原子吸收光谱法全解

合集下载

原子吸收光谱

原子吸收光谱
*A. Walsh, “Application of atomic absorption spectrometry to analytical chemistry”, Spectrochim. Acta, 1955, 7, 108
8
第三阶段 电热原子吸收光谱仪器的产生 1959年,苏联里沃夫发表了电热原子化技术的第一篇论 文。电热原子吸收光谱法的绝对灵敏度可达到10-12-10-14g, 使原子吸收光谱法向前发展了一步。近年来,塞曼效应和自 吸效应扣除背景技术的发展,使在很高的的背景下亦可顺利 地实现原子吸收测定。
(3) 压力变宽(Pressure effect) 又称为碰撞(Collisional broadening)变宽。它是由于碰撞使激发 态寿命变短所致。外加压力越大,浓度越大,变宽越显著。可分为
a) Lorentz 变宽:待测原子与其它原子之间的碰撞。变宽在10-3nm。
劳伦兹变宽用Δν表示,可表达为 :
单色光谱线很窄才有明显吸收! 若 103 nm 则 I / I 0 1, A 0 无法分析
23
对于分子的紫外-可见吸收光谱的测量,入射光是由单 色器色散的光束中用狭缝截取一段波长宽度为0.xnm至1.xnm 的光,这样宽度的光对于宽度为几十nm甚至上百nm的分子带 状光谱来说,是近乎单色了,它们对吸收的测量几乎没有影 响,当然入射光的单色性更差时,就会引起吸收定律的偏离。 而对于原子吸收光谱是宽度很窄的线状光谱来说,如果 还是采用类似分子吸收的方法测量,入射光的波长宽度将比 吸收光的宽度大得许多,原子吸收的光能量只作入射光总能 量的极小部分。这样测量误差所引起的对分析结果影响就很 大。这种关系如下图所示。
33
若吸收线轮廓单纯取决于多普勒变宽,则:

原子吸收光谱法

原子吸收光谱法

15:35
(2)谱线的热变宽 又称多普勒( Doppler )变宽,它是由于原子在空间 作热运动而引起的。
从物理学原理可知,从一个运动的原子发出的光,如果运动方 向离开观察者,则在观察者看来,其频率要比静止原子所发出 的光频率低,反之,如果原子向着观察者运动,则其频率要比 静止原子发出的光的频率高,这就是多普勒效应。 原子吸收分析法中,气体中的原子是处于无规则热运动中,有 的向着检测器方向运动,使光能增大,波长变短一点。有的背 向检测器运动,光能减弱,波长变长一点,一长一短,使谱线 变宽。这种频率分布和气体中原子的热运动的速度分布相符。
§5-1概述
一、方法简介 原子吸收光谱法 (又名原子吸收分光光度法 ) 是基于测量 试样所产生的原子蒸气对特定谱线的吸收程度,来确定试 样中待测元素的浓度或含量的方法。
原子吸收现象是1859年德国物理学家基尔霍夫发现的,1955年澳 大利亚物理学家A.Walsh提出峰值吸收测量法,从理论上解决了 15:35 定量问题,这一方法才得以应用.
1.14 10 4
从以上计算可以看出,与基态原子数相比,激发态原子数可忽 略不计。
即 N0≈N总
由此我们可以得到结论: (1)基态原子数等于总原子数。
15:35 ( 2)原子吸收法受温度影响不大。
二、吸收轮廓及变宽原因 1.吸收轮廓 从能级跃迁的观点看,吸收线与发射线应是一条严格的几何线, 但实际上是有一定宽度的。我们把吸收线或发射线的强度按频 率的分布叫谱线轮廓。如图5-2所示。 图中最大吸收对应的 频率 ν 0 称为峰值吸收
15:35
§5-2 原子吸收法的基本原理 一、基态原子数与火焰温度的关系 根据热力学原理,在一定温度下达到热力学平衡状态时,基态 和激发态的原子数之比与热力学温度的关系,可以用玻尔茨曼公 式描述: E j E0

