伺服电机的选择及需不需要加减速机

合集下载

伺服电机详细计算选型

伺服电机详细计算选型
-30 × 0.1 -30× 0.1
)+ )÷ 0.9
由α 2/3000 的速度 - 转矩特性可以看到, 力矩处于断续工作区的外面 据单)。 (故α 2/3000 的力矩是不够的。 )
9.81( Nm )的加速
(见上面的特性曲线和电机的数
如果轴的运行特性 (如, 加速时间) 不变, 就必须选择大电 机。比如,选择α 3/3000 ( Jm 为 0.02 kgf.cm.s ) ,重新计算 加速力矩如下: Ta = 123.7(Kg.cm) = 12.1(Nm) Vr = 2049(min ) 由该式可知, 加速时, 在转速 2049(min ) 时,要求加速力矩 为 12.1 Nm 。由上面的速度 - 力矩特性可以看出, 则法兰盘尺寸已经变为 用α 3/3000 3/3000 , 电机可满足加速要求 (条件 2) 。 由于已将电机换为α
条件 3: 频繁地定位和加 /减速会使电动机发热,此时需要计算出电动机承受的力矩的均方根值 Tc。 Trms ,使其小于电动机的额定力矩 条件 4: 负载波动频繁时,要计算一个工作周期的负载力矩的均方根值 的额定力矩。 条件 5: 电动机以最大切削力矩运行的时间应在允许的范围内(核算 条件 6:负载的惯量要小于电动机本身惯量的 本文譯自“α伺服电动机规格说明书( 择β i 电动机时也可作为参考。 Ton) 。 Tmrs ,使其小于电动机
α电机的选择
进给伺服电机的选择
(摘自 B-65262EN ) 王玉琪 电动机要承受 两种形式的力矩 :恒定的负载转矩和切削力矩(包括摩擦力矩) 力矩。下面介绍这两种力矩的计算方法及在选择电动机时应满足的条件。 ;加 /减速
条件 1: 机床无负载运行时,加在电动机上的力矩应小于电动机的连续额定力矩的 否则,在切削或加减 条件 2: 加( /减)速时间要短,须在电动机的允许范围内。 通常, 负载力矩帮助电动机的减速, 可在相同的时间内完成。 的机械特性的断续区内。 因此, 如果加速能在允许时间内完成的话, 减速也 这样我们只需计算加速力矩, 并在允许时间内核算该力矩在电动机 /速时电动机就可能过热。 50% 以下。

