上有A,B,C,D四点,且AB=BC=CD,点P沿直线l从左向右移动,当出现点P与A,B,C,D四点中的至少两个点距离相等时,就会发出警报,则直线l 上会发出警报的点P有()A.3个B.4个C.5个D.6个答案:C分析:点P与A,B,C,D四点中的至少两个点距离相等时,也就是点P恰好是其中一条线段中点,而图中共有六条线段,由此可以得到出现报警的最多次数.解:根据题意可知:当点P经过任意一条线段中点时会发出报警,∵图中共有线段AB、AC、AD、BC、BD、CD,∵AD和BC的中点是同一个,∴直线l上会发出警报的点P有5个.故选:C.小提示:本题考查了两点间的距离,利用总体思想去思考线段的总条数是解决问题最巧妙的办法,可以减去不必要的讨论与分类.5、夜里将点燃的蚊香迅速绕一圈,可划出一个曲线,这是因为()A.面对成体B.线动成面C.点动成线D.面面相交成线答案:C分析:根据点动成线的知识点进行解答即可.解:夜里将点燃的蚊香迅速绕一圈,可划出一个曲线,是因为点动成线,故选:C.小提示:此题主要考查了点、线、面、体,从运动的观点来看:点动成线,线动成面,面动成体,掌握知识点是解题关键.6、如图,用一个平行于圆锥底面的平面截圆锥,截面的形状是()A.B.C.D.答案:B分析:根据圆锥体的立体图形判断即可.用平行底面的平面截圆锥体,截面是圆形,故选:B.小提示:本题考查了截面图形的判断,具有一定的空间想象力是解答本题的关键.7、下列图形属于平面图形的是()A.正方体B.圆柱体C.圆D.圆锥体答案:C分析:根据题意可知,正方体、圆柱体、圆锥体都是立体图形,圆是平面图形,据此即可求解.解:圆是平面图形,正方体、圆柱体、圆锥体都是立体图形故选C小提示:本题考查了平面图形与立体图形的认识,正确的区分是解题的关键.8、下列说法中正确的有().(1)线段有两个端点,直线有一个端点;(2)由两条射线组成的图形叫角(3)角的大小与我们画出的角的两边的长短无关;(4)线段上有无数个点;(5)两个锐角的和必定是直角或钝角;(6)若∠AOC与∠AOB有公共顶点,且∠AOC的一边落在∠AOB的内部,则∠AOB>∠AOC.A.1个B.2个C.3个D.4个答案:C分析:线段有两个端点,直线没有端点,由两条有公共端点的射线组成的图形叫角,角的大小与角两边的长短无关,根据线段、直线、角的定义等知识逐一进行判断.解:(1)线段有两个端点,直线没有端点,故(1)错误;(2)由两条有公共端点的射线组成的图形叫角,这两条射线叫做角的边,它们的公共端点叫做角的顶点,故(2)错误;(3)角的大小与我们画出的角的两边的长短无关,故(3)正确;(4)线段上有无数个点,故(4)正确;(5)两个锐角的和可能是锐角,故(5)错误;(6)若∠AOC与∠AOB有公共顶点,且∠AOC的一边落在∠AOB的内部,则∠AOB>∠AOC,故(6)正确,即正确的序号为(3)(4)(6),共3个,故选:C.小提示:本题考查线段、直线、角的定义等知识,是基础考点,掌握相关知识是解题关键.9、体育课上,蒋老师给同学们分发了篮球、足球、乒乓球和羽毛球,这些球类中的“球”不属于球体的是()A.篮球B.足球C.乒乓球D.羽毛球答案:D分析:根据球体的特征判断即可得到答案.半圆面以它的直径为旋转轴,旋转所成的空间物体就是球,球体的三视图都是圆,篮球、足球、乒乓球和羽毛球中,只有羽毛球不是球体,故选:D.小提示:本题考查了空间立体图形的识别,结合实际生活中球体的特征判断是解决问题的关键.10、在下面的几何体中:①长方体;②圆柱;③球;④五棱柱;⑤圆锥;⑥正方体,可以看成有两个底面的几何体是()A.①②④⑥B.②③④C.②④⑤⑥D.①②③⑥答案:A分析:根据每一个几何体的特征判断即可.解:在下面的几何体中:①长方体;②圆柱;③球;④五棱柱;⑤圆锥;⑥正方体,可以看成有两个底面的几何体是:长方体,圆柱,五棱柱,正方体,故选:A.小提示:本题考查了认识立体图形,解题的关键是熟练掌握每一个几何体的特征.填空题11、圆柱的侧面展开图是一个相邻的两边长分别为4,2π的长方形,则圆柱体的体积为_____.答案:4π或8##8或4π分析:分两种情况:①以2π为底面周长,4为高;②以4为圆柱体的底面周长,2π为高;分别求解即可.解:①以2π为底面周长,4为高,此时圆柱体的底面半径为2π2π=1,∴圆柱体的体积为π×12×4=4π,②以4为圆柱体的底面周长,2π为高,此时圆柱体的底面半径为42π=2π,∴圆柱体的体积为π×(2π)2×2π=8,所以答案是:4π或8.小提示:本题考查圆柱体的展开与折叠,理解圆柱体表面展开图与圆柱体之间的关系是解决问题的关键.12、若船A在灯塔B的正南方向上,那么灯塔B在船A的________方向上.答案:正北分析:船A在灯塔B的正南方向上这是以灯塔为基准的方位图,而要求灯塔B在船A的方位则是以船为基准,从而可得答案.解:船A在灯塔B的正南方向上,那么灯塔B在船A的正北方向上.所以答案是:正北.小提示:本题考查了方向角的知识,掌握以什么为基准是解本题的关键.13、如图,将一副直角三角尺的直角顶点C叠放在一起,若CE、CD分别平分∠ACD与∠ECB,则计算∠ECD=___________度.答案:45分析:由题意可知∠ACD=90°,根据角平分线的性质即可求解.解:由题意可知∠ACD=90°,又∵CE平分∠ACD∴∠ECD=1∠ACD=45°2故答案为45小提示:此题考查了角平分线的性质,熟练掌握角平分线的有关性质是解题的关键.14、点A和点B是数轴上的两点,点A表示的数为√2,点B表示的数为1,那么A、B两点间的距离为_____.答案:√2−1分析:数轴上两点之间的距离,用在数轴右边的点所对应的数减左边的点所对应的数或加绝对值符号即可.解:本题主要考查数轴上两点间的距离,点A和点B间的距离是|√2−1|=√2−1,故答案是:√2−1.小提示:本题考查了数轴上两点之间的距离,解题的关键是理解距离是非负数.15、已知∠A的补角是60°,则∠A=_________°.答案:120分析:如果两个角的和等于180°,就说这两个角互为补角.由此定义即可求解.解:∵∠A的补角是60°,∴∠A=180°-60°=120°,所以答案是:120.小提示:本题考查补角的定义,熟练掌握两个角互为补角的定义是解题的关键.解答题16、日常生活中,我们几乎每天都要看钟表,它的时针;和分针如同兄弟俩在赛跑,其中蕴涵着丰富的数学知识.(1)如图1,上午8:00这一时刻,时钟上分针与时针的夹角等于________;(2)请在图2中画出8:20这一时刻时针和分针的大致位置,思考并回答:从上午8:00到8:20,时钟的分针转过的度数是________,时钟的时针转过的度数是________;(3)“元旦”这一天,小明上午八点整出门买东西,回到家中时发现还没到九点,但是时针与分针重合了,那么小明从离开家到回到家的时间为多少分钟?答案:(1)120°;(2)120°,10°;(3)44分析:(1)根据8:00这一时刻时针在8上,分针在12上,之间共有4个大格,列式计算即可得解;(2)根据分针共转过4个大格子,每一个大格子是30°列式计算即可得解;时针在8到9之间转过20分钟,转完整个大格子需要60分钟,然后列式计算即可得解;(3)设8点x分钟时,时针与分针重合了,然后根据分针的速度是时针的速度的12倍,列出方程求解即可.解:(1)30°×4=120°;(2)分针转过4×30°=120°,×30°=10°;时针转过:2060故答案为(1)120°;(2)120°,10°;(3)设8点x分钟时,时针与分针重合了×30°=8×30°,则(12-1)×x60解得x=480≈44,11∴小明从离开家到回到家的时间为44分钟.小提示:本题考查了钟面角问题,求出时针与分针的夹角问题,通常需要考虑夹角中的大格子和小格子两个部分,也可以利用分针的转速是时针的转速的12倍考虑求解.17、点C 在线段AB 上,若BC =2AC 或AC =2BC ,则称点C 是线段AB 的“雅点”,线段AC 、BC 称作互为“雅点”伴侣线段.(1)如图①,若点C 为线段AB 的“雅点”,AC =6(AC <BC ),则AB =______;(2)如图②,数轴上有一点E 表示的数为1,向右平移5个单位到达点F ;若点G 在射线EF 上,且线段GF 与以E 、F 、G 中某两个点为端点的线段互为“雅点”伴侣线段,请写出点G 所表示的数.(写出必要的推理步骤) 答案:(1)18(2)133或83或8.5或16.分析:(1)由BC =2AC 即可得答案;(2)点G 在射线EF 上,且线段GF 与以E 、F 、G 中某两个点为端点的线段互为“雅点”伴侣线段,分种情况讨论即可.(1)∵点C 为线段AB 的“雅点”,AC =6(AC <BC ),∴BC =2AC ,∵AC =6,∴BC =12,∴AB =AC +BC =18,所以答案是:18;(2)点G 在射线EF 上,且线段GF 与以E 、F 、G 中某两个点为端点的线段互为“雅点”伴侣线段,分以下四种情况: ①G 在线段EF 上,EG =2FG ,如图1:∵EG =2FG ,EG +FG =5,∴EG =103, ∵E 表示的数为1,∴G 点表示的数为1+103=133,②G 在线段EF 上,且FG =2EG ,如图2:∵FG =2EG ,EG +FG =5,∴EG =53,∵E 表示的数为1,∴G 表示的数为1+53=83,③G 在线段EF 外,且EF =2FG ,如图3:∵EF =2FG ,EF =5,∴FG =2.5,∴G 表示的数是1+5+2.5=8.5,④G 在EF 外,且FG =2EF ,如图4:∵FG =2EF ,EF =5,∴FG =10,∴G 表示的数为1+5+10=16,总上所述,G 表示的数为:133或83或8.5或16. 小提示:本题考查数轴相关知识,解答需要分类,解题的关键是读懂“雅点”、“雅点”伴侣线段的定义.18、触类旁通:(1)如图,已知点C 在线段AB 上,且AC=6cm ,BC=4cm ,点M 、N 分别是AC 、BC 的中点,求线段MN 的长度;(2)若点C 是线段AB 上任意一点,且AC=a ,BC=b ,点M 、N 分别是AC 、BC 的中点,请直接写出线段MN 的长度;(用a 、b 的代数式表示)(3)在(2)中,把点C 是线段AB 上任意一点改为:点C 是直线AB 上任意一点,其他条件不变,则线段MN 的长度会变化吗?若有变化,求出结果.答案:(1)5cm ;(2)a+b 2;(3)会变化,a+b 2或a−b 2或b−a 2分析:(1)根据点M 、N 分别是AC 、BC 的中点,先求出CM 、CN 的长度,则MN =CM +CN ;(2)根据点M 、N 分别是AC 、BC 的中点,CM =12AC ,CN =12BC ,所以MN =12(AC +BC )=a+b 2;(3)长度会发生变化,分点C 在线段AB 上、点B 在A 、C 之间和点A 在B 、C 之间三种情况讨论. 解:(1)∵AC =6cm ,点M 是AC 的中点∴CM =12AC =3cm ∵BC =4cm ,点N 是BC 的中点∴CN =12BC =2cm∴MN =CM +CN =5cm∴线段MN 的长度为5cm .(2)同(1)可知: MN =a+b 2;(3)线段MN 的长度会变化.当点C 在线段AB 上时,由(2)知MN =a+b 2,当点C 在线段AB 的延长线时,如图:则AC =a >BC =b∵AC =a 点M 是AC 的中点∴CM =12AC =12a ,∵BC =b 点N 是BC 的中点∴CN =12BC =12b , ∴MN =CM -CN =a−b 2,当点C 在线段BA 的延长线时,如图:则AC =a <BC =b同理可求:CM =12AC =12a , CN =12BC =12b ,∴MN =CN -CM =b−a 2,∴综上所述,线段MN 的长度变化,MN =a+b 2,a−b 2,b−a 2.小提示:本题主要是线段中点的运用,分情况讨论是解题的难点,难度较大.。
七年级数学第四章图形的初步认识(知识点归纳+达标检测)
![七年级数学第四章图形的初步认识(知识点归纳+达标检测)](https://img.taocdn.com/s3/m/f6a25148a36925c52cc58bd63186bceb19e8ed02.png)
第四章图形的初步认识(知识点归纳+达标检测)4.1.1认识几何图形几何图形我们见过的长方体、圆柱、圆锥、球、圆、线段、点,以及小学学过的三角形、四边形等,都是从形形色色的物体外形中得出的。
我们把这些图形称为几何图形。
1)立体图形长方体、正方体、球、圆柱、圆锥等。
2)平面图形平面图形的概念线段、角、三角形、长方形、圆等它们的各部分都在同一平面内,它们是平面图形。
注:立体图形与平面图形是两类不同的几何图形,它们的区别和联系:立体图形的各部分不都在同一平面内,而平面图形的各部分都在同一平面内;立体图形中某些部分是平面图形。
【达标提升】下列几种图形:①长方形;②梯形;③正方体;④圆柱;⑤圆锥;⑥球.其中属于立体图形的是()A.①②③;B.③④⑤;C.①③⑤;D.③④⑤⑥总结:1、2、平面图形与立体图形的关系:立体图形的各部分不都在同一平面内,而平面图形的各部分都在同一平面内;立体图形中某些部分是平面图形。
4.1.2几何图形立体图形转化平面图形1:从正面、左面、上面观察得到的平面图形你能画出来吗?【达标提升】1.如图是由七个相同的小正方体堆成的物体,从上面看这个物体的图是()A.B.C.D.2.右图是由几个小立方块所搭几何体的俯视图,请画出这个几何体的主视图和左视图。
现实物体几何图形平面图形立体图形看外形4.1.3几何图形(一)、立体图形的展开1、试一试:在你想象的基础上,请将准备好的长方体、圆柱、圆锥和三棱柱的纸盒剪开展平,看看与下面的展开图一样吗?圆柱圆锥三棱柱长方体思考:请你指出上面展开图各部分与几何体的哪一部分相对应?2、剪一剪、画一画:动手把一个立方体的包装盒沿一边剪开,铺平,看看它的展开图由哪些平面图形组成;再把展开的纸板复原,你有什么体会?再将所有的展开图画出来,以上画出了部分了展开图,除此之外还有5种,共有11种,请你画出其余5种。
(二)、立体图形的折叠探究:下图是一些立体图形的展开图,用它们能围成怎样的立体图形?做一做:下面是一些常见几何体的展开图,你能正确说出这些几何体的名字么?【达标提升】1.下列图形中,不是正方体的表面展开图的是()A.B.C.D.12122.一个正方体的平面展开图如图所示,将它折成正方体后“建”字对面是()A.和B.谐C.沾D.益4.2.1点、线、面、体1.几何体的概念(1)长方体是一个几何体,我们还学过哪些几何体?_______________________________________________________________________;(2)观察长方体和圆柱体,说出围成这两个几何体的面有哪些?这些面有什么区别?2.面的分类通过对上面问题的解决,得出面的分类:____面和___面。
人教版七年级数学上册第四章 几何图形初步 知识点总结及精选题
![人教版七年级数学上册第四章 几何图形初步 知识点总结及精选题](https://img.taocdn.com/s3/m/98cd3bceb9f3f90f76c61bed.png)
几何图形初步知识点总结及精选题1、几何图形从实物中抽象出来的各种图形,包括立体图形和平面图形。
立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。
平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。
2、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形中最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
(2)点动成线,线动成面,面动成体。
3、生活中的立体图形圆柱柱体棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、……生活中的立体图形球体(按名称分) 圆锥椎体棱锥4、棱柱及其有关概念:棱:在棱柱中,任何相邻两个面的交线,都叫做棱。
侧棱:相邻两个侧面的交线叫做侧棱。
n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。
棱柱的所有侧棱长都相等,棱柱的上下两个底面是相同的多边形,直棱柱的侧面是长方形。
棱柱的侧面有可能是长方形,也有可能是平行四边形。
5、正方体的平面展开图:11种6、截一个正方体:用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。
7、三视图物体的三视图指主视图、俯视图、左视图。
主视图:从正面看到的图,叫做主视图。
左视图:从左面看到的图,叫做左视图。
俯视图:从上面看到的图,叫做俯视图。
平面图形的认识线段,射线,直线 名称 不同点联系 共同点延伸性 端点数 线段 不能延伸 2 线段向一方延长就成射线,向两方延长就成直线都是直的线射线 只能向一方延伸 1 直线可向两方无限延伸无点、直线、射线和线段的表示在几何里,我们常用字母表示图形。
一个点可以用一个大写字母表示,如点A一条直线可以用一个小写字母表示或用直线上两个点的大写字母表示,如直线l ,或者直线AB一条射线可以用一个小写字母表示或用端点和射线上另一点来表示(端点字母写在前面),如射线l ,射线AB一条线段可以用一个小写字母表示或用它的端点的两个大写字母来表示,如线段l ,线段AB点和直线的位置关系有两种:①点在直线上,或者说直线经过这个点。
七年级上册数学第六章-《图形的初步知识》知识点及典型例题大全(精选.)
