第二章 随机过程2008030532
随机过程第二章
4、有限维分布族
定义:设
X t ; t T 为一个 S .P. ,其有限
维分布函数的全体(一维分布函数,二维分布函
数,n维分布函数)。
F Ft1 ,t2 ,,tn x1, x2 ,, xn ; xi R,ti T,n N, i 1,2,, n
称之为 S.P. X t 的有限维分布函数。
2、特点:
独立增量过程在零均值且二阶矩存在时,是正交增量过程。 注:独立增量过程在现实环境中大量存在(例2.10)
3、平稳独立增量过程(定义 2.8)
增量 X(t)-X(s) 的分布律仅依赖于区间长度t-s。(第三章) (三)马尔可夫过程(第四、五章) (四)正态过程 1、定义 2.10: X(t)的有限维分布律是n维正态随机向量的分布律. 2、特点: ①二阶矩过程 ②数字特征成为其参数。
状态空间:S .P. X t 的状态所有可能取值的 集合,称之为状态空间。
小结:
X e, t 是状态与参数的二元函数
若 若
e
t
确定 确定
X e, t 是时间函数
X e, t 是随机变量
是一个确定值 是随机过程 S .P.
r.v.
若 e, t 确定 若 e, t 不定
随机过程的分类
一维正态过程分布律:
X (t ) ~ N u(t ),
2 2
2
(t )
二维正态过程分布律:
X (t1 ), X (t2 ) ~ N u(t1 ),u(t2 ),
这里有5个参数。 其中 1
(t1 ), (t2 ), (t1 , t2 )
(t1 , t2 ) 1 为相关系数或归一化协方差函数
随机过程第二章
§2.1 基本概念
一、实际背景
在许多实际问题中,不仅需要对随机现象做特 定时间点上的一次观察,且需要做多次的连续不 断的观察,以观察研究对象随时间推移的演变过 程. Ex.1 对某城市的气温进行n年的连续观察, 记录得 { X ( t ), a t b},
当T=(1,2, … ,n,…),
时间序列
随机过程是n 维随机变量,随机变量序列的
一般化,是随机变量X(t), t T 的集合. 用 E表示随机过程X T X t , t T 的值域,称E为 过程的状态空间. Ex.5 设(Ω,F, P)是对应于抛均匀硬币的概
率空间: Ω ω1 ,ω2 ,
Байду номын сангаас
tn ) P X (t1 ) x1 , X (t2 ) x2 ,
X (t n ) xn ,
称为随机变量 X (t ), t T 的n维分布函数
FX ( x1 , x2 ,
tn ) ti T 称为 X (t ), t T 的n维分布函数族
xn ; t1 , t2 , tn ), n 1, 2, ti T
T ( t ,ω) 是一个 2)当固定ω Ω ,作为 t T 的函数,
定义在T上的普通函数.
X(t1,ω)
X(t2,ω)
X(t,ω1) X(t,ω2) X(t,ω3)
t1
t2
tn
定义 对每一固定ω Ω,称 X t ω是随机过程 { X ( t , ), t T } 的一个样本函数. 也称轨道, 路径,现实.
互相关函数
互协方差函数
如果二维随机过程 X (t ), Y (t ) 对任意的t1 , t2 T , 恒有CXY (t1 , t2 ) 0, 称X (t )和Y (t )是不相关的。
随机过程课件第二章
复随机过程的性质
复随机过程{XT,,t∈T}的协方差函数B(s,t)具有性质: (1)对称性(埃米特性), B(s, t ) = B(t, s) (2)非负定性,对任意ti ∈T及复数ai,i=1,2, …,n,n≥1,有
n i , j =1
∑ B (t Βιβλιοθήκη tij)ai a j ≥ 0
说明: 1. 如果函数f(s,t)具有非负定性,那么它必具有埃米特性。 2. 若f(s,t)为一非负定函数,则必存在一个二阶矩过程(并可要 求它为正态过程)以给定的f(s,t)为协方差函数。
两个复随机过程{Xt},{Yt}的互相关函数定义为
R XY ( s , t ) = E ( X s Yt )
互协方差函数定义为
B XY ( s , t ) = E [ X s m X ( s )] [Yt m Y ( t )]
例题2.9 2.9 设随机过程 Zt =
n
∑
k =1
X k ei kt , t ≥ 0 ,其中X1,X2, …,Xn是相互独立的,且
两个随机过程{X(t),t∈T}与{Y(t), t∈T}的互不相关定义
B XY ( s , t ) = 0