如何正确选择步进电机和伺服电机

如何正确选择步进电机和伺服电机

如何正确选择步进电机和伺服电机近期有许多人询问我,问我步进电机不知道怎么选择,我做了简洁的一下几个方法,盼望对大家有关心。

一、首先,确定步进电机拖动负载所需的扭矩最简洁的方法是在负载轴上增加一个杠杆,用弹簧秤拉动杠杆,拉力乘以臂的长度就是负载力矩。

也可以依据负载特性进行理论计算。

由于步进电机是掌握型电机,目前常用的步进电机最大转矩不超过45nm。

扭矩越大,成本就越高。

假如您选择的电机扭矩大于或超过此范围,您可以考虑添加和安装减速装置。

二、确定步进电机的最大运行速度。

在步进电机的选择中,速度指标是特别重要的。

步进电机的特点是随着电机转速的增加,转矩减小。

其下降速度与很多参数有关,如:驱动器的驱动电压、电机的相电流、电机的相电感、电机的尺寸等。

一般规律是:驱动电压越高,转矩下降越慢;电机相电流越大,转矩下降越慢。

在设计方案中,电动机的转速应掌握在1500转/分或1000转/分。

当然,这不是标准。

可以参考〈矩-频特性〉。

三、依据最大负载转矩和最大转速这两个重要指标,参照“转矩频率特性”,我们可以选择适合自己的步进电机。

假如您认为您选择的电机太大,可以考虑增加和减速装置,这样可以节约成本,使您的设计更加敏捷。

为了选择合适的减速比,应综合考虑转矩与转速的关系,选择最佳方案。

四、最终,应考虑肯定数量(如30%)的转矩裕度和转速裕度。

五、应尽量选用混合式步进电机,其性能要高于反射式步进电机。

六、尽可能选择细分驱动器,使驱动器在细分状态下工作。

七、在选择时,不要犯只看电机转矩的错误,即电机转矩越大越好,应与转速指标一并考虑。

八、当速度要求较高时,可选用驱动电压较高的驱动器。

九、没有详细要求选择两相或三相,只要步距角能满意使用要求。

伺服电机选型的原则和注意事项

伺服电机选型的原则和注意事项

伺服电机选型的原则和注意事项伺服电机是一种能够输出力矩的机电传动装置,可以将输入的电信号转化成相应的运动规律。

因其具有速度高、精度高、响应快等特点,广泛应用于机械制造、自动化设备、机器人、航空航天等领域。

在选择伺服电机时,需要考虑多种因素,包括性能、规格、成本、环境等。

下面我们将详细介绍伺服电机选型的原则和注意事项。

一、伺服电机选型的原则1. 性能匹配原则:选择伺服电机时,需充分考虑其输出功率、转速范围、定位精度、响应速度等性能指标,确保能够满足实际应用的要求。

通常情况下,需根据具体的负载特性、作业环境以及工作要求等方面综合考虑。

2. 稳定性原则:伺服电机在工作中需要具有稳定的运行特性,因此在选型时需要注意其输出稳定性、温升特性、抗扰性等指标,以确保其在各种工况下都能够稳定运行。

3. 经济性原则:在选型时,需综合考虑伺服电机的成本、维护费用、能耗等因素,选择性价比较高的产品。

在确保性能和质量的前提下,尽量降低成本。

4. 可靠性原则:伺服电机作为机械传动的重要部件,其可靠性直接关系到设备的稳定运行。

因此在选型时需选择品质可靠、性能稳定的产品,尽量避免使用劣质产品。

5. 适用性原则:伺服电机的选型需考虑其适用范围和使用环境,例如是否需要防尘防水、是否需要防爆功能、工作温度范围等。

选型时需根据实际工况选择适合的产品。

6. 可维护性原则:选型时需考虑伺服电机的可维护性,例如易损件的更换和维护难易程度、厂家售后服务的支持等方面,以确保设备的长期稳定运行。

1. 了解负载特性:在选型前需要充分了解实际应用中的负载特性,包括负载的惯性、摩擦力、阻尼力等,以便合理选择伺服电机的输出功率和转矩。

2. 确定运动要求:需明确了解设备对于速度、加速度、定位精度等方面的要求,以便选择适合的伺服电机类型和规格。

3. 注意温升和过载能力:在选型时需考虑伺服电机的持续运行能力和过载能力,以确保其在长期工作和瞬时过载情况下都能够正常运行。

伺服电机要配行星减速机使用的好处

伺服电机要配行星减速机使用的好处

伺服电机要配行星减速机使用的好处伺服电机要配行星减速机使用的好处现代工业设备随着伺服电机技术的发展被应用的越来越广泛,从高扭矩密度乃至于高功率密度,使转速的提升高过3000rpm,由于转速的提升,使得伺服电机的功率密度大幅提升。

这意味着伺服电机是否需要搭配减速机,那么问题就来了伺服电机行星减速机的应用场合都有那些?这样搭配的好处是什么?1、重负何高精度:一般像是航空、卫星、医疗、军事科技、晶圆设备、机器人等自动化设备。

他们的共同特征在于将负载移动所需的扭矩往往远超过伺服电机本身的扭矩容量。

而透过减速机来做伺服电机输出扭矩的提升2、提升扭矩:输出扭矩提升的方式,可能采用直接增大伺服电机的输出扭矩方式,但这种方式不但必须使用昂贵大功率的伺服电机,马达还要有更强壮的结构,扭矩的增大正比于控制电流的增大,此时采用比较大的驱动器,功率电子组件和相关机电设备规格的增大,又会使控制系统的成本大幅增加。

3、增加使用效率:理论上,提升伺服电机的功率也是输出扭矩提升的方式,可藉由增加伺服马达两倍的速度来使得伺服系统的功率密度提升两倍,而且不需要增加伺服驱动器等控制系统组件的规格,也就是不需要增加额外的成本。