![七年级上册数学第六章-《图形的初步知识》知识点及典型例题大全(精选.)](https://img.taocdn.com/s3/m/5e0200fa48d7c1c709a14507.png)
新浙教版七年级上册数学第六章《图形的初步知识》知识点及典型例题知识框图第一节几何图形:会区分平面图形与立体图形第二节线段、射线和直线:线段、射线和直线的概念及表示方法;直线的基本事实(经过两点有一条且只有一条直线,简单地说,两点确定一条直线)第三节线段的长短比较:度量法和叠合法;线段的基本事实(在所有连结两点的线中,线段最短,简单地说,两点之间线段最短)及两点间距离的概念第四节线段的和差:线段的中点以及三等分点等;线段的加减计算第五节角与角的度量:角的概念及表示方法;度、分、秒的相互换算及计算第六节角的大小比较:度量法和叠合法;角的分类第七节角的和差:角平分线的概念;角的加减计算第八节余角和补角:余角和补角的概念及性质;根据图形和文字,利用该性质进行简单的推理和计算第九节直线的相交:相交线的概念;对顶角的概念和性质;会用余角、补角、对顶角的性质进行推理和计算;两条直线互相垂直的概念、画法(一靠、二过、三画、四标)及表示法;垂线段最短的性质和点到直线的距离的概念考点一、与概念、性质、基本事实直接相关的题目考点二、关于角度的计算,注意一元一次方程在这种题目中的妙用。
若语言模糊,一定要分类讨论,多画图。
考点三、关于线段的计算,注意一元一次方程在这种题目中的妙用。
若语言模糊,一定要分类讨论。
考点四、与实际生活相关的线段问题考点五、关于规律性的角度、线段问题考点六、作图题将考点与相应习题联系起来考点一、与概念、性质、基本事实直接相关的题目 1、与课本、足球分别类似的图形是( )A.长方形、圆B.长方体、圆C.长方体、球D.长方形、球 2、如图,下列说法错误的是( )A.直线AB 与直线AC 是同一条直线B.线段AB 与线段BA 是同一条线段C.射线AB 与射线BA 是同一条射线D.射线AB 与射线AC 是同一条射线3、把一条弯曲的河道改成直道,可以缩短航程,其中的道理可以解释为( )A.线段有两个端点B.过两点可以确定一条直线C.两点之间,线段最短D.线段可以比较大小4、下列说法:① 过两点有且只有一条线段;② 连结两点的线段的长度叫做两点之间的距离;③ 两点之间线段最短;④ AB=BC ,则点B 是线段AC 的中点;⑤ 射线比直线短,正确的个数有( ) A.1个 B.2个 C.3个 D.4个5、如图所示,∠BAC=90°,AD ⊥BC ,则图中能表示点到直线距离的线段有( ) A.3条 B.4条 C.5条 D.6条6、在海上,灯塔位于一艘船的北偏东40°方向,那么这艘船位于这个灯塔的( )A.南偏西50°方向B. 南偏西40°方向C.北偏东50°方向D. 北偏东40°方向 7、在同一平面内有4个点,过每两点画一条直线,则直线的条数有( )注意分类讨论的数学思想 A.1条 B.4条 C.6条 D.1或4或6条8、如果α和β是对顶角且互补,那么它们所在的直线( )A.互相垂直B.互相平行C.即不垂直也不平行D.1或4或6条 9、如图,∠AOB=∠COD=90°,则∠AOC=∠BOD ,这是根据( )A.同角的余角都相等B.等角的余角都相等C.互为余角的两个角相等D. 直角都相等10、下列选项中,∠1与∠2是对顶角的是( )D CBA2121212111、下列各角中,属于锐角的是( ) A.13周角 B.18平角 C.65直角 D.12平角 12、如图所示,∠BAC=90°,AD ⊥BC ,则图中表示点B 到AC 的距离的线段是( )A. ABB. ADC. BDD.AC★★★用平面去截一个立方体,得到的截面不可能是………………………………………( ) A.三角形 B.正方形 C.长方形 D.圆形 ★★★如果点C 在线段AB 上,下列表达式:①AC=12AB ;②AB=2BC ;③AC=BC ;④AC+BC=AB 中,能表示点C 是线段AB 中点的有 ( )A.1个B.2个C.3个D.4个EDC B O A★★★下列四个图中的线段(或直线、射线)能相交的是……………………………………( )1()CDBA2()CD BA3()C D BA4()CDBAA.(1)B.(2)C.(3)D.(4) ★★★已知线段则线段的长度是( ) A.5B.1C.5或1D.以上都不对考点二、关于角度的计算,注意一元一次方程在这种题目中的妙用。
七年级数学上册第四章几何图形初步知识点总结全面整理
![七年级数学上册第四章几何图形初步知识点总结全面整理](https://img.taocdn.com/s3/m/f2df2d85250c844769eae009581b6bd97e19bc41.png)
(名师选题)七年级数学上册第四章几何图形初步知识点总结全面整理单选题1、如图是正方体的一种展开图,那么在原正方体中与“我”字所在面相对的面上的汉字是()A.大B.美C.遂D.宁答案:B分析:正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“我”与“美”是相对面.故选:B.小提示:本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手.2、将一张长方形纸片ABCD按如图所示方式折叠,AE、AF为折痕,点B、D折叠后的对应点分别为B′、D′,若∠B′AD′=8°,则∠EAF的度数为()A.40.5°B.41°C.41.5°D.42°答案:B分析:由长方形和折叠的性质结合题意可求出∠EAB′+∠FAD′=49°.再根据∠EAF=∠EAB′+∠FAD′−∠B′AD′,即可求出答案.由长方形的性质可知:∠BAE+∠EAD′+∠B′AD′+∠B′AF+∠DAF=90°.∴∠BAE+∠EAD′+∠B′AD′+∠B′AF+∠B′AD′+∠DAF=90°+∠B′AD′,即∠BAE+∠EAB′+∠FAD′+∠DAF=98°.由折叠的性质可知∠BAE=∠EAB′,∠FAD′=∠DAF,∴∠EAB′+∠FAD′=49°.∵∠EAF=∠EAB′+∠FAD′−∠B′AD′,∴∠EAF=49°−8°=41°.故选B.小提示:本题考查长方形的性质,折叠的性质.利用数形结合的思想找到角之间的关系是解题关键.3、下列图形属于平面图形的是()A.正方体B.圆柱体C.圆D.圆锥体答案:C分析:根据题意可知,正方体、圆柱体、圆锥体都是立体图形,圆是平面图形,据此即可求解.解:圆是平面图形,正方体、圆柱体、圆锥体都是立体图形故选C小提示:本题考查了平面图形与立体图形的认识,正确的区分是解题的关键.4、如图,该立体图形的左视图是()A.B.C.D.答案:D分析:根据从左边看得到的图形是左视图,可得答案.解:该立体图形的左视图为D选项.故选:D.小提示:本题考查了简单组合体的三视图,从左边看得到的图形是左视图.5、体育课上,蒋老师给同学们分发了篮球、足球、乒乓球和羽毛球,这些球类中的“球”不属于球体的是()A.篮球B.足球C.乒乓球D.羽毛球答案:D分析:根据球体的特征判断即可得到答案.半圆面以它的直径为旋转轴,旋转所成的空间物体就是球,球体的三视图都是圆,篮球、足球、乒乓球和羽毛球中,只有羽毛球不是球体,故选:D.小提示:本题考查了空间立体图形的识别,结合实际生活中球体的特征判断是解决问题的关键.6、一个骰子相对两面的点数之和为7,它的展开图如图,下列判断正确的是()A.A代表B.B代表C.C代表D.B代表答案:A分析:根据正方体展开图的对面,逐项判断即可.解:由正方体展开图可知,A的对面点数是1;B的对面点数是2;C的对面点数是4;∵骰子相对两面的点数之和为7,∴A代表,故选:A.小提示:本题考查了正方体展开图,解题关键是明确正方体展开图中相对面间隔一个正方形,判断哪两个面相对.7、如图,已知直线上顺次三个点A、B、C,已知AB=10cm,BC=4cm.D是AC的中点,M是AB的中点,那么MD=()cm.A.4B.3C.2D.1答案:C分析:由AB=10cm,BC=4cm.于是得到AC=AB+BC=14cm,根据线段中点的定义由D是AC的中点,得到AD,根据线段的和差得到MD=AD−AM,于是得到结论.解:∵AB=10cm,BC=4cm,∴AC=AB+BC=14cm,∵D是AC的中点,AC=7cm;∴AD=12∵M是AB的中点,AB=5cm,∴AM=12∴DM=AD−AM=2cm.故选:C.小提示:此题主要考查了两点之间的距离,线段的和差、线段的中点的定义,利用线段差及中点性质是解题的关键.8、如图所示,正方体的展开图为()A. B.C. D.答案:A分析:根据正方体的展开图的性质判断即可;A中展开图正确;B中对号面和等号面是对面,与题意不符;C中对号的方向不正确,故不正确;D中三个符号的方位不相符,故不正确;故答案选A.小提示:本题主要考查了正方体的展开图考查,准确判断符号方向是解题的关键.9、粉刷墙壁时,粉刷工人用滚筒在墙上刷过几次后,墙壁马上换上了“新装”,在这个过程中,你认为下列判断正确的是()A.点动成线B.线动成面C.面动成体D.面与面相交得到线答案:B分析:点动线,线动成面,将滚筒看做线,在运动过程中形成面.解:滚筒看成是线,滚动的过程成形成面,故选:B.小提示:本题考查点、线、面的关系;理解点动成线,线动成面的过程是解题的关键.10、如图,点M在线段AN的延长线上,且线段MN=20,第一次操作:分别取线段AM和AN的中点M1,N1;第二次操作:分别取线段AM 1和AN 1的中点M 2,N 2;第三次操作:分别取线段AM 2和AN 2的中点M 3,N 3;……连续这样操作10次,则每次的两个中点所形成的所有线段之和M 1N 1+M 2N 2+⋯+M 10N 10=( )A .20−1029B .20+1029C .20−10210D .20+10210答案:A分析:根据MN =20,M 1、N 1分别为AM 、AN 的中点,求出M 1N 1的长度,再由M 1N 1的长度求出M 2N 2的长度,找到M n N n 的规律即可求出M 1N 1+M 2N 2+⋯+M 10N 10的值.解:∵MN =20,M 1、N 1分别为AM 、AN 的中点,∴M 1N 1=AM 1−AN 1=12AM −12AN =12(AM −AN )=12×20=10,∵M 2、N 2分别为AM 1、AN 1的中点,∴M 2N 2=AM 2−AN 2=12AM 1−12AN 1=12(AM 1−AN 1)=12×10=5,根据规律得到M n N n =202n ,∴M 1N 1+M 2N 2+⋯+M 10N 10=202+2022+⋯+20210=20(12+122+⋯+1210)=20−1029,故选A. 小提示:本题是对线段规律性问题的考查,准确根据题意找出规律是解决本题的关键,相对较难. 填空题11、如图,将一个三角板60°角的顶点与另一个三角板的直角顶点重合,若∠1=25°40′,则∠2=______.答案:55°40′分析:根据题目的已知可求出∠EAC 的度数,再利用90°减去∠EAC 的度数即可解答.解:∵∠BAC=60°,∠1=25°40',∴∠EAC=∠BAC-∠1=60°-25°40′=59°60′-25°40′=34°20′,∵∠EAD=90°,∴∠2=∠EAD-∠EAC=90°-34°20′=89°60′-34°20′=55°40′,所以答案是:55°40′.小提示:本题考查了角的计算,理解∠1、∠EAC、∠2之间的关系是解决问题的关键.12、将两个三角尺的直角顶点重合为如图所示的位置,若∠AOD=108°,则∠COB=_________.答案:72°.分析:由∠AOB=∠COD=90°,∠AOC=∠BOD,进而∠AOC=∠BOD=108°-90°=18°,由此能求出∠BOC.解:∵∠AOB=∠COD=90°,∴∠AOC=∠BOD,又∠AOD=108°,∴∠AOC=∠BOD=108°-90°=18°,∴∠BOC=90°-18°=72°.所以答案是:72°.小提示:本题考查的是角的和差,两锐角的互余,掌握以上知识是解题的关键.13、如图,已知∠AOB=90°,射线OC在∠AOB内部,OD平分∠AOC,OE平分∠BOC,则∠DOE=_____°.答案:45°.分析:根据角平分线的定义得到∠DOC=12∠AOC,∠COE=12∠BOC,根据角的和差即可得到结论.解:∵OD平分∠AOC,∴∠DOC=12∠AOC,∵OE平分∠BOC,∴∠COE=12∠BOC,∴∠DOE=∠DOC+∠COE=12(∠AOC+∠BOC)=12∠AOB=45°.所以答案是:45°.