互协方差函数与互相关函数之间的关系
B XY ( s , t ) = R XY ( s , t ) m X ( s ) m Y ( t )
例题2.7 设有两个随机过程X(t)=g1(t+ε)和Y(t)=g2(t+ε),其中g1(t)和g2(t)都是周期 为L的周期方波,ε是在(0,L)上服从均匀分布的随机变量,求互相关函 数RXY(t,t+τ)的表达式。 例题2.8: 设X(t)为信号过程,Y(t)为噪声过程,令W(t)=X(t)+Y(t),求W(t)的均值 函数和相关函数。
随机过程第二章
2.2 随机过程的分类和举例
2、离散参数、连续状态的随机过程 这类过程的特点是参数集是离散的,对于固定的t∈T, X(t)是连续性随机变量。
例 设Xn,n=…,-2,-1,0,1,2,…是相互独立同服从标准正态 分布的随机变量,则{Xn,n=…,-2,-1,0,1,2,…}为一随机
过程,其参数集T={…,-2,-1,0,1,2,…},状态空间 S=(﹣∞,+∞)
2.3 随机过程的有限维分布函数族
例2.3.2 令X(t)=Acost,﹣∞<t<+∞,其中A是随机变量,其
分布律为 试求
P(A=i)= 1 , i=1,2,3 3
(1) 随机过程{X(t),﹣∞<t<+∞}的一维分布函数
(x)
2,
1 2
0,其他
x
0
时X( )Vcos V,故 X
(
)
的概率密度
1,1x0 fX()(x)0,其他
2.1 随机过程的定义
(3) 当t
2
时,X(2)Vcos20,不论V取何值,
均有 X ( ) 0,因此,P(X( )0)1,从而X ( ) 的
2
2
2
分布函数为
1,x0
F
X(
(x)
…
exp[
j(u1x(t1)
u2x(t2)
…
unx(tn))]dF(t1,t2,? ,tn;x1,x2,…,xn) ui∈R,ti∈T,i=1,2,…,n,j= 1
为随机过程{X(t), t ∈T }的n维特征函数.
2.3 随机过程的有限维分布函数族
称 { ( t 1 , t 2 , … , t n ; u 1 , u 2 , … , u n ) , u i R , t i T , i 1 , 2 , … , n , n N }
随机过程-第二章 随机过程
Ft j ,,t j ( x j1 , , x jn )
1
P X (t j1 ) x j1 , , X (t jn ) x jn P X (t1 ) x1 , , X (tn ) xn Ft1 ,,tn ( x1 , , xn )
(2)相容性 对于 m n ,有
1, X (t ) x Y (t ) 0, X (t ) x
1 n
j1 ,,t jn
(u j1 ,, u jn )
(2)相容性 对于 m n ,有
t ,,t
1
m ,tm1 ,,tn
(u1 ,, um ,0,,0) t1 ,,tm (u1 ,, um )
注:有限维分布族与有限维特征函数族互相唯一决定。
定理 2.1: 存在定理 (Kolmogorov 定理) : 设分布函数族 Ft1 ,,tn ( x1 ,, xn ), t1 ,, tn , n 1
CXY (s, t ) E[( X (s) X (s))(Y (t ) Y (t ))], s, t T
互相关函数
def
RXY (s, t ) E[ X (s)Y (t )], s, t T
二维随机过程的独立性 若满足
Ft ,,t
1
' ' n ;t1 ,,tm
( x1 ,, xn ; y1 ,, ym ) Ft1 ,,tn ( x1 ,, xn ) Ft ' ,,t ' ( y1 ,, ym ), m 1, n 1
i 1
1 k k Ft1 ,,t1 ;;t 2 ,,t 2 ( x1 ,, x1 n1 ; , x1 , , xnk )
1 n1 1 nk
第二章随机过程的基本概念
例: 英国植物学家Brown注意到漂浮在液面上 的微小粒子不断进行无规则的运动。这种运 动叫做Brown运动,它是分子大量随机碰撞的
结果。记 X t ,Y t 为粒子于时刻t在平面
为t T 的函数,x(t,ω0 )是一个定义在T 上的
普通函数.
X(t1,ω)
X(t2,ω)
x(t,ω1) x(t,ω2) x(t,ω3)
t1
t2
tn
例5 X(t,ω) = acos(bt+Θ), Θ~U(0, 2π)
ω1 =5.4938 ω2 = 1.9164
ω3 = 2.6099
定义2.1.2 对每一固定ωΩ,称Xt (ω) 是随 机过程 {X (t,), t T }的一个样本函数.