而这就需透过的搭配来达到提升扭矩的目的了。

所以说,高功率伺服电机的发展是必须搭配应用减速机,而非将其省略不用。

4、提高使用性能:据了解,负载惯量的不当匹配,是伺服控制不稳定的最大原因之一。

对于大的负载惯量,可以利用减速比的平方反比来调配最佳的等效负载惯量,以获得最佳的控制响应。

所以从这个角度来看,行星减速机为伺服应用的控制响应的最佳匹配。

5、增加设备使用寿命:行星减速机还可有效解决电机低速控制特性的衰减。

由于伺服电机的控制性会由于速度的降低,导致产生某程度上的衰减,尤其在对于低转速下的讯号撷取和电流控制的稳定性上,特别容易看出。

因此,采用减速机能使电机具有较高转速。

讲了这么多内容大家应该很清楚我们为什么在使用伺服电机要搭配行星减速机来工作了,这样不仅提高工作效率还可以降低成本。

伺服电机选型指南

伺服电机选型指南

伺服电机选型指南伺服电机是一种能够精准控制位置、速度和加速度的电动机,广泛应用于机器人、自动化设备、数控机床、医疗设备等领域。

选型合适的伺服电机对于机械设备的性能和稳定性有着重要的影响。

本文将从电机的参数、性能、适用环境等方面介绍伺服电机的选型指南。

一、电机参数1.功率:功率是电机输出能力的重要指标,根据设备的工作负载和所需功率大小选择合适的电机功率。

一般来说,电机的额定功率应大于设备最大负载功率的1.2倍左右。

2.转矩:电机转矩是指电机输出的扭矩大小,与设备的负载特性密切相关。

根据设备所需的最大转矩选择合适的电机转矩。

一般来说,电机的额定转矩应大于设备最大负载转矩的1.2倍左右。

3.转速:电机转速是指电机输出的转速大小,与设备运动速度有关。

根据设备所需的最大转速选择合适的电机转速。

一般来说,电机的额定转速应大于设备最大运动速度的1.2倍左右。

4.控制精度:伺服电机能够实现更高的控制精度和位置重复性,根据设备所需的控制精度选择合适的伺服电机。

一般来说,控制精度为±0.01°的伺服电机可以满足大多数应用的需求。

二、电机性能1.动态响应:动态响应是指伺服电机在响应控制指令时的速度和加速度特性。

对于需要快速响应和高加速度的应用,选择具有较好动态响应性能的伺服电机。

2.脉冲宽度调制(PWM)频率:PWM频率决定了电机控制的精度和稳定性,一般来说,选择具有较高PWM频率的伺服电机可以实现更精准的控制效果。

3.调速范围:伺服电机的调速范围指的是从最低转速到最高转速的比值,较大的调速范围能够满足更广泛的应用需求。

4.效率:电机的效率是指电机输出功率与输入功率之比,高效率的电机能够降低能源消耗和热量排放。

三、适用环境1.温度:伺服电机的工作温度范围应与设备所处环境温度相匹配,一般来说,工作温度范围为-20°C到40°C的伺服电机可以适应大多数应用环境。

2.湿度:对于湿度较高的工作环境,选择具有较高防潮性能的伺服电机。

伺服电机的调试方法及伺服电机的选用选型

伺服电机的调试方法及伺服电机的选用选型

伺服电机的调试方法及伺服电机的选用选型导语:伺服电动机又叫执行电动机,或叫控制电动机。

在自动控制系统中,伺服电动机是一个执行元件,它的作用是把信号(控制电压或相位)变换成机械位移,也就是把接收到的电信号变为电机的一定转速或角位移。

伺服电动机又叫执行电动机,或叫控制电动机。

在自动控制系统中,伺服电动机是一个执行元件,它的作用是把信号(控制电压或相位)变换成机械位移,也就是把接收到的电信号变为电机的一定转速或角位移。

其容量一般在0.1-100W,常用的是30W以下。

伺服电动机有直流和交流之分。

伺服电机内部的转子是永磁铁,驱动器控制的U/V/W三相电形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。