小提示:本题考查了角平分线的定义以及有关角的计算,解题关键是熟练掌握角平分线的定义.14、已知∠A=20°18',则∠A的余角等于__.答案:69°42′分析:根据互为余角的两个角之和为90°解答即可.解:∵∠A=20°18',∴∠A的余角为90°﹣20°18′=69°42′.所以答案是:69°42′.小提示:本题考查余角定义,熟知互为余角的两个角之和为90°是解答的关键.15、如图所示,∠AOC与∠BOD都是直角,且∠AOB:∠AOD=2:11,则∠AOB=_______.答案:20°分析:由∠AOB+∠BOC=∠BOC+∠COD知∠AOB=∠COD,设∠AOB=2α,则∠AOD=11α,故∠AOB+∠BOC=5α=90°,解得α即可.解:∵∠AOB+∠BOC=∠BOC+∠COD,∴∠AOB=∠COD,设∠AOB=2α,∵∠AOB:∠AOD=2:11,∴∠AOB+∠BOC=9α=90°,解得α=10°,∴∠AOB=20°.故答案为20°.小提示:此题主要考查了角的计算以及余角和补角,正确表示出各角度数是解题关键.解答题16、如图,点B在线段AC上.按要求完成下列各小题.(1)尺规作图:在图中的线段AC的延长线上找一点D,使得CD=AB;(2)在(1)的基础上,图中共有______条线段,比较线段大小:AC______BD(填“>”“<”或“=”);(3)在(1)的基础上,若BC=2AB,BD=6,求线段AD的长度.答案:(1)作图见解析(2)6;=(3)AD=8分析:(1)根据要求画出图形即可;(2)根据线段的定义,判断即可;(3)利用线段和差定义解决问题即可.(1)解:如图,线段CD即为所求;(2)解:图中共有6条线段,∵AB=CD,∴AB+BC=CD+BC,即AC=BD,所以答案是:6,=;(3)解:由(1)知AB=CD.因为BC=2AB,所以BC=2CD,所以BD=BC+CD=3CD=6,所以CD=2=AB,所以AD=2+6=8.小提示:本题考查作图﹣复杂作图,直线,射线,线段的定义等知识,解题的关键是理解直线,射线,线段的定义.17、如图,C是线段AB外一点,用没有刻度的直尺和圆规画图.(1)画射线CB;(2)画直线AC;(3)①延长线段AB到点E,使AE=3AB;②在①的条件下,如果AB=5cm,那么BE的长为__________.答案:10cm.分析:(1)根据射线的概念作图可得;(2)根据直线的概念作图可得;(3)①在射线AB上用圆规截取AE=3AB即可;②先求出AE的长,再根据BE=AE-AB求解即可.解:(1)如图所示,射线CB即为所求;(2)如图所示,直线AC即为所求;(3)①如图所示,线段AE即为所求;②∵AB=5cm,AE=3AB,∴AE=15cm.则BE=AE﹣AB=10cm.所以答案是:10cm.小提示:本题主要考查了作图知识及把几何语言转化为几何图形的能力,比较简单,要求同学们一定要认真作图,特别是直线向两方无限延伸,不需要延长,射线向一方无限延伸,不需延长,但可以反向延长;而线段不延伸,既可以延长,也可以反向延长.18、十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型,解答下列问题:(1)根据上面多面体模型,完成表格中的空格:)之间存在的关系式是.(2)一个多面体的面数比顶点数大8,且有30条棱,则这个多面体的面数是.(3)某个玻璃鉓品的外形是简单多面体,它的外表面是由三角形和八边形两种多边形拼接而成,且有24个顶点,每个顶点处都有3条棱,设该多面体外表三角形的个数为x个,八边形的个数为y个,求x+y的值.答案:(1)填表见解析,V+F-E=2;(2)20;(3)14分析:(1)观察可得顶点数+面数-棱数=2;(2)代入(1)中的式子即可得到面数;(3)得到多面体的棱数,求得面数即为x+y的值.解:(1)四面体的棱数为6;正八面体的顶点数为6;关系式为:V+F-E=2;(3)∵有24个顶点,每个顶点处都有3条棱,两点确定一条直线;∴共有24×3÷2=36条棱,那么24+F-36=2,解得F=14,∴x+y=14.小提示:本题考查多面体的顶点数,面数,棱数之间的关系及灵活运用.。
人教版七年级数学上册 图形初步认识 知识点专题讲解
![人教版七年级数学上册 图形初步认识 知识点专题讲解](https://img.taocdn.com/s3/m/c918f756cf84b9d528ea7a18.png)
人教版七年级数学上册图形初步认识知识点专题讲解一、知识梳理(一)生活中的立体图形1.图形的构成元素:图形是由、、构成的;面与面相交得到,线与线相交得到,线有直线与。
从运动观点看,点动成,线动成,面动成。
2.欧拉公式:若有正多面体,f表示它的面数,v表示顶点数,e表示棱数,则有f+v-e=2 (二)图形的展开与折叠1.在棱柱中,任何相邻两个面的交线叫做,是相邻两个侧面的交线,棱柱的所有都相等,棱柱的上、下底面都是形,侧面形状都是形。
2.正方体的表面展开图是由个形构成的。
3.圆柱的表面展开图是由两个形和一个形组成的。
4.圆锥的表面展开图是由一个形和一个形组成的。
5.一般的,n棱柱有个顶点,条棱(其中有n条是侧棱)、个面(个底面,个侧面)。
(三)用平面截几何体出现的截面形状.1.用一个平面去截正方体,可能出现下面几种情况:注:长方体、棱柱的截面与正方体的截面有相似之处.2.用平面截圆柱体,可能出现以下的几种情况.3.用平面去截一个圆锥,能截出圆和三角形两种截面(还有其他截面,初中不予研究)4.用平面去截球体,只能出现一种形状的截面——圆.(四)主视图、左视图、俯视图的定义从不同方向观察同一物体,从正面看到的图叫主视图,从左面看到的图叫左视图,从上面看到的图叫做俯视图.(五)正方体的侧面展开图(共十一种)分类记忆:第一类,中间四连方,两侧各一个,共六种。
第二类,中间三连方,两侧各有一、二个,共三种。
第三类,中间二连方,两侧各有二个,只有一种。
第四类,两排各三个,只有一种。
二、典例剖析专题一:生活中的立体图形例1:(立体图形的认识)这个几何体的名称是______;它由_____个面组成;它有____个顶点;经过每个顶点有____条边。
变式.在①长方体、②圆锥、③四棱柱、④正方体、⑤三棱柱这些几何体中,有六个面的是。
例2:(欧拉公式)一个柱体有8个面,则它有____个顶点,____条棱,是____棱柱。
变式.一个n棱柱,共有______个顶点,_____条棱,____条侧棱,____个侧面,且棱长相等,侧面都是_______形,_______面形状大小一定相同。
人教版初中数学图形认识初步知识点总结及例题解答
![人教版初中数学图形认识初步知识点总结及例题解答](https://img.taocdn.com/s3/m/81450b0db8f67c1cfbd6b896.png)
第四章图形认识初步多姿多彩的图形几何图形①把实物中抽象出的各种图形统称为几何图形。
②几何图形的各部分不都在同一平面内,是立体图形。
③有些几何图形的各部分都在同一平面内,它们是平面图形。
④常常用从不同方向看到的平面图形来表示立体图形。
(主视图,俯视图,,左视图)。
回厠在右图的几何体中,它的左视图是(B )A. B./习题如图所示的几何体是由4个相同的小正方体组成.其主视图为亟I 已知某几何体的一个视图(如图),则此几何体是(C )D.圆柱习题I 如图所示,下列水平放置的几何体中,俯视图是矩形的是 (A )⑤ 有些立体图形是由一些平面图形围成的,将它们的表面适当剪开, 可以展开成平面图形,这样的平面图形称为相应立体图形的展开图。
预 如图,是一个正方体的平面展开图,原正方体中“祝”的对面 是(C)A ・正三棱柱B ・三棱锥A.B.点,线,面,体①几何体也简称体。
②包围着体的是面。
面有平的面和曲的面两种。
③面和面相交的地方形成线。
(线有直线和曲线)④线和线相交的地方是点。
(点无大小之分)⑤点动成线,线动成面,面动成体。
⑥几何图形都是由点,线,面,体组成的,点是构成图形的基本元素。
⑦点,线,面,体经过运动变化,就能组合成各种各样的几何图形,形成多姿多彩的图形世界。
直线,射线,线①经过两点有一条直线,并且只有一条直线。
②两点确定一条直线。
③当两条不同的直线有一个公共点时,就称这两条直线相交,这个公共点叫做它们的交点。
④射线和线段都是直线的一部分。
⑤把线段分成相等的两部分的点叫做中点。
⑥两点的所有连线中,线段最短。
(两点之间,线段最短)⑦连接两点间的线段的长度,叫做这两点的距离。
远厠下列四个有关生活、生产中的现象:①用两个钉子就可以把一根木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;③从虫地到/地架设电线,总是尽可能沿着线段的架设;④把弯曲的公路改直,就能缩短路程.其中可用“两点之间,线段最短”来解释的现象有( D )A.①②B.①③.C.②④ D.③④解析:①②是“两点确定一条直线”的体现,③④可以用''两点之间, 线段最短”来解释.故选D.①角也是一种基本的几何图形。
七年级数学上册人教版几何图形初步复习(解析版)(课堂学案及配套作业)
![七年级数学上册人教版几何图形初步复习(解析版)(课堂学案及配套作业)](https://img.taocdn.com/s3/m/380b712ce97101f69e3143323968011ca300f72b.png)
几何图形初步复习(解析版)【知识点一】立体图形与平面图形区别:立体图形各部分不都在同一平面内;平面图形各部分都在同一平面内.联系:立体图形可以展开成平面图形,平面图形可以旋转成立体图形.考点:(1)从不同方向看立体图形.(2)立体图形的平面展开图.例1(2022秋•即墨区校级月考)如图所示的几何体是由4个相同的小正方体组成.从左面看到的几何体的形状图为()A.B.C.D.思路引领:根据解答组合体三视图的画法画出该组合体从左面看到的图形即可.解:从左面看这个几何体,所得到的图形为:故选:D.解题秘籍:本题考查简单组合体的三视图,理解视图的定义,掌握简单组合体三视图的画法是正确解答的前提.针对练习1.(2020秋•江门期末)如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“建”字一面的相对面上的字是.思路引领:正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“建”与“会”是相对面.故答案为:会.解题秘籍:本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.2.(2021•东明县二模)如图给定的是纸盒的外表面,下面能由它折叠而成的是()A.B.C.D.思路引领:将A、B、C、D分别展开,能和原图相对应的即为正确答案.解:A、展开得到,不能和原图相对应,故本选项错误;B、展开得到,能和原图相对,故本选项正确;C、展开得到,不能和原图相对应,故本选项错误;D、展开得到,不能和原图相对应,故本选项错误.故选:B.解题秘籍:本题考查了展开图折叠成几何体,熟悉其侧面展开图是解题的关键.3.(2020秋•秦淮区期末)如图,已知BC是圆柱底面的直径,AB是圆柱的高,在圆柱的侧面上,过点A,C嵌有一圈路径最短的金属丝,现将圆柱侧面沿AB剪开,所得的圆柱侧面展开图是()A.B.C.D.思路引领:由平面图形的折叠及立体图形的表面展开图的特点解题.解:因圆柱的侧面展开面为长方形,AC展开应该是两线段,且有公共点C.故选:A.解题秘籍:此题主要考查圆柱的侧面展开图,以及学生的立体思维能力.4.(2021秋•天台县期末)如图1,一只蚂蚁要从正方体的一个顶点A沿表面爬行到顶点B,怎样爬行路线最短?如果要爬行到顶点C呢?请完成下列问题:(1)图2是将立方体表面展开的一部分,请将图形补充完整;(画一种即可)(2)在图2中画出点A到点B的最短爬行路线;(3)在图2中标出点C,并画出A、C两点的最短爬行路线(画一种即可).思路引领:(1)根据题意画出正方体的展开图即可;(2)根据线段的性质画出图形即可;(3)根据线段的性质画出图形即可.解:(1)如图所示,(2)如图所示,连接AB,线段AB的即为点A到点B的最短爬行路线;(3)如图所示,线段AC即为A、C两点的最短爬行路线.解题秘籍:此题主要考查了平面展开﹣最短路径问题,几何体的展开图,线段的性质:两点之间线段最短,正确的画出图形是解题的关键.【知识点二】直线、射线、线段1.直线、射线、线段的区别和联系:区别:(1)端点个数不同:直线没有端点,射线一个端点,线段两个端点.(2)延伸方向不同,直线向两方延伸,射线向一个方向延伸,线段无延伸.