原子吸收光谱法课件

原子吸收光谱法课件
原子吸收光谱法课件
欢迎来到原子吸收光谱法课件!本课件将为您介绍原子吸收光谱法的定义和 原理,并探讨其在科学实验室中的常见仪器,以及样品制备和操作步骤。
原子吸收光谱法的定义和原理
原子吸收光谱法是一种分析方法,通过测量样品中特定元素的吸收光谱来定 量分析该元素的浓度。基于原子对特定波长的吸收特性,该方法被广泛应用 分析食品中的微量元素和有害物质,确 保食品安全和质量合规。
3 药物研发
用于药物制剂中活性成分的浓度分析,确保 药品质量和疗效。
4 金属分析
用于金属合金、地质样品等材料中金属元素 的定量分析,检测材料成分。
优缺点分析
优点
高选择性和准确度,能够定量分析微量元素。适用于多种样品类型。
缺点
需要专用设备和经验操作,成本较高。对于某些元素和化合物可干扰。
技术的进展和未来发展趋势
原子吸收光谱法的技术不断发展,提高了灵敏度和分析速度。未来的发展趋 势包括更小型化的仪器、多元素分析和在线监测技术的推广。
总结和要点
• 原子吸收光谱法是一种常用的定量分析方法。 • 不同类型的原子吸收光谱仪器适用于不同的分析需求。 • 样品制备和操作步骤对结果的准确性至关重要。 • 应用领域广泛,包括环境监测、食品安全和药物研发。 • 优点包括高准确度和选择性,缺点包括设备成本和干扰因素。 • 技术的进展将进一步提高分析性能和便捷性。
常见的原子吸收光谱仪器
火焰原子吸收光谱仪
适用于常见金属元素的分析,如 铁、铜和锌。操作简单,常用于 实验室环境。
石墨炉原子吸收光谱仪
适用于痕量金属元素的分析,如 铅和汞。能够提高灵敏度和准确 度,但操作较为复杂。
电感耦合等离子体原子发 射光谱仪
适用于多元素的快速分析,可检 测从微量到痕量的元素含量。具 有高灵敏度和低检测限。

