1数与式专题
2023年中考数学专题练——1数与式

2023年中考数学专题练——1数与式一.选择题(共11小题)1.(2022•泉山区校级三模)下列计算正确的是()A.a2+a3=a5B.a2•a3=a6C.(﹣a3)2=a6D.a2÷a3=a 2.(2022•鼓楼区校级二模)下列计算正确的是()A.a+a=a2B.(2a)2÷a=4a C.(﹣ab)2=ab2D.a2⋅a2=2a2 3.(2022•徐州一模)下列运算中,正确的是()A.a2•a3=a5B.(a2)3=a8C.a2+a3=a5D.a3÷a2=1 4.(2022•鼓楼区校级一模)2022的倒数是()A.2022B.﹣2022C.12022D.−120225.(2022•丰县二模)下列无理数中与3最接近的是()A.√5B.√6C.√10D.√12 6.(2021•徐州模拟)下列运算中,正确的是()A.3a+2a=5a2B.a2•a3=a6C.a2+a2=a4D.(﹣a3)2=a6 7.(2022•贾汪区二模)有理数﹣2022的相反数等于()A.2022B.﹣2022C.12022D.−120228.(2022•邳州市一模)下列运算中,正确的是()A.x6÷x2=x3B.(x2)3=x5C.x2+x3=x5D.2x2•x=2x3 9.(2022•徐州一模)数轴上在√3和√10之间的整数有()A.0个B.1个C.2个D.3个10.(2022•邳州市一模)周末小明与同学相约在某餐厅吃饭,如图为此餐厅的菜单.若他们所点的菜单总共为10个汉堡,x杯饮料,y份沙拉,则他们点的B餐份数为()A.10﹣x B.10﹣y C.x﹣y D.10﹣x﹣y 11.(2022•睢宁县模拟)下列计算正确的是()A.2a2﹣a2=2B.(a﹣b)2=a2﹣b2C.(﹣a3b)2=a6b2D.(2a+3)(a﹣2)=2a2﹣6二.填空题(共10小题)12.(2022•鼓楼区校级三模)如图,每个图案均由相同大小的圆和正三角形按规律排列,依照此规律,第n个图形中三角形的个数比圆的个数多个.(由含n的代数式表示)13.(2022•泉山区校级三模)√4=.14.(2022•丰县二模)太阳距离银河系中心约为250000000000000000公里,其中数据250000000000000000用科学记数法表示为.15.(2022•丰县二模)计算:(x2)3•x﹣2=.16.(2022•丰县二模)数轴上的点A、B分别表示﹣2、3,则点离原点的距离较近(填“A”或“B”).17.(2022•徐州二模)2021“双十一”全网成交额约9650亿元.将数据“9650亿”用科学记数法表示.18.(2022•邳州市一模)因式分解:b2﹣4b+4=.19.(2022•徐州一模)新型冠状病毒呈球形或椭圆形有包膜,直径大约是80~160纳米,1纳米=10﹣9米.用科学记数法表示160纳米=米.20.(2021•徐州模拟)分解因式:m2+6m=.21.(2022•贾汪区二模)已知√a+2有意义,则a的取值范围为.三.解答题(共9小题)22.(2022•鼓楼区校级三模)计算:(1)20220﹣(−12)﹣1﹣|3−√8|;(2)(1+1x−2)÷x−1x−2.23.(2022•丰县二模)计算:(1)(﹣1)2022+|﹣4|+(12)﹣1−√273;(2)(1−1a)÷a2−2a+1a.24.(2022•徐州二模)(1)计算:(12)−2−tan45°−(π−3)0+√4; (2)化简:(1−1x+2)÷x 2−1x+2. 25.(2022•贾汪区二模)计算: (1)20220+(12)−1−|−3|+√−83; (2)(x −1x )÷x 2−2x+1x . 26.(2022•睢宁县模拟)计算: (1)(−2)3−(−3)−(13)−1+√8; (2)a a 2−4÷(1−2a+2). 27.(2022•邳州市一模)计算:(1)(﹣1)2022+|﹣5|﹣(13)﹣1+√12;(2)a−1a 2÷(1−1a 2). 28.(2022•徐州一模)计算:(1)|−√3|﹣(4﹣π)0+2sin60°+(12)﹣1;(2)(1x+1−1x−1)÷2x 2−1. 29.(2022•徐州一模)计算: (1)√12+4﹣1﹣(12)﹣1+|−√3|;(2)(1x+3−1)×x 2+6x+9x 2−4.30.(2022•鼓楼区校级二模)计算: (1)|−4|−20220+√273−(13)−1;(2)(a +2a+1a )÷a 2−1a.2023年江苏省徐州市中考数学专题练——1数与式参考答案与试题解析一.选择题(共11小题)1.(2022•泉山区校级三模)下列计算正确的是()A.a2+a3=a5B.a2•a3=a6C.(﹣a3)2=a6D.a2÷a3=a 【解答】解:A、a2与a3不属于同类项,不能合并,故A不符合题意;B、a2•a3=a5,故B不符合题意;C、(﹣a3)2=a6,故C符合题意;D、a2÷a3=a﹣1,故D不符合题意;故选:C.2.(2022•鼓楼区校级二模)下列计算正确的是()A.a+a=a2B.(2a)2÷a=4a C.(﹣ab)2=ab2D.a2⋅a2=2a2【解答】解:a+a=2a,故A错误,不符合题意;(2a)2÷a=4a,故B正确,符合题意;(﹣ab)2=a2b2,故C错误,不符合题意;a2⋅a2=a4,故D错误,不符合题意;故选:B.3.(2022•徐州一模)下列运算中,正确的是()A.a2•a3=a5B.(a2)3=a8C.a2+a3=a5D.a3÷a2=1【解答】解:A、a2•a3=a5,故A符合题意;B、(a2)3=a6,故B不符合题意;C、a2与a3不属于同类项,不能合并,故C不符合题意;D、a3÷a2=a,故D不符合题意;故选:A.4.(2022•鼓楼区校级一模)2022的倒数是()A.2022B.﹣2022C.12022D.−12022【解答】解:2022的倒数是12022.故选:C.5.(2022•丰县二模)下列无理数中与3最接近的是()A.√5B.√6C.√10D.√12【解答】解:∵5<6<9<10<12<16,∴√5<√6<3<√10<√12<4,与3最接近的是√10,故选:C.6.(2021•徐州模拟)下列运算中,正确的是()A.3a+2a=5a2B.a2•a3=a6C.a2+a2=a4D.(﹣a3)2=a6【解答】解:A、3a+2a=5a,原计算错误,故此选项不符合题意;B、a2•a3=a5,原计算错误,故此选项不符合题意;C、a2+a2=2a2,原计算错误,故此选项不符合题意;D、(﹣a3)2=a6,原计算正确,故此选项符合题意.故选:D.7.(2022•贾汪区二模)有理数﹣2022的相反数等于()A.2022B.﹣2022C.12022D.−12022【解答】解:有理数﹣2022的相反数等于2022,故选:A.8.(2022•邳州市一模)下列运算中,正确的是()A.x6÷x2=x3B.(x2)3=x5C.x2+x3=x5D.2x2•x=2x3【解答】解:x6÷x2=x4≠x3,故选项A计算错误;(x2)3=x6≠x5,故选项B计算错误;x2与x3不是同类项,不能加减,故选项C计算错误;2x2•x=2x3,故选项D计算正确.故选:D.9.(2022•徐州一模)数轴上在√3和√10之间的整数有()A.0个B.1个C.2个D.3个【解答】解:∵1<3<4,9<10<16,∴1<√3<2,3<√10<4,∴在√3和√10之间的整数有2,3共2个,故选:C.10.(2022•邳州市一模)周末小明与同学相约在某餐厅吃饭,如图为此餐厅的菜单.若他们所点的菜单总共为10个汉堡,x杯饮料,y份沙拉,则他们点的B餐份数为()A.10﹣x B.10﹣y C.x﹣y D.10﹣x﹣y【解答】解:∵x杯饮料则在B和C餐中点了x份汉堡,∴点A餐为10﹣x,∴y份沙拉,则点C餐有y份,∴点B餐的份数为:10﹣(10﹣x)﹣y=x﹣y,故选:C.11.(2022•睢宁县模拟)下列计算正确的是()A.2a2﹣a2=2B.(a﹣b)2=a2﹣b2C.(﹣a3b)2=a6b2D.(2a+3)(a﹣2)=2a2﹣6【解答】解:∵2a2﹣a2=a2≠2,∴选项A不符合题意;∵(a﹣b)2=a2﹣2abb+2≠a2﹣b2,∴选项B不符合题意;∵(﹣a3b)2=a6b2,∴选项C符合题意;∵(2a+3)(a﹣2)=2a2﹣a﹣6≠2a2﹣6,∴选项D不符合题意;故选:C.二.填空题(共10小题)12.(2022•鼓楼区校级三模)如图,每个图案均由相同大小的圆和正三角形按规律排列,依照此规律,第n个图形中三角形的个数比圆的个数多(2n+1)个.(由含n的代数式表示)【解答】解:根据题意有,第1个图形,圆的个数为:1;正三角形的个数为:1×3+1;第2个图形,圆的个数为:2;正三角形的个数为:2×3+1;第3个图形,圆的个数为:3;正三角形的个数为:3×3+1;……,第n个图形,圆的个数为:n;正三角形的个数为:n×3+1;n×3+1﹣n=3n﹣n+1=2n+1,∴第n个图形中三角形的个数比圆的个数多(2n+1)个.故答案为:(2n+1).13.(2022•泉山区校级三模)√4=2.【解答】解:∵22=4,∴4的算术平方根是2,即√4=2.故答案为:2.14.(2022•丰县二模)太阳距离银河系中心约为250000000000000000公里,其中数据250000000000000000用科学记数法表示为 2.5×1017.【解答】解:数据250000000000000000用科学记数法表示为2.5×1017.故答案为:2.5×1017.15.(2022•丰县二模)计算:(x2)3•x﹣2=x4.【解答】解:(x2)3•x﹣2=x6•1x2=x4,故答案为:x4.16.(2022•丰县二模)数轴上的点A、B分别表示﹣2、3,则点A离原点的距离较近(填“A”或“B”).【解答】解:∵|﹣2|=2,|3|=3,∴点A离原点的距离较近,故答案为:A.17.(2022•徐州二模)2021“双十一”全网成交额约9650亿元.将数据“9650亿”用科学记数法表示9.65×1011.【解答】解:9650亿=965000000000=9.65×1011.故答案为:9.65×1011.18.(2022•邳州市一模)因式分解:b2﹣4b+4=(b﹣2)2.【解答】解:b2﹣4b+4=(b﹣2)2.故答案为:(b﹣2)2.19.(2022•徐州一模)新型冠状病毒呈球形或椭圆形有包膜,直径大约是80~160纳米,1纳米=10﹣9米.用科学记数法表示160纳米= 1.6×10﹣7米.【解答】解:∵1纳米=10﹣9米,∴160纳米=160×10﹣9米=1.6×10﹣7米.故答案为:1.6×10﹣7.20.(2021•徐州模拟)分解因式:m2+6m=m(m+6).【解答】解:原式=m(m+6).故答案为:m(m+6).21.(2022•贾汪区二模)已知√a+2有意义,则a的取值范围为a≥﹣2.【解答】解:∵√a+2有意义,∴a+2≥0,解得a≥﹣2,即a的取值范围为a≥﹣2.故答案为:a≥﹣2.三.解答题(共9小题)22.(2022•鼓楼区校级三模)计算:(1)20220﹣(−12)﹣1﹣|3−√8|;(2)(1+1x−2)÷x−1x−2.【解答】解:(1)20220﹣(−12)﹣1﹣|3−√8|=1﹣(﹣2)﹣(3﹣2√2)=1+2﹣3+2√2=2√2;(2)(1+1x−2)÷x−1x−2=x−1 x−2⋅x−2 x−1=1.23.(2022•丰县二模)计算:(1)(﹣1)2022+|﹣4|+(12)﹣1−√273;(2)(1−1a)÷a2−2a+1a.【解答】解:(1)(﹣1)2022+|﹣4|+(12)﹣1−√273=1+4+2﹣3=4;(2)(1−1a)÷a2−2a+1a=a−1a⋅a(a−1)2 =1a−1.24.(2022•徐州二模)(1)计算:(12)−2−tan45°−(π−3)0+√4;(2)化简:(1−1x+2)÷x2−1x+2.【解答】解:(1)原式=4﹣1﹣1+2=4;(2)原式=x+2−1x+2•x+2(x+1)(x−1)=x+1 x+2•x+2 (x+1)(x−1)=1x−1.25.(2022•贾汪区二模)计算:(1)20220+(12)−1−|−3|+√−83;(2)(x−1x)÷x2−2x+1x.【解答】解:(1)20220+(12)−1−|−3|+√−83=1+2﹣3+(﹣2)=﹣2; (2)(x −1x)÷x 2−2x+1x=x 2−1x ⋅x (x−1)2=(x+1)(x−1)(x−1)2=x+1x−1. 26.(2022•睢宁县模拟)计算: (1)(−2)3−(−3)−(13)−1+√8; (2)a a 2−4÷(1−2a+2). 【解答】解:(1)原式=﹣8+3﹣3+2√2 =﹣8+2√2.(2)原式=a(a+2)(a−2)÷a+2−2a+2 =a(a+2)(a−2)•a+2a=1a−2. 27.(2022•邳州市一模)计算:(1)(﹣1)2022+|﹣5|﹣(13)﹣1+√12;(2)a−1a 2÷(1−1a 2). 【解答】解:(1)(﹣1)2022+|﹣5|﹣(13)﹣1+√12 =1+5﹣3+2√3 =3+2√3; (2)a−1a 2÷(1−1a 2) =a−1a2⋅a 2(a−1)(a+1)=1a+1.28.(2022•徐州一模)计算:(1)|−√3|﹣(4﹣π)0+2sin60°+(12)﹣1;(2)(1x+1−1x−1)÷2x 2−1. 【解答】解:(1)原式=√3−1+2×√32+2=√3−1+√3+2=2√3+1;(2)原式=[x−1(x+1)(x−1)−x+1(x+1)(x−1)]•(x+1)(x−1)2 =x−1−x−1(x+1)(x−1)•(x+1)(x−1)2=﹣1. 29.(2022•徐州一模)计算:(1)√12+4﹣1﹣(12)﹣1+|−√3|; (2)(1x+3−1)×x 2+6x+9x 2−4. 【解答】解:(1)√12+4﹣1﹣(12)﹣1+|−√3| =2√3+14−2+√3=3√3−74;(2)(1x+3−1)×x 2+6x+9x 2−4=1−x−3x+3•(x+3)2(x+2)(x−2)=−2−x x+3•(x+3)2(x+2)(x−2) =−x+3x−2.30.(2022•鼓楼区校级二模)计算:(1)|−4|−20220+√273−(13)−1;(2)(a +2a+1a )÷a 2−1a. 【解答】解:(1)|−4|−20220+√273−(13)−1=4﹣1+3﹣3=3;(2)(a +2a+1a )÷a 2−1a=a 2+2a+1a •a (a+1)(a−1) =(a+1)2a •a (a+1)(a−1) =a+1a−1.。
1-数与式(共17张ppt-)共18页文档

a
a
即a22a12 10,
a2
1 a2
8
a2
2
1 a2
6
(a 1 )2 6 a
所以
a
1 a
6。
引导学生读懂数学书课题研究成果配套课件 课件制作:谢达生
20.观察下列各式:
(x 1)(x 1) x2 1; (x 1)(x2 x 1) x3 1; (x 1)(x3 x2 x 1) x4 1;
2
解:原式 2 3 3 1 2 3 3 2 11 2 3 2 32
(2) 8( 2 1 )
2
解:原式 82811 642 2
引导学生读懂数学书课题研究成果配套课件 课件制作:谢达生
三、解答题
17.计算与化简:
(3) 1 x2 1 (1 ) xx
15.若多项式 4x2kx25是个完全平方式
,
20或 -20
引导学生读懂数学书课题研究成果配套课件 课件制作:谢达生
16.观察下面的图形,它们是按一定规律 排列的,依照此规律,第____1_5___个图形 共有120个.
引导学生读懂数学书课题研究成果配套课件 课件制作:谢达生
三、解答题 17.计算与化简: (1) 113ta3n0(1 2)012
2a2 6a2 6a6 a2 6a
当a 21时,原式 ( 21)2 6( 21)
4 23
引导学生读懂数学书课题研究成果配套课件 课件制作:谢达生
19.已知 a 1 10 ,求 a 1 的值.
a
a
解: 因为 a 1 10 ,所以 (a 1)2 10;
解:原式 ( x 1 ) x
初中数学中考一轮复习专题1数与式重点、考点知识、方法总结及真题练习