联系:(1)都可以用两个点的大写字母表示,直线是用任意两点字母,没有先后顺序;射线是用一个端点字母和任一点字母,端点字母在前;线段只能用两端点字母,没有先后顺序.(2)线段可以度量,直线和射线不可度量.2.两个性质、一个中点:(1)直线的性质:两点确定一条直线.(2)线段的性质:两点之间,线段最短.(3)线段的中点:把一条线段平均分成两条相等线段的点.例2(2020秋•永嘉县校级期末)如图,直线l上有A、B两点,AB=24cm,点O是线段AB 上的一点,OA=2OB.(1)OA=cm,OB=cm.(2)若点C是线段AO上一点,且满足AC=CO+CB,求CO的长.(3)若动点P、Q分别从A、B同时出发,向右运动,点P的速度为2cm/s,点Q的速度为1cm/s,设运动时间为t(s),当点P与点Q重合时,P、Q两点停止运动.①当t为何值时,2OP﹣OQ=8.②当点P经过点O时,动点M从点O出发,以3cm/s的速度也向右运动.当点M追上点Q后立即返回,以同样的速度向点P运动,遇到点P后立即返回,又以同样的速度向点Q运动,如此往返,直到点P、Q停止时,点M也停止运动.在此过程中,点M行驶的总路程为48cm.思路引领:(1)由OA=2OB,OA+OB=24即可求出OA、OB.(2)设OC=x,则AC=16﹣x,BC=8+x,根据AC=CO+CB列出方程即可解决.(3)①分两种情形①当点P在点O左边时,2(16﹣2t)﹣(8+t)=8,当点P在点O 右边时,2(2t﹣16)﹣(8+x)=8,解方程即可.②点M运动的时间就是点P从点O开始到追到点Q的时间,设点M运动的时间为ts由题意得:t(2﹣1)=16由此即可解决.解:(1)∵AB=24,OA=2OB,∴20B+OB=24,∴OB=8,0A=16,故答案分别为16,8.(2)设CO=x,则AC=16﹣x,BC=8+x,∵AC=CO+CB,∴16﹣x=x+8+x,∴x=8 3,∴CO=8 3.(3)①当点P在点O左边时,2(16﹣2t)﹣(8+t)=8,t=16 5,当点P在点O右边时,2(2t﹣16)﹣(8+t)=8,t=16,∴t=165或16s时,2OP﹣OQ=8.②设点M运动的时间为ts,由题意:t(2﹣1)=16,t=16,∴点M运动的路程为16×3=48cm.故答案为48cm.解题秘籍:本题考查一元一次方程的应用,两点之间距离的概念,找等量关系列出方程是解决问题的关键,属于中考常考题型.针对练习1.(南充模拟)已知线段AB=8cm,在直线AB上画线段BC,使BC=3cm,则线段AC=.思路引领:由于C点的位置不能确定,故要分两种情况考虑AC的长,注意不要漏解.解:由于C点的位置不确定,故要分两种情况讨论:当C点在B点右侧时,如图所示:AC=AB+BC=8+3=11cm;当C点在B点左侧时,如图所示:AC=AB﹣BC=8﹣3=5cm;所以线段AC等于11cm或5cm,故答案为:11cm或5cm.解题秘籍:本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.2.(2019秋•鄞州区期末)已知点C是线段AB的中点,点D是线段BC上一点,下列条件不能确定点D是线段BC的中点的是()A.CD=DB B.BD=13AD C.2AD=3BC D.3AD=4BC思路引领:解:如图,∵CD=DB,∴点D是线段BC的中点,A不合题意;∵点C是线段AB的中点,∴AC=BC,又∵BD=13AD,∴点D是线段BC的中点,B不合题意;∵点C是线段AB的中点,∴AC=BC,2AD=3BC,∴2(BC+CD)=3BC,∴BC=2CD,∴点D是线段BC的中点,C不合题意;3AD=4BC,不能确定点D是线段BC的中点,D符合题意.故选:D.解题秘籍:本题考查的是两点间的距离的计算,掌握线段中点的定义、灵活运用数形结合思想是解题的关键.3.(2021秋•德江县期末)如图,C是线段AB上的一点,M是线段AC的中点,若AB=8cm,BC=2cm,则MC的长是()A.2cm B.3cm C.4cm D.6cm思路引领:由图形可知AC=AB﹣BC,依此求出AC的长,再根据中点的定义可得MC 的长.解:由图形可知AC=AB﹣BC=8﹣2=6cm,∵M是线段AC的中点,∴MC=12AC=3cm.故MC的长为3cm.故选:B.解题秘籍:考查了两点间的距离的计算;求出与所求线段相关的线段AC的长是解决本题的突破点.4.(2021秋•长乐区期末)如图,把原来弯曲的河道改直,A,B两地间的河道长度变短,这样做的道理是()A.两点确定一条直线B.两点之间线段最短C.两点之间直线最短D.垂线段最短思路引领:根据线段的性质:两点之间线段最短进行解答.解:把原来弯曲的河道改直,A,B两地间的河道长度变短,这样做的道理是两点之间线段最短,故选:B.解题秘籍:此题主要考查了线段的性质,关键是掌握两点之间线段最短,是需要记忆内容.5.如图,在四边形ABCD内找一点O,使它到四边形四个顶点的距离和OA+OB+OC+OD最小,并说出你的理由,由本题你得到什么数学结论?举例说明它在实际中的应用.思路引领:连接AC、BD相交于点O,则点O就是所要找的点;取不同于点O的任意一点P,连接P A、PB、PC、PD,根据两点之间,线段最短,即可得到P A+PB+PC+PD>OA+OB+OC+OD,从而可得点O就是所要找的四边形ABCD内符合要求的点.解:要使OA+OB+OC+OD最小,则点O是线段AC、BD的交点.理由如下:如果存在不同于点O的交点P,连接P A、PB、PC、PD,因为点P有可能在AC上,所以P A+PC也有可能等于AC,即P A+PC≥AC,同理,PB+PD≥BD,但因为点P不同于点O,所以点P不可能同时在AC、BD上,所以“P A+PC=AC“与“PB+PD=BD“不可能同时出现,所以P A+PB+PC+PD>OA+OB+OC+OD,由本题得到:两点之间,线段最短.实际应用:把弯曲的公路改直,就能缩短路程.解题秘籍:本题考查了两点之间,线段最短,作出图形更助于问题的解决,把问题转化为求两条线段的和是解决问题的关键.6.点O是线段AB=28cm的中点,而点P将线段AB分为两部分,AP:PB=23:415,求线段OP的长.思路引领:根据线段的比例的性质,可得AP:PB=10:4,根据按比例分配,可得AP 的长,根据线段中点的性质,可得AO的长,根据线段的和差,可得答案.解:由比例的性质,得AP:PB=10:4.按比例分配,得AP :28×1010+4=20(cm ). 由线段中点的性质,得 AO =12AB =14(cm ). OP =AP ﹣AO =20﹣14=6(cm ).解题秘籍:本题考查了两点间的距离,利用了比例的性质,线段中点的性质,线段的和差.7.(2017春•太谷县校级期末)如图,已知C ,D 两点在线段AB 上,AB =10cm ,CD =6cm ,M ,N 分别是线段AC ,BD 的中点,则MN = cm .思路引领:结合图形,得MN =MC +CD +ND ,根据线段的中点,得MC =12AC ,ND =12DB ,然后代入,结合已知的数据进行求解. 解:∵M 、N 分别是AC 、BD 的中点,∴MN =MC +CD +ND =12AC +CD +12DB =12(AC +DB )+CD =12(AB ﹣CD )+CD =12×(10﹣6)+6=8. 故答案为:8.解题秘籍:此题考查的知识点是两点间的距离,关键是利用线段的中点结合图形,把要求的线段用已知的线段表示.8.(2019秋•北仑区期末)如图,C 为射线AB 上一点,AB =30,AC 比BC 的14多5,P 、Q两点分别从A 、B 两点同时出发,分别以2个单位/秒和1个单位/秒的速度在射线AB 上沿AB 方向运动,当点P 运动到点B 时,两点同时停止运动,运动时间为t (s ),M 为BP 的中点,N 为MQ 的中点,以下结论:①BC =2AC ;②AB =4NQ ;③当BP =12BQ 时,t =12;④M ,N 两点之间的距离是定值.其中正确的结论 (填写序号)思路引领:根据线段中点的定义和线段的和差关系即可得到结论. 解:∵AB =30,AC 比BC 的14多5,∴BC =20,AC =10, ∴BC =2AC ;故①正确;∵P ,Q 两点分别从A ,B 两点同时出发,分别以2个单位/秒和1个单位/秒的速度, ∴BP =30﹣2t ,BQ =t ,∵M 为BP 的中点,N 为MQ 的中点,∴PM=12BP=15﹣t,MQ=MB+BQ=15,NQ=12MQ=7.5,∴AB=4NQ;故②正确;∵BP=30−2t,BQ=t,BP=12 BQ,∴30−2t=t2,解得:t=12,故③正确,∵BP=30﹣2t,BQ=t,∴BM=12PB=15﹣t,∴MQ=BM+BQ=15﹣t+t=15,∴MN=12MQ=152,∴MN的值与t无关是定值,故答案为:①②③④.解题秘籍:本题考查两点间的距离,解题的关键是求出P到达B点时的时间,以及点P 与Q重合时的时间,涉及分类讨论的思想.9.(2021秋•易县期末)如图,在数轴上有A,B两点,且AB=8,点A表示的数为6;动点P从点O出发,以每秒2个单位长度的速度沿数轴正方向运动,点Q从点A出发,以每秒1个单位长度的速度沿数轴正方向运动,设运动时间为t秒.(1)写出数轴上点B表示的数是;(2)当t=2时,线段PQ的长是;(3)当0<t<3时,则线段AP=;(用含t的式子表示)(4)当PQ=14AB时,求t的值.思路引领:(1)根据两点间的距离公式即可求出数轴上点B表示的数;(2)先求出当t=2时,P点对应的有理数为2×2=4,Q点对应的有理数为6+1×2=8,再根据两点间的距离公式即可求出PQ的长;(3)先求出当0<t<3时,P点对应的有理数为2t<6,再根据两点间的距离公式即可求出AP的长;(4)由于t秒时,P点对应的有理数为2t,Q点对应的有理数为6+t,根据两点间的距离公式得出PQ=|2t﹣(6+t)|=|t﹣6|,根据PQ=14AB列出方程,解方程即可求解.解:(1)6+8=14.故数轴上点B表示的数是14;(2)当t=2时,P点对应的有理数为2×2=4,Q点对应的有理数为6+1×2=8,8﹣4=4.故线段PQ的长是4;(3)当0<t<3时,P点对应的有理数为2t<6,故AP=6﹣2t;(4)根据题意可得:|t﹣6|=14×8,解得:t=4或t=8.故t的值是4或8.故答案为:14;4;6﹣2t.解题秘籍:此题考查了一元一次方程的应用和数轴,解题的关键是掌握点的移动与点所表示的数之间的关系,(4)中解方程时要注意分两种情况进行讨论.【知识点三】角的比较与运算1.比较角大小的方法:度量法、叠合法.2.互余、互补反映两角的特殊数量关系.3.方位角中经常涉及两角的互余.4.计算两角的和、差时要分清两角的位置关系.例3(2020秋•和平区期末)如图:∠AOB:∠BOC:∠COD=2:3:4,射线OM、ON,分别平分∠AOB与∠COD,又∠MON=84°,则∠AOB为()A.28°B.30°C.32°D.38°思路引领:首先设出未知数,然后利用角的和差关系和角平分线的定义列出方程,即可求出∠AOB的度数.解:设∠AOB=2x°,则∠BOC=3x°,∠COD=4x°,∵射线OM、ON分别平分∠AOB与∠COD,∴∠BOM=12∠AOB=x°,∠CON=12∠COD=2x°,又∵∠MON=84°,∴x+3x+2x=84,x=14,∴∠AOB=14°×2=28°.故选:A.解题秘籍:本题主要考查了角平分线的定义和角的计算,解题时要能根据图形找出等量关系列出方程,求出角的度数.例4(2021秋•北辰区期末)如图所示,∠AOC=90°,点B,O,D在同一直线上,若∠1=26°,则∠2的度数为.思路引领:由图示可得,∠1与∠BOC互余,结合已知可求∠BOC,又因为∠2与∠COB 互补,即可求出∠2的度数.解:∵∠1=26°,∠AOC=90°,∴∠BOC=64°,∵∠2+∠BOC=180°,∴∠2=116°.故答案为:116°.解题秘籍:此题考查了余角和补角的知识,属于基础题,关键是掌握互余的两角之和为90°,互补的两角之和为180°.针对练习1.(2019•隆化县二模)如图,直线AB、CD交于点O,射线OM平分∠AOC,若∠BOD=76°,则∠BOM等于()A.38°B.104°C.142°D.144°思路引领:根据对顶角相等求出∠AOC的度数,再根据角平分线的定义求出∠AOM的度数,然后根据平角等于180°列式计算即可得解.解:∵∠BOD=76°,∴∠AOC=∠BOD=76°,∵射线OM平分∠AOC,∴∠AOM=12∠AOC=12×76°=38°,∴∠BOM=180°﹣∠AOM=180°﹣38°=142°.