是相互独立的,
则称 X (t) 为具有独立增量的随机过程。
(3)马尔可夫过程
设{ X (t) ,t T }对任意 n 个不同的 t1 ,t2 ,…,tn T
且 t1 t2 tn1 tn P( X (tn ) xn | X (tn1 ) xn1 ,…,X (t1 ) x1 )
X (t)
t, 3
et ,
如果t时取得红球 如果t时取得白球
试求这个随机过程的一维分布函数族。
分析 先求概率密度
解 对每一个确定的时刻 t,X (t) 的概率密度为
t
X (t)
3
t
e
P
所以
F (t1;x1 ) P( X (t1 ) x1 )
21
第二章随机过程
第⼆章随机过程第 2 章随机过程2.1 引⾔确定性信号是时间的确定函数,随机信号是时间的不确定函数。
?通信中⼲扰是随机信号,通信中的有⽤信号也是随机信号。
描述随机信号的数学⼯具是随机过程,基本的思想是把概率论中的随机变量的概念推⼴到时间函数。
2.2 随机过程的统计特性⼀.随机过程的数学定义:设随机试验E 的可能结果为)(t g ,试验的样本空间S 为{x 1(t), x 2(t), …, x n (t),…}, x i (t)是第i 次试验的样本函数或实现,每次试验得到⼀个样本函数,所有可能出现的结果的总体就构成⼀随机过程,记作)(t g 。
随机过程举例:⼆.随机过程基本特征其⼀,它是⼀个时间函数;其⼆,在固定的某⼀观察时刻1t ,)(1t g 是随机变量。
随机过程具有随机变量和时间函数的特点。
●随机过程)(t g 在任⼀时刻都是随机变量;●随机过程)(t g 是⼤量样本函数的集合。
三.随机过程的统计描述设)(t g 表⽰随机过程,在任意给定的时刻T t ∈1, )(1t g 是⼀个⼀维随机变量。
1.⼀维分布函数:随机变量)(t g ⼩于或等于某⼀数值x 的概率,即})({);(1x t g P t x P ≤= 2.2.12.⼀维概率密度函数:⼀维概率分布函数对x 的导数.xt x P t x p ??=);(),(11 2.2.2 3.对于任意两个时间1t 和2t ,随机过程的对应的抽样值)(1t g )(2t g 为两个随机变量.他们的联合分布定义为)(t g 的⼆维分布})(;)({),;,(221121212x t g x t g P t t x x P ≤≤= 2.2.34.⼆维分布密度定义为212121221212),;,(),;,(x x t t x x P t t x x p = 2.2.4 四.随机过程的⼀维数字特征设随机过程)(t g 的⼀维概率密度函数为),(1t x p .1.数学期望(Expectation)dx t x xp t g E t g );()]([)(1?∞∞-==µ 2.2.5 2.⽅差(Variance)dx t x p t x t t g E t g Var t g g g ),()]([]))()([()]([)(1222µµσ-=-==?∞∞- 2.2.6五.随机过程的⼆维数字特征1.⾃协⽅差函数(Covariance)21212122211221121),;,())())((())]()())(()([(),(dx dx t t x x p t x t x t t g t t g E t t C g g g g g µµµµ--=--=??∞∞-∞∞- 2.2.72. ⾃相关函数(Autocorrelation)2121212212121),;,()]()([),(dx dx t t x x p x x t g t g E t t R g ∞∞-∞∞-== 2.2.83.⾃相关函数和⾃协⽅差函数的关系)]([)]([),(),(212121t g E t g E t t R t t C g g ?-= 2.2.94.设两个随机过程分别为)(),(t h t g ,在时刻1t 和2t ,对)(),(t h t g 抽样,两个随机过程的互相关函数(Cross-correlation)定义为)]()([),(2121t h t g E t t R gh = 2.2.105.两个随机过程的互协⽅差函数(Cross-covariance)定义为)]()())(()([(),(221121t t h t t g E t t C h g gh µµ--= 2.2.112.3 平稳随机过程⼀.狭义平稳的随机过程(严平稳的随机过程)对于任意的正整数n 和实数τ,若随机过程)(t g 的n 维概率密度函数满⾜ ),,;,,(),,;,,,(21212121n n n n n n t t t x x x p t t t x x x p=+???++???τττ 2.3.1 则称)(t g 为狭义平稳的随机过程.统计特性不随时间的推移⽽变化的随机过程称为平稳随机过程。