在实数范围内,正数和零统称为非负数.我们已经学习过的非负数有如下三种形式:
(1)仸何一个实数 a 的绝对值是非负数,即| a |≥0; (2)仸何一个实数 a 的平方是非负数,即 a2 ≥0; (3)仸何非负数的算术平方根是非负数,即 a 0 ( a 0 ).
非负数具有以下性质: (1)非负数有最小值零; (2)有限个非负数乊和仍是非负数; (3)几个非负数乊和等于 0,则每个非负数都等于 0. 4.实数的运算
a a (a 0, b 0) bb
②.加减法
将二次根式化为最简二次根式后,将同类二次根式的系数相加减,被开方数和根指数丌变,
即合并同类二次根式.
【典例】
1.计算:5 +
﹣×+ ÷.
【答案】 【解析】解:原式= + ﹣
+3 ÷
=2 ﹣1+3
=2 +2.
x xy xy y
2.若 x 0 ,化简
注:单独一个字母戒一个数也是代数式.
2.代数式的分类:
3.代数式的书写规则: (1)数字不字母相乘戒字母不字母相乘,通常把乘号写作“ ”戒省略丌写,字母乊间的
顺序可以交换,但一般按字母表中的先后顺序写.数字应在字母乊前.如: 3b 丌要写成 b3 (2)在代数式中出现除法运算时,一般都变成分数和乘法来计算.如: 2a b 写成 2a
x
2
0
即
x
1 且x 2
2
.
【难度】易
【结束】
2.若
,则 ( )
A. b>3B. b<3C. b≥3D. b≤3
【答案】D.
【解析】
3 b = 3 b ,所以 3 b ≥0,即 b 3 .
(完整版)专题一-数与式-方程与不等式--自主练习题

专题一 数与式 方程与不等式自主练习题1.规定用符号[m ]表示一个实数m 的整数部分,例如:[]=0,[3.14]=3.按此规定 []的值为 . 2.设,,则=( )A .2 3B . 3C . 6D .33.若,则= .4.如果关于x 的一元二次方程22110kx k x -++=有两个不相等的实数根,那么k 的取值范围是( )A .k <B .k <且k ≠0C .﹣≤k <D .﹣≤k <且k ≠05.如图,将矩形沿图中虚线(其中x >y )剪成四块图形,用这四块图形恰能拼一个正方形.若y =2,则x 的值等于( )A .3B .25-1C .1+5D .1+2 6.若x 1,x 2是方程(x -a )(x -b )= 1(a <b )的两个根,则实数x 1,x 2,a ,b 的大小关系为( )A .x 1<x 2<a <bB .x 1<a <x 2<bC .x 1<a <b <x 2D .a <x 1<b <x 2 7.一个正方体物体沿斜坡向下滑动,其截面如图所示.正方形DEF H 的边长为2米,坡角∠A =30°,∠B =90°,BC =6米.当正方形DEF H 运动到什么位置,即当AE = 米时,有DC 2=AE 2+BC 2.8.如图,甲类纸片是边长为2的正方形,乙类纸片是边长为1的正方形,丙类纸片是长、宽分别为2和1的长方形.如果现有甲类纸片1张,乙类纸片4张,那么应至少取丙类纸片 张,才能用它们拼成一个新的正方形.9.按如下程序进行运算:并规定,程序运行到“结果是否大于65”为一次运算,且运算进行4次才停止。
则可输入的整数x 的个数是 .10.若多项式x 4+mx 3+nx -16含有因式(x -2)和(x -1),则mn 的值是( ) A .100 B .0 C .-100 D .5011.设201421,...,,a a a 是从1,0,1-这三个数中取值的一列数,若69...201421=+++a a a ,4001)1(...)1()1(220142221=++++++a a a ,则201421,...,,a a a 中为0的个数____________。
专题一:数与式课件

总复习1—数与式(一)知识点1.数的分类0⎧⎧⎧⎪⎪⎪⎨⎪⎪⎪⎪⎪⎨⎪⎩⎨⎪⎧⎪⎪⎨⎪⎪⎩⎩⎪⎪⎩正整数整数负整数有理数实数正分数分数负分数无理数——无线不循环小数0⎧⎧⎧⎪⎨⎪⎨⎩⎪⎪⎪⎩⎪⎪⎨⎪⎧⎧⎪⎨⎪⎪⎨⎩⎪⎪⎪⎩⎩正数有理数正数分数无理数实数整数有理数负数分数无理数 2.有关概念:实数、有理数、无理数、数轴、相反数、绝对值、倒数、自然数、平方根、算术平方根、立方根、二次根式、最简二次根式、同类二次根式、分母有理化(1)实数:有理数和无理数统称为实数 (2)有理数:整数和分数统称为有理数(3)无理数:无限不循环的小数叫无理数。
如:1.413……,,带且开方开不尽的数。
(4)数轴:规定原点、正方向、单位长度的直线。
(5)相反数:只有符号不同的两个数(6)绝对值:在数轴上表示数a 的点到原点的距离叫做数a 的绝对值。
绝对值意义:一个正数的绝对值等于它本身; 一个负数的绝对值等于它的相反数;零的绝对值等于零。
即=(7)倒数:如果两个数的积等于1,那么这两个数互为倒数(0没有倒数) (8)自然数:非负整数,如:0、1、2、3、4、…… (9)平方根、算术平方根:如果,那么x 叫做a 的平方根。
其中叫非负数a 的算术平方根平方根意义:一个正数有两个平方根,它们互为相反数;负数没有平方根;零的平方根是零。
(10)非负数a 的正的平方根叫做a 的是算术平方根(11)立方根:如果= a,那么x叫做a的立方根x =(12)二次根式:式子(a0)叫做二次根式(13)最简二次根式:满足下列两个条件的二次根式叫做最简二次根式:①被开放数中不能含有开得尽方的因数或因式②被开方数中不含有分母(14)同类二次根式:几个二次根式化成最简二次根式后如果被开方数相同,那么这几个二次根式叫做同类二次根式(15)分母有理化:利用= a(a)和平方差公式将分母中的化去的过程叫分母有理化。
3.有理数加减乘除运算(1)有理数加法法则:①同号两数相加,取相同的符号,并把绝对值相加。
专题一数与式1

1.2008年5月27日,北京2008年奥运会火炬 接力传递活动在南京境内举行,火炬传递 路线全程为12900m,将12900用科学记数法 表示应为( B )
A.0.129×104 B.1.29×104 C.12.9×103 D.129×102
专题一 数与式(一)
四川省成都列五中学 李降云
一、实数的有关概念及 实数的分类
二、实数的运算
知识结构
实数的有关概念
实数的有关概念及分类
实
实数的分类
数
实数的运算法则
实数的运算
实数的运算律
实数的运算顺序
一、实数的有关概念及分类
1 .实数的分类
(1)按定义分
整数
有理数
实 数
分数
正整数 零 负整数
自然数(也 叫非负整数)
72
无理数的个数有( B )个 A. 3个 B. 4个 C. 5个 D. 6个
常见错误:把 9, 22 当成无理数;
7
把 2 当成有理数。
2
2 .数轴:规定了原点,正方向,单位长度 的直线叫数轴。
3 .相反数:实数 a 的相反数是 a,0的
相反数是0。
(1)a,b互为相反数
a+b=0。
(2)在数轴上表示相反数的两点关于原 点对称。
值相加; 绝对值不相等的异号两数相加,取绝对值
较大的加数的符号,并用较大的绝对值减去 较小的绝对值;互为相反数的两数相加得0;
一个数同0相加,仍得这个数。
(2)实数的减法法则: 减去一个数,等于加上它的相反数。
(3)实数的乘法法则:两数相乘, 同号得正,异号得负,并把绝对值相乘。 任何数同0相乘,都得0。
复习1数与式综合复习题

数学·数与式专题训练(一) 姓名1、在芯片上某种电子元件大约只占0.000 000 7(毫米2),这个数用科学记数法表示为2、1583.45亿元.这个数据用科学记数法表示约为 元(保留三位有效数字).3、从实数-2,-31,0,л,4中,挑选出的两个数都是无理数的为 4、根据如图所示的程序计算,若输入x 的值为1, 则输出y 的值为 。
5、当x = 时,分式33x x --无意义.若分式122--x x 的值为0,则x 的值为6、若0a >且2xa=,3y a =,则x ya-= 7、分解因式33222ax y axy ax y+-=812⎛⎫⎪⎝⎭= 01)41.12(45tan 32)31(-++---==9、若实数x y ,2(0y +-=,则x y -的值是 .10、计算:11(1)52-⎛⎫π-+-+-- ⎪⎝⎭= .11、已知抛物线21y x x =--与x 轴的一个交点为(0)m ,,则代数式22008m m -+的值为 12、各式正确的是( )A .33--= B .326-=- C .(3)3--= D .0(π2)0-=13、计算正确的是( )A.=B=C3=D3=-14、实数a 在数轴上对应的点如图所示,则a 、-a 、1的大小关系正确的是( )A .-a <a <1B .a <-a <1C .1<-a <aD .a <1<-a 15、正确的是( )A.B.22122x x--=-C.D.16、一个正方体的水晶砖,体积为100cm 3,它的棱长大约在( )A .4cm~5cm 之间B .5cm~6cm 之间C .6cm~7cm 之间D .7cm~8cm 之间17、完全平方式的是( )A .22b ab a ++ B .222++a a C .222b b a +- D .122++a a18、判断正确的是()A23<3<2 B . 2<2+3<3 C . 1<5-3<2D . 4<3·5<50 119、下列运算正确的是( ) A .3412x x x= B .623(6)(2)3x x x -÷-= C .23a a a -=-D .22(2)4x x -=-20、观察等式:111122=-⨯,1112323=-⨯,1113434=-⨯,(1)猜想并写出:1(1)n n =+ .(2)直接写出计算结果:1111122334(1)n n ++++=⨯⨯⨯+ (用含有n 的式子表示)(3)若1111 (13)3557(21)(21)n n ++++⨯⨯⨯-+的值为1735,求n 的值.21、如图,实数a 、b 在数轴上的位置,化简-=22、在实数的原有运算法则中,我们补充新运算法则 “ * ” 如下:当a ≥b 时,2*a b b =;当a < b 时,*a b a =.则当x = 2时,(1*)(3*)x x x - =__________.(“ · ” 和 “ – ”仍为实数运算中的乘号和减号) 23、请从下列三个代数式中任选两个构成一个分式,并化简该分式:x2-4xy+4y2 x2-4y2 x-2y24、 先化简,再求值:(1)xx x x x x xx x 416)44122(2222+-÷+----+,其中x =22+.(2)2221121x x x x x x --⋅+-+,x 满足.2320x x -+= (3)(abb a22++2)÷ba ba--22,其中2=a ,21-=b .。
专题1 数与式的运算