故选:C.解题秘籍:本题考查了对顶角相等的性质,角平分线的定义,准确识图是解题的关键.2.(通辽中考)4点10分,时针与分针所夹的小于平角的角为()A.55°B.65°C.70°D.以上结论都不对思路引领:因为钟表上的刻度是把一个圆平均分成了12等份,每一份是30°,找出4点10分时针和分针分别转动角度即可求出.解:∵4点10分时,分针在指在2时位置处,时针指在4时过10分钟处,由于一大格是30°,10分钟转过的角度为1060×30°=5°,因此4点10分时,分针与时针的夹角是2×30°+5°=65°.故选:B.解题秘籍:本题考查钟表时针与分针的夹角.用到的知识点为:钟表上12个数字,每相邻两个数字之间的夹角为30°.3.(渝北区期末)如图,直角三角板的直角顶点在直线上,则∠1+∠2=()A.60°B.90°C.110°D.180°思路引领:由三角板的直角顶点在直线l上,根据平角的定义可知∠1与∠2互余,从而求解.解:如图,三角板的直角顶点在直线l上,则∠1+∠2=180°﹣90°=90°.故选:B.解题秘籍:本题考查了余角及平角的定义,正确观察图形,得出∠1与∠2互余是解题的关键.4.(2021春•未央区月考)如图,要测量两堵围墙形成的∠AOB的度数,但人不能进入围墙,可先延长BO得到∠AOC,然后测量∠AOC的度数,再计算出∠AOB的度数.其中依据的原理是()A.对顶角相等B.同角的余角相等C.等角的余角相等D.同角的补角相等思路引领:根据邻补角的定义以及同角的补角相等得出答案.解:如图,由题意得,∠AOC+∠AOB=180°,即∠AOC与∠AOB互补,因此量出∠AOC的度数,即可求出∠AOC的补角,根据同角的补角相等得出∠AOB的度数,故选:D.解题秘籍:本题考查邻补角的定义、同角的补角相等,理解同角的补角相等是正确判断的前提.5.(2015秋•庆云县期末)计算:①33°52′+21°54′=;②36°27′×3=.思路引领:①利用度加度,分加分,再进位即可;②利用度和分分别乘以3,再进位.解:①33°52′+21°54′=54°106′=55°46′;②36°27′×3=108°81′=109°21′;故答案为:55°46′;109°21′.解题秘籍:此题主要考查了度分秒的计算,关键是掌握在进行度、分、秒的运算时也应注意借位和进位的方法.6.如图,将一副三角尺按不同位置摆放,在哪种摆放方式中∠α与∠β互余?在哪种摆放方式中∠α与∠β互补?在哪种摆放方式中∠α与∠β相等?思路引领:根据每个图中的三角尺的摆放位置,容易得出∠α与∠β的关系.解:(1)根据平角的定义得:∠α+90°+∠β=180°,∴∠α+∠β=90°,即∠α与∠β互余;(2)根据两个直角的位置得:∠α=∠β;(3)根据三角尺的特点和摆放位置得:∠α+45°=180°,∠β+45°=180°,∴∠α=∠β;(4)根据图形可知∠α与∠β是邻补角,∴∠α+∠β=180°;综上所述:(1)中∠α与∠β互余;(4)中∠α与∠β互补;(2)(3)中,∠α=∠β.解题秘籍:本题考查了余角和补角的定义;仔细观察图形,弄清两个角的关系是解题的关键.7.(2012秋•襄城区期末)如图,A地和B地都是海上观测站,从A地发现它的北偏东60°方向有一艘船,同时,从B地发现这艘船在它北偏东30°的方向上,试在图中确定这艘船的位置.思路引领:根据方向角的概念分别画出过点A与点B的射线,两条射线的交点即为这艘船的位置.解:如图所示:作∠1=60°,∠2=30°,两射线相交于P点,则点P即为所求.解题秘籍:本题考查的是方位角的画法,解答此题的关键是熟知方向角的描述方法,即用方向角描述方向时,通常以正北或正南方向为角的始边,以对象所处的射线为终边,故描述方位角时,一般先叙述北或南,再叙述偏东或偏西,偏多少度.8.(2019秋•东莞市期末)直角三角板ABC的直角顶点C在直线DE上,CF平分∠BCD.(1)在图1中,若∠BCE=40°,∠ACF=;(2)在图1中,若∠BCE=α,∠ACF=(用含α的式子表示);(3)将图1中的三角板ABC绕顶点C旋转至图2的位置,若∠BCE=150°,试求∠ACF 与∠ACE的度数.思路引领:(1)、(2)结合平角的定义和角平分线的定义解答; (3)根据角平分线的定义、平角的定义以及角的和差关系解答即可. 解:(1)如图1,∵∠ACB =90°,∠BCE =40°,∴∠ACD =180°﹣90°﹣40°=50°,∠BCD =180°﹣40°=140°, 又CF 平分∠BCD ,∴∠DCF =∠BCF =12∠BCD =70°,∴∠ACF =∠DCF ﹣∠ACD =70°﹣50°=20°; 故答案为:20°;(2)如图1,∵∠ACB =90°,∠BCE =α°,∴∠ACD =180°﹣90°﹣α°=90°﹣α,∠BCD =180°﹣α, 又CF 平分∠BCD ,∴∠DCF =∠BCF =12∠BCD =90°−12α, ∴∠ACF =90°−12α﹣90°+α=12α; 故答案为:12α;(3)如图2,∵∠BCE =150°, ∴∠BCD =30°, ∵CF 平分∠BCD , ∴∠BCF =12∠BCD =15°, ∴∠ACF =90°﹣∠BCF =75°, ∠ACD =90°﹣∠BCD =60°, ∴∠ACE =180°﹣∠ACD =120°.解题秘籍:考查了角的计算和角平分线的定义,主要考查学生的计算能力,求解过程类似.9.(2019秋•梁园区期末)如图,已知∠AOB=60°,∠AOB的边OA上有一动点P,从距离O点18cm的点M处出发,沿线段MO、射线OB运动,速度为2cm/s;动点Q从点O 出发,沿射线OB运动,速度为1cm/s;P、Q同时出发,同时射线OC绕着点O从OA 上以每秒5°的速度顺时针旋转,设运动时间是t(s).(1)当点P在MO上运动时,PO =cm(用含t的代数式表示);(2)当点P在线段MO上运动时,t为何值时,OP=OQ?此时射线OC是∠AOB的角平分线吗?如果是请说明理由.(3)在射线OB上是否存在P、Q相距2cm?若存在,请求出t的值并求出此时∠BOC 的度数;若不存在,请说明理由.思路引领:(1)先确定出PM=2t,即可得出结论;(2)先根据OP=OQ建立方程求出t=6,进而求出∠AOC=30°,即可得出结论;(3)分P、Q相遇前相距2cm和相遇后2cm两种情况,建立方程求解,接口得出结论.解:(1)当点P在MO PM=2t,∵OM=18cm,∴PO=OM﹣PM=(18﹣2t)cm,故答案为:(18﹣2t);(2)由(1)知,OP=18﹣2t,当OP=OQ时,则有18﹣2t=t,∴t=6即t=6时,能使OP=OQ,∵射线OC绕着点O从OA上以每秒5°的速度顺时针旋转,∴∠AOC=5°×6=30°,∵∠AOB=60°,∴∠BOC=∠AOB﹣∠AOC=30°=∠AOC,∴射线OC是∠AOB的角平分线,(3)分为两种情形.当P、Q相遇前相距2cm时,OQ﹣OP=2∴t﹣(2t﹣18)=2解这个方程,得t=16,∴∠AOC=5°×16=80°∴∠BOC=80°﹣60°=20°,当P、Q相遇后相距2cm时,OP﹣OQ=2∴(2t﹣18)﹣t=2解这个方程,得t=20,∴∠AOC=5°×20=100°∴∠BOC=100°﹣60°=40°,综合上述t=16,∠BOC=20°或t=20,∠BOC=40°.解题秘籍:此题是几何变换综合题,主要考查了角平分线的定义,旋转的性质,用方程的思想解决问题是解本题的关键.配套作业1.(2021•芜湖模拟)如图,甲、乙都是由大小相同的小正方体搭成的几何体,关于它们的视图,判断正确的是()A.仅主视图相同B.左视图与俯视图相同C.主视图与左视图相同D.主视图与俯视图相同思路引领:主视图、左视图、俯视图是分别从物体正面、左面和上面看所得到的图形,依据三视图进行判断即可.解:如图所示:由图可得,主视图与俯视图相同.故选:D.解题秘籍:本题考查简单组合体的三视图,掌握三视图的定义是解答本题的关键.2.(2020秋•大丰区月考)如图,三个正方体的六个面都按相同规律涂有红、黄、蓝、白、黑、绿六种颜色,那么涂绿色的对面是色.思路引领:根据与“白”相邻的是黄、黑、红、绿判断出“白”的对面是“蓝”,与“黄”相邻的是白、黑、蓝、红判断出“绿”的对面是“黄”.解:由图可知,与“白”相邻的是黄、黑、红、绿,所以,“白”的对面是“蓝”,与“黄”相邻的是白、黑、蓝、红,所以,“绿”的对面是“黄”.故答案为:黄.解题秘籍:此题考查了正方体相对两个面上的文字,注意正方体的空间图形,此题关键是抓住图中出现了2次的颜色红和黄的邻面颜色的特点,推理得出它们的对面颜色分别是黑和绿.3.(2010秋•洛江区期末)如图,把左边的图形折叠起来,它会变为()A.B.C.D.思路引领:本题以小立方体的侧面展开图为背景,考查学生对立体图形展开图的认识.在本题的解决过程中,学生可以动手进行具体折纸、翻转活动,也可以.解:通过实际动手操作可知正确的为B.故选:B.解题秘籍:本题虽然是选择题,但答案的获得需要学生经历一定的实验操作过程,当然学生也可以将操作活动转化为思维活动,在头脑中模拟(想象)折纸、翻转活动,较好地考查了学生空间观念.另外,本题通过考查正方体的侧面展开图,展示了这样一个教学导向,教学中要让学生确实经历活动过程,而不要将活动层次停留于记忆水平.我们有些老师在教学“展开与折叠”时,不是去引导学生动手操作,而是给出几种结论,这样教出的学生肯定遇到动手操作题型时就束手无策了.4.(2021秋•成都期中)下列图形是正方体的表面展开图的是()A.B.C.D.思路引领:正方体共有11种表面展开图,利用正方体及其表面展开图的特点判断即可.解:A选项能围成正方体;B和C折叠后缺少一个面,故不能折成正方体;D出现了“田”字格,故不折成正方体能.故选:A.解题秘籍:本题考查了几何体的展开图,同时考查了学生的立体思维能力.解题时注意,只要有“田”字格的展开图都不是正方体的表面展开图.5.(2017秋•江岸区校级期末)如图,线段AB上有E、D、C、F四点,点E是线段AC的中点,点F是线段DB的中点,有下列结论:①EF=12AB;②EF=12(AB﹣CD);③DE=12(DA﹣DC);④AF=12(DA+AB),其中正确的结论是.思路引领:根据中点定义可得:AE=EC=12AC,DF=FB=12DB;对于①②,结合图形,依据线段的和差关系即可判断正误;同理再判断③和④的正误.解:如图,∵点E是线段AC的中点,点F是线段DB的中点,∴AE=EC=12AC,DF=FB=12DB,∴EF=AB﹣AE﹣FB=AB−12(AC+DB)=AB−12(AB+CD)=12(AB﹣CD),故结论①错误,结论②正确;DE=EC﹣DC=12AC﹣DC=12(AD +DC )﹣DC =12(AD ﹣DC ), 故结论③正确; AF =AB ﹣BF =AB −12BD=AB −12(AB ﹣DA ) =12(AB +DA ), 故结论④正确. 故答案为:②③④.解题秘籍:本题主要考查了线段中点定义及线段和差的计算,解题时要结合图形认真观察分析,数形结合,理清相关线段之间的关系是解题关键.6.(2020秋•奉化区校级期末)如图,已知线段AB =8,点C 是线段AB 是一动点,点D 是线段AC 的中点,点E 是线段BD 的中点,在点C 从点A 向点B 运动的过程中,当点C 刚好为线段DE 的中点时,线段AC 的长为( )A .3.2B .4C .4.2D .167思路引领:由已知条件可得:AD =CD =CE ,CD =CE ,则AB =AD +DC +CE +BE =3AD +BE =3AD +DE =3AD +2CD =5AD 即可求. 解:∵点D 是线段AC 的中点, ∴AD =CD ,∵点E 是线段BD 的中点, ∴BE =DE ,∵点C 为线段DE 的中点, ∴CD =CE , ∴AD =CD =CE ,∵AB =AD +DC +CE +BE =3AD +BE =3AD +DE =3AD +2CD =5AD , ∴AD =1.6, ∴AC =2AD =3.2, 故选:A .解题秘籍:本题考查了线段中点的定义,熟悉线段的和差关系是解题的关键. 7.(2021秋•济南期末)如图,线段AB =16cm ,在AB 上取一点C ,M 是AB 的中点,N 是AC中点,若MN=3cm,则线段AC的长是()A.6B.8C.10D.12思路引领:设CM=a,可得CN=CM+MN=a+3,由M是AB的中点,N是AC中点,可得AM=12AB,AN=CN=a+3,由AM=AN+MN=8,即可算出a的值,根据AC=AM+CM代入计算即可得出答案.解:设CM=a,CN=CM+MN=a+3,∵M是AB的中点,N是AC中点,∴AM=12AB=12×16=8,AN=CN=a+3,∵AM=AN+MN=8,即a+3+3=8,∴a=2,∴AC=AM+CM=8+2=10.故选:C.解题秘籍:本题主要考查了两点间的距离,熟练掌握两点的距离计算的方法进行计算是解决本题的关键.8.(2006•巴中)巴广高速路的设计者准备在西华山再设计修建一个隧道,以缩短两地之间的里程,其主要依据是()A.垂线段最短B.两点之间线段最短C.两点确定一条直线D.过直线外一点有且只有一条直线平行于已知直线思路引领:此题为数学知识的应用,由题意设计巴广高速路,肯定要尽量缩短两地之间的里程,就用到两点间线段最短定理.解:要想缩短两地之间的里程,就尽量是两地在一条直线上,因为两点间线段最短.故选:B.解题秘籍:此题考查知识点两点间线段最短.9.如图,公路上有A1、A2、A3、A4、A5、A6、A7七个村庄,现要在这段公路上设一车站,使这七个村庄到车站的路程总和最小,车站应建在何处?思路引领:根据“当点数为奇数个点时,应设在中点上;当点数为偶数时,应设在中间相邻的两点或其两点之间的任何地方,距离之和为最小”的规律,本题有7个村庄,应设在中点A4上.解:因为有7个村庄,是奇数个点,所以应设在中间点上,即设在A4点上.。