随机过程第二章
f (t ) = λe − λ t
X1 follows an exponential distribution with parameter λ
6
2.2 Properties of Poisson processes
For any s>0 and t>0, {X2>t|X1=s} ⇔{0 event in (s, s+t]|X1=s} P{X2>t|X1=s} = P{0 event in (s, s+t]|X1=s} = P{0 event in (s, s+t]} (independent-increment) = P{0 event in (0, t]} (stationary-increment) = P{N(t)=0}= e-λt P{ X2≤ t|X1= s} = 1- e-λt
12
2.2 Properties of Poisson processes
λh1e − λh ...λhn e − λh e − λ (t − h −...h ) = e − λt (λ t ) n
1 n1 1 n
(According to Eq.2-1-1)
n! = (Depends on the total number of subscribers and their arriving time)
Let N(t) denote the number of subscribers, and Si denote the arrival time of the ith customer. The revenue generated by this customer in (0,t] is t-Si. Adding the revenues generated by all arrivals in (0,t] N (t ) ⎡ N (t ) ⎤ ∑ (t − Si ) , E ⎢ ∑ (t − S i )⎥ ⎣ i =1 ⎦ i =1
第二章随机过程基本概念
2随机过程的基本概念§2.1 基本概念随机过程是指一族随机变量.对随机过程的统计分析称为随机过程论,它是随机数学中的一个重要分支,产生于本世纪的初期.其研究对象是随机现象,而它特别研究的是随“时间”变化的“动态”的随机现象.一随机过程的定义1 定义设E为随机试验,S为其样本空间,如果(1)对于每个参数t∈T, X(e,t)为建立在S上的随机变量,(2)对每一个e∈S, X(e,t)为t的函数,那么称随机变量族{X(e,t), t∈T, e∈S}为一个随机过程,简记为{X(e,t), t∈T}或X(t)。
()()()()(){}{}[]()为随机序列。
时,通常称,取可列集合当可以为无穷。
通常有三种形式:参数一般表示时间或空间,或有时也简写为一个轨道。
随机过程的一个实现或过程的样本函数,或称随机的一般函数,通常称为为对于:上的二元单值函数。
为即若用映射来表示注意:t X T T T b a b a T T T T t X t X t e X T t e X S e S T t e X RS T t e X t21321,,,,3,2,1,0,1,2,3,,3,2,1,0T ,.4,.3,,2,:,.1=---==ÎÎ×δ®´L L L为一个随机过程。
则令掷一均匀硬币,例),()(cos )(},{1t e X t X Rt T e t H e t t X T H S =Îîíì====p 2 随机过程举例îíì=====为随机变量的函数均为和解释:T e t He t t e X t t t T X t t H X 000cos ),(),(cos ),((p p 2121cos ),(000p t t t e X p 并且:例2:用X(t)表示电话交换台在(0,t)时间内接到的呼唤的次数,则(1)对于固定的时刻t, X(t)为随机变量,其样本空间为{0,1,2,…..},且对于不同的t,是不同的随机变量.(2)对于固定的样本点n, X(t)=n是一个t的函数.(即:在多长时间内来n个人?)所以{X(t),t>0}为一个随机过程.相位正弦波。
第二章 随机过程
图2-1-1 噪声电压的输出波形