原子吸收光谱法原理

原子吸收光谱法原理

原子吸收光谱法原理
原子吸收光谱法是一种常用的分析技术,用于确定物质中的元素含量。

该方法基于原子在特定波长的光照射下发生能级跃迁的现象,利用元素特征波长的吸收峰的强度来测量样品中元素的浓度。

以下是原子吸收光谱法的原理。

1. 原子的能级结构:原子由电子围绕着原子核的轨道运动组成。

电子在这些轨道上具有不同的能量,称为电子能级。

当原子受到外部的能量激发时,电子会从低能级跳跃到高能级,形成激发态。

2. 能级跃迁:原子的电子在吸收能量后,会跃迁到高能级。

当电子从高能级返回到低能级时,必须释放出能量。

这个能量的差别可以以光子形式释放出来,其波长与能级差相关。

3. 吸收光谱:在原子吸收光谱实验中,使用的是特定波长的光源,通常为中性或离子化的金属蒸汽灯。

这些光源会发出特定波长的光,射入样品中。

4. 样品吸收:样品中的元素原子会吸收与其能级差相匹配的波长的光。

当光通过样品时,部分光会被吸收,其吸收强度与元素的浓度成比例。

5. 检测:通过测量样品吸收光的强度,可以确定元素的浓度。

一般使用光电器件来测量吸收光的强度。

可以采用单光束或双光束系统进行测量。

6. 标准曲线:为了确定未知样品中元素的浓度,常常使用标准曲线进行定量分析。

通过测量一系列已知浓度的标准溶液的吸收峰强度,可以绘制出吸收峰强度与浓度之间的关系曲线。

利用这个曲线,可以根据样品的吸光度值来确定其浓度。

总之,原子吸收光谱法利用原子能级跃迁的现象,通过测量样品对特定波长光的吸收来测量元素的浓度。

该技术广泛应用于元素分析和环境监测等领域。

原子吸收光谱法

原子吸收光谱法

原子吸收光谱法原子吸收光谱法是一种常见的分析化学技术,用于定量分析样品中金属元素的含量。

这种方法利用了原子在特定波长的光线照射下吸收特定能量的特性。

本文将介绍原子吸收光谱法的原理、应用及其在分析化学领域的重要性。

## 一、原理介绍原子吸收光谱法的原理基于原子在吸收特定波长的光线后,电子从基态跃迁到激发态的过程。

当样品中的金属元素被蒸发成原子并通过火焰或电热等方法激发后,特定波长的光被通过样品,吸收特定能量的光线被原子,其吸收量与原子浓度成正比。

利用测量被吸收的光的强度,可以推断出样品中金属元素的含量。

## 二、仪器构成原子吸收光谱法的仪器通常包括光源、样品室、单色器、检测器等部分。

光源产生特定波长的光线,样品室用于蒸发样品中的金属元素成原子,单色器用于选择特定波长的光线,检测器用于测量被吸收的光线的强度。

这些部件共同作用,构成了原子吸收光谱仪,可用于样品中金属元素含量的定量分析。

## 三、应用领域原子吸收光谱法在环境监测、食品安全、医学诊断等领域有着广泛的应用。

例如,它可以用于检测饮用水中的重金属污染物,监测环境中的有害元素含量,确保环境质量安全。

在食品安全方面,原子吸收光谱法可用于检测食品中的微量元素,如铁、锌等,确保食品质量符合标准。

此外,在医学诊断中,原子吸收光谱法可以用于分析生物样本中微量元素的含量,为疾病诊断提供重要依据。

## 四、优势与局限性原子吸收光谱法具有高灵敏度、高精确度和宽线性范围的优势,能够准确测定样品中微量金属元素的含量。

然而,它也有局限性,例如不能同时测定多种元素,需要事先了解样品中金属元素的成分,且对样品制备要求较高。

## 五、发展趋势随着科学技术的不断发展,原子吸收光谱法也在不断完善和发展。

近年来,原子吸收光谱法与其他分析技术相结合,如原子荧光光谱法、电感耦合等离子体质谱法等,提高了分析的灵敏度和准确性。

此外,随着纳米技术的发展,原子吸收光谱法在纳米材料分析方面也有了广阔的应用前景。

原子吸收光谱法ppt课件

原子吸收光谱法ppt课件
7
定量分析的依据
基态原子对共振线的吸收程度 与蒸气中基态原子的数目和原子蒸气 厚度的关系,在一定的条件下,服从 朗伯-比耳定律:
8
定量分析的依据
由于原子化过程中激发态原子数目和离子 数很少,因此蒸气中的基态原子数目实际上接近 于被测元素的总原子数目,而总原子数目与溶液 中被测元素的浓度c成正比。在L一定条件下:
9
原子吸收分光度计
10
原子吸收分光度计
光源 原子化器 单色器 检测系统
思考:光学系统(单色器)为什么在原子化器和检 测系统之间?
11
➢光 源
提供待测元素的特征光谱。获得较 高的灵敏度和准确度。
光源应满足如下要求; 1 能发射待测元素的共振线; 2 能发射锐线; 3 辐射光强度大,稳定性好。
12
注意:在高浓度时,标准曲线易发生弯曲。 27
➢标准加入法
计算法:
设容量瓶A,待测元素浓度Cx,吸光度Ax; 容量瓶B,待测元素浓度为(Cx+Cs),吸光 度为Ax+s,可求得被测试液元素的浓度为:
28
➢标准加入法
作图法:
设同体积容量瓶编号 A B C D
试液+标准溶液浓度 cx cx+ cs cx+ 2cs cx+ 4cs
原子化过程分为干燥、灰化(去除基体)、 原子化、净化( 去除残渣)四个阶段,待测元 素在高温下生成基态原子。
21
石墨炉原子化装置
优点:原子化程度高,试样用量少(1100μL),可测固体及粘稠试样,灵敏度 高,检测极限10-12 g/L。
缺点:精密度差,测定速度慢,操 作不够简便,装置复杂。
22
➢单色器
质和内充惰性气体的光谱; 14