初一上册数学第四章《图形认识初步》知识点汇总及练习
![初一上册数学第四章《图形认识初步》知识点汇总及练习](https://img.taocdn.com/s3/m/41a95734ec3a87c24128c453.png)
图形认识初步知识点汇总1、几何图形:我们把实物中抽象出来的各种图形叫做几何图形。
几何图形分为平面图形和立体图形。
(1)平面图形:图形所表示的各个部分都在同一平面内的图形,如直线、三角形等。
(2)立体图形:图形所表示的各个部分不在同一平面内的图形,如圆柱体。
2、常见的立体图形(1)柱体:A棱柱---有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边互相平行,由这些面围成的几何体叫做棱柱。
B 圆柱---以矩形的一边所在直线为旋转轴,其余各边围绕它旋转一周二形成的曲面所围成的集合体叫做圆柱。
(2)椎体:A棱锥—有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。
B圆锥—以直角三角形的一条直角边所在的直线为旋转轴,其余各边旋转一周而形成的曲面围成的几何体叫做圆锥。
(3)球体:半圆以它的直径为旋转轴,旋转一周而形成的曲面所围成的几何体叫做球体。
(4)多面体:围成棱柱和棱锥的面都是平的面,想这样的立体图形叫做多面体。
3、常见的平面图形(1)多边形:由线段围成的封闭图形叫做多边形。
多边形中三角形是最基本的图形。
(2)圆:一条线段绕它的端点旋转一周而形成的图形。
(3)扇形:由一条弧和经过这条弧的端点的两条半径围成的图形叫做扇形。
4、从不同方向观察几何体从正面、上面、左面三个不同方向看一个物体,然后描出三张所看到的图(分别叫做正视图、俯视图、侧视图),这样就可以把立体图形转化为平面图形。
5、立体图形的展开图有些立体图形是有一些平面图形围成的,把它们的表面适当剪开后在平面上展开得到的平面图形称为立体图形的展开图。
(1)圆柱和圆锥的侧面展开图(2)棱柱和棱锥的展开图(3)根据展开图判断立体图形的规律:A展开图全是长方形或正方形时------正方体或长方体;B展开图中含有三角形时-----棱锥或棱柱;若展开图中含有2个三角形3个长方形-----三棱柱;若展开图中全是三角形(4个)-----三棱锥。
2024年七年级数学上册第二章几何图形的初步认识复习题及答案解析微探究小专题4与角平分线有关的计算
![2024年七年级数学上册第二章几何图形的初步认识复习题及答案解析微探究小专题4与角平分线有关的计算](https://img.taocdn.com/s3/m/6427c9456ad97f192279168884868762caaebbdc.png)
°−°
所以∠ BMA1+∠ CMD1=
=75°.
所以∠ BMC =∠ BMA1+∠1+∠ CMD1=30°+75°=105°.
思路点拨
此题主要考查折叠的性质,角平分线的性质,将∠ BMA1+∠ CMD1
看成一个整体求解,运用了整体思想.
(2)受兴趣小组的启发,智慧小组将一个直角三角尺中60°角的顶点放
在点 O 处(如图3),即当∠ COD =60°时,请你求出∠ MOC +∠ DON
的度数;
数学思考:(3)请你在图1中,求∠ MOC +∠ DON 的度数(用含有α的式
第二章
几何图形的初步认识
微探究小专题4
与角平分线有关的计算
微探究小专题4
类型1
与角平分线有关的计算
与角的和差倍分有关的计算
1. 如图,直线 AB , CD 相交于点 O ,∠ DOE =90°, OF 平分
∠ BOD ,∠ AOE =24°,则∠ DOF 的度数是(
A. 24°
B. 33°
1
2
B
)
所以∠ BOD = ∠ AOB =15°.
因为∠ BOC =50°,
所以∠ DOC =∠ BOC -∠ BOD =35°.
综上所述,∠ DOC 的度数为35°或65°.
1
2
3
4
5
6
7
8
9
微探究小专题4
与角平分线有关的计算
4. 在同一平面内,若∠ BOA =50°,∠ BOC =30°, OM 平分
1
2
3
4
5
6
7
8
2021年七年级数学上册第四章《几何图形初步》知识点总结(答案解析)
![2021年七年级数学上册第四章《几何图形初步》知识点总结(答案解析)](https://img.taocdn.com/s3/m/815d479258fafab068dc023a.png)
2021年七年级数学上册第四章《几何图形初步》知识点总结(答案解析)一、选择题1.如图,已知点C为线段AB的中点,则①AC=BC;②AC=12AB;③BC=12AB;④AB=2AC;⑤AB=2BC,其中正确的个数是()A.2 B.3 C.4 D.5D 解析:D【分析】根据线段中点的定义解答.【详解】∵点C为线段AB的中点,∴AC=BC,AC=12AB,BC=12AB,AB=2AC,AB=2BC,故选:D.【点睛】此题考查线段中点的定义及计算,掌握线段中点是将线段两等分的点是解题的关键.2.如图所示,已知直线AB上有一点O,射线OD和射线OC在AB同侧,∠AOD=42°,∠BOC=34°,OM是∠AOD的平分线,则∠MOC的度数是()A.125°B.90°C.38°D.以上都不对A解析:A【分析】由OM是∠AOD的平分线,求得∠AOM=21°,利用∠BOC=34°,根据平角的定义求出答案.【详解】∵OM是∠AOD的平分线,∴∠AOM=21°.又∵∠BOC=34°,∴∠MOC=180°-21°-34°=125°.故选:A.【点睛】此题考查角平分线的有关计算,几何图形中角度的和差计算,根据图形掌握各角之间的关系是解题的关键.3.从不同方向看一只茶壶,你认为是俯视效果图的是()A.B.C.D. A解析:A【解析】俯视图是从上面看到的平面图形,也是在水平投影面上的正投影. 易判断选A.4.某正方体的平面展开图如下图所示,这个正方体可能是下面四个选项中的().A.B.C.D. A解析:A【分析】根据正方体的展开与折叠.可以动手折叠看看,充分发挥空间想象能力解决也可以.【详解】根据题意及图示只有A经过折叠后符合.故选:A.【点睛】此题考查几何体的展开图,解题关键在于空间想象力.∠=∠的图形的个数是()5.如图,一副三角尺按不同的位置摆放,摆放位置中αβA.1B.2C.3D.4C解析:C【分析】根据直角三角板可得第一个图形∠β=45°,进而可得∠α=45°;根据余角和补角的性质可得第二个图形、第四个图形中∠α=∠β,第三个图形∠α和∠β互补.【详解】根据角的和差关系可得第一个图形∠α=∠β=45°,根据等角的补角相等可得第二个图形∠α=∠β,第三个图形∠α+∠β=180°,不相等,根据同角的余角相等可得第四个图形∠α=∠β,因此∠α=∠β的图形个数共有3个,故选:C .【点睛】此题主要考查了余角和补角,关键是掌握余角和补角的性质:等角的补角相等.等角的余角相等.6.已知线段AB ,在AB 的延长线上取一点C ,使25BC AC =,在AB 的反向延长线上取一点D ,使34DA AB =,则线段AD 是线段CB 的____倍 A .98B .89C .32D .23A 解析:A【分析】 根据25BC AC =,AC=AB+BC 可得出BC 与AB 的倍数关系,根据34DA AB =,利用等量代换即可得答案.【详解】 ∵25BC AC =,AC=AB+BC , ∴BC=25(AB+BC ), ∴AB=32BC , ∵34DA AB =, ∴AD=34×32BC=98BC , ∴线段AD 是线段CB 的98倍,故选A.【点睛】本题考查了比较线段的长短,灵活运用线段的和、差、倍、分转化线段之间的数量关系是解题关键.7.在钟表上,1点30分时,时针与分针所成的角是( ).A .150°B .165°C .135°D .120°C解析:C【分析】根据钟表上每个大格30°,1点30分时针与分针之间共4.5个大格即可求解.【详解】钟表上12个大格把一个周角12等分,每个大格30°.1点30分时针与分针之间共4.5个大格,故时针与分针所成的角是4.5×30°=135°.故选C.【点睛】此题考查的是角的运算,钟表上每个大格30°,明确1点30分时针与分针之间共4.5个大格是解题的关键.8.已知线段AB=5,C 是直线AB 上一点,BC=2,则线段AC 长为( )A .7B .3C .3或7D .以上都不对C 解析:C【分析】由点C 在直线AB 上,分别讨论点C 在点B 左侧和右侧两种情况,根据线段的和差关系求出AC 的长即可.【详解】∵点C 在直线AB 上,BC=2,AB=5,∴当点C 在点B 左侧时,AC=AB-BC=3,当点C 在点B 右侧时,AC=AB+BC=7,∴AC 的长为3或7,故选C.【点睛】本题考查线段的和与差,注意点C 在直线AB 上,要分几种情况讨论是解题关键. 9.线段10AB cm =,C 为直线AB 上的点,且2BC cm =,,M N 分别是,AC BC 中点,则MN 的长度是( )A .6cmB .5cm 或7cmC .5cmD .5cm 或6cm C 解析:C【分析】根据题意分两种情况,①C 为线段AB 延长线上的点,②C 为线段AB 上的点,利用中点的性质分别进行求解.【详解】如图1, ①C 为线段AB 延长线上的点,∵,M N 分别是,AC BC 中点,∴CM=12AC=12(AB+BC )=6cm, CN=12BC=1cm, ∴MN=CM-CN=5cm;如图2,②C为线段AB上的点,∵,M N分别是,AC BC中点,∴CM=12AC=12(AB-BC)=4cm,CN=12BC=1cm,∴MN=CM+CN=5cm;故选C.【点睛】此题主要考查线段的长度,解题的关键是熟知线段的和差关系.10.如下图,直线的表示方法正确的是()①②③④A.都正确B.只有②正确C.只有③正确D.都不正确C解析:C【分析】用直线的表示方法解答,通常直线用两个大写字母或一个小写字母表示.【详解】∵通常直线用两个大写字母或一个小写字母表示,例直线AB,直线a.故选C.【点睛】本题考查了几何中直线的表示方法,是最基本的知识.二、填空题11.如图,能用O,A,B,C中的两个字母表示的不同射线有____条.7【分析】找射线可以先找到一个端点然后以这个端点发散本题可以分别以ABCO为端点找到不同的射线【详解】以点O为端点并且能用两个字母表示的射线是OAOBOC以点A为端点并且能用两个字母表示的射线是AC解析:7【分析】找射线可以先找到一个端点,然后以这个端点发散。
七年级数学上册第四章几何图形初步认识4.3.2 角的比较与运算(图文详解)
![七年级数学上册第四章几何图形初步认识4.3.2 角的比较与运算(图文详解)](https://img.taocdn.com/s3/m/adcb1b5a763231126edb1152.png)
AOB = BOC = 2 AOC AOC=2 AOB=2 BOC( 角平分线的定
人教版七年级数学上册第四章几何图形初步认识
填空:
D (1) 如图 AOB = BOC = COD,
OB 是 AOC 的平分线,
C B
BOC =
1 2
AOC,
1
A
BOC = 2 BOD,
1
O
BOC = 2
AOC =
1 2
当 1 = 2 时,射线OB把 AOC分成两个相等 的角,这时OB叫做 AOC 的平分线,也可以说OB平 分 AOC.