定义1 设随机试验E的样本空间为 ,如果 对于每一个样本 ,总可以依某种规则确定 一时间t的函数 (T是时间t的变化范 围 ) 与之对应。于是,对于所有的 来说, 就得到一族时间t的函数,称此族时间的函数为 随机过程(也称随机信号)X,而族中的每一个 函数称为该随机过程的样本函数。 注:随机过程是样本函数的集合 。
决定随机信号的主 要物理条件不变
3、主要性质 (1)、若 是严平稳随机过程,则它的一维概 率密度与时间无关。 证明 令 ,则一维概率密度函数
得证。
(2)、若 是严平稳随机过程,则它的均值、 均方值和方差都是与时间无关的常数。
证明: 根据题意有 (2.3.2) (2.3.3) (2.3.4)
(2)、若 是严平稳随机过程,则它的均值、 均方值和方差都是与时间无关的常数。
2.2.1、随机过程的概率分布
随机过程 ,在每一固定时刻 都是随机变量。 随机事件:
发生概率:
, 和
,
,
1、一维分布函数 与 和 都有直接的关系,是 和 的 二元函数,记为: (2.2.1) 被称为随机过程的一维分布函数。 2、一维概率密度函数 如果存在二元函数 ,使 (2.2.2) 成立,则称 为随机过程的一维概率密度函 数, 是 和 的二元函数,且满足 (2.2.3)
• 研究随机过程的概率密度函数的统计特性是 很困难的; • 随机过程一、二阶矩函数在一定程度上描述 了随机过程的一些重要特性。 (1) 噪声电压是一平稳过程 ,那么一、二阶 矩函数,就是噪声平均功率的直流分量、交 流分量、总平均功率等参数。 (2) 正态随机过程由数学期望和相关函数详 细描述。
1 定义 若随机过程
自协方差函数反映了随机过程 在两个不同 时刻的状态相对于数学均值之间的相关程 度。
第2章 随机过程
第2章
随机过程
随机信号分析
3 随机过程的定义:
定义1:设随机试验E的样本空间 S { } ,若对于 每个元素 S ,总有一个确知的时间函数 X (t , ) 与它对应,这样,对于所有的 S,就可以得 到一簇时间t的函数,称它为随机过程。簇中的 每一个函数称为样本函数。 定义2:若对于每个特定的时间 ti (i 1,2,) X (ti , ) , 都是随机变量,则称 X (t , ) 为随机过程.X (ti , ) 称为随机过程 X (t ) 在t t i 时刻的状态。
第2章 随机过程
随机信号分析
2 二维概率分布 二维随机变量[X(t1),X(t2)]的分布函数FX(x1,x2;t1,t2)为
FX(x1,x2;t1,t2)=P{ X(t1)≤x1,X(t2)≤x2}
若FX(x1,x2;t1,t2)对x1,x2的二阶混合偏导存在,则
2 FX ( x1 , x2 ; t1 , t 2 ) f X ( x1 , x2 ; t1 , t 2 ) x1x2
为随机过程X(t)的二维概率密度
第2章 随机过程
随机信号分析
3 n维概率分布 随机过程 X (t )在任意n个时刻 t1 , t2 ,, tn 的取值 X (t1 ), X (t2 ),, X (tn ) 构成n维随机变量 [ X (t1 ), X (t2 ),, X (tn )], 定义随机过程X (t ) 的n维分布函数和n维概率密 度函数为
n重
4 f X ( x1 , x2 ,, xn ; t1 , t 2 ,, t n )dx1dx2 dxn 1
5
n-m重
第二章随机过程基本概念.
为称使可积
}: ({ , ( , ( , (, 0 , (1111T t t X t x f dx
t x f t x F t x f x
Î=³ò¥-(2若有的一维概率分布。
为称满足}: ({}{1
, 0} ({T t t X p p
p p x t X P k k k k k
k Î=³==å
¥¥-k k iux X k k iux X p e
u t p x t X P t X dx t x f e u t t x f t X k , ( (( ( 2 , ( , ( , ( (111jj则有分布列若(,则
有密度若(
有时也需要利用常用的一些特征函数来求随机变量的分布函数,由特征函数与分布函数的一一对应性有:
cos(
(Q
+
=t
a
t
X w
的均值函数,方差函数和自相关函数。其中, a , w为常数, Q是在(0, 2p上均匀分布的随机变量。例4试求随机相位余弦波
2随机过程的特征函数
的一维特征函数。
为称为随机变量,记
由于给定( , ( ( ( , ( (, ( (t X u t u e
E u t t X T t X t X t iuX X jjjÙ==Îåò====