(完整word版)原子吸收光谱分析解读

(完整word版)原子吸收光谱分析解读

原子吸收光谱分析4。

2.1 概述4。

2。

1。

1 基本概念1)原子光谱根据原子外层电子跃迁所产生的光谱进行分析的方法,称为原子光谱法,包括原子发射光谱法、原子吸收光谱法和原子荧光光谱法。

本章重点介绍应用广泛的原子吸收光谱法。

2)原子吸收光谱原子吸收光谱法,又称原子吸收分光光度法或简称原子吸收法,它是基于测量试样所产生的原子蒸气中基态原子对其特征谱线的吸收,从而定量测定化学元素的方法.4。

2.1。

2 仪器结构和过程图4-21 原子吸收示意图如上图,含Pb溶液将经过预处理-喷射成雾状进人燃烧火焰中,Pb化合物雾滴在火焰温度下,挥发并离解成Pb原子蒸气。

用Pb空心阴极灯作光源,产生Pb的特征谱线,通过Pb原子蒸气时,由于蒸气中基态Pb原子的吸收,Pb的特征谱线强度减弱,通过单色器和检测器测得其减弱程度,即可计算出溶液中Pb的含量。

4。

2。

1。

3 方法特点灵敏度高,10—9g/ml-10—12g/ml。

选择性好,准确度高。

单一元素特征谱线测定,多数情况无干扰。

测量范围广.测定70多种元素。

操作简便,分析速度快。

4。

2.2 原子吸收法基本原理 4。

2。

2.1 共振线和吸收线 1) 基本概念➢ 共振线电子从基态跃迁到能量最低的激发态(称为第一激发态),为共振跃迁,所产生的谱线称为共振吸收线(简称共振线).当电子从第一激发态跃回基态时,则发射出同样频率的谱线,称为共振发射线(也简称共振线)。

对大多数元素来说,共振线是指元素所有谱线中最灵敏的线。

➢ 特征谱线各种元素的原子结构和外层电子排布不同.不同元素的原子从基态激发至第一激发态(或由第一激发态跃回基态)时,吸收(或发射)的能量不同,因此各种元素的共振线不同而有其特征性,这种共振线称为元素的特征谱线。

2) 朗伯原理图4-22 原子吸收法的朗伯定律示意图原理公式:b K e I I νν-=0νK :吸收系数;ν:频率。

吸收线图4-23 吸收线轮廓图 图4—24 吸收线半宽度比较上述两个图,注意图的纵坐标参量的不同。

第七章原子吸收光谱分析法

第七章原子吸收光谱分析法
? 由于原子的吸收线比发射线的数目少的多,谱线重叠的概率就小的多,空 心阴极灯一般不发射临近波长的辐射线,因而其他辐射线干扰较小,故原 子吸收法选择性高,干扰小且易于克服。
原子吸收光谱法(也称原子吸收分光光法 )与可 见、紫外分光光度法基本原理相同,都是基于物质 对光选择吸收而建立起来的光学分析法。
2010年1月25日1时53分
组成:阳极(吸气金属)、空心圆筒形(使待测原子集中)阴极(W+ 待测元素)、低压惰性气体(谱线简单、背景小)。
工作过程:高压直流电(300V)---阴极电子---撞击隋性原子---电离(二 次电子维持放电)---正离子---轰击阴极---待测原子溅射----聚集空 心阴极内被激发----待测元素特征共振发射线。
? 自然宽度(约在10-5nm数量级)。
?
?2.多普勒变宽(热变宽):
? 由于多普勒效应而导致的谱线 变宽。由于原子热运动引起的。 其宽度约为 10-3nm数量级。
?3.压力变宽:由于同类原子或 与其它粒子(分子、原子、离子、 电子等)相互碰撞而造成的吸收 谱线变宽。其宽度也约为 10-3nm 数量级。
区别:在可见、紫外分光光度法中,吸光物质 是溶液中被测物质的分子或离子对光的选择吸收, 原子吸收光谱法吸光物质是待测元素的基态原子对 光的选择吸收,这种光是由待测元素制成的空心阴 极灯(称元素灯)作光源。
原子吸收光谱分析的过程:
A元素含量测定----- A元素的空心阴极灯发射特征辐射 --------试样在原子化器中变为气态的基态原子-------吸收空心 阴极灯发射特征辐射---------空心阴极灯发射特征辐射减弱-----产生吸光度------元素定量分析
钨丝灯光源和氘灯,经分光后,光谱通带0.2nm。而原子吸收线