人教版七年级数学上册第四章几何图形初步认识
定义:在角的内部,自顶点引一条射线把这个角分成两
个相等的角,那么,这条射线叫做角的平分线.
如图:
或 义).
OB 平分 AOC ( 已知 ),
(角的和差关系),
∠BOD=2∠AOB,
∴∠AOB= 1 ∠AOD=38°,
3
∵OC平分∠AOD,
∴∠AOC=
1 2
∠AOD=57°
D
(角平分线的定义),
∴∠BOC=∠AOC-∠AOB =57°-38° =19°(角的和差关系).
人教版七年级数学上册第四章几何图形初步认识
5.如图所示,∠AOB=∠ COD=90°, ∠AOD=146°, ∠BOC= 34° .
D
C (F) D A C (F)
人教版七年级数学上册第四章几何图形初步认识
A (D)
B (E)
C (F)
(3)∠ABC = ∠DEF
人教版七年级数学上册第四章几何图形初步认识
估计图中∠1与∠2的大小关系,并用适当的方法检验.
2 1
七年级上册数学第六章-《图形的初步知识》知识点及典型例题
![七年级上册数学第六章-《图形的初步知识》知识点及典型例题](https://img.taocdn.com/s3/m/707379ffe2bd960591c67774.png)
新浙教版七年级上册数学第六章《图形的初步知识》知识点及典型例题知识框图朱国林第一节几何图形:会区分平面图形与立体图形第二节线段、射线和直线:线段、射线和直线的概念及表示方法;直线的基本事实(经过两点有一条且只有一条直线,简单地说,两点确定一条直线)第三节线段的长短比较:度量法和叠合法;线段的基本事实(在所有连结两点的线中,线段最短,简单地说,两点之间线段最短)及两点间距离的概念第四节线段的和差:线段的中点以及三等分点等;线段的加减计算第五节角与角的度量:角的概念及表示方法;度、分、秒的相互换算及计算第六节角的大小比较:度量法和叠合法;角的分类第七节角的和差:角平分线的概念;角的加减计算第八节余角和补角:余角和补角的概念及性质;根据图形和文字,利用该性质进行简单的推理和计算第九节直线的相交:相交线的概念;对顶角的概念和性质;会用余角、补角、对顶角的性质进行推理和计算;两条直线互相垂直的概念、画法(一靠、二过、三画、四标)及表示法;垂线段最短的性质和点到直线的距离的概念考点一、与概念、性质、基本事实直接相关的题目考点二、关于角度的计算,注意一元一次方程在这种题目中的妙用。
若语言模糊,一定要分类讨论,多画图。
考点三、关于线段的计算,注意一元一次方程在这种题目中的妙用。
若语言模糊,一定要分类讨论。
考点四、与实际生活相关的线段问题考点五、关于规律性的角度、线段问题考点六、作图题将考点与相应习题联系起来考点一、与概念、性质、基本事实直接相关的题目1、与课本、足球分别类似的图形是()A.长方形、圆B.长方体、圆C.长方体、球D.长方形、球2、如图,下列说法错误的是()A.直线与直线是同一条直线B.线段与线段是同一条线段C.射线与射线是同一条射线D.射线与射线是同一条射线3、把一条弯曲的河道改成直道,可以缩短航程,其中的道理可以解释为()A.线段有两个端点B.过两点可以确定一条直线C.两点之间,线段最短D.线段可以比较大小4、下列说法:①过两点有且只有一条线段;②连结两点的线段的长度叫做两点之间的距离;③ 两点之间线段最短;④ ,则点B 是线段的中点;⑤ 射线比直线短,正确的个数有( )A.1个 B.2个 C.3个 D.4个5、如图所示,∠90°,⊥,则图中能表示点到直线距离的线段( )A.3条B.4条C.5条D.6条6、在海上,灯塔位于一艘船的北偏东40°方向,那么这艘船位于这个灯塔的( )A.南偏西50°方向B. 南偏西40°方向C.北偏东50°方向D. 北偏东40°方向7、在同一平面内有4个点,过每两点画一条直线,则直线的条数有( )注意分类讨论的数学思想A.1条 B.4条 C.6条 D.1或4或6条8、如果α和β是对顶角且互补,那么它们所在的直线( )A.互相垂直B.互相平行C.即不垂直也不平行D.1或4或6条9、如图,∠∠90°,则∠∠,这是根据( )A.同角的余角都相等B.等角的余角都相等C.互为余角的两个角相等D. 直角都相等DB10、下列选项中,∠1与∠2是对顶角的是( )D CBA2121212111、下列各角中,属于锐角的是( )A.13周角 B.18平角 C.65直角 D.12平角 12、如图所示,∠90°,⊥,则图中表示点B 到的距离的线段是( )A. B. C.★★★用平面去截一个立方体,得到的截面不可能是………………………………………( )A.三角形B.正方形C.长方形D.圆形★★★如果点C 在线段上,下列表达式:①12;②2;③;④中,能表示点C 是线段中点的有 ( )A.1个 B.2个 C.3个 D.4个★★★下列四个图中的线段(或直线、射线)能相交的是……………………………………( )1()CD2()CD3()C D B4()CDBA.(1)B.(2)C.(3)D.(4) ★★★已知线段则线段的长度是( )EDC BAA.5B.1C.5或1D.以上都不对考点二、关于角度的计算,注意一元一次方程在这种题目中的妙用。
人教版初中七年级数学上册第四单元《几何图形初步》知识点(含答案解析)
![人教版初中七年级数学上册第四单元《几何图形初步》知识点(含答案解析)](https://img.taocdn.com/s3/m/0a31eb1a524de518974b7de1.png)
一、选择题1.给出下列各说法:①圆柱由3个面围成,这3个面都是平的;②圆锥由2个面围成,这2个面中,1个是平的,1个是曲的;③球仅由1个面围成,这个面是平的;④正方体由6个面围成,这6个面都是平的.其中正确的为( ) A .①② B .②③ C .②④ D .③④ 2.一个角的补角比这个角的余角3倍还多10°,则这个角的度数为( ) A .140° B .130°C .50°D .40°3.如图所示,90AOC ∠=︒,COB α∠=,OD 平分AOB ∠,则COD ∠的度数为( )A .2α B .45α︒- C .452α︒-D .90α︒-4.如图,点C 是线段AB 的中点,点D 是线段CB 上任意一点,则下列表示线段关系的式子不正确的是( )A .AB=2ACB .AC+CD+DB=ABC .CD=AD-12AB D .AD=12(CD+AB ) 5.如图,O 是直线AC 上一点,OB 是一条射线,OD 平分∠AOB ,OE 在∠BOC 内,且∠DOE =60°,∠BOE =13∠EOC ,则下列四个结论正确的个数有( ) ①∠BOD =30°;②射线OE 平分∠AOC ;③图中与∠BOE 互余的角有2个;④图中互补的角有6对.A .1个B .2个C .3个D .4个6.如图,∠AOB =120°,OC 是∠AOB 内部任意一条射线,OD ,OE 分别是∠AOC ,∠BOC 的角平分线,下列叙述正确的是( )A .∠AOD+∠BOE=60°B .∠AOD=12∠EOC C .∠BOE=2∠CODD .∠DOE 的度数不能确定7.如图,90AOB ∠=︒,AOC ∠为AOB ∠外的一个锐角,且40AOC ∠=︒,射线OM 平分BOC ∠,ON 平分AOC ∠,则MON ∠的度数为( ).A .45︒B .65︒C .50︒D .25︒8.“枪挑一条线,棍扫一大片”,从数学的角度解释为( ). A .点动成线,线动成面 B .线动成面,面动成体 C .点动成线,面动成体D .点动成面,面动成线9.如图.已知//AB CD .直线EF 分别交,AB CD 于点,,E F EG 平分BEF ∠.若1 50∠=︒.则2∠的度数为( )A .50︒B .65︒C .60︒D .70︒10.已知柱体的体积V =S•h ,其中S 表示柱体的底面面积,h 表示柱体的高.现将矩形ABCD 绕轴l 旋转一周,则形成的几何体的体积等于( )A .2 r h πB .22?r h πC .23?r h πD .24?r h π11.如果∠1的余角是∠2,并且∠1=2∠2,则∠1的补角为( )A .30°B .60°C .120°D .150°12.如图,点A 、B 、C 是直线l 上的三个定点,点B 是线段AC 的三等分点,AB =BC +4m ,其中m 为大于0的常数,若点D 是直线l 上的一动点,M 、N 分别是AD 、CD 的中点,则MN 与BC 的数量关系是( )A .MN =2BCB .MN =BC C .2MN =3BCD .不确定 13.已知∠AOB=40°,∠BOC=20°,则∠AOC 的度数为( )A .60°B .20°C .40°D .20°或60°14.已知线段AB =6cm ,反向延长线段AB 到C ,使BC =83AB ,D 是BC 的中点,则线段AD 的长为____cm A .2B .3C .5D .615.如下图,直线的表示方法正确的是( ) ① ②③④A .都正确B .只有②正确C .只有③正确D .都不正确二、填空题16.请写出图中的立体图形的名称.①_______;②_______;③_______;④_______.17.在直线AB 上,点A 与点B 的距离是8cm ,点C 与点A 的距离是2cm ,点D 是线段AB 的中点,则线段CD 的长为________.18.把棱长为1cm 的四个正方体拼接成一个长方体,则在所得长方体中,表面积最大等于________2cm .19.如图,OC AB ⊥于点O ,OE 为COB ∠的平分线,则AOE ∠的度数为______.20.科学知识是用来为人类服务的,我们应该把它们用于有意义的方面.下面的这两个情景,请你做出判断.情景一:如图,从教学楼到图书馆,总有少数同学不走人行道而横穿草坪,这是为什么呢?试用所.学数学知识来说明这个问题:_______________________________________________.情景二:农民兴修水利,开挖水渠,先在两端立桩拉线,然后沿线开挖,请你说出其中的道理:_______________________________________________________________________________ _.你赞同以上哪种做法,你认为应用科学知识为人类服务时应注意什么?21.36.275︒=_____度______分______秒.22.如图是一个正方体盒的展开图,若在其中的三个正方形A、B、C内分别填入适当的数,使得折成正方体后相对面上的两个数互为相反数,则填入正方形中A,B,C内的三个数依次为__,___,___.23.下面的几何体中,属于柱体的有______个.24.如图,已知直线AB、CD、EF相交于点O,∠1=95°,∠2=32°,则∠BOE=________.25.如图,将一副三角板叠放一起,使直角的顶点重合于点O,则∠AOD +∠COB的度数为___________度.26.已知线段MN=16cm ,点P 为任意一点,那么线段MP 与NP 和的最小值是_____cm .三、解答题27.小明在学习了《展开与折叠》这一课后,明白了很多几何体都能展开成平面图形.于是他在家用剪刀展开了一个长方体纸盒,可是一不小心多剪了一条棱,把纸盒剪成了两部分,即图中的①和②.根据你所学的知识,回答下列问题:(1)小明总共剪开了 条棱.(2)现在小明想将剪断的②重新粘贴到①上去,而且经过折叠以后,仍然可以还原成一个长方体纸盒,你认为他应该将剪断的纸条粘贴到①中的什么位置?请你帮助小明在①上补全.(3)小明说:已知这个长方体纸盒高为20cm ,底面是一个正方形,并且这个长方体纸盒所有棱长的和是880cm ,求这个长方体纸盒的体积.28.已知:点O 为直线AB 上一点,过点O 作射线OC ,100BOC ∠=︒. (1)如图1,求AOC ∠的度数;(2)如图2,过点O 作射线OD ,使90COD ∠=︒,作AOC ∠的平分线OM ,求MOD ∠的度数;(3)如图3,在(2)的条件下,作射线OP ,若BOP ∠与AOM ∠互余,请画出图形,并求COP ∠的度数.29.如图,长度为12cm 的线段AB 的中点为M ,点C 将线段MB 分成两部分,且:1:2MC CB =,则线段AC 的长度为________.30.将一副三角尺叠放在一起:(1)如图①,若∠1=4∠2,请计算出∠CAE的度数;(2)如图②,若∠ACE=2∠BCD,请求出∠ACD的度数.。
七年级数学上册第四章几何图形初步知识点总结归纳完整版
![七年级数学上册第四章几何图形初步知识点总结归纳完整版](https://img.taocdn.com/s3/m/2edf0928a36925c52cc58bd63186bceb19e8ede7.png)