专题01数与式的运算本专题在初中、高中扮演的角色初中阶段“从分数到分式”,通过观察、分析、类比,找出分式的本质特征,及它们与分数的相同点和不同点,进而归纳得出分式的概念及运算性质,我们已经运用的这些思想方法是高中继续学习的法宝.二次根式是在学习了平方根、立方根等内容的基础上进行的,是对“实数”、“整式”等内容的延伸和补充,对数与式的认识更加完善.二次根式的化简对勾股定理的应用是很好的补充;二次根式的概念、性质、化简与运算是高中学习解三角形、一元二次方程、数列和二次函数的基础.二次根式是初中阶段学习数与式的最后一章,是式的变形的终结章.当两个二次根式的被开方数互为相反数时,可用“夹逼”的方法推出,两个被开方数同时为零.本专题内容蕴涵了许多重要的数学思想方法,如类比的思想(指数幂运算律的推广)、逼近的思想(有理数指数幂逼近无理数指数幂),掌握运算性质,能够区别n的异同. 通过与初中所学的知识进行类比,理解分数指数幂的概念,进而学习指数幂的性质,掌握分数指数幂和根式之间的互化,掌握分数指数幂的运算性质.高中必备知识点1:绝对值绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即:,0,||0,0,,0.a a a a a a >⎧⎪==⎨⎪-<⎩绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离. 两个数的差的绝对值的几何意义:b a -表示在数轴上,数a 和数b 之间的距离.典型考题【典型例题】阅读下列材料:我们知道x 的几何意义是在数轴上数x 对应的点与原点的距离,即x =0x -,也就是说,x 表示在数轴上数x 与数0对应的点之间的距离;这个结论可以推广为21x x -表示在数轴上数1x 与数2x 对应的点之间的距离; 例1解方程|x |=2.因为在数轴上到原点的距离为2的点对应的数为2±,所以方程|x |=2的解为2±=x .例2解不等式|x -1|>2.在数轴上找出|x -1|=2的解(如图),因为在数轴上到1对应的点的距离等于2的点对应的数为-1或3,所以方程|x -1|=2的解为x =-1或x =3,因此不等式|x -1|>2的解集为x <-1或x >3.例3解方程|x -1|+|x +2|=5.由绝对值的几何意义知,该方程就是求在数轴上到1和-2对应的点的距离之和等于5的点对应的x 的值.因为在数轴上1和-2对应的点的距离为3(如图),满足方程的x 对应的点在1的右边或-2的左边.若x 对应的点在1的右边,可得x =2;若x 对应的点在-2的左边,可得x =-3,因此方程|x -1|+|x +2|=5的解是x =2或x =-3.参考阅读材料,解答下列问题:(1)方程|x +2|=3的解为 ;(2)解不等式:|x -2|<6;(3)解不等式:|x -3|+|x +4|≥9;(4)解方程: |x -2|+|x +2|+|x -5|=15.(1)1x =或x =-5;(2)-4<x <8;(3)x ≥4或x ≤-5;(4)103x =-或203x = . (1)由已知可得x+2=3或x+2=-3解得1x =或x =-5.(2)在数轴上找出|x -2|=6的解.∵在数轴上到2对应的点的距离等于6的点对应的数为-4或8, ∴方程|x -2|=6的解为x =-4或x =8,∴不等式|x -2|<6的解集为-4<x <8.(3)在数轴上找出|x -3|+|x +4|=9的解.由绝对值的几何意义知,该方程就是求在数轴上到3和-4对应的点的距离之和等于15的点对应的x 的值. ∵在数轴上3和-4对应的点的距离为7,∴满足方程的x 对应的点在3的右边或-4的左边.若x 对应的点在3的右边,可得x =4;若x 对应的点在-4的左边,可得x =-5,∴方程|x -3|+|x +4|=9的解是x =4或x =-5,∴不等式|x -3|+|x +4|≥9的解集为x ≥4或x ≤-5.(4)在数轴上找出|x-2|+|x+2|+|x-5|=15的解.由绝对值的几何意义知,该方程就是求在数轴上到2和-2和5对应的点的距离之和等于9的点对应的x的值.∵在数轴上-2和5对应的点的距离为7,∴满足方程的x对应的点在-2的左边或5的右边.若x对应的点在5的右边,可得203x=;若x对应的点在-2的左边,可得103x=-,∴方程|x-2|+|x+2|+|x-5|=15的解是103x=-或203x=.【变式训练】实数在数轴上所对应的点的位置如图所示:化简.a-2b解:由数轴知:a<0,b>0,|a|>|b|,所以b-a>0,a-b<0原式=|a|-(b-a)-(b-a)=-a-b+a-b+a=a-2b【能力提升】已知方程组的解的值的符号相同.(1)求的取值范围;(2)化简:.(1) −1<a<3;(2).(1)①+②得:5x=15−5a,即x=3−a,代入①得:y=2+2a,根据题意得:xy=(3−a)(2+2a)>0,解得−1<a<3;(2)∵−1<a<3,∴当−1<a<3时,高中必备知识点2:乘法公式我们在初中已经学习过了下列一些乘法公式:(1)平方差公式22()()a b a b ab +-=-; (2)完全平方公式222()2a b a ab b ±=±+.我们还可以通过证明得到下列一些乘法公式:(1)立方和公式2233()()a b aab b a b +-+=+; (2)立方差公式2233()()a b a ab b a b -++=-;(3)三数和平方公式2222()2()a b c a b c ab bc ac ++=+++++; (4)两数和立方公式33223()33a b a a b ab b +=+++; (5)两数差立方公式33223()33a b a a b ab b -=-+-.典型考题【典型例题】 (1)计算:203212016(2)(2)2-⎛⎫-++-÷- ⎪⎝⎭(2)化简:2(2)(2)(2)a b a b a b +--- (1)3(2)4ab-8b 2解:(1)原式=4+1+(-8)÷4 =5-2=3(2)原式=a 2-4b 2-(a 2-4ab+4b 2)=a 2-4b 2-a 2+4ab-4b 2=4ab-8b 2【变式训练】计算:(1)0221( 3.14)(4)()3π--+--(2)2(3)(2)(2)x x x --+-(1)8 (2)-6x+13(1)原式=1+16-9=8;(2)原式=x 2-6x+9-(x 2-4)=x 2-6x+9-x 2+4=-6x+13.【能力提升】已知10x =a ,5x =b ,求:(1)50x 的值;(2)2x 的值;(3)20x 的值.(结果用含a 、b 的代数式表示) (1)ab;(2)a b ;(3)2a b. 解:(1)50x =10x ×5x =ab ; (2)2x =xx x 1010a 55b ⎛⎫== ⎪⎝⎭; (3)20x =x x 2x x 1010a 101055b ⎛⎫⨯=⨯= ⎪⎝⎭.高中必备知识点3:二次根式0)a ≥的代数式叫做二次根式.根号下含有字母、且不能够开得尽方的式子称为无理式.例如32a b 212x ++,22x y ++1.分母(子)有理化把分母(子)中的根号化去,叫做分母(子)有理化.为了进行分母(子)有理化,需要引入有理化因式的概念.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为有理化因式,例如与,b 与b 互为有理化因式.分母有理化的方法是分母和分子都乘以分母的有理化因式,化去分母中的根号的过程;而分子有理化则是分母和分子都乘以分母的有理化因式,化去分子中的根号的过程在二次根式的化简与运算过程中,二次根式的乘法可参照多项式乘法进行,运算中要运用公式0,0)a b =≥≥;而对于二次根式的除法,通常先写成分式的形式,然后通过分母有理化进行运算;二次根式的加减法与多项式的加减法类似,应在化简的基础上去括号与合并同类二次根式.2a ==,0,,0.a a a a ≥⎧⎨-<⎩典型考题【典型例题】计算下面各题.(1)2163)1526(-⨯-;(2(1) 56-;(2)(1)×3﹣6=﹣=﹣(2)x 4﹣4x=2x 4x2x .【变式训练】时,想起分配律,于是她按分配律完成了下列计算:==她的解法正确吗?若不正确,请给出正确的解答过程.不正确,见解析解:不正确,正确解答过程为:【能力提升】先化简,再求值:(2a b a b -+-b a b -)÷a 2b a b-+,其中,.2a a b -. 解:(2a b a b -+-b a b -)÷a 2b a b-+ =()()()()()2a b a b b a b a b a b a b a 2b ---++⋅+--=2222a 3ab b ab b 1a b a 2b-+--⋅-- =()2a a 2b 1a ba 2b -⋅-- =2a a b -, 当+3,-3时,原式22=33.高中必备知识点4:分式1.分式的意义形如A B 的式子,若B 中含有字母,且0B ≠,则称A B 为分式.当M ≠0时,分式A B具有下列性质: A A M B B M⨯=⨯; A A M B B M÷=÷. 上述性质被称为分式的基本性质.2.繁分式 像a b c d+,2m n p m n p+++这样,分子或分母中又含有分式的分式叫做繁分式.典型考题【典型例题】先化简,再求值22122()121x x x x x x x x +++-÷--+,其中x 满足x 2+x ﹣1=0.21x x -,1. 解:原式=()()()221-211121x x xx x x x x ---=-+210x x +﹣=,21x x ∴=﹣,∴原式=1.【变式训练】化简:22442x xy y x y -+-÷(4x 2-y 2)y x +2122442x xy y x y -+-÷(4x 2-y 2)=2(2)12(2)(2)x y x y x y x y -⨯-+-=y x +21.【能力提升】已知:112a b -=,则ab b a bab a 7222+---的值等于多少?43-.解:∵112a b -=,∴a-b=-2ab ,则2ab 2ab44ab 7ab 3--=--+专题验收测试题1.如图,若实数m =﹣7+1,则数轴上表示m 的点应落在()A .线段AB 上 B .线段BC 上 C .线段CD 上D .线段DE 上B∵实数m+1,23<<∴﹣2<m<﹣1,∴在数轴上,表示m的点应落在线段BC上.故选:B.2.观察下列各式及其展开式:(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5…请你猜想(a+b)10的展开式第三项的系数是()A.36 B.45 C.55 D.66 B(a+b)2=a2+2ab+b2;(a+b)3=a3+3a2b+3ab2+b3;(a+b)4=a4+4a3b+6a2b2+4ab3+b4;(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5;(a+b)6=a6+6a5b+15a4b2+20a3b3+15a2b4+6ab5+b6;(a+b)7=a7+7a6b+21a5b2+35a4b3+35a3b4+21a2b5+7ab6+b7;第8个式子系数分别为:1,8,28,56,70,56,28,8,1;第9个式子系数分别为:1,9,36,84,126,126,84,36,9,1;第10个式子系数分别为:1,10,45,120,210,252,210,120,45,10,1,则(a+b)10的展开式第三项的系数为45.故选B.3.已知1-1xx=,则221xx+等于()A.3 B.2 C.1 D.0 A∵1-1 xx=,∴21-1x x ⎛⎫= ⎪⎝⎭, 即221-2+1x x ⎛⎫= ⎪⎝⎭, ∴221-=3x x.故选A . 4.设边长为3的正方形的对角线长为a ,下列关于a 的四种说法:① a 是无理数;② a 可以用数轴上的一个点来表示;③ 3<a<4;④ a 是18的算术平方根.其中,所有正确说法的序号是 A .①④ B .②③C .①②④D .①③④C根据勾股定理,边长为3的正方形的对角线长为a = 根据实数与数轴上的一点一一对应的关系,a 可以用数轴上的一个点来表示,故说法②正确.∵216<a 18<25=,∴4<a =,故说法③错误.∵2a 18=,∴根据算术平方根的定义,a 是18的算术平方根,故说法④正确. 综上所述,正确说法的序号是①②④.故选C .5.定义一种关于整数n 的“F ”运算:一、当n 为奇数时,结果为3n +5;二、当n 为偶数时,结果为2k n(其中k 是使2k n为奇数的正整数),并且运算重复进行.例如:取n =58,第一次经F 运算是29,第二次经F 运算是92,第三次经F 运算是23,第四次经F 运算是74……,若n =449,求第2020次运算结果是( ) A .1 B .2C .7D .8A设449经过n 次运算结果为n a ,则11352a =,2169a =,3512a =,41a =,58a =,61a =,⋯,21n a ∴=,218(2n a n +=且n 为整数).∵2020为偶数,20201a ∴=.故选:A6.如图所示,将形状、大小完全相同的“•”和线段按照一定规律摆成下列图形,第1幅图形中“•”的个数为1a ,第2幅图形中“•”的个数为2a ,第3幅图形中“•”的个数为3a ,…,以此类推,则123191111a a a a ++++…的值为( )A .2021B .6184C .589840D .431760C∵第一幅图中“•”有1133a =⨯=个;第二幅图中“•”有2248a =⨯=个; 第三幅图中“•”有33515a =⨯=个;∴第n 幅图中“•”有()2na n n =+(n 为正整数)个∴111122n a n n ⎛⎫=- ⎪+⎝⎭∴当19n =时123191111a a a a ++++ (1111)3815399=++++11111324351921=++++⨯⨯⨯⨯ 1111111111112322423521921⎛⎫⎛⎫⎛⎫⎛⎫=⨯-+⨯-+⨯-++⨯- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭1111111112324351921⎛⎫=⨯-+-+-++- ⎪⎝⎭11111222021⎛⎫=⨯+-- ⎪⎝⎭589840=.故选:C 7.定义新运算,*(1)a b a b =-,若a 、b 是方程2104x x m -+=(0m <)的两根,则**b b a a -的值为()A .0B .1C .2D .与m 有关A根据题意可得()()22**11b b a a b b a a b b a a -=---=--+,又因为a ,b 是方程2104x x m -+=的两根,所以2104a a m -+=,化简得214a a m -=-,同理2104b b m -+=,214b b m -=-,代入上式可得()()222211044b b a a b b a a m m ⎛⎫⎛⎫--+=--+-=--+-= ⎪ ⎪⎝⎭⎝⎭,故选A .8.已知1x ,2x ,…,2019x 均为正数,且满足()()122018232019Mx x x x x x =++++++,()()122019232018N x x x x x x =++++++,则M ,N 的大小关系是()A .M N <B .MN >C .MN D .M N ≥B根据题意,设122018p x x x =+++,232018q x x x =++,∴1p q x -=,∴()()12201823201920192019()Mx x x x x x p q x pq p x =++++++=•+=+•; ()()12201923201820192019()N x x x x x x p x q pq q x =++++++=+•=+•;∴20192019()MN pq p x pq q x -=+•-+•=2019()x p q •- =201910x x •>;∴MN >;故选:B.9.下列运算正确的是( )A .1a b a b b a -=--B .m n m na b a b --=- C .11b b a a a+-=D .2221a b a b a b a b+-=--- D根据分式的减法法则,可知:a b a b b a ---=a b a b a b +--=a ba b +-,故A 不正确;由异分母的分式相加减,可知m n a b -==bm an bm anab ab ab --,故B 不正确;由同分母分式的加减,可知11b b a a a+-=-,故C 不正确; 由分式的加减法法则,先因式分解通分,即可知2221a b a b a b a b+-=---,故D 正确.故选:D. 10.已知a ,b 为实数且满足1a ≠-,1b ≠-,设11=+++a b M a b ,1111=+++N a b .①若1ab =时,M N ;②若1ab >时,M N >;③若1ab <时,M N <;④若0a b +=,则0M N ≤.则上述四个结论正确的有( ) A .1 B .2C .3D .4D对于①,可知(1)(1)2(1)(1)(1)(1)a b b a a b ab M a b a b +++++==++++,2(1)(1)a b N a b ++=++,若1ab =时,M N ,正确;对于②,也可分析得到;对于③④同样如此.11.若11122299919991a +=+,22233399919991b +=+,则a 与b 的大小关系为( ) A .a b > B .a b =C .a b <D .无法确定A∵11122299919991a +=+,22233399919991b +=+, ∴1112222223339991999199919991a b ++-=-++ =()()()()()211133322222222299919991999199919991++-+++=()()111333222222333999999999999199291++-⨯+=()()()1112222222223339999999999991999211⨯+-++⨯>()()111222222222333999999999999199291+⨯-⨯+>0,∴a b >.故选A .12.已知实数x ,y ,z 满足1x y ++1y z ++1z x +=76,且z x y x y y z z x+++++=11,则x +y +z 的值为( )A .12B .14C .727D .9A11z x y x y y z z x ++=+++, 11114z x y x y y z z x∴+++++=+++, 即14x y z x y z x y zx y y z z x ++++++++=+++,11114x y y z z x x y z∴++=+++++, 而11176x y y z z x ++=+++, 1476x y z ∴=++,12x y z ∴++=.故选:A .13.已知226a b ab +=,且a>b>0,则a ba b+-的值为( )A B .C .2D .±2A∵a 2+b 2=6ab ,∴(a+b )2=8ab ,(a-b )2=4ab , ∵a >b >0,∴a+b=a-b=∴a ba b +-= A.14有意义,那么直角坐标系中点A(a,b)在( )A.第一象限B.第二象限C.第三象限D.第四象限A根据二次根式的概念,可知a≥0,ab>0,解得a>0,b>0,因此可知A(a,b)在第一象限.故选A15.已知a的最小值为()A.0 B.3 C.D.9B根据题意,由,可知当(a﹣3)2=0,即a=3时,代数的值最小,为故选B.16.已知m、n m,n)为()A.(2,5)B.(8,20)C.(2,5),(8,20)D.以上都不是Cm、n是正整数,∴m=2,n=5或m=8,n=20,当m=2,n=5时,原式=2是整数;当m=8,n=20时,原式=1是整数;即满足条件的有序数对(m,n)为(2,5)或(8,20),故选:C.17.已知31=3,32=9,33=27,34=81,35=243,36=729,37=2187…….则3+32+33+34+…+32019的末位数字是____.9.∵31=3,32=9,33=27,34=81,35=243,36=729,37=2187……,∴尾数四个一循环,∴每四个的尾数和是0.∵2019÷4=504…3,∴3+32+33+34+…+32019的末位数字是9.故答案为:9.C,最小正方形的周长是18.如图,将一个正方形分割成11个大小不同的正方形,记图中最大正方形的周长是12C,则12C C =_____.432如图,设,AB x BC y ==,最大正方形标记为0号,被分割成的11个正方形标记为1-11号,其中最小正方形标记为11号,各个正方形的边长求解过程如下: 0号:1号+2号得x y +5号:1号-2号得y x -3号:2号-5号得()2x y x x y --=-4号:0号-2号-3号得(2)22x y x x y y x +---=- 7号:3号-4号得2(22)43x y y x x y ---=- 6号:4号-7号得22(43)56y x x y y x ---=- 10号:0号-1号得x9号:0号-4号-6号-10号得(22)(56)86x y y x y x x x y +-----=- 8号:10号-9号得(86)67x x y y x --=- 11号:6号-7号得56(43)810y x x y y x ---=- 或9号-6号得86(56)1411x y y x x y ---=- 因此x 和y 满足等式:8101411y x x y -=- 整理得:1924x y =所以最大正方形(0号)的周长1434()6C x y y =+=最小正方形(11号)的周长214(1411)3C x y y =-=则12432C C =.19.对于整数a ,b ,c ,d ,定义a d b c =ac ﹣bd ,已知1<1d 4b<3,则b+d 的值为_______.±3根据题意,得1<4–bd <3,化简,得1<bd <3, a ,b ,c ,d 均为整数,∴db =2, ∴当d =1时b =2或当d =–1时b =–2, ∴b +d =3或b +d =–3.20. 已知21x y =⎧⎨=⎩,是二元一次方程组81mx ny nx my +=⎧⎨-=⎩的解,则m+3n 的平方根为______.±3把21x y =⎧⎨=⎩代入方程组得:2821m n n m +=⎧⎨-=⎩①②,①×2-②得:5m =15, 解得:m =3,把m =3代入①得:n =2,则m +3n =3+6=9,9的平方根是±3, 故答案为:±3 21.若m 满足关系式35223x y m x y m +--+-199199x y x y =---+m =________.201由题意可得,199-x-y ≥0,x-199+y ≥0, ∴199-x-y=x-199+y=0,∴x+y=199①.=0,∴3x+5y-2-m=0②,2x+3y-m=0③,联立①②③得,1993520230x y x y m x y m +=⎧⎪+--=⎨⎪+-=⎩①②③,②×2-③×3得,y=4-m , 将y=4-m 代入③,解得x=2m-6,将x=2m-6,y=4-m 代入①得,2m-6+4-m=199,解得m=201. 故答案为:201.22.若214x x x++=,则2211x x ++= ________________.8∵214x x x ++=可化为13x x +=,2211x x ++化为211x x ⎛⎫+- ⎪⎝⎭∴原式=211x x ⎛⎫+- ⎪⎝⎭=32-1=823.已知22143134m n m n =--+,则11m n+的值等于______. 1322143134m n m n =--+221(2)(6)04m n -++=,则20m -=,60n +=, 所以2m =,6n =-, 所以11111263m n +=-=. 故答案是:13. 24.已知函数1x f xx,那么1f _____.2+因为函数1x f xx,所以当1x =时, 211()2221f x .25.先化简,再求值:24211326x x x x -+⎛⎫-÷⎪++⎝⎭,其中1x =..原式=221(1)12(3)232(3)3(1)1x x x x x x x x x ---+⎛⎫⎛⎫÷=⋅= ⎪ ⎪+++--⎝⎭⎝⎭.将1x == 26.观察下列等式:1)131====-====回答下列问题:(1(2;(3+….(1(2;(3)1 (12575752227575 527755=(222121212121n n n n n 2222212121n n n n 22212121n n n n 22221n n2121n n(3)由(22121121n n n n3153757573 =153757573 31537573717573175 531270=(1)求实数,a b 的值;(2的整数部分为x ,小数部分为y①求2x y +的值;②已知10kx m =+,其中k 是一个整数,且01m <<,求k m -的值.(1)7a =;21b =;(2)①4(10=,2490a -=且70a +≠,∴30a b -=,2490a -=且70a +≠, 即7,21a b ;(2)∵162125,∴45<<,即的整数部分为4,小数部分为4,①244)4x y +=+=;②∵12<<,∴8109<<,又∵104kx m k m =+=+,k 是一个整数,且01m <<,∴2,10242k m ==-⨯=∴2(2k m -=--=28.已知下面一列等式: 111122⨯=-;11112323⨯=-;11113434⨯=-;11114545⨯=-;… (1)请你按这些等式左边的结构特征写出它的一般性等式:(2)验证一下你写出的等式是否成立;(3)利用等式计算:11(1)(1)(2)x x x x ++++11(2)(3)(3)(4)x x x x ++++++. (1)一般性等式为111=(+11n n n n -+);(2)原式成立;详见解析;(3)244x x+. (1)由111122⨯=-;11112323⨯=-;11113434⨯=-;11114545⨯=-;…,知它的一般性等式为111=(+11n n n n -+); (2)1111(1)(1)n n n n n n n n +-=-+++111(1)1n n n n ==⋅++, ∴原式成立;(3)11(1)(1)(2)x x x x ++++11(2)(3)(3)(4)x x x x ++++++ 1111112x x x x =-+-+++11112334x x x x +-+-++++ 114x x =-+ 244x x =+. 29.对有理数a 、b 、c ,在乘法运算中,满足:①交换律:ab ba =;②对加法的分配律:()ca b ca cb +=+.现对a b ⊕这种运算作如下定义,规定:a b a b a b ⊕=⋅++.(1)这种运算是否满足交换律?(2)举例说明:这种运算是否满足对加法的分配律?(1)运算满足交换律;(2)加法的分配律不满足.(1)∵a b a b a b ⊕=⨯++,b a b a b a ⊕=⨯++,∴a b b a ⊕=⊕,∴该运算满足交换律;(2)根据规定,()()()a b c a b c a b c +⊕=+⨯+++a c b c a b c =⨯+⨯+++,∵a c a c a c ⊕=⨯++,b c b c b c ⊕=⨯++, ∴a c b c a c a c b c b c⊕+⊕=⨯+++⨯++2a c b c a b c =⨯+⨯+++, ∵2a c b c a b c a c b c a b c ⨯+⨯+++≠⨯+⨯+++,∴()a b c a c b c +⊕≠⊕+⊕,∴对加法的分配律不满足.30.李狗蛋同学在学习整式乘法公式这一节时,发现运用乘法公式在进行一些计算时特别简便,这激发了李狗蛋同学的学习兴趣,他想再探究一些有关整式乘法的公式,便主动查找资料进行学习,以下是他找来的资料题,请你一同跟李狗蛋同学探究一下:(1)探究:()()a b a b -+=____;()()22a b a ab b -++=___;()()3223a b a a b ab b -+++=_____;(2)猜想:()()1221...n n n n a b a a b ab b -----++++=______(n 为正整数,且2n ≥); (3)利用上述猜想的结论计算:98732222...2221-+-+-+-的值.(1)22a b -,33a b -,44a b -;(2)n n a b -;(3)341 (1)()()22a b a b a b -+=-,()()22322223a b a ab b a a b ab a b ab b -++=++---33=-a b ,()()32234322332234a b a a b ab b a a b a b ab a b a b ab b -+++=+++----44a b =-,故答案为:22a b -,33a b -,44a b -;(2)根据(1)的结果可知:()()1221...n n n n a b a a b ab b -----++++=n n a b -, 故答案为:nn a b -; (3)原式987236278922(1)2(1)...2(1)2(1)2(1)(1)=+⨯-+⨯-++⨯-+⨯-+⨯-+- 98723627891[2(1)][22(1)2(1)...2(1)2(1)2(1)(1)]3=⨯--⨯+⨯-+⨯-++⨯-+⨯-+⨯-+-10101[2(1)]3=⨯-- 10213-= 102413-= 341=.。
专题1.数与式(解析版)