伺服电机的精度决定于编码器的精度(线数)。

伺服电动机在伺服系统中控制机械元件运转的发动机。

是一种补助马达间接变速装置。

又称执行电动机,在自动控制系统中,用作执行元件,把所收到的电信号转换成电动机轴上的角位移或角速度输出。

分为直流和交流伺服电动机两大类。

伺服电机的调试方法1、初始化参数在接线之前,先初始化参数。

在控制卡上:选好控制方式;将PID参数清零;让控制卡上电时默认使能信号关闭;将此状态保存,确保控制卡再次上电时即为此状态。

在伺服电机上:设置控制方式;设置使能由外部控制;编码器信号输出的齿轮比;设置控制信号与电机转速的比例关系。

一般来说,建议使伺服工作中的最大设计转速对应9V的控制电压。

比如,山洋是设置1V电压对应的转速,出厂值为500,如果你只准备让电机在1000转以下工作,那么,将这个参数设置为111。

2、接线将控制卡断电,连接控制卡与伺服之间的信号线。

以下的线是必须要接的:控制卡的模拟量输出线、使能信号线、伺服输出的编码器信号线。

复查接线没有错误后,电机和控制卡(以及PC)上电。

此时电机应该不动,而且可以用外力轻松转动,如果不是这样,检查使能信号的设置与接线。

伺服电机选型指南

伺服电机选型指南

伺服电机选型指南导言:伺服电机是一种能够根据控制信号实现位置、速度和力矩控制的电机。

它具有高精度、高速度响应、高功率密度等优点,被广泛应用于自动化设备、机器人、数控系统等领域。

在选型伺服电机时,需要考虑多个因素,如要求的动态性能、机械结构、环境条件等。

下面将介绍一些选型伺服电机的指南。

一、确定性能需求:在选型伺服电机之前,首先需要明确所需要的性能需求。

动态性能是伺服电机最重要的指标之一,包括速度响应、加速度、定位精度等。

同时,还需要考虑所需的力矩范围、功率密度、温升、定位误差余量等指标。

根据具体应用的要求,确定这些性能需求。

二、了解机械结构:伺服电机的选型还需要了解机械结构。

机械结构将直接影响伺服电机的扭矩、惯量、安装方式等。

根据具体的机械结构来选择适合的伺服电机类型,如直线伺服电机、旋转伺服电机等。

三、选择合适的控制器:伺服电机的控制器是伺服系统的核心部分,它将影响伺服电机的性能以及系统的稳定性。

在选型伺服电机时,需要考虑是否配备合适的控制器,以及控制器的控制算法、通信接口等。

四、考虑环境条件:伺服电机的工作环境条件也是选型考虑的重要因素之一、工作环境的温度、湿度、振动等都会对伺服电机的性能和寿命产生影响。

因此,在选型伺服电机时,需要考虑环境条件,并选择适合的防尘、防水等级别。

五、参考厂家技术指标:在选型伺服电机时,可以参考厂家提供的技术指标。

常见的技术指标包括额定电流、额定功率、峰值扭矩、峰值电流、转矩常数、惯性等。

根据应用的需求和机械结构,选择符合要求的技术指标。

六、了解市场状况:在选型伺服电机之前,还可以了解一下市场上的主流产品和技术趋势。

通过了解市场情况,可以选择性价比更高的产品或技术,从而更好地满足应用需求。

总结:伺服电机的选型对于应用系统的性能和稳定性具有重要影响,因此在选型时需要考虑性能需求、机械结构、控制器、环境条件、厂家技术指标以及市场状况等因素。

通过综合考虑这些因素,可以选择到满足要求的伺服电机,从而提升应用系统的性能和效益。

如何选择合适的伺服电机

如何选择合适的伺服电机

如何选择合适的伺服电机
伺服电机是一种常见的精密控制驱动器,它具有高速、高精度和高
稳定性的特点,通常应用于工业自动化、机器人、CNC机床和医疗器
械等领域。

然而,在选择适合自己的伺服电机时,可能会遇到一系列
技术问题和挑战。

本文将探讨如何选择合适的伺服电机。

首先,要知道哪些因素会影响到伺服电机的选择。

例如:负载惯性、转速、扭矩、环境温度和振动等等。

根据不同的应用场合和要求,可
以确定关键的性能指标。

在这个基础上,可以进一步选择合适的伺服
电机。

第二,在找到合适的伺服电机前,需要确定使用的驱动器类型。


见的驱动器类型有脉冲驱动器和矢量控制驱动器。

脉冲驱动器广泛应
用于低负载和低精度的控制系统中,而矢量控制驱动器则适用于高负
载和高精度的控制系统中。

因此,正确选择驱动器类型非常重要。

第三,在选择伺服电机时,还需要考虑机械系统的要求,以及机械
系统和电气系统之间的匹配度。

这是因为,在实际应用中,机械系统
和电气系统之间的匹配程度直接影响到机器的性能和寿命。

因此,选
择合适的大小、接口和电气参数非常重要。

综上所述,正确选择伺服电机需要综合考虑多个因素,包括性能指标、驱动器类型、机械系统、电气系统等等。

应该根据实际需求进行
选择,在选择之前,进行充分的研究和测试,以避免不必要的错误和
损失。

伺服电机选型的原则和注意事项

伺服电机选型的原则和注意事项

伺服电机选型的原则和注意事项
为了满足机械设备对高精度、快速响应的要求,伺服电机应有较小的转动惯量和大的堵转转矩,并具有尽可能小的时间常数和启动电压,还应具有较长时间的过载能力,以满足低速大转矩的要求,能够承受频繁启动、制动和正、反转,如果盲目地选择大规格的电机,不仅增加成本,也会使得设计设备的体积增大,结构不紧凑,因此选择电机时应充分考虑各方面的要求,以便充分发挥伺服电机的工作性能;下面介绍伺服电机的选型原则和注意事项。