仪器分析 第七章 原子吸收光谱法

仪器分析 第七章 原子吸收光谱法

第七章原子吸收光谱法1.原子吸收光谱的历史2.原子吸收光谱的特点3.原子吸收光谱与紫外可见吸收光谱的区别4.原子吸收光谱分析过程第一节概述1. 原子吸收光谱的历史◆1802年,沃拉斯顿(Wollaston)在研究太阳连续光谱时,首次发现太阳连续光谱中出现暗线。

◆1817年,夫琅和费(Fraunhofer)研究太阳连续光谱时再次发现这些暗线,但无法解释暗线产生的原因。

2/1363/1361825年,法国著名哲学家孔德在哲学讲义中说“恒星的化学组成是人类绝对不能得到的知识”◆1859年,本生、基尔霍夫研究碱金属和碱土金属火焰光谱时,发现钠蒸气发出的光通过温度较低的钠蒸气时,会引起钠光的吸收,并且钠在光谱中位置相同。

发射线与暗线D◆太阳光谱暗线:太阳外围大气圈中钠原子对太阳光谱中钠辐射特征波长光进行吸收的结果。

4/1365/136太阳中含有94种稳定和放射性元素:氢(71%)、氮(27%)、氧、碳、氖、硅、铁等。

◆1955年,澳大利亚物理学家Walsh(沃尔什)发表了著名论文《原子吸收光谱法在分析化学中的应用》,奠定了原子吸收光谱法的基础。

◆1960年以后,原子吸收光谱法得到迅速发展,成为微量、痕量金属元素的可靠分析方法。

6/1362. 原子吸收光谱法的特点✓检出限低:10-10~10-14g。

✓准确度高:1%~5%。

✓选择性好:一般情况下共存元素无干扰。

✓应用范围广:可测定70多种元素。

✗缺点:难熔元素、非金属元素测定困难,不能实现多元素同时分析。

7/1363. 原子吸收与紫外可见吸收的区别✓相同点:利用物质对辐射的吸收进行分析。

✗不同点:◆吸收机理不同:紫外可见为溶液中分子或离子宽带吸收,带宽为几纳米至几十纳米;原子吸收为气态基态原子的窄带吸收,带宽仅为10-3nm。

◆光源不同。

◆试样处理、实验方法及对仪器的要求不同。

8/1364. 原子吸收光谱分析过程◆确定待测元素。

◆选择该元素相应锐线光源,发射出特征谱线。

第五章 原子吸收光谱

第五章 原子吸收光谱

1.基本原理
当辐射通过原子蒸气,入辐射的频率等 于原子中的电子由基态跃迁到较高能态所需 要的能量频率时,原子就产生共振吸收,电 子由基态跃迁到激发态,伴随着原子吸收光 谱的产生。 使电子从基态跃迁至第一激发态所产生 的吸收谱线称为第一共振线。
1.基本原理
各种元素的原子结构和外层电子排布不 同,从基态激发时,吸收的能量不同,因而 各种元素的共振线各有其特征性,这种共振 线就是元素的特征谱线。
I
I
o

o

1.基本原理
在ν0处Iν最小即 透光少,吸收最大, 这种现象称为原子 蒸气在ν0处有吸收 线。ν0为中心频率。
1.基本原理
以吸收系数Kν对谱线频率作图就更易看出, 对应于中心频率ν0有一个最大的吸收系数Kν值, 而在ν0的两侧均有Kν= 0的点,即吸收曲线具有 一定的宽度,这就是吸收线的轮廓。 在最大吸收系数Kν的高度 的一半所对应的频率范围称为 谱线的半宽度,以△ν表示。常 被用来表示吸收线的轮廓,约 为0.001-0.01nm。