2019年中考数学典题精选系列专题01 数与式1.3月30日,我区航空经济产业功能区2019年一季度重大项目集中开工仪式在电子科大产业园四期项目用地举行.参加此次集中开工仪式项目共计71个,总投资超过249亿元,未来随着这一波又一波项目的建成投产,必将为双流航空经济插上腾飞之翼,助力双流打造中国航空经济之都.用科学记数法表示249亿元为()A.249×108元B.24.9×109元C.2.49×1010元D.0.249×1011元【答案】C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】将249亿用科学记数法可表示为2.49×1010.故选C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.实数a,b在数轴上的对应点的位置如图所示,把﹣a,﹣b,0按照从小到大的顺序排列,正确的是()A.﹣a<0<﹣b B.0<﹣a<﹣b C.﹣b<0<﹣a D.0<﹣b<﹣a【答案】C.3.按如图所示的运算程序运算,能使输出的结果为7的一组x,y的值是()A.x=1,y=2 B.x=﹣2,y=1 C.x=2,y=1 D.x=﹣3,y=1【答案】C【解析】【分析】将各项中的x与y代入程序计算,即可得到结果.【详解】A、当x=1,y=2时,原式=2﹣2=0,不符合题意;B、当x=﹣2,y=1时,原式=8+1=9,不符合题意;C、当x=2,y=1时,原式=8﹣1=7,符合题意;D、当x=﹣3,y=1时,原式=18+1=19,不符合题意,故选:C.【点睛】本题考查代数式求值,熟练掌握运算法则是解题关键.4.下列整数中,比小的数是()A.B.C.D.【答案】D【解析】【分析】可根据有理数大小比较的方法:正数>0>负数,两个负数比较大小,绝对值越大的反而越小.通过比较直接得出.【详解】∵-3>-π,0>-π,1>-π,-4<-π故选D.【点睛】本题考查有理数比大小,深刻理解有理数中正数>0>负数,两个负数比较大小,绝对值越大的反而越小.5.已知23ab=,则代数式a ba+的值为()A.52B.53C.23D.32【答案】B【解析】由23ab=得到:a=23b,则代入可得2533b ba bb b++==.故选:B.6.下列运算正确的是()A .B .C .D .【答案】D【解析】【分析】根据合并同类项法则,有理数的混合运算,负整数指数幂,二次根式的混合运算求出每个式子的值,再根据结果判断即可.【详解】A 、与不是同类项,故本选项错误;B 、,故本选项错误;C 、,故本选项正确;D 、,故本选项正确.故选D.【点睛】本题考查了合并同类项法则,有理数的混合运算,负整数指数幂,二次根式的混合运算等知识点,主要考查学生的计算能力和辨析能力,题目比较好,但是一道比较容易出错的题目.7.一列数a1,a2,a3,…,其中a1=,a n =(n为不小于2的整数),则a100=()A .B.2 C.﹣1 D.﹣2【答案】A【解析】根据表达式求出前几个数后发现:每三个数为一个循环组.用100除以3,根据商和余数的情况确定a100的值即可.解:根据题意得,a 2==2,a 3==﹣1,a 4==,a 5==2,…,依此类推,每三个数为一个循环组依次循环, ∵100÷3=33…1,∴a 100是第34个循环组的第一个数,与a 1相同, 即a 100=.故选A .8.已知a ﹣b=3,则代数式a 2﹣b 2﹣6b 的值为( ) A .3 B .6 C .9 D .12 【答案】C .【解析】由a ﹣b=3,得到a=b+3,则原式=(b+3)2﹣b 2﹣6b=b 2+6b+9﹣b 2﹣6b=9.故选C .学科*网 9.我们知道,一元二次方程21x =-没有实数根,即不存在一个实数的平方等于-1,若我们规定一个“新数”,使其满足(即方程有一个根为i ),并且进一步规定:一切实数可以与新数进行四则运算,且原有的运算律和运算法则仍然成立,于是有,从而对任意正整数n ,我们可得到同理可得那么, 23420162017••••••i i i i i i ++++++。
中考数学复习-专题一数与式-精品课件

元.请你以亿.元.为单位用科学记数法表示去年我国的国内生产总
值(结果保留两个有效数字)
(D )
A.3.9×1013
B.4.0×1013
C.3.9×105
D.4.0×105
│ 归类示例
科学记数法的表示方法: (1)当原数的绝对值大于或等于 1 时,n 等于原数的整 数位数减 1. (2)当原数的绝对值小于 1 时,n 是负整数,它的绝对 值等于原数中左起第一位非零数字前零的个数(含小数点 前的 0). (3)有数字单位的科学记数法,先把数字单位化去, 再用科学记数法表示.
例 2 当 0<x<1 时,x2,x,x1的大小顺序是
A. 1x<x<x2
B. x1<x2<x
C.x2<x<x1
D.x<x2<x1
( C)
│ 归类示例
[解析] 解法一:采用“特殊值法”来解:令 x=12,则 x2 =14,1x=2,∴1x>x>x2.
解法二:可用“差值比较法”来解:当 0<x<1 时,1-x>0, x-1<0,x+1>0,∴x-x2=x(1-x)>0,∴x>x2.又 x-1x=x2-x 1 =x+1xx-1<0,∴x<1x,∴x2<x<1x.
│ 归类示例
[解析] 纸环的个数为 5 的倍数,而前面有 8 个,最后又 有 4 个,把四个选项中的数加上12 能被 5 整除的是 2013,因 为 2013+12=2025,故选 D.
此类探究实数规律性问题的特点是给定一列数或等式或 图形,要求进行适当地计算,必要地观察、猜想、归纳、验 证,利用从特殊到一般的数学思想,分析特点,探索规律, 总结结论.
数学中考专题一:数与式