选用伺服电机型号的步骤1、明确负载机构的运动条件要求,即加/减速的快慢、运动速度、机构的重量、机构的运动方式等。

2、依据运行条件要求选用合适的负载惯最计算公式,计算出机构的负载惯量。

3、依据负载惯量与电机惯量选出适当的假选定电机规格。

4、结合初选的电机惯量与负载惯量,计算出加速转矩及减速转矩。

5、依据负载重量、配置方式、摩擦系数、运行效率计算出负载转矩。

6、初选电机的最大输出转矩必须大于加速转矩加负载转矩;如果不符合条件,必须选用其他型号计算验证直至符合要求。

7、依据负载转矩、加速转矩、减速转矩及保持转矩,计算出连续瞬时转矩。

8、初选电机的额定转矩必须大于连续瞬时转矩,如果不符合条件,必须选用其他型号计算验证直至符合要求。

9、完成选定。

伺服电机的选型计算方法 1、转速和编码器分辨率的确认。

2、电机轴上负载力矩的折算和加减速力矩的计算。

3、计算负载惯量,惯量的匹配,安川伺服电机为例,部分产品惯量匹配可达50倍,但实际越小越好,这样对精度和响应速度好。

5招教你如何挑选合适的伺服电机

5招教你如何挑选合适的伺服电机

5招教你如何挑选合适的伺服电机伺服电机是控制系统中的重要组成部分,广泛应用于机器人、自动化设备、CNC机床等领域。

挑选合适的伺服电机可以有效提高设备的性能和稳定性。

下面将介绍五招教你如何挑选合适的伺服电机。

一、了解负载和要求首先要了解设备所承载的负载类型、重量和力矩需求。

根据负载特性选择合适的伺服电机类型,如有轮机构的设备适合选择直流无刷电机,而需要快速的加速和减速的设备适合选择中空转子伺服电机。

此外,还要考虑负载的重量和力矩需求,以确定电机的额定转矩和功率。

二、确定运动轨迹和速度要求根据设备的工作要求确定运动轨迹和速度需求,以选择合适的伺服电机。

不同的运动轨迹对电机的响应速度和精度要求不同,因此需要选择电机具备较高的响应速度和精度。

同时,要注意伺服电机的额定转速要满足设备的速度需求,并保证有足够的加速度和减速度。

三、考虑环境因素在选择伺服电机时,还要考虑设备工作的环境因素。

如工作温度、湿度、腐蚀性气体等对电机的影响。

如果设备工作环境较为恶劣,需要选择具有较高防护等级的伺服电机。

四、了解控制系统要求了解控制系统的要求可以帮助我们选择合适的伺服电机。

根据控制系统的类型,如闭环控制、开环控制,选择相应的伺服电机类型。

此外,还要考虑控制系统的接口类型,如模拟接口或数字接口,选择与系统兼容的电机。

五、考虑长期可靠性和维护成本除了电机的性能和适应性,还要考虑电机的长期可靠性和维护成本。

选择具有良好品牌声誉和售后服务的厂家,减少设备故障和维修次数。

此外,要注意电机的维护成本,如更换零部件的费用和维修周期。

总之,选择合适的伺服电机需要综合考虑负载特性、运动轨迹和速度要求、环境因素、控制系统要求以及长期可靠性和维护成本等因素。

通过对这些方面的全面了解和综合评估,可以选择出性能稳定、适应性强、长期可靠的伺服电机,提高设备的性能和稳定性。

伺服电机匹配行星减速机的方法

伺服电机匹配行星减速机的方法

伺服电机匹配行星减速机的方法
伺服电机匹配行星减速机的方法包括以下步骤:
1. 确定减速器的类型:根据应用需求,选择适合的减速器类型。

伺服电机匹配的行星减速器通常分为直齿、斜齿、方法兰和圆法兰等类型。

2. 确定减速器的规格:减速器的规格通常与伺服电机的功率有关。

根据电机的功率,选择相应规格的行星减速机法兰。

3. 确定减速器的减速比:减速比是根据需要伺服电机达到的效果来确定的。

可以询问技术人员所需的减速比,或者根据减速器扭矩和电机扭矩进行计算。

4. 计算减速器的扭矩:根据电机的工作条件,计算出减速器的输出扭矩。

减速器的额定扭矩应大于或等于电机的额定扭矩乘以减速比。

5. 确定减速器的精度:根据具体工作要求,选择适合的减速器精度等级。

一般来说,用于伺服电机的减速器间隙不应大于15arcmin,等级区分为P1、P2、P0。

6. 考虑其他因素:在选择伺服电机匹配的行星减速机时,还需要考虑其他因素,如减速机的刚性、质量、使用寿命和维护要求等。

综上所述,伺服电机匹配行星减速机的方法需要综合考虑多个因素,包括减速器类型、规格、减速比、扭矩、精度和其他因素。

只有选择合适的减速器才能达到理想的效果。

伺服电机的选型步骤及注意事项

伺服电机的选型步骤及注意事项

伺服电机的选型步骤及注意事项欢迎加入圈子学习更多的伺服控制技术和经验伺服电机是指在伺服系统中控制机械元件运转的发动机,是一种补助马达间接变速装置。

每种型号伺服电机的规格项内均有额定转矩、最大转矩及伺服电机惯量等参数各参数与负载转矩及负载惯量间必定有相关联系存在,选用伺服电机的输出转矩应符合负载机构的运动条件要求,如加速度的快慢、机构的重量;机构的运动方式(水平、垂直旋转)等;运动条件与伺服电机输出功率无直接关系,但是一般伺服电机输出功率越高,相对输出转矩也会越高。