为X (t的有限维分布函数族。
为随机过程的n维分布函数。称关于随机过程X (t的所有有限维分布函数的集合
注意:随机过程的n维分布函数描述了随机过程在任意n不同时刻的状态之间的联系。
随机过程X (t的有限维分布函数族的意义何在?随机过程的n维分布函数(或概率密度能够近似地描述随机过程的统计特性,而且, n越大,则n维分布函数越趋完善地描述随机过程的统计特性。
第二章 随机过程
程孤 立的时间点上的统计特性。 • 随机过程孤立的时间点上的统计特性不能反
映随机过程的起伏程度, 故采用两时刻或更多 时刻状态的相关性去描述起伏程度。
4.自相关函数
设和
分别是随机过程 在时刻
和的状态,称它们的二阶原点混合矩
统计特性也可分为:
1、幅值域描述: 数学期望、均方值、方差 等; 2、时间域描述: 自相关函数、互相关函数 ; 3.频率域描述: 功率谱密度函数、互功率谱 密度函数;
2.2.1.随机过程的概率分布
随机过程 , 在任意固定时刻 , 都 是随机变量。 随机事件:
发生概率:
1.一维分布函数
与 和 都有直接的关系,是 二元函数,记为:
7、当平稳随机过程含有均值 , 那它的自相 关函数也将会含有一个常数项 。
8、平稳随机过程的自相关函数的傅里叶变换在 整个频率轴上是非负的,即
且对于所有 都成立。 注: 即不含有阶跃函数的因子,如: 平顶、垂
直边或幅度上的任何不连续。
用平稳过程的自相关函数表示数字特征: (1).数学期望
(2) 均方值 (3) 方差 (4).协方差
• 随机过程 具有以下四种含义:
1.若 和 在发生变 一族时间函数,或化一,族则随随机机变过量程,是构成 了随机过程的完整概念; 2.若和 都固定,则随机过程是一个 确定值;
3.若 取固定值,则随机过程是一个确定 的时间函数,即样本函数,对应于某次试 验的结果;
4.若 取固定值,则随机过程是一个随 机变量;
图 随机过程数字特征
例2-14.设随机过程 的自相关函数为
求它的均值、均方值、方差和自协函数方差。 解:
随机过程第二章
X (t)
Y (t)
mX (t)
mY (t)
其中 X (随t)时间变化缓慢,这个过程在两个不同 时刻的状态之间有较强的相关性; 而 Y的(样t) 本函数变化激烈,波动性大,其不同时刻 的状态之间的联系不明显,且时刻间隔越大,联系越
弱.
因此,必须引入描述随机过程在不同时刻 之间相关程度的数字特征。
自相关函数(简称相关函数)就是用来描 述随机过程两个不同时刻,状态之间内在联 系的重要数字特征。
随机过程数字特征之间的关系:
(1)
2 X
(t)
RX
(t,t)
(2)
2 X
(t)
BX
(t,t)
RX
(t,t)
m2 X
(t)
(3)
BX (t1,t2 ) RX (t1,t2 ) mX (t1)mX (t2 )
从这些关系式看出,均值函数
mX (t)
和相关函数 RX (t1,t是2 ) 最基本的两个数字特征,其它
称为样本函数,对应于e的一个样本轨道或实现,
变动e ,则得到一族样本函数, 样本函数的全e为一个数, 即在t时刻系统所
处的某一个状态。
对接收机的输出噪声电压,作一次“长 时间的观察”,测量获得的噪声电压Xt是一 个样本函数
e 1, x1(t) e 2, x2 (t) e 3, x3(t) e k, xk (t)
随机变量, 当t连续变化时, 即得一族随机变量,
所以X t,0 t 是一个连续参数, 连续状态
的随机过程, 称为随机相位正弦波。 例. 某电话交换台在时间段[0,t)内接收到的呼叫
次数X (t)是与t有关的随机变量, 对于固定的t, X (t)是一个取非负整数的随机变量,
第2章 随机过程
2、随机过程的基本特征(属性) 、随机过程的基本特征(属性) (1)随机过程是一个时间函数; )随机过程是一个时间函数; (2)在给定的任一时刻t1,全体样本在t1时刻的取值ξ(t1)是 )在给定的任一时刻 全体样本在 时刻的取值 是 一个不含t变化的随机变量 一个不含 变化的随机变量。因此,我们又可以把随机过程看成 变化的随机变量 依赖时间参数的一族随机变量。
(2.1 - 12) (2.1 - 11)
作 业
思考题(自作): 思考题(自作): P61 习 题 : P61 3-1,3-2 , 3-2
2.2
平稳随机过程
★ 平稳随机过程的定义 ★ 各态历经性(遍历性) 各态历经性(遍历性) ★ 平稳过程的自相关函数 ★ 平稳过程的功率谱密度
一、平稳随机过程的定义