题一:在 02 2数学中考专题复习专题一:数 与 式经典讲义π 3.14, 8, 4, ( 3 2) , , cos30 , 2tan 45 , 12 , 7 0.1010010001 , 5 1, 3%, 0.31 中,哪些是有理数 ?哪些是无理数 ?题二:对于任意两个实数对 (a,b)和(c,d),规定:当且仅当 a = c 且 b =d 时,(a,b)= (c,d).定义运算 “ ”: (a,b) (c,d)=(ac - bd, ad +bc).若(1,2) (p,q)=(5,0),则 p = , q = .题三:某校数学课外小组 ,在坐标纸上为学校的一块空地设计植树方案如下: 第 k 棵树种植在点 P k (x k ,y k )x k处,其中 x 1=1,y 1= 1,当 k ≥2时,x k 1 1 5([k 1] 5k 1 k [ k 2 ]),5 2 y ky k 1[ ] [ ]. 5 5其中[a]表示非负实数 a 的整数部分 ,例如 [2.6]=2,[0.2]= 0.按此方案 ,第 2009 棵树种植点的坐标为 ( ). A . (5,2009) B . (6,2010)C .(3,401)D .(4,402)题四:计算:(1)8x 2-(x -2)(3x +1)-2(x +1)(x -5); (2)(a + b -1)(a -b +1)-a +(b +2) .题五:若将代数式中的任意两个字母交换 ,代数式不变 ,则称这个代数式为完全.对.称.式..,如 a +b +c 就是完全对称式.下列三个代数式: ①(a -b)2;②ab +bc + ca ;③ a 2b +b 2c +c 2a .其中是完全对称式的是 (). A .①②B .①③C .②③D .①②③题六:已知 x22 3x 1 0 ,求 x41 x4的值.题七:在解题目 “当 x =1949 时,求代数式 .x 2 4x 4 x 2 4x 2 2x x21+1 的值. ”时,聪聪认为 x 只要任取一 x个使原式有意义的值代入都有相同结果.你认为他说得有道理吗?请说明理由.题八:已知 1< x <2,化简 x 2 2 x 14 4x x 2.专题 1:数与式经典精讲讲义参考答案题一: 3.14, 4 , ( 3 2) 0, tan 45 , 12 , 5 7 1, 3%, 0.31 ,都是有理数; π 8, ,-cos30°,0.1010010001 都是无理2 数. 题二: 1,-2. 题三: D题四: (1)3x 2+13x +12(2) 6b + 3题五: A题六: 98题七:有道理,理由略 题八: 1 专题 1: 数与式经典精讲课后练习 ( 一)数学中考专题复习专题一:数 与 式经典讲义8, ,2 (2) 6b + 37题四: (1)3x 2+13x +12 数. 题二: 1,-2. 七:有道理,理由略 题三: D 题八: 1 题五: A 题六: 98 题专题 1: 课后练习 ( 一)数与式经典精讲题一:在 02 2π 3.14, 8, 4, ( 3 2) , , cos30 , 2tan 45 , 12 , 7 0.1010010001 , 5 1, 3%, 0.31 中,哪些是有理数 ?哪些是无理数 ?题二:对于任意两个实数对 (a,b)和(c,d),规定:当且仅当 a = c 且 b =d 时,(a,b)= (c,d).定义运算 “ ”: (a,b) (c,d)=(ac - bd, ad +bc).若(1,2) (p,q)=(5,0),则 p = , q = .题三:某校数学课外小组 ,在坐标纸上为学校的一块空地设计植树方案如下: 第 k 棵树种植在点 P k (x k ,y k )x k处,其中 x 1=1,y 1= 1,当 k ≥2时,x k 1 1 5([k 1] 5 k 1 k [ k 2 ]),5 2 y ky k 1[ ] [ ]. 5 5其中[a]表示非负实数 a 的整数部分 ,例如 [2.6]=2,[0.2]= 0.按此方案 ,第 2009 棵树种植点的坐标为 ( ). A . (5,2009) B . (6,2010)C .(3,401)D .(4,402)题四:计算:(1)8x 2-(x -2)(3x +1)-2(x +1)(x -5); (2)(a + b -1)(a -b +1)-a +(b +2) .题五:若将代数式中的任意两个字母交换 ,代数式不变 ,则称这个代数式为完全.对.称.式..,如 a +b +c 就是完全对称式.下列三个代数式: ①(a -b)2;②ab +bc + ca ;③ a 2b +b 2c +c 2a .其中是完全对称式的是 (). A .①②B .①③C .②③D .①②③题六:已知 x22 3x 1 0 ,求 x41 x4的值.题七:在解题目 “当 x =1949 时,求代数式 .x 2 4x 4 x 2 4x 2 2x x21+1 的值. ”时,聪聪认为 x 只要任取一 x个使原式有意义的值代入都有相同结果.你认为他说得有道理吗?请说明理由.题八:已知 1< x <2,化简x 2 2 x 14 4x x 2.专题 1:数与式经典精讲讲义参考答案数学中考专题复习专题一:数 与 式经典讲义8, ,2 (2) 6b + 37题四: (1)3x 2+13x +12数. 题二: 1,-2. 七:有道理,理由略 题三: D 题八: 1 题五: A 题六: 98 题专题 1: 课后练习 ( 一)数与式经典精讲题一: 3.14, 4 , ( 3 2) 0, tan 45 , 12 , 5 1, 3%, 0.31 ,都是有理数;π-cos30°,0.1010010001 都是无理数学中考专题复习专题一:数 与 式经典讲义8, ,2 (2) 6b + 37题四: (1)3x 2+13x +12 数. 题二: 1,-2. 七:有道理,理由略 题三: D 题八: 1 题五: A 题六: 98 题专题 1: 课后练习 ( 一)数与式经典精讲题一:在 02 2π 3.14, 8, 4, ( 3 2) , , cos30 , 2tan 45 , 12 , 7 0.1010010001 , 5 1, 3%, 0.31 中,哪些是有理数 ?哪些是无理数 ?题二:对于任意两个实数对 (a,b)和(c,d),规定:当且仅当 a = c 且 b =d 时,(a,b)= (c,d).定义运算 “ ”: (a,b) (c,d)=(ac - bd, ad +bc).若(1,2) (p,q)=(5,0),则 p = , q = .题三:某校数学课外小组 ,在坐标纸上为学校的一块空地设计植树方案如下: 第 k 棵树种植在点 P k (x k ,y k )x k处,其中 x 1=1,y 1= 1,当 k ≥2时,x k 1 1 5([k 1] 5k 1 k [ k 2 ]),5 2 y ky k 1[ ] [ ]. 5 5其中[a]表示非负实数 a 的整数部分 ,例如 [2.6]=2,[0.2]= 0.按此方案 ,第 2009 棵树种植点的坐标为 ( ). A . (5,2009) B . (6,2010)C .(3,401)D .(4,402)题四:计算:(1)8x 2-(x -2)(3x +1)-2(x +1)(x -5); (2)(a + b -1)(a -b +1)-a +(b +2) .题五:若将代数式中的任意两个字母交换 ,代数式不变 ,则称这个代数式为完全.对.称.式..,如 a +b +c 就是完全对称式.下列三个代数式: ①(a -b)2;②ab +bc + ca ;③ a 2b +b 2c +c 2a .其中是完全对称式的是 (). A .①②B .①③C .②③D .①②③题六:已知 x22 3x 1 0 ,求 x41 x4的值.题七:在解题目 “当 x =1949 时,求代数式 .x 2 4x 4 x 2 4x 2 2x x21+1 的值. ”时,聪聪认为 x 只要任取一 x个使原式有意义的值代入都有相同结果.你认为他说得有道理吗?请说明理由.题八:已知 1< x <2,化简x 22 x 14 4x x 2.专题 1:数与式经典精讲讲义参考答案数学中考专题复习专题一:数 与 式经典讲义8, ,2 (2) 6b + 37题四: (1)3x 2+13x +12数. 题二: 1,-2. 七:有道理,理由略 题三: D 题八: 1 题五: A 题六: 98 题专题 1: 课后练习 ( 一)数与式经典精讲题一: 3.14, 4 , ( 3 2) 0, tan 45 , 12 , 5 1, 3%, 0.31 ,都是有理数;π-cos30°,0.1010010001 都是无理数学中考专题复习专题一:数 与 式经典讲义8, ,2 (2) 6b + 37题四: (1)3x 2+13x +12 数. 题二: 1,-2. 七:有道理,理由略 题三: D 题八: 1 题五: A 题六: 98 题专题 1: 课后练习 ( 一)数与式经典精讲题一:在 02 2π 3.14, 8, 4, ( 3 2) , , cos30 , 2tan 45 , 12 , 7 0.1010010001 , 5 1, 3%, 0.31 中,哪些是有理数 ?哪些是无理数 ?题二:对于任意两个实数对 (a,b)和(c,d),规定:当且仅当 a = c 且 b =d 时,(a,b)= (c,d).定义运算 “ ”: (a,b) (c,d)=(ac - bd, ad +bc).若(1,2) (p,q)=(5,0),则 p = , q = .题三:某校数学课外小组 ,在坐标纸上为学校的一块空地设计植树方案如下: 第 k 棵树种植在点 P k (x k ,y k )x k处,其中 x 1=1,y 1= 1,当 k ≥2时,x k 1 1 5([k 1] 5k 1 k [ k 2 ]),5 2 y ky k 1[ ] [ ]. 5 5其中[a]表示非负实数 a 的整数部分 ,例如 [2.6]=2,[0.2]= 0.按此方案 ,第 2009 棵树种植点的坐标为 ( ). A . (5,2009) B . (6,2010)C .(3,401)D .(4,402)题四:计算:(1)8x 2-(x -2)(3x +1)-2(x +1)(x -5); (2)(a + b -1)(a -b +1)-a +(b +2) .题五:若将代数式中的任意两个字母交换 ,代数式不变 ,则称这个代数式为完全.对.称.式..,如 a +b +c 就是完全对称式.下列三个代数式: ①(a -b)2;②ab +bc + ca ;③ a 2b +b 2c +c 2a .其中是完全对称式的是 (). A .①②B .①③C .②③D .①②③题六:已知 x22 3x 1 0 ,求 x41 x4的值.题七:在解题目 “当 x =1949 时,求代数式 .x 2 4x 4 x 2 4x 2 2x x21+1 的值. ”时,聪聪认为 x 只要任取一 x个使原式有意义的值代入都有相同结果.你认为他说得有道理吗?请说明理由.题八:已知 1< x <2,化简x 22 x 14 4x x 2.专题 1:数与式经典精讲讲义参考答案数学中考专题复习专题一:数 与 式经典讲义8, ,2 (2) 6b + 37题四: (1)3x 2+13x +12数. 题二: 1,-2. 七:有道理,理由略 题三: D 题八: 1 题五: A 题六: 98 题专题 1: 课后练习 ( 一)数与式经典精讲题一: 3.14, 4 , ( 3 2) 0, tan 45 , 12 , 5 1, 3%, 0.31 ,都是有理数;π-cos30°,0.1010010001 都是无理。
专题一:数与式

一、概念与运算I 典型例题例 1、计算:(1)212 ?sin60° 0.252008 42008例 3、已知 x+5y=6,贝U x 2+5xy+30y= _______ .2011例 4、( 2011?内江)若 m= ,贝U m 5- 2m 4- 2011m 3 的值-1 是 ________ .例5、(浙江省绍兴市)如图,一次函数 y=x+5的图象经过点 P (a , b )和 Q (c , d ),贝U a (c-d )-b (c-d )的值为 _______ .例6、小杰到学校食堂买饭,看到A 、B 两窗口前面排队的人一样多(设为a 人,a>8),就站在A 窗口队伍的后面,过了 2分钟,他发现 A 窗口每分钟有4人买了饭离开队伍上, B 窗口每分钟有 6人买了饭 离开队伍,且B 窗口队伍后面每分钟增加5人。
(1) 此时,若小杰继续在 A 窗口排队,则他到达窗口所花的时间是多 少(用含a 的代数式表示)?(2) 此时,若小杰迅速从 A 窗口队伍转移到 B 窗口后面重新排队, 且到达B 窗口所花的时间比继续在A 窗口排队到达 A 窗口所花的时间少,求a 的取值范围(不考虑其它因素)。
□自主练习1、 把式子x 2-y 2-x-y 分解因式的结果是 __________ .2、 计算:(1) 20002-2001 X 1999= _______ .(2) 9992= ______ .3、 ( 2011?天水)计算:sin 230 °tan44 fan46+sin 260 ° _________ .4、 若m 2x 2-2x+ n 2是一个完全平方式,则 mn 的值为()A . 1 B . 2 C . ± 1 D . ± 22 2 2x 1825、 已知x 3 + 3 x + x 9的值为正整数,则整数 x 的值为( A . 4 B . 5 C . 4或5 D .无限个6、 (台北)若 a : b : c = 2: 3: 7,且 a -b + 3= c - 2b ,贝U c= __7、 ( 2011?台湾)如图为某大楼一、二楼水平地面间的楼梯台阶位置 图,共20阶水平台阶,每台阶的高度均为 a 公尺,宽度均为b 公尺 (a ^b.求图中一楼地面与二楼地面的距离为 _________________ 公尺。
专题1—数与式

C、a8÷a4=a4,故选项 C 不符合题意;
D、a2•a=a3,故选项 D 符合题意.
故选:D.
18.(2019 湖南岳阳)下列运算结果正确的是( )
A.3x﹣2x=1
B.x3÷x2=x
C.x3•x2=x6
D.x2+y2=(x+y)2
【答案】B.
【解析】解:A、3x﹣2x=x,故此选项错误;
B、x3÷x2=x,正确;
B.3ab+2b=5ab
C.(-x2)•(-2x)3=-8x5 D.2m(mn2-3m2)=2m2n2-6m3
【答案】D.
【解析】解:(﹣2ab2)3=﹣8a3b6,A 错误;
3ab+2b 不能合并同类项,B 错误; (﹣x2)(﹣2x)3=8x5,C 错误;
故选:D.
23.(2019 湖南益阳)下列运算正确的是( )
C、x3•x2=x5,故此选项错误;
D、x2+2xy+y2=(x+y)2,故此选项错误;
故选:B.
19.(2019 湖南张家界)下列运算正确的是( )
A.a2•a3=a6
B.a2+a3=a5
C.(a+b)2=a2+b2
D.(a3)2=a6
【答案】D.
【解析】解:a2•a3=a2+3=a5;A 错误;
轨道捕获控制,进入环绕距月球 65000 公里的地月拉格朗日 L2 点 Halo 使命轨道,成为世
界首颗运行在地月 L2 点 Halo 轨道的卫星,用科学记数法表示 65000 公里为( )公里.
A.0.65×105
B.65×103
C.6.5×104
D.6.5×105
人教版中考数学一轮复习专题一《数与式》知识点+练习(共33张PPT)