因此不但机构重量会影响伺服电机的选用,运动条件也会改变伺服电机的选用。

惯量越大时,需要越大的加速及减速转矩,加速及减速时间越短时,也需要越大的伺服电机输出转矩。

选用伺服电机规格时,依下列步骤进行。

一、伺服电机的选型步骤1、明确负载机构的运动条件要求,即加/减速的快慢、运动速度、机构的重量、机构的运动方式等。

2、依据运行条件要求选用合适的负载惯量计算公式计算出机构的负载惯量。

3、依据负载惯量与伺服电机惯量选出适当的假选定伺服电机规格。

4、结合初选的伺服电机惯量与负载惯量,计算出加速转矩及减速转矩。

5、依据负载重量、配置方式、摩擦系数、运行效效率计算出负载转矩。

6、初选伺服电机的最大输出转矩必须大于加速转矩+负载转矩;如不符合条件,必须选用其他型号计算验证直至符符合要求。

7、依据负载转矩、加速转矩、减速转矩及保持转矩计算出连续瞬时转矩。

8、初选伺服电机的额定转矩必须大于连续瞬时转矩,如,如果不符合条件,必须选用其他型号计算验证直至符合要求。

9、完成选定。

二、伺服电机选型的注意事项1、如果选择了带电磁制动器的伺服电机,电机的转动惯量会增大,计算转矩时要进行考虑。

2、有的伺服驱动器有内置的再生制动单元,但当再生制动较频繁时,可能引起直流母线电压过高,这时需另配再生制动电阻。

再生制动电阻是否需要另配,配多大,可参照相应样本的使用说明来配。

3、有些系统要维持机械装置的静止位置,需电机提供较大的输出转矩,且停止的时间较长。

伺服电机的选择

伺服电机的选择

伺服电机的选择伺服电机:伺服主要靠脉冲来定位,伺服电机接收到1个脉冲,就会旋转1个脉冲对应的角度,从而实现位移;可以将电压信号转化为转矩和转速以驱动控制对象。

伺服电机内部的转子是永磁铁,驱动器控制的U/V/W三相电形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。

伺服电机的精度决定于编码器的精度(线数)。

闭环半闭环:格兰达的设备用伺服电机都是半闭环,只是编码器发出多少个脉冲,无法进行反馈值和目标值的比较;如是闭环则使用光栅尺进行反馈。

开环步进电机:则没有记忆发出多少个脉冲。

伺服:速度控制、位置控制、力矩控制增量式伺服电机:是没有记忆功能,下次开始是从零开始;绝对值伺服电机:具有记忆功能,下次开始是从上次停止位置开始。

伺服电机额定速度3000rpm,最大速度5000 rpm;加速度一般设0.05 ~~ 0.5s计算内容:1.负载(有效)转矩T<伺服电机T的额定转矩2.负载惯量J/伺服电机惯量J< 10 (5倍以下为好)3.加、减速期间伺服电机要求的转矩 < 伺服电机的最大转矩4.最大转速<电机额定转速伺服电机:编码器分辨率2500puls/圈;则控制器发出2500个脉冲,电机转一圈。

1.确定机构部。

另确定各种机构零件(丝杠的长度、导程和带轮直径等)细节。

典型机构:滚珠丝杠机构、皮带传动机构、齿轮齿条机构等2.确定运转模式。

(加减速时间、匀速时间、停止时间、循环时间、移动距离)运转模式对电机的容量选择影响很大,加减速时间、停止时间尽量取大,就可以选择小容量电机3.计算负载惯量J和惯量比(x kg.)。

根据结构形式计算惯量比。

负载惯量J/伺服电机惯量J< 10 单位(x kg.)计算负载惯量后预选电机,计算惯量比4.计算转速N【r/min】。

根据移动距离、加速时间ta、减速时间td、匀速时间tb计算电机转速。

进给伺服电机的选择

进给伺服电机的选择

一、进给驱动伺服电机的选择1.原则上应该根据负载条件来选择伺服电机。

在电机轴上所有的负载有两种,即阻尼转矩和惯量负载。

这两种负载都要正确地计算,其值应满足下列条件:1)当机床作空载运行时,在整个速度范围内,加在伺服电机轴上的负载转矩应在电机连续额定转矩范围内,即应在转矩速度特性曲线的连续工作区。