(名师选题)七年级数学上册第四章几何图形初步知识点总结归纳完整版单选题1、下列图形中,属于正方体的平面展开图的是()A.B.C.D.答案:D分析:根据几何体的平面展开图特点即可作答.解:A、为圆锥的平面展开图,该选项不符合题意;B、为长方体的平面展开图,该选项不符合题意;C、为圆柱的平面展开图,该选项不符合题意;D、为正方体的平面展开图,该选项符合题意;故选:D.小提示:本题考查了几何体的展开图,熟悉各种几何体的平面展开图特点,是解答此题的关键.2、在同一平面内有四个点,过其中任意两点画直线,仅能画出四条直线,则这四点的位置关系是().A.任意三点都不共线.B.有且仅有三点共线.C.有两点在另外两点确定的直线外.D.以上答案都不对.答案:B分析:分别画出四点共线,三点共线,和两点共线的图形,然后找出满足题意的图形即可.解:如图,因为仅能画出四条直线,所以选图(2),故选B.小提示:本题主要考查了点与线之间的关系,解题的关键在于能够正确画出四点共线,三点共线,和两点共线的图形.3、如图,在同一平面内,∠AOB=∠COD=90°,∠AOF=∠DOF,点E为OF反向延长线上一点(图中所有角均指小于180°的角).下列结论:①∠COE=∠BOE;②∠AOD+∠BOC=180°;③∠BOC−∠AOD=90°;④∠COE+∠BOF=180°.其中正确结论的个数有()A.1个B.2个C.3个D.4个答案:C分析:由∠AOB=∠COD=90°,根据等角的余角相等得到∠AOC=∠BOD,结合∠AOF=∠DOF即可判断①正确;由∠AOD+∠BOC=∠AOD+∠AOC+∠AOD+∠BOD,结合∠AOB=∠COD=90°即可判断②正确;由∠BOC-∠AOD=∠AOC+90°-∠AOD,而不能判断∠AOD=∠AOC,即可判断③不正确;由E、O、F三点共线得∠BOE+∠BOF=180°,而∠COE=∠BOE,从而可判断④正确.解:∵∠AOB=∠COD=90°,∴∠AOC=∠BOD,而∠AOF=∠DOF,∴180°-∠AOC-∠AOF=180°-∠BOD-∠DOF,即∠COE=∠BOE,所以①正确;∠AOD+∠BOC=∠AOD+∠AOC+∠AOD+∠BOD=∠COD+∠AOB =180°,所以②正确;∠COB-∠AOD=∠AOC+90°-∠AOD,而∠AOC≠∠AOD,所以③不正确;∵E、O、F三点共线,∴∠BOE+∠BOF=180°,∵∠COE=∠BOE,∴∠COE+∠BOF=180°,所以④正确.所以,正确的结论有3个.故选:C.小提示:题考查了余角和补角、角度的计算、余角的性质以及角平分线的定义等知识,准确识图是解题的关键.4、下列立体图形中,全部是由曲面围成的是()A.圆锥B.正方体C.圆柱D.球答案:D分析:根据每个几何体的面是否是平面进行判断即可.解:圆锥是由一个平面和一个曲面围成,正方体是由六个平面围成,圆柱是由两个平面,一个曲面围成,球是由一个曲面围成,因此球符合题意,故选:D.小提示:本题考查认识立体图形,掌握各个几何体的特征是正确判断的前提.5、如图是正方体的表面展开图,则与“话”字相对的字是()A.跟B.党C.走D.听答案:C分析:根据正方体表面展开图的特征进行判断即可.解:由正方体表面展开图的“相间、Z端是对面”可知,“话”与“走”是对面,所以答案是:C.小提示:本题考查正方体相对两个面上的文字,掌握正方体表面展开图的特征是正确判断的前提.PB,从P处把绳子剪断,若剪断后的三段绳6、把根绳子对折成一条线段AB,在线段AB取一点P,使AP=13子中最长的一段为24cm,则绳子的原长为()A.32cm B.64cm C.32cm或64cm D.64cm或128cm答案:C分析:由于题目中的对折没有明确对折点,所以要分A为对折点与B为对折点两种情况讨论,讨论中抓住最长线段即可解决问题.解:如图∵AP=1PB,3∴2AP=2PB<PB3①若绳子是关于A点对折,∵2AP<PB∴剪断后的三段绳子中最长的一段为PB=30cm,∴绳子全长=2PB+2AP=24×2+2×24=64cm;3②若绳子是关于B点对折,∵AP<2PB∴剪断后的三段绳子中最长的一段为2PB=24cm∴PB=12 cm∴AP=12×1=4cm3∴绳子全长=2PB+2AP=12×2+4×2=32 cm;故选:C.小提示:本题考查的是线段的对折与长度比较,解题中渗透了分类讨论的思想,体现思维的严密性,在今后解决类似的问题时,要防止漏解.7、下列图形中,为圆柱的侧面展开图的是()A.B.C.D.答案:D分析:根据题意,注意其按圆柱的侧面沿它的一条母线剪开,分析得到图形的性质,易得答案.解:根据题意,把圆柱的侧面沿它的一条母线剪开展在一个平面上,得到其侧面展开图是对边平行且相等的四边形;又有母线垂直于上下底面,故可得是矩形.故选:D.小提示:本题考查的是圆柱的展开图,解题的关键是需要对圆柱有充分的理解;难度不大.8、现有一个长方形,长和宽分别为3cm和2cm,绕它的一条边所在的直线旋转一周,得到的几何体的体积为()A.12πB.27πC.12π或18πD.12π或27π答案:C分析:以不同的边为轴旋转一周,所得到的圆柱体的底面半径和高,根据圆柱体体积的计算方法进行计算即可.解:绕着3cm的边为轴,旋转一周所得到的是底面半径为2cm,高为3cm的圆柱体,因此体积为π×22×3=12π(cm3);绕着2cm的边为轴,旋转一周所得到的是底面半径为3cm,高为2cm的圆柱体,因此体积为π×32×2=18π(cm3),故选:C.小提示:本题考查点、线、面、体,掌握圆柱体体积的计算方法是正确解答的前提,以不同的边为轴旋转得到的圆柱体的底面半径和高是正确计算的关键.9、如图是正方体的一种展开图,那么在原正方体中与“我”字所在面相对的面上的汉字是()A.大B.美C.遂D.宁答案:B分析:正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“我”与“美”是相对面.故选:B.小提示:本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手.10、如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“负”字一面的相对面上的字是()A.强B.提C.课D.质答案:C分析:根据正方体表面展开图的特点,选择“负”这一面作为底面将正方体还原,即可找出相对面上的字.解:选择“负”这一面作为底面将正方体还原可得:“减”与“质”是相对面,“强”与“提”是相对面,“负”与“课”是相对面,故选:C.小提示:本题考查了根据正方体表面展开图判断相对面的字,熟练掌握正方体表面展开图的特点是解题的关键,需要一定空间想象能力.填空题11、有同样大小的三个立方体骰子,每个骰子的展开图如图1所示,现在把三个股子放在桌子上(如图2),凡是能看得到的点数之和最大是________,最小是________.答案: 51 26分析:观察图形可知,1和6相对、2和5相对,3和4相对;要使能看到的纸盒面上的数字之和最大,则把第一个正方体的数字1的面与第二个正方体的数字2的面相连,把数字2的面放在下面,则第一个图形露出的数字分别是3、4、5、6;第二个正方体的数字1面与第三个正方体的数字1的面相连,数字3的面放在下面,则第二个正方体露在外面的数字是4、5、6,第三个正方体露在外面的数字就是3、4、5、6,据此可得能看得到的点数之和最大值;要使能看到的纸盒面上的数字之和最小,则把第一个正方体的数字6的面与第二个正方体的数字5的面相连,把数字5的面放在下面,则第一个正方体露在外面的数字分别是1、2、3、4;第二个正方体的数字6的面与第三个正方体数字6的面相连,数字4的面放在下面,则第二个正方体露在外面的数字是1、2、3;第三个正方体露在外面的数字是1、2、3、4,即可得能看得到的点数之和最小值.解:根据题意,得:露在外面的数字之和最大是:3+4+5+6+4+5+6+3+4+5+6=51,最小值是:1+2+3+4+1+2+3+1+2+3+4=26,所以答案是:51,26.所以答案是:51,26.小提示:本题主要考查学生的空间想象能力和推理能力,也可动手制作一个正方体,根据题意在各个面上标上数字,再确定对面上的数字,可以培养动手操作能力和空间想象能力.12、如图,将一副三角尺的两个锐角(30°角和45°角)的顶点P叠放在一起,没有重叠的部分分别记作∠1和∠2,若∠1与∠2的和为61°,则∠APC的度数是 _____.答案:68°分析:先求30°和45°重合部分的角度,再加上∠1和∠2的和即可得到答案.解:三角板重合部分的角度=(30+45−61)÷2=7°∴∠APC=7°+∠1+∠2=7°+61°=68°所以答案是:68°.小提示:本题考查了角的和差关系,解题的关键是求出重合部分的角度.13、如图,长方形的长为3cm、宽为2cm,分别以该长方形的一边所在直线为轴,将其旋转一周,形成圆柱,其体积为_____cm3.(结果保留π)答案:12π或18π.分析:根据圆柱体的体积=底面积×高求解,再利用圆柱体侧面积求法得出答案.若以3cm为轴,旋转一周,则2cm为半径,所以V=π⋅22×3=12π,若以2cm为轴,旋转一周,则3cm为半径,所以V=π⋅32×2=18π,故答案为12π或18π小提示:此题主要考查了面动成体,关键是掌握圆柱体的体积和侧面积计算公式.14、如图,OC是∠AOB的平分线,∠BOD=1∠COD,∠BOD=15°,则∠COD=_____,∠BOC=______,3∠AOB=______.答案:45°30°60°∠COD,∠BOD=15°可求出∠COD的度数,∠COD−∠BOD即可求∠BOC的度数,然后根分析:根据∠BOD=13据OC是∠AOB的平分线即可求出∠AOB的度数.∵∠BOD=1∠COD,∠BOD=15°,3∴∠COD=3∠BOD=45°;∴∠BOC=∠COD−∠BOD=45°−15°=30°;∵OC是∠AOB的平分线,∴∠AOB=2∠BOC=60°.所以答案是:45°;30°;60°.小提示:此题考查了角平分线的概念,角度之间的数量关系,解题的关键是熟练掌握角平分线的概念,角度之间的数量关系.15、由n个相同的小正方体堆成的几何体,其主视图、俯视图如图所示,则n的最大值是________.答案:13分析:根据主视图和俯视图得出几何体的可能堆放,从而即可得出答案.综合主视图和俯视图,从上往下数,底面最多有 2+2+3=7 个,第二层最多有1+1+2=4 个,第三层最多有1+0+1=2 个,则n的最大值是 7+4+2=13所以答案是:13.小提示:本题考查了三视图中的主视图和俯视图,掌握三视图的相关概念是解题关键.解答题16、如图,点E是线段AB的中点,C是EB上一点,AC=12,(1)若EC:CB=1:4,求AB的长;(2)若F为CB的中点,求EF长,答案:(1)AB=20;(2)EF=6.分析:(1)设CE=x,则CB=4x,根据线段中点的定义得到AE=BE,求得AE=5x,得到AC=6x=12,于是得到结论;(2)根据线段中点的定义得到AE=BE,设CE=x,求得AE=BE=12-x,得到BC=BE-CE=12-x-x,于是得到结论.(1)解:∵EC:CB=1:4,∴设CE=x,则CB=4x,BE=5x,∵点E是线段AB的中点,∴AE=BE,∴AE=5x,∴AC=6x=12,∴x=2,∴AB=10x=20;(2)解:∵点E是线段AB的中点,∴AE=BE,设CE=x,∴AE=BE=12-x,∴BC=BE-CE=12-x-x=12-2x,∵F为CB的中点,∴CF=1BC=6-x,2∴EF=CE+CF=x+6-x=6.小提示:本题考查了两点间的距离,解题的关键是结合图形,利用线段的和与差和线段的中点即可解答.17、把边长为1厘米的6个相同正方体摆成如图的形式.(1)该几何体的体积是______cm3,表面积是______cm2;(2)在格纸中画出该几何体的主视图、左视图、俯视图;(3)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的左视图和俯视图不变,那么最多可以再添加______个小正方体.答案:(1)6,26;(2)见解析;(3)2.分析:(1)根据正方体体积和表面积公式进行计算即可;(2)根据三视图的概念作图即可得;(3)保持这个几何体的左视图和俯视图不变,那么最多可以再在后面一行第1和2列各添加1个小正方体.解:(1)该几何体的体积为:1×1×1×6=6(cm3),表面积为:2×(5+4+3)+2=26(cm2).所以答案是:6,26.(2)如图所示:(3)保持这个几何体的左视图和俯视图不变,那么最多可以再在后面一行第1和2列各添加1个小正方体.所以答案是:2.小提示:此题考查了三视图、几何体的体积及表面积,掌握正方体的体积、表面积计算公式以及三视图的画法是解题关键.18、将一副三角尺叠放在一起:(1)如图①,若∠1=4∠2,请计算出∠CAE的度数;(2)如图②,若∠ACE=2∠BCD,请求出∠ACD的度数.答案:(1)∠CAE=18°;(2)∠ACD=120°.分析:(1)由题意根据∠BAC=90°列出关于∠1、∠2的方程求解即可得到∠2的度数,再根据同角的余角相等求出∠CAE=∠2,从而得解;(2)根据∠ACB和∠DCE的度数列出等式求出∠ACE﹣∠BCD=30°,再结合已知条件求出∠BCD,然后由∠ACD=∠ACB+∠BCD并代入数据计算即可得解.解:(1)∵∠BAC=90°,∴∠1+∠2=90°,∵∠1=4∠2,∴4∠2+∠2=90°,∴∠2=18°,又∵∠DAE=90°,∴∠1+∠CAE=∠2+∠1=90°,∴∠CAE=∠2=18°;(2)∵∠ACE+∠BCE=90°,∠BCD+∠BCE=60°,∴∠ACE﹣∠BCD=30°,又∠ACE=2∠BCD,∴2∠BCD﹣∠BCD=30°,∠BCD=30°,∴∠ACD=∠ACB+∠BCD=90°+30°=120°.小提示:本题考查三角形的外角性质,三角形的内角和定理,准确识图理清图中各角度之间的关系是解题的关键.。