(3)、有理数分类:
正整数 整数 0 负整数 有理数 正分数 分数 负分数
正整数 正有理数 正分数 有理数 0(0既不是正数也不是负数 ) 负整数 负有理数 负分数
2、数轴的三要素为 原点 、正方向 和单位长度. 数轴上的点与 实数 是一一对应. 3、实数a的相反数为 -a . 若a、b互为相反数,则 a+b=0 . 4、非零实数a的倒数为 1/a . 若a、b互为倒数,则 ab=1 . 5、绝对值: (a 0) a
a 0 (a 0) -a (a 0)
6、数的开方: ⑴ 任何正数都有 2 个平方根,它们互为相反数. 其中正的平方根 a 叫 算术平方根 负数 没有平方根, 0的算术平方根为 0 . ⑵ 任何一个实数a都有立方根,记为 ⑶ .
3
a
.
a ( a 0 ) 2 a a -a (a 0)
※3. 用换元法解分式方程的一般步骤: ① 设辅助未知数,并用含辅助未知 数的代数式去表示方程中另外的代数式; ② 解所得到的关于辅助未知数的新 方程,求出辅助未知数的值;
③ 把辅助未知数的值代入原设中,
求出原未知数的值;
④ 检验作答.
4.分式方程的应用题要注意检验: (1)检验所求的解是否是所列 分式方程的解 ; (2)检验所求的解是否 符合实际意义 .
(2) 多项式:几个单项式的 和 叫做多项 式.在多项式中,每个单项式叫做多项式 的 项 ,其中次数最高的项的 次数 叫做这 个多项式的次数.不含字母的项叫做常数项 .
(3) 整式: 单项式 与 多项式 统称整式.
2. 同类项:在一个多项式中,所含字母 相 同并且相同字母的指数 也分别相等的项叫 做同类项. 3.合并同类项:把同类项的系数 相加 .所 得的结果作为系数,字母以及字母的指数 不变。
1.数与式:2024各区一模题分类整理(学生版)

1.数与式(2024各区一模分类)(学生版)一.科学计数法1.(2024东城一模2)2024年2月29日,在国家统计局发布的《中华人民共和国2023年国民经济和社会发展统计公报》中,2023年全年完成造林面积400万公顷,其中人工造林面积133万公顷.将1 330 000用科学记数法表示应为A. 71.3310⨯B. 513.310⨯C. 61.3310⨯D. 70.1310⨯2.(2024朝阳一模1)2024 年 1 月 21 日北京市第十六届人民代表大会第二次会议开幕,在政府工作报告中提到,2023 年北京向天津、河北输出技术合同成交额 74 870 000 000 元,将 74 870 000 000 用科学记数法表示应为 (A )74.87×109 (B )7.487×1010 (C )7.487×109 (D )0.7487×10113.(2024海淀一模2)据报道,2024年春节假期北京接待游客约1750万人次,旅游收入同比增长近四成.将17500000用科学记数法表示应为 (A )517510⨯(B )61.7510⨯(C )71.7510⨯(D )80.17510⨯4.(2024丰台一模1)2023年5月28日,我国自主研发的C919国产大飞机商业首航取得圆满成功.一架C919飞机最大储油量超过19 000千克.将数据19 000用科学记数法表示为 A .40.1910⨯B .41.910⨯C .31.910⨯D .31910⨯5.(2024石景山一模2)2023年10月26日,搭载神州十七号载人飞船的长征二号F 摇十七运载火箭在酒泉卫星发射中心成功发射.长征二号F (代号:CZ 2F -,简称:长二F ,绰号:神箭)主要用于发射神州飞船和大型目标飞行器到近地轨道,其近地轨道运载能力是8500千克.将8500用科学记数法表示应为(A )28510⨯ (B )28.510⨯(C )38.510⨯(D )40.8510⨯6.(2024延庆一模2)截止2024年2月18日,在春节期间延庆区共接待游客1320000人,火盆锅、十字花柿为火热的延庆旅游春节档增添了流量.将1320000用科学记数法表示应为 (A )710132.0⨯ (B )71032.1⨯ (C )61032.1⨯ (D )5102.13⨯7.(2024门头沟一模2)近几年全国各省市都在发展旅游业,让游客充分感受地域文化,据统计,某市2023年的游客接待量为210 000 000人次,将210 000 000用科学记数法表示为A .2.1 × 107B .2.1 × 108C .2.1 × 109D .2.1 × 10108.(2024房山一模2)据中国国家铁路集团有限公司消息:在2024年为期40天的春运期间,全国铁路累计发送旅客4.84亿人次,日均发送12089000人次.将12089000用科学记数法表示应为 (A )612.08910⨯ (B )61.208910⨯ (C )71.208910⨯ (D )80.1208910⨯9.(2024燕山一模1)2023年,我国共授权发明专利92.1万件,同比增长15.4%.将921000用科学记数法表示应为A .92.1×410B .9.21×410C .9.21×510D .0.921×61010.(2024平谷一模1)从水利部长江水利委员会获悉,截止2024年3月24日,南水北调中线一期工程自2014年12月全面通水以来,已累计调水700亿立方米.其中70 000 000 000用科学记数法表示为( ) A .8710⨯B .9710⨯C .10710⨯D .11710⨯11.(2024大兴一模2)2024年是京津冀协同发展十周年,高标准建设雄安新区成效显著. 从新区设立至2023年底,累计开发面积184平方公里,4017栋楼宇拔地而起,总建筑面积4370万平方米.将43 700 000用科学记数法表示应为(A )643.710⨯ (B )74.3710⨯ (C )84.3710⨯(D )90.43710⨯12.(2024顺义一模1)全国绿化委员会办公室发布的《2023年中国国土绿化状况公报》显示,2023年全国完成国土绿化任务超800万公顷,其中造林3 998 000公顷.将3 998 000用科学记数法表示应为(A )3.998×107 (B )3.998×106 (C )3998×103 (D )3.998×10313.(2024西城一模2)14.(2024通州一模2)ba 210-2-1二.数轴、相反数、绝对值1.(2024东城一模4)若实数a ,b 在数轴上的对应点的位置如图所示,在下列结论中,正确的是A. a b <B. 1a b +<+1C. 22a b <D. a b >-2.(2024朝阳一模5) 若 a < b ,则下列结论正确的是(A )– a < – b(B )2a < a + b (C )1 – a < 1 – b (D )2a + 1>2b + 13.(2024海淀一模4)实数a 在数轴上的对应点的位置如图所示,下列结论中正确的是(A )2a ≥- (B )3a <- (C )2a ->(D )3a -≥4.(2024丰台一模4)已知实数a ,b 满足a >b -1,则下列结论正确的是A .a b >B .a <bC .a +2>b +1D .a +2<b +15.(2024石景山一模5)已知30m +<,则下列结论正确的是(A )33m m -<<-< (B )33m m <-<-< (C )33m m -<<<-(D )33m m <-<<-6.(2024延庆一模6)实数a ,b 在数轴上的对应点的位置如图所示,下列结论正确的是 (A )a >-1 (B )b <1(C )a >b (D )a +b >07.(2024门头沟一模5)数轴上的两点所表示的数分别为a ,b ,且满足0a b ⋅>,0a b +<,下列结论正确的是A .00a b >>,B .00a b <<,C .00a b ><,D .00a b <>,8.(2024房山一模7) 若0a b <<,则下列结论正确的是(A )a b a b -<-<< (B )b a a b -<-<<10.(2024平谷一模4)已知1x -<<0,下列四个结论中,错误的是 A. x <1 B. 0x -> C. 1x -> D.x+1>011.(2024大兴一模5) 实数a ,b ,c 在数轴上的对应点的位置如图所示,下列结论中正确的是(A )b -c >0 (B ) ac >0 (C )b +c < 0 (D )ab <112.(2024顺义一模2)实数a ,b 在数轴上对应点的位置如图所示,下列结论正确的是 (A )1a >- (B )1b >(C )a b-< (D)b a ->13.(2024西城一模6)14.(2024通州一模7)三.有意义1.(2024东城一模9)若二次根式有意义,则实数x 的取值范围是 .2.(2024朝阳一模9)9. 在实数范围内有意义,则 x 的取值范围是. 3.(2024海淀一模9)若代数式x 的取值范围是______. 4.(2024丰台一模9)若代数式3xx -有意义,则实数x 的取值范围是 .5.(2024石景山一模9)若在实数范围内有意义,则实数x 的取值范围是 .6.(2024延庆一模9)若代数式41-x 有意义,则实数x 的取值范围是 .7.(2024门头沟一模9)在实数范围内有意义,那么实数m 的取值范围是__________.8.(2024房山一模9)若代数式23x -有意义,则实数x 的取值范围是 .9.(2024燕山一模9)若在实数范围内有意义,则实数x 的取值范围是 . 10.(2024平谷一模9)若代数式x 的取值范围是______.11.(2024大兴一模9)若x 的取值范围是__________. 12.(2024顺义一模9)若代数式23xx -有意义,则实数x 的取值范围是 . 13.(2024西城一模9)14.(2024通州一模9)四.因式分解1.(2024东城一模10) 因式分解:2218xy x -= .2.(2024朝阳一模10)分解因式:3x 2 +6xy + 3y 2=.3.(2024海淀一模10)分解因式:34a a -=______.4.(2024丰台一模10)分解因式:224ax ay -= .5.(2024石景山一模10)分解因式:24xy x -= .6.(2024延庆一模10)分解因式:=-23xy x .7.(2024门头沟一模10)因式分解:22mx mx m -+=_____________.8.(2024房山一模10)分解因式:24x y y -= .9.(2024燕山一模10)分解因式:2288a b -= .10.(2024平谷一模10)分解因式:22x a a ax ++=__________________. 11.(2024大兴一模10)分解因式: 24ax a -= __________.12.(2024顺义一模10)分解因式:244m -= .13.(2024西城一模10)14.(2024通州一模10)五.计算:负指数幂、零指数幂、三角函数值、二次根式1.(2024东城一模17) ()02cos301 2.︒+π---2.(2024朝阳一模17)计算:012()π+--2sin45°3.(2024海淀一模17)计算:112sin 60|1|2-︒+-+()4.(2024丰台一模17)计算:11|3|2cos30()3°--+-5.(2024石景山一模17)计算:1122sin605-++°().6.(2024延庆一模17)计算:2)31(845sin 41-++-︒-.7.(2024门头沟一模17)计算:()11202122sin 453π-⎛⎫-+︒- ⎪⎝⎭.8.(2024房山一模17)计算:116sin 45()32-︒++-9.(2024燕山一模17)计算:114sin 4522()-︒+-.10.(2024平谷一模17)计算:112cos3012-⎛⎫︒+ ⎪⎝⎭11.(2024大兴一模17)计算: ()032024245-+π++-︒cos .12.(2024顺义一模17)计算: ()124sin 4581π--+-.13.(2024西城一模17)14.(2024通州一模17)六.代数式的化简求值(整式)1.(2024延庆一模19)已知032=--x x ,求代数式2)1()4(++-x x x 的值.2.(2024门头沟一模19)已知23210x x +-=,求代数式22(1)(2)(2)3x x x x +-+-+的值.3.(2024燕山一模19)已知2210x x --=,求代数式(32)(32)3(1)x x x x +--+的值. 4.(2024平谷一模19)已知250,x x +-=求代数式(1)(x 1)x(2)x x +-++的值. 5.(2024大兴一模19)19.已知2310a a +-=,求代数式2(1)(4)2a a a +++-的值. 6.(2024顺义一模19)已知221x x +=,求代数式()()2411x x ++-的值. 7.(2024西城一模19)8.(2024通州一模19)七.代数式的化简求值(分式)1.(2024东城一模19)已知290x y --=,求代数式226344x yx xy y --+的值.2.(2024朝阳一模19)已知x + 2 y + 2 = 0 ,求代数式2422y xx x x y-⋅-()的值. 3.(2024海淀一模19)已知240b a -=,求代数式241(1)2a b b+-+的值.4.(2024丰台一模19)已知320x y --=,求代数式22264693x y x xy y x y-+-+-的值.5.(2024石景山一模19)已知2360x x --=,求代数式2926x x x x +-÷()的值.6.(2024房山一模19) 已知30x y --=,求代数式22222x xy y x y-+-的值.7.(2024平谷一模11)化简:3113x x x+--的结果为 .八.等式与图形1.(2024东城一模16) 简单多面体的顶点数(V )、面数(F )、棱数(E )之间存在一定的数量关系,称为欧拉公式.(1)四种简单多面体的顶点数、面数、棱数如下表.在简单多面体中V ,F ,E 之间的数量关系是_________;(2)数学节期间,老师布置了让同学们自制手工艺品进行展示的任务,小张同学计划做一个如图所示的简单多面体作品.该多面体满足以下两个条件:①每个面的形状是正三角形或正五边形; ②每条棱都是正三角形和正五边形的公共边. 小张同学需要准备正三角形和正五边形的材料共 个.2.(2024朝阳一模8)如图,四边形 ABCD 是正方形,点 E ,F 分别在 AB ,BC 的延长线上,且 BE = CF ,设 AD = a ,AE = b ,AF = c .给出下面三个结论:① a +b > c ; ② 2ab < c 2;> 2a .上述结论中,所有正确结论的序号是 (A )①②(B )②③(C )①③ (D )①②③3.(2024海淀一模8)如图,AB 过圆心O ,CD 是⊙O 的一条弦,CD AB ⊥,BC 是⊙O 的切线.再从条件①,条件②,条件③中选择一个作为已知,使得AD BC =. 条件①:CD 平分AB条件②:OB =条件③:2AD AO AB =⋅则所有可以添加的条件序号是 (A )① (B )①③(C )②③ (D )①②③5.(2024石景山一模8)如图,90ABCBA BC ∠==°,,BM 是ABC ∠内部的射线且45CBM ∠<°,过点A 作AD BM ⊥于点D ,过点C 作CE BM ⊥于点E , 在DA 上取点F ,使得D F DE =,连接EF .设CE a BE b EF c ===,,,给出下面三个结论:①c b a =-); ②a c +<上述结论中,所有正确结论的序号是 (A )①②(B )①③(C )②③(D )①②③MFCA D E BB 6.(2024门头沟一模8)如图,在等边三角形ABC 中,有一点P ,连接PA 、PB 、PC ,将BP 绕点B 逆时针旋转60°得到BD ,连接PD 、AD ,有如下结论: ①BPC BDA △≌△;② BDP △是等边三角形;③如果∠BPC =150°,那么222PA PB PC =+.以上结论正确的是A .①②B .①③C .②③ 7.(2024房山一模8) 如图,在四边形ABCD 中,90B BCD ∠=∠=︒,点E 在BC 上,CE BE <,连接AE并延长交DC 的延长线于点F ,连接DE ,△ABE ≌△ECD . 给出下面三个结论: ①AE DE ⊥;②AB CD AE +>;EF AD CF ⋅=⋅. 上述结论中,所有正确结论的序号是(A )①② (B )②③ (C )①③ (D )①②③8.(2024燕山一模8)如图,在四边形ABCD 中,AD ∥BC ,∠A =90°,点E 在AB 上,DE 平分∠ADC ,CE 平分∠DCB .给出下面三个结论:① ∠DEC =90°;② AE =EB ;③ AD ·BC =AE ·EB . 上述结论中,所有正确结论的序号是A .①②B .②③C .①③D .①②③9.(2024平谷一模8) 如图,正方形ABCD 中,点E 、H 、G 、F 分别为AB 、BC 、CD 、AD 边上的点,点K 、M 、N 为对角线BD 上的点,四边形EKNF 和四边形MHCG 均为正方形,它们的面积分别表示为S 1,和S 2,给出下面三个结论: ①12S S =;②2DF AF =;③12ABCD 9=S +2S 4S 正方形; A. ② B ①.③ C. ②③ D. ①②③ 10.(2024大兴一模8) 如图,在△ABC 中, ∠BAC =90°,AD ⊥BC 于点D ,设BD =a , DC =b, AD =c, 给出下面三个结论: ① c 2=ab ; ② a+b ≥2c;; ③若 a>b ,则a>c.上述结论中,所有正确结论的序号是(A )①② (B )①③ (C )②③ (D )①②③A B C D E11.(2024西城一模8)12.(2024通州一模8)。
专题01 数与式的运算