2)最大负载转矩,加载周期以及过载时间都在提供的特性曲线的准许范围以内。

3)电机在加速/减速过程中的转矩应在加减速区(或间断工作区)之内。

4)对要求频繁起,制动以及周期性变化的负载,必须检查它的在一个周期中的转矩均方根值。

并应小于电机的连续额定转矩。

5)加在电机轴上的负载惯量大小对电机的灵敏度和整个伺服系统的精度将产生影响。

通常,当负载小于电机转子惯量时,上述影响不大。

但当负载惯量达到甚至超过转子惯量的5倍时,会使灵敏度和响应时间受到很大的影响。

甚至会使伺服放大器不能在正常调节范围内工作。

所以对这类惯量应避免使用。

推荐对伺服电机惯量Jm和负载惯量Jl之间的关系如下:Jl<5×Jm1、负载转矩的计算负载转矩的计算方法加到伺服电机轴上的负载转矩计算公式,因机械而异。

但不论何种机械,都应计算出折算到电机轴上的负载转矩。

通常,折算到伺服电机轴上的负载转矩可由下列公式计算:Tl=(F*L/2πμ)+T0式中:Tl折算到电机轴上的负载转矩(N.M);F:轴向移动工作台时所需要的力;L:电机轴每转的机械位移量(M);To:滚珠丝杠螺母,轴承部分摩擦转矩折算到伺服电机轴上的值(N.M);Μ:驱动系统的效率F:取决于工作台的重量,摩擦系数,水平或垂直方向的切削力,是否使用了平衡块(用在垂直轴)。

无切削时: F=μ*(W+fg),切削时: F=Fc+μ*(W+fg+Fcf)。

W:滑块的重量(工作台与工件)Kg;Μ:摩擦系数;Fc:切削力的反作用力;Fg:用镶条固紧力;Fcf:由于切削力靠在滑块表面作用在工作台上的力(kg)即工作台压向导轨的正向压力。

伺服电机如何进行选型

伺服电机如何进行选型

伺服电机选型技术指南1、机电领域中伺服电机的选择原则现代机电行业中经常会碰到一些复杂的运动,这对电机的动力荷载有很大影响。

伺服驱动装置是许多机电系统的核心,因此,伺服电机的选择就变得尤为重要。

首先要选出满足给定负载要求的电动机,然后再从中按价格、重量、体积等技术经济指标选择最适合的电机。

各种电机的T-ω曲线(1)传统的选择方法这里只考虑电机的动力问题,对于直线运动用速度v(t),加速度a(t)和所需外力F(t)表示,对于旋转运动用角速度ω(t),角加速度α(t)和所需扭矩T(t)表示,它们均可以表示为时间的函数,与其他因素无关。

很显然。

电机的最大功率P电机,最大应大于工作负载所需的峰值功率P峰值,但仅仅如此是不够的,物理意义上的功率包含扭矩和速度两部分,但在实际的传动机构中它们是受限制的。

用ω峰值,T峰值表示最大值或者峰值。

电机的最大速度决定了减速器减速比的上限,n上限=ω峰值,最大/ω峰值,同样,电机的最大扭矩决定了减速比的下限,n下限=T峰值/T电机,最大,如果n下限大于n上限,选择的电机是不合适的。

反之,则可以通过对每种电机的广泛类比来确定上下限之间可行的传动比范围。

只用峰值功率作为选择电机的原则是不充分的,而且传动比的准确计算非常繁琐。

(2)新的选择方法一种新的选择原则是将电机特性与负载特性分离开,并用图解的形式表示,这种表示方法使得驱动装置的可行性检查和不同系统间的比较更方便,另外,还提供了传动比的一个可能范围。

这种方法的优点:适用于各种负载情况;将负载和电机的特性分离开;有关动力的各个参数均可用图解的形式表示并且适用于各种电机。

因此,不再需要用大量的类比来检查电机是否能够驱动某个特定的负载。

在电机和负载之间的传动比会改变电机提供的动力荷载参数。

比如,一个大的传动比会减小外部扭矩对电机运转的影响,而且,为输出同样的运动,电机就得以较高的速度旋转,产生较大的加速度,因此电机需要较大的惯量扭矩。

简述伺服电动机的选型步骤

简述伺服电动机的选型步骤

伺服电动机的选型步骤一般包括以下几个步骤:
1.确定电机的类型和规格:根据应用场景和负载特性,选择合适
的伺服电机类型和规格,包括电机的功率、转速、力矩、绝缘等级、尺寸等参数。