(2.1 数的关系 ) 协方差函数和( B(t1, t2)=R(t1, t2)-a(t1)a(t2)
若a(t1)=0或a(t2)=0,则B(t1, t2)=R(t1, t2)。 若t2>t1,并令t2=t1+τ,则R(t1, t2)可表示为R(t1, t1+τ)。这说 明,相关函数依赖于起始时刻 1及t2与t1之间的时间间隔 即相关 相关函数依赖于起始时刻t 之间的时间间隔τ,即相关 相关函数依赖于起始时刻 函数是t 的函数。 函数是 1和τ的函数。 的函数 由于B(t1, t2)和R(t1, t2)是衡量同一过程的相关程度的, 因此, 它们又常分别称为自协方差函数 自相关函数 自协方差函数和自相关函数 自协方差函数 自相关函数。
二、随机过程的统计特性
1、一维分布函数 一维分布函数 表示一个随机过程, 设ξ(t)表示一个随机过程,在任意给定的时刻 1∈T, 其取 表示一个随机过程 在任意给定的时刻t , 值 ξ(t1)是一个一维随机变量, 把随机变量ξ(t1)小于或等于某一 是一个一维随机变量, 把随机变量 小于或等于某一 是一个一维随机变量 数值x 的概率称为随机过程ξ(t)的一维分布函数 数值 1 的概率称为随机过程 的 一维分布函数,简记为F1(x1, t1), 即 F1(x1,t1)=P[ξ(t1)≤x1] 2、一维概率密度函数 一维概率密度函数 如果一维分布函数F 如果一维分布函数 1(x1, t1)对x1的偏导数存在,则称 1(x1, 对 的偏导数存在,则称f t1)为ξ(t)的一维概率密度函数 为 的一维概率密度函数。即有 ∂F1 ( x1 , t1 ) (2.1 - 1)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ae
2 X
(t)
则称X (t)为宽(广义)遍历性过程
例(42)
20080304
2
三 遍历性的实际意义
1. 对一般随机过程而言, 它的各个样本函数的 积分值是不同的,因而RP时间平均是个随机 变量;遍历过程各样本函数的时间平均实际 上可以认为是相同的,因此,遍历过程的时间 平均就可由它的任一样本函数的时间平均来 表示:
率 分 布
fX (x, n)
f X n (xn ; n)
FX n (xn ; n) xn
fX
(xn ,
xm ; n, m)
2 FX
(xn , xm ; n, m) xnxm
FX n (xn ; n)
xn
f X n ( xn ; n)d xn
20080304
15
三 数字特征
20080304
13
6.若 E[ X (t)] 0则 E[ X (t1) X (t2 ) X (t3 ) X (t4 )] RX (t1,t2 )RX (t3,t4 ) RX (t1, t3 )RX (t2 , t4 ) K X (t1, t4 )RX (t2 , t3 ) E[ X (t1) X (t2 )]E[ X (t3) X (t4 )] E[ X (t1) X (t3 )]E[ X (t1) X (t4 )] E[ X (t2 ) X (t4 )]E[ X (t1) X (t3)] 7.正态过程经过线性系统(微分器,积分器) 其输出仍为正态过程 8.高斯随机过程与确定性信号之和的分布仍是高斯分布 9.平稳高斯随机过程的导数是一个新的高斯过程, 其一维, 二维概率密度都是高斯的
1. mXn E[ X (n)] xfX (x; n)dx
E[g( X n )] g(x) fX (x; n)dx
2. RX (n1, n2 ) E[ X (n1) X (n2 )]
n1 n2
n
2 Xn
E[
X
2 n
]
2 Xn
D[ X n ]
XY ( ) RXY ( )
则称X (t)和Y (t)具有联合宽遍历性。
20080304
5
2.5.复随机过程
一 复随机变量与复随机过程
1、复随机变量:
实RV X 和Y,Z X jY
均值: mZ E[Z ] E[ X jY ] E[ X ] jE[Y ] mX jmY
2. 若随机序列的均值为常数, 其自相关函数 只与时间差m n2 n1有关, 且它的均方值有限, 则其为广义平稳随机序列
mXn E[ X (n)] mX
RX (n, n m) E[ X (n) X (n m)] RX (m)
RX
(0)
2 Xn
E[ X
2 (n)]
E[ X (t)] lim 1
T
x(t)dt A X (t)
T 2T T
RX
(
)
lim
T
1 2T
T
T x(t)x(t )dt X ( )
20080304
3
2.