专题1:数与式的运算高中必备知识点1:绝对值绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即:,0,||0,0,,0.a a a a a a >⎧⎪==⎨⎪-<⎩绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离. 两个数的差的绝对值的几何意义:b a -表示在数轴上,数a 和数b 之间的距离.典型考题【典型例题】阅读下列材料:我们知道x 的几何意义是在数轴上数x 对应的点与原点的距离,即x =0x -,也就是说,x 表示在数轴上数x 与数0对应的点之间的距离;这个结论可以推广为21x x -表示在数轴上数1x 与数2x 对应的点之间的距离;例1解方程|x |=2.因为在数轴上到原点的距离为2的点对应的数为2±,所以方程|x |=2的解为2±=x . 例2解不等式|x -1|>2.在数轴上找出|x -1|=2的解(如图),因为在数轴上到1对应的点的距离等于2的点对应的数为-1或3,所以方程|x -1|=2的解为x =-1或x =3,因此不等式|x -1|>2的解集为x <-1或x >3.例3解方程|x -1|+|x +2|=5.由绝对值的几何意义知,该方程就是求在数轴上到1和-2对应的点的距离之和等于5的点对应的x 的值.因为在数轴上1和-2对应的点的距离为3(如图),满足方程的x 对应的点在1的右边或-2的左边.若x 对应的点在1的右边,可得x =2;若x 对应的点在-2的左边,可得x =-3,因此方程|x -1|+|x +2|=5的解是x =2或x =-3. 参考阅读材料,解答下列问题: (1)方程|x +2|=3的解为 ; (2)解不等式:|x -2|<6; (3)解不等式:|x -3|+|x +4|≥9; (4)解方程: |x -2|+|x +2|+|x -5|=15.【答案】(1)1x =或x =-5;(2)-4<x <8;(3)x ≥4或x ≤-5;(4)103x =-或203x =. 【解析】(1)由已知可得x+2=3或x+2=-3 解得1x =或x =-5.(2)在数轴上找出|x -2|=6的解.∵在数轴上到2对应的点的距离等于6的点对应的数为-4或8, ∴方程|x -2|=6的解为x =-4或x =8,∴不等式|x -2|<6的解集为-4<x <8. (3)在数轴上找出|x -3|+|x +4|=9的解.由绝对值的几何意义知,该方程就是求在数轴上到3和-4对应的点的距离之和等于15的点对应的x 的值. ∵在数轴上3和-4对应的点的距离为7,∴满足方程的x 对应的点在3的右边或-4的左边. 若x 对应的点在3的右边,可得x =4;若x 对应的点在-4的左边,可得x =-5, ∴方程|x -3|+|x +4|=9的解是x =4或x =-5, ∴不等式|x -3|+|x +4|≥9的解集为x ≥4或x ≤-5. (4)在数轴上找出|x -2|+|x +2|+|x -5|=15的解.由绝对值的几何意义知,该方程就是求在数轴上到2和-2和5对应的点的距离之和等于9的点对应的x 的值.∵在数轴上-2和5对应的点的距离为7,∴满足方程的x 对应的点在-2的左边或5的右边.若x 对应的点在5的右边,可得203x =;若x 对应的点在-2的左边,可得103x =-, ∴方程|x -2|+|x +2|+|x -5|=15的解是103x =-或203x =. 【变式训练】实数在数轴上所对应的点的位置如图所示:化简 .【答案】a-2b 【解析】解:由数轴知:a <0,b>0,|a|>|b|, 所以b-a>0,a-b <0 原式=|a|-(b-a )-(b-a) =-a-b+a-b+a =a-2b【能力提升】已知方程组的解的值的符号相同.(1)求的取值范围; (2)化简:.【答案】(1) −1<a <3;(2). 【解析】 (1)①+②得:5x =15−5a ,即x =3−a , 代入①得:y =2+2a ,根据题意得:xy =(3−a )(2+2a )>0, 解得−1<a <3; (2)∵−1<a <3, ∴当−1<a <3时,高中必备知识点2:乘法公式我们在初中已经学习过了下列一些乘法公式: (1)平方差公式22()()a b a b a b +-=-; (2)完全平方公式222()2a b a ab b ±=±+. 我们还可以通过证明得到下列一些乘法公式: (1)立方和公式2233()()a b a ab b a b +-+=+;(2)立方差公式2233()()a b a ab b a b -++=-;(3)三数和平方公式2222()2()a b c a b c ab bc ac ++=+++++; (4)两数和立方公式33223()33a b a a b ab b +=+++; (5)两数差立方公式33223()33a b a a b ab b -=-+-.典型考题【典型例题】(1)计算:203212016(2)(2)2-⎛⎫-++-÷- ⎪⎝⎭(2)化简:2(2)(2)(2)a b a b a b +---【答案】(1)3 (2)4ab-8b 2 【解析】解:(1)原式=4+1+(-8)÷4 =5-2 =3(2)原式=a 2-4b 2-(a 2-4ab+4b 2) =a 2-4b 2-a 2+4ab-4b 2 =4ab-8b 2【变式训练】计算:(1)0221( 3.14)(4)()3π--+-- (2)2(3)(2)(2)x x x --+- 【答案】(1)8 (2)-6x+13 【解析】(1)原式=1+16-9=8; (2)原式=x 2-6x+9-(x 2-4) =x 2-6x+9-x 2+4 =-6x+13.【能力提升】已知10x =a ,5x =b ,求: (1)50x 的值; (2)2x 的值;(3)20x 的值.(结果用含a 、b 的代数式表示)【答案】(1)ab;(2)a b ;(3)2a b . 【解析】解:(1)50x =10x ×5x =ab ; (2)2x=xx x 1010a 55b ⎛⎫== ⎪⎝⎭;(3)20x=xx 2x x 1010a 101055b ⎛⎫⨯=⨯= ⎪⎝⎭.高中必备知识点3:二次根式一般地,形如0)a ≥的代数式叫做二次根式.根号下含有字母、且不能够开得尽方的式子称为无理式.例如32a b 212x ++,22x y ++,1.分母(子)有理化把分母(子)中的根号化去,叫做分母(子)有理化.为了进行分母(子)有理化,需要引入有理化因式的概念.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为有理化因式,例如与与b 与b 互为有理化因式.分母有理化的方法是分母和分子都乘以分母的有理化因式,化去分母中的根号的过程;而分子有理化则是分母和分子都乘以分母的有理化因式,化去分子中的根号的过程在二次根式的化简与运算过程中,二次根式的乘法可参照多项式乘法进行,运算中要运用公式0,0)a b =≥≥;而对于二次根式的除法,通常先写成分式的形式,然后通过分母有理化进行运算;二次根式的加减法与多项式的加减法类似,应在化简的基础上去括号与合并同类二次根式.2a ==,0,,0.a a a a ≥⎧⎨-<⎩典型考题【典型例题】计算下面各题.(1)2163)1526(-⨯-;(2【答案】(1) 56-;(2) 【解析】(1))×3﹣==﹣(2)x 4﹣4x=2x 4x2x .【变式训练】时,想起分配律,于是她按分配律完成了下列计算:==她的解法正确吗?若不正确,请给出正确的解答过程. 【答案】不正确,见解析 【解析】解:不正确,正确解答过程为:.【能力提升】先化简,再求值:(2a b a b -+-b a b -)÷a 2ba b-+,其中,.【答案】2a a b -.【解析】 解:(2a b a b -+-b a b -)÷a 2ba b-+=()()()()()2a b a b b a b a ba b a b a 2b ---++⋅+--=2222a 3ab b ab b 1a b a 2b-+--⋅-- =()2a a 2b 1a b a 2b-⋅--=2a a b-, 当3,-3时,原式22.高中必备知识点4:分式1.分式的意义 形如A B 的式子,若B 中含有字母,且0B ≠,则称A B 为分式.当M ≠0时,分式AB具有下列性质: A A MB B M ⨯=⨯; A A MB B M÷=÷. 上述性质被称为分式的基本性质.2.繁分式像ab c d+,2m n pm n p+++这样,分子或分母中又含有分式的分式叫做繁分式.典型考题【典型例题】先化简,再求值22122()121x x x xx x x x +++-÷--+,其中x 满足x 2+x ﹣1=0. 【答案】21x x-,1. 【解析】解:原式=()()()221-211121x x xx x x x x---=-+210x x +﹣=, 21x x ∴=﹣, ∴原式=1.【变式训练】化简:22442x xy y x y-+-÷(4x 2-y 2)【答案】yx +21【解析】22442x xy y x y -+-÷(4x 2-y 2)=2(2)12(2)(2)x y x y x y x y -⨯-+-=yx +21. 【能力提升】已知:112a b-=,则ab b a b ab a 7222+---的值等于多少?【答案】43-.【解析】解:∵112 a b-=,∴a-b=-2ab,则2ab2ab44ab7ab3--=--+专题验收测试题1.下列计算结果为a2的是()A.a8÷a4(a≠0)B.a2•aC.﹣3a2+(﹣2a)2D.a4﹣a2【答案】C【解析】A、a8÷a4=a4,故此选项错误;B、a2•a=a3,故此选项错误;C、﹣3a2+(﹣2a)2=a2,故此选项正确;D、a4与a2不是同类项,不能合并,故此选项错误,故选C.2.如图,将图1中阴影部分拼成图2,根据两个图形中阴影部分的关系,可以验证下列哪个计算公式()A.(a+b)(a﹣b)=a2﹣b2B.(a﹣b)2=a2﹣2ab+b2C.(a+b)2=a2+2ab+b2D.(a+b)2=(a﹣b)2+4ab【答案】B【解析】∵图1中阴影部分的面积为:(a﹣b)2;图2中阴影部分的面积为:a2﹣2ab+b2;∴(a﹣b)2=a2﹣2ab+b2,故选B.3.下列计算正确的是()A.x2+x3=x5B.x2•x3=x5C.(﹣x2)3=x8D.x6÷x2=x3【答案】B【解析】A、不是同类项,无法计算,故此选项错误;B、正确;C、故此选项错误;D、故此选项错误;故选:B.4.下列计算正确的是()A.a3+a4=a7B.a4•a5=a9C.4m•5m=9m D.a3+a3=2a6【答案】B【解析】解:A、a3+a4,无法计算,故此选项错误;B、a4•a5=a9,正确;C、4m•5m=20m,故此选项错误;D、a3+a3=2a3,故此选项错误.故选:B.5.下列几道题目是小明同学在黑板上完成的作业,他做错的题目有()①a3÷a﹣1=a2②(2a3)2=4a5③(12ab2)3=16a3b6④2﹣5=132⑤(a+b)2=a2+b2A.2道B.3道C.4道D.5道【答案】C【解析】①a3÷a﹣1=a4,故此选项错误;②(2a3)2=4a6,故此选项错误;③(12ab2)3=18a3b6,故此选项错误;④2﹣5=132,正确;⑤(a+b )2=a 2+2ab+b 2,故此选项错误; 则错误的一共有4道. 故选:C .6.如图是一个圆,一只电子跳蚤在标有数字的五个点上跳跃.若它停在奇数点上时,则一次沿顺时针方向跳两个点;若停在偶数点上时,则下一次沿逆时针方向跳一个点.若这只跳蚤从1这点开始跳,则经过2019次跳后它所停在的点对应的数为( )A .1B .2C .4D .5【答案】B 【解析】设第n 次跳到的点为a n (n 为自然数),观察,发现规律:a 0=1,a 1=3,a 2=5,a 3=2,a 4=1,a 5=3,a 6=5,a 7=2,…, ∴a 4n =1,a 4n+1=3,a 4+2=5,a 4n+3=2. ∵2019=504×4+3, ∴经2019次跳后它停的点所对应的数为2. 故答案为:2.7.下列计算中,正确的是 A .24±= B .a a ≥C .236·a a a =D .211-=【答案】B 【解析】 解:A.42=,故A 错误;B. a a ≥,正确;C. 235a a a =,故C 错误;D. 211-=-,故D 错误; 故选:B .8.下列从左到右的恒等变形中,变形依据与其它三项不同的是( ) A .11111818183636⎛⎫⨯-=⨯-⨯⎪⎝⎭B .2(x ﹣y )=2x ﹣2yC .0.11010.33x x --= D .a (b ﹣1)=ab ﹣a 【答案】C 【解析】 解:A 、11111818183636⎛⎫⨯-=⨯-⨯⎪⎝⎭,单项式乘多项式;B 、2(x ﹣y )=2x ﹣2y ,单项式乘多项式;C 、0.11010.33x x --=,根据分式的性质; D 、a (b ﹣1)=ab ﹣a ,单项式乘多项式; 则变形依据与其它三项不同的是C , 故选:C .9.下列运算正确的是( ) A .a 5﹣a 3=a 2 B .6x 3y 2÷(﹣3x )2=2xy 2 C .2212a2a-=D .(﹣2a )3=﹣8a 3【答案】D 【解析】A 、a 5﹣a 3,无法计算,故此选项错误;B 、6x 3y 2÷(﹣3x )2=6x 3y 2÷9x 2=23xy 2,故此选项错误; C 、2a ﹣2=22a,故此选项错误; D 、(﹣2a )3=﹣8a 3,正确. 故选D .10.下列运算:其中结果正确的个数为( ) ①a 2•a 3=a 6 ②(a 3)2=a 6 ③(ab )3=a 3b 3 ④a 5÷a 5=aA .1B .2C .3D .4【答案】B 【解析】解:①a 2•a 3=a 5,错误; ②(a 3)2=a 6,正确; ③(ab )3=a 3b 3,正确; ④a 5÷a 5=1,错误. 故选:B .11.当a ,b 互为相反数,则代数式a 2+ab ﹣2的值为_____. 【答案】﹣2. 