2.确定电机的控制方式:根据控制系统的要求,选择电机的控制
方式,包括开环控制、闭环控制、位置控制、速度控制等。

3.确定电机的响应速度和精度:根据应用需求,确定电机所需的
响应速度和精度,以便选择合适的电机和控制方案。

4.考虑电机的附件和配件:根据应用需求,选择合适的电机附件
和配件,例如编码器、减速器、联轴器等。

5.考虑电机的可靠性和耐用性:根据应用场景和工作条件,选择
具有较高可靠性和耐用性的电机品牌和型号。

6.考虑电机的经济性和维护性:在满足应用需求的前提下,选择
具有较高性价比和易于维护的电机品牌和型号。

在选择伺服电动机时,需要根据具体的应用场景和要求进行综合考虑,选择合适的电机类型和规格,以及相应的控制方式和附件配件。

同时,还需要注意电机的性能指标、技术参数和可靠性等因素,以确保电机的稳定运行和使用效果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

伺服电机的选择及需不需要加减速机
请教各位:我们现在需要一个伺服电机带动一个齿轮泵(0.55ml/转,齿轮泵输送液体产生的压力估计是5公斤,目前是要求齿轮泵每分钟24转就能满足液体的输送量,(电机会在每分钟内反复启动停止)是单向转动,这样我应该选择什么样的电机及多大功率的电机呢,这样...
1、看情况选择加减速机,通常三种情况下选减速机
(1)降低转速
(2)增大扭矩
(3)惯量匹配
2、伺服电机(servo motor )是指在伺服系统中控制机械元件运转的发动机,是一种补助马达间接变速装置。

伺服电机可使控制速度,位置精度非常准确,可以将电压信号转化为转矩和转速以驱动控制对象。

伺服电机转子转速受输入信号控制,并能快速反应,在自动控制系统中,用作执行元件,且具有机电时间常数小、线性度高、始动电压等特性,可把所收到的电信号转换成电动机轴上的角位移或角速度输出。

分为直流和交流伺服电动机两大类,其主要特点是,当信号电压为零时无自转现象,转速随着转矩的增加而匀速下降。

既然直接用120W伺服电机就可以驱动,那么你直接选用400W的交流伺服电机就完全可以了,因为400W是广泛通用型,价格相对于所有功率的伺服电机来说,价格最实惠。

KF系列精密行星减速机
具有经济实用,性价比高,精度高、钢性好、承载能力大、效率高、寿命长、体积轻小、外观美观、安装方便、定位精准等特点。

适用于交流伺服马达、直流伺服马达、步进马达、液压马达的增速与减速传动。

适合于全球任何厂商所制造的驱动产品联接。

KF系列精密伺服行星减速机:
为方形法兰设计,安装尺寸简单方便。

型号分:KF40、KF60、KF90、KF120、KF160、KF200等常用机座型号。

速比:4~1000有20多种比速可选择;分一、二、三减速传动;精度:一级传动精度在5-10弧分,二级传动精度在7-12弧分;三级传动精度在9-15弧分;有数百种规格。

应用领域:
伺服行星减速机可直接安装到交流和直流伺服马达上,广泛应用于中等精度程度的工业领域。

如:精密机床、焊接设备、自动切割设备、包装设备,太阳能、工业机器人、印刷设备、精密测试仪器等自动化数控设备的应用。

性能和特点:
KF系列精密伺服行星减速机提供了高性价比,应用广泛、经济实用、寿命长等优点,在伺服控制的应用上,发挥了良好的伺服刚性效应,准确的定位控制,在运转平台上具备了中低背隙,高效率,高输入转速,高输入扭矩,运转平順,低噪音等特性,外观及结构设计轻小。

使用免更换的润滑油,及无论安装在何处,都可以免维修操作全封闭式设计,并且具有IP65的保护程度,因此工作环境差时亦可使用。

KF系列伺服行星减速机性能参数:
KF
配备电机LA LZ S LR LB LE LC L1(一级传动) L2(二级传动) L3(三级传动)400W 70 4-M4 14F7 35 50(H7) 5 90 165 188 211 750W 90 4-M5 19F7 35 70(H7) 5 90 165 188 211 1500W 145 4-M8 22F7 55 110(H7) 5 130 185 208 231
配备电机LA LZ S LR LB LE LC L1(一级传动)L2(二级传动)L3(三级传动)750W 90 4-M6 19F7 55 70(H7) 10 130 203 235 259 1500W 145 4-M8 22/24F7 65 110(H7) 10 130 213 245 269 3000W 165 4-M10 32F7 65 130(H7) 10 150 233 265 389。

相关文档
最新文档