mX
lim 1 T 2T
T X (t)dt 直流分量
T
RX
2 X
20080304
17
3. 对于两个各自平稳的随机序列X (n),Y (n),互相关序列
m m * Z1 Z2
)
不相关
20080304
10
2.6 高斯随机过程 一 定义及分布
1. 定义 :若实RP X (t)的任意n个状态X (t1) X (tn ) 的联合概率密度为高斯的,则称RP X (t)为高斯RP 2. 令 X [ X (t1) X (tn )]T
mX (t) [mX (t1) mX (tn )]T mX (t j ) E[ X (t j )] K X (ti ,t j ) E[( X (ti ) mX (ti ))( X (t j ) mX (t j ))]
X (t)dt
T 2T T
称RP X (t)的时间均值
X
(t,
t
)
X
(t)
X
(t
)
lim
T
1 2T
T
X (t) X (t )dt
T
称RP X (t)的时间相关函数
20080304
1
二 遍历性过程定义
1.严遍历性过程 如果一个随机过程X (t),它的各种时间平均(时间足够长)依概率1收敛 于相应的集合平均,则X (t)为严格(狭义)遍历性过程,简称具有严遍历。 2.宽遍历性过程 X (t)是平稳随机过程(WSS),如果
2
E[ X (t) j Y (t) ] DX (t) DY (t)
其中: X (t) X (t) mX (t), Y (t) Y (t) mY (t)
自相关函数 : RZ (t, t ) E[Z (t) Z (t )]
自协方差函数 : KZ (t, t ) E[Z *(t) Z (t )] E[(Z (t) mZ (t))*(Z (t ) mZ (t ))]
20080304
6
1
2、复RP 定义 : 实RP X (t)和Y (t),Z (t) X (t) jY (t) 均值: mZ (t) E[Z (t)] E[ X jY ] mX (t) jmY (t)
2
方差 : DZ (t) E[ Z (t) ] E[ Z (t) mZ (t) 2 ]
i A X (t) x(t) E[ X (t)] mX 依概率1成立,该过程均值具有遍历性 ii X ( ) X (t) X (t ) E[ X (t) X (t )] RX ( )依概率1成立,该过程
相关函数具有遍历性
iii 若
0成立, X 2 (t)
2.4.遍历性过程
一 时间平均
A() () lim 1 T ()dt 其中T为观测时间间隔 (T ,T )
T 2T T
x(t)为确定性函数,
x(t) lim 1
T
x(t)dt
T 2T T
RP X (t),
1 T
A X (t) X (t) lim
T 2T
T T
( x(t )
mX
)2dt
消耗在1电阻上的交流平均功率。
20080304
4
四 联合宽遍历RP
当两个过程X (t)和Y (t)联合平稳时,定义它们的 互相关函数为
XY
(
)
X
(t)Y
(t
)
lim
T
1 2T
T
X (t)Y (t )dt
T
依概率1收敛于集合互相关函数RXY ( ),即
20080304
16
四 平稳性
1. 如果一个离散时间随机过程经某时间平移K,(K为整数)后,
其概率统计特性保持不变, RP严平稳随机序列
FX (x1K , x2K , xN K ;1 K , 2 K , N K ) FX (x1, x2, xN ;1, 2, N ). FX (xn ; n) FX (xn ) FX (xn , xm; n, m) FX (xn , xm; n m)Leabharlann 2008030414
2.7.离散时间随机过程
一 定义随机序列
连续时间RP X (t) 取样tnT X (n)或{X n; n 1, 2 N}
二 FX (x, n) FX n (xn ; n) P{X (n) xn}
概 FX (xn , xm ; n, m) P{X n xn ; X m xm}
2. RP (1)RZ1Z2 (t, t ) E[Z1(t)* Z2 (t )] 0 正交
(2)KZ1Z2 (t, t ) E[Z1* (t) Z2 (t )] 0 不相关
联合平稳
:
RZ1Z2
(
)
0
KZ1Z2 ( ) 0
正交 (RZ1Z2 ( )
若Z1
,
Z
相互独立
2
:
f X1X2Y1Y2 f X1Y1 ( x1, y1 ) f X2Y2 ( x2 , y2 )
不相关 : KZ1Z2 E[(Z1 mZ1 )* (Z2 mZ2 )] 0
或RZ1Z2 E[Z1*Z2 ] E[Z1* ]E[Z2 ]
正交 :
RZ1Z2 E[Z1*Z2 ] 0
(0)
2 X
E[ X 2 (t)] lim 1 T 2T
T X 2 (t)dt lim 1
T
T 2T
T
x(t)dt
T
消耗在1电阻上的总平均功率。
2 X
KX
(0)
E[( X
(t)
mX
)2 ]
lim
T
1 2T
T T
(
X
(t
)
mX
)2dt
lim 1
*
RZ1Z2 ( ) E[Z1(t) Z2 (t )]
E[Z1*(t ) Z1(t)]* RZ2Z1*( ) 若联合平稳实RP RZ1Z2 ( ) RZ2Z1 ( )
20080304