【解析】∵a 与b 互为相反数, ∴a+b=0,∴a 2+ab-2=a(a+b)-2=0-2=-2. 故答案为:-2.12.已知a 2+2a=-2,则22(21)(4)a a a +++的值为________. 【答案】6 【解析】解:2222242816510165(2)162(21)(4)a a a a a a a a a a a =++++=++=+++++,∵a 2+2a=-2,∴原式=25(2)165(2)166a a ++=⨯-+=,故答案为:6.13.计算:(﹣2)2019×0.52018=_______. 【答案】-2 【解析】解:(﹣2)2019×0.52018=(﹣2×0.5)2018×(﹣2)=﹣2 故答案为:﹣214.已知23xy=⎧⎨=-⎩是方程组23ax bybx ay+=⎧⎨+=⎩的解,则a2﹣b2=_____.【答案】1 【解析】解:∵23xy=⎧⎨=-⎩是方程组23ax bybx ay+=⎧⎨+=⎩的解,∴232 233a bb a-=⎧⎨-=⎩①②,解得,①﹣②,得a﹣b=15 -,①+②,得a+b=﹣5,∴a2﹣b2=(a+b)(a﹣b)=(﹣5)×(15-)=1,故答案为:1.15.已知关于x、y的方程组31223x y ax y a+=-⎧⎨-=-⎩,则代数式32x•9y=___.【答案】1 9 .【解析】解:将两方程相加可得2x+2y=﹣2,则32x•9y=32x•32y=32x+2y=3﹣2=19,故答案为:19.16.计算:(x﹣y)2•(y﹣x)3+(y﹣x)4•(x﹣y)=_____.【答案】0【解析】原式=﹣(x ﹣y )5+(x ﹣y )5=0, 故答案为:017.张老师在黑板上布置了一道题:化简:2(x +1)2-(4x -5),并分别求出当x =和x =-时代数式的值. 小亮和小新展开了下面的讨论,你认为他们两人谁说得对?并说明理由.【答案】小亮说的对,理由见解析 【解析】2(x+1)2﹣(4x ﹣5) =2x 2+4x+2﹣4x+5, =2x 2+7,当x=时,原式=+7=7; 当x=﹣时,原式=+7=7. 故小亮说的对.18.先化简,再求值:(x +2)(x ﹣2)+(2x ﹣1)2﹣4x (x ﹣1),其中x =3 【答案】x 2﹣3,9. 【解析】(x +2)(x ﹣2)+(2x ﹣1)2﹣4x (x ﹣1), =x 2﹣4+4x 2﹣4x +1﹣4x 2+4x , =x 2﹣3,当23x =(2331239=-=-=.19.已知a+1a=3(a >1),求242241111()()()()a a a a a a a a -⨯+⨯+⨯-的值.【答案】5【解析】 解: ∵13a a+=(a >1), ∴21a a ⎛⎫+ ⎪⎝⎭=9,化简得221a a+=7, 两边平方,可得441a a+=49﹣2=47,∵21a a ⎛⎫- ⎪⎝⎭=221a a +﹣2=7﹣2=5,且a >1,∴1a a-=, ∴242241111()()()()a a a a aa a a-⨯+⨯+⨯-7×47×5=20.请你将下式化简,再求值:(x +2)(x ﹣2)+(x ﹣2)2+(x ﹣4)(x ﹣1),其中x 2﹣3x =1. 【答案】3x 2﹣9x +4,7 【解析】(x +2)(x ﹣2)+(x ﹣2)2+(x ﹣4)(x ﹣1), =x 2﹣4+x 2﹣4x +x 2﹣5x +4, =3x 2﹣9x +4, 当x 2﹣3x =1时, 原式=3x 2﹣9x +4, =3(x 2﹣3x )+4, =3×1+4, =7.21.已知一组有规律的等式,它的前三项依次为:22334422,33,4112233⨯=+⨯=+⨯=+4,…, (1)写出第5个等式;(2)写出第n个等式,并证明该等式成立.【答案】(1)第5个等式为:6666 55⨯=+;(2)第n个等式为:11(1)(1) n nn nn n++⨯+=++.【解析】解:(1)∵第1个等式为:222=11⨯+2,第2个等式为:333=22⨯+3,第3个等式为:444=33⨯+4,∴第4个等式为:54×5=54+5,第5个等式为:65×6=65+6;(2)第n个等式为:n+1n×(n+1)=n+1n+(n+1).证明如下:∵n+1n×(n+1)=2n+n+n+1n=2n+nn+n+1n=n+1n+(n+1),∴n+1n×(n+1)=n+1n+(n+1).化类,通过观察得出第n个等式为:n+1n×(n+1)=n+1n+(n+1)是解题的关键.22.老师在黑板上写出三个算式:32-1=8×1,92-52=8×7,132-72=8×15。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数与式
聚焦1、实数
考点一实数的分类
1.按实数的定义分类
2.按正负分类
考点二实数的有关概念
1.正数:像+12,1.3,258这样大于0的数(“+”通常省略不写)叫正数.
2.负数:像-3,-0.1这样在正数前加上“﹣”(负)的数叫负数,负数小于0.
3.有理数的分类:
4.数轴是规定了原点、正方向和单位长度的直线.
数轴的画法:
(1)画一条水平的直线.
(2)在直线上适当选取一点为原点.
(3)通常规定从原点向右为正方向,用箭头表示出来(箭头标在画出部分的最右边).
(4)根据需要,选取适当的长度为单位长度,从原点向右每隔一个单位长度取一个点,依次标为1,2,3,…,从原点向左,用类似方法依次标出-1,-2,….
5、相反数:像2和-2,5和-5这样,只有符号不同的两个数叫做互为相反数. 特别地,0的相反数是0.
性质:若a,b互为相反数,则a+b=0;反之,若a+b=0,则a,b互为相反数.
相反数的几何意义:一般地,在数轴上,互为相反数的两个数对应的点在原点的两侧,并且到原点的距离相等.
6、绝对值:一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值.
符号表示:数a的绝对值记作,读作a的绝对值.
绝对值的代数意义用式子可表示为:
或
考点三平方根、算术平方根、立方根
1.平方根
(1)定义:如果一个数x的平方等于a,即x2=a,那么这个数x叫做a的平方根(也叫二次方根),数a的平方根记作±(a≥0).
(2)一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.
2.算术平方根
(1)如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根,a的算术平方根记作.零的算术平方根是零,即=0.
(2)算术平方根都是非负数,即≥0(a≥0).
3.立方根
(1)定义:如果一个数x的立方等于a,即x3=a,那么这个数x叫做a的立方根(也叫三次方根),数a的立方根记作.
(2)任何数都有唯一一个立方根,一个数的立方根的符号与这个数的符号相同.
考点四科学记数法、近似数、有效数字
1.科学记数法
把一个数N表示成a×10n(1≤a<10,n是整数)的形式叫科学记数法.当N≥1时,n等于原数N的整数位数减1;当N<1时,n是一个负整数,它的绝对值等于原数中左起第一个非零数字前零的个数(含整数位上的零).
2.近似数与有效数字
一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位,这时从左边第1个不为0的数字起,到末位数字止,所有的数字都叫做这个近似数的有效数字.
考点五非负数的性质
1.常见的三种非负数:.
2.非负数的性质:
(1)非负数有最小值是零;
(2)任意几个非负数的和仍为非负数;
(3)几个非负数的和为0,则每个非负数都等于0.
考点六实数的运算
1.基本法则:
(1)有理数加法法则
(ⅰ)同号两数相加,取相同的符号,并把绝对值相加.
(ⅱ)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值. 互为相反数
的两个数相加得0.
(ⅲ)一个数同0相加仍得这个数.
(2)有理数减法法则
减去一个数,等于加这个数的相反数. 把有理数的减法利用相反数变成加法进行运算.
(3)有理数的乘法
(ⅰ)两数相乘,同号得正,异号得负,并把绝对值相乘.
(ⅱ)任何数与0相乘,都得0.
倒数:乘积为1的两个数互为倒数.一个正数的倒数仍是正数,一个负数的倒数仍是负数,0没有倒数.
(4)有理数除法法则:
(ⅰ)除以一个不等于0的数,等于乘这个数的倒数.
(ⅱ)两数相除,同号得正,异号得负,并把绝对值相除. 0除以任何一个不等于0的数,都得0.
(5)有理数的乘方:
求n个相同因数的积的运算叫做乘方,乘方的结果叫做幂. 在中,a叫做底数,n叫做指数,读作a的n次方(或a的n
次幂).
(6)有理数乘方的运算方法
(ⅰ)根据乘方的意义,先把乘方转化为乘法,再利用乘法的运算方法进行计算.
(ⅱ)先确定幂的符号,再求幂的绝对值.
2.运算律:加法交换律、加法结合律、乘法交换律、乘法结合律、乘法对加法的分配律.
3.运算顺序:(1)先算乘方,再算乘除,最后算加减;(2)同级运算,按照从左至右的顺序进行;(3)如果有括号,就先算小括号里的,再算中括号里的,最后算大括号里的.
4.零指数幂和负整数指数幂
(1)零指数幂的意义为:a0=1(a≠0);
(2)负整数指数幂的意义为:(a≠0,p为整数).
考点七实数的大小比较
1.在数轴上表示两个数的点,右边的点表示的数总比左边的点表示的数大.
2.正数大于零,负数小于零,正数大于一切负数;两个负数比较,绝对值大的反而小.
3.取差比较法
(1)a-b>0a>b;(2)a-b=0a=b;(3)a-b<0a<b.
4.倒数比较法
若则a<b.
5.平方法:因为由a>b>0,可得,所以我们可以把的大小问题转化成比较a和b的大小问题.
聚焦2 整式及因式分解
考点一整式的有关概念
1.整式
整式是单项式与多项式的统称.
2.单项式
单项式是指由数字或字母的乘积组成的式子;单项式中的数字因数叫做单项式的系数;单项式中所有字母指数的和叫做单项式的次数.
3.多项式
几个单项式的和叫做多项式;多项式中,每一个单项式叫做多项式的项,其中不含字母的项叫做常数项;多项式中次数最高项的次数就是这个多项式的次数.
考点二整数指数幂的运算
正整数指数幂的运算法则:
(m,n是正整数).
考点三同类项与合并同类项
1.所含字母相同,并且相同字母的指数也分别相同的单项式叫做同类项.
2.把多项式中的同类项合并成一项叫做合并同类项,合并的法则是系数相加,所得的结果作为合并后的系数,字母和字母的指数不变.
考点四求代数式的值
1.一般地,用数值代替代数式里的字母,按照代数式指明的运算关系计算出的结果就叫做代数式的值.
2.求代数式的值的基本步骤:(1)代入:一般情况下,先对代数式进行化简,再将数值代入;(2)计算:按代数式指明的运算关系计算出结果.
考点五整式的运算
1.整式的加减
(1)整式的加减实质就是合并同类项;
(2)整式加减的步骤:有括号,先去括号;有同类项,再合并同类项.注意去括号时,如果括号前面是负号,括号里各项的符号要变号.
2.整式的乘除
(1)整式的乘法
①单项式与单项式相乘:把系数、同底数幂分别相乘,作为积的因式,只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.
②单项式与多项式相乘:m(a+b+c)=ma+mb+mC.
③多项式与多项式相乘:(m+n)(a+b)=ma+mb+na+nB.
(2)整式的除法
①单项式除以单项式:把系数、同底数幂相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.
②多项式除以单项式:(a+b)÷m=a÷m+b÷m.
3.乘法公式
(1)平方差公式:(a+b)(a-b)=a2-b2;
(2)完全平方公式:(a±b)2=a2±2ab+b2.
考点六因式分解
1.因式分解的概念
把一个多项式化成几个整式的积的形式,叫做多项式的因式分解.
2.因式分解的方法
(1)提公因式法
公因式的确定:第一,确定系数(取各项整数系数的最大公约数);第二,确定字母或因式底数(取各项的相同字母);第三,确定字母或因式的指数(取各相同字母的最低次幂).
(2)运用公式法
①运用平方差公式:a2-b2=(a+b)(a-b).
②运用完全平方公式:a2±2ab+b2=(a±b)2.
聚焦3 分式
考点一分式
1.分式的概念:形如(A、B是整式,且B中含有字母,B≠0)的式子叫做分式.2.分式有意义、无意义的条件:因为0不能做除数,所以在分式中,若B≠0,则分式有意义;若B=0,那么分式没有意义.
3.分式值为零的条件:在分式中,当A=0且B≠0时,分式的值为0.
考点二分式的基本性质
分式的基本性质:分式的分子与分母同乘(或除以)一个不等于零的整式,分式的值不变.用式子表示是:
(其中M是不等于0的整式).
考点三分式的约分与通分
1.约分
分式约分:将分子、分母中的公因式约去,叫做分式的约分.
2.通分
分式通分:将几个异分母的分式化为同分母的分式,这种变形叫分式的通分.
考点四分式的运算
1.分式的加减法
同分母的分式相加减,分母不变,把分子相加减,即.异分母的分式相加减,先通分,变为同分母的分式,然后相加减,即.
2.分式的乘除法
分式乘以分式,用分子的积做积的分子,分母的积做积的分母,即.分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘,即. 3.分式的混合运算
在分式的加减乘除混合运算中,应先算乘除,进行约分化简后,再进行加减运算,遇到有括号的,先算括号里面的.运算结果必须是最简分式或整式.
1 . 现实生活中,如果收入1000元记作+1000元,那么-700元表示()
A.支出700元B.收入700元C.支出300元D.收入300元【答案】A
【解析】
【分析】
根据具有相反意义的量的概念即可得出答案.
【详解】
收入1000元记作+1000元,那么-700元表示支出700元,
故选:A.
【点睛】
本题主要考查具有相反意义的量,理解“正”和“负”的相对性,明确什么是一对具有相反意义的量是解题的关键.。