原子吸收分光光度法的特征
1.灵敏度高 2.选择性好 3.精密度高 4.准确度高 5.应用广泛 6.分析速度快 7.操作简便
缺点:需根据被 测元素选择空心 阴极灯,不能做 结构分析,线性 范围窄。
1.基本原理
1.1 原子吸收线产生
原子吸收光谱分析的基本过程: ① 光源发射出特征辐射; ② 试样在原子化器中被蒸发、解离为气态基 态原子; ③ 特征辐射通过气态基态原子区时,部分光 被蒸气中基态原子吸收而减弱,测其吸光 度。
1.基本原理
以峰值吸收测量代替积分吸收测量的必要条件是: ① 锐线光源辐射的发射线与原子吸收线的中心频 率0完全一致;

原子吸收光谱法(共73张课件)

原子吸收光谱法(共73张课件)

比尔定律:
▪ 分析中,待测元素的浓度与其吸收辐射的原子总数成正 比。在一定浓度范围和一定火焰宽度L下:
▪ 可以通过测吸光度可求得待测元素的含量。
▪ 原子吸收分光光度A分析k'的c定量基础。待测元素浓度
2024/8/30
27
§4-3 原子吸收分光光度计
一、基本构造
光源
原子化系统
分光系统
检测系统 显示装置

处吸收轮廓上两点间的距离

(即两点间的频率差)。
▪ 数量级为10-3 -10-2 nm (发射线10-4 -10-3 nm )。
图4.2 原子吸收光谱轮廓图
2024/8/30
12
谱线变宽: 自然宽度 :N
▪ 无外界影响下,谱线仍有一定宽度—自然宽度。
▪ 与原子发生能级间跃迁时激发态原子的平均寿命有关。
2024/8/30
图4.3 峰值吸收测量示意图
21
应用原理: ▪ 光源:
2024/8/30
A lg I0 I
I0
e
0
I0d
I
e
0
Id
I I0eKL
I e 0
I0eKLd
Alg
e
0
I0 d
I e d e
K L
0 0
则:
在满足瓦尔西方法的测量条件时,在积分界限
内 吸可 收以 系认 数为。为常数,并合K理 地使之等于峰值
5%,测定灵敏度极差。
噪音低;
用该元素的锐线光源发射出特征辐射。 特点: 原子吸收分析的主要特点是测定灵敏度高,特效
发射的谱线稳定性好、强度高且宽度窄。
共振线在外光路损失小。
试样在原子化器中被蒸发,解离为气态基态原子。 共Ok振! L线et(’s特Ha征ve谱a线B)re是ak元. 素所有谱线中最容易发生、最灵敏的线,又具有元素的特征,所以分析中用该谱线作为分析线。

《仪器分析》第十二章_原子吸收光谱法

《仪器分析》第十二章_原子吸收光谱法

当采用锐线光源时,测量是在原子吸收线附近一定频 率范围内进行,即
I 0 I d
0

I I 0e
K l
I e
0

K l
d
锐线光源的很小,可以近似用峰值吸收系数K0 来表 示原子对辐射的吸收,因此有吸光度A为:
I0 A lg lg I


质的强谱线。
空心阴极灯光的强度与灯的工作电流有很大关系。增
大灯电流,可以增加发射强度。但是,灯电流过大,会导 致一些不良现象,如阴极溅射增强,产生密度较大的电子 云,灯本身发生自蚀现象;加快内充气体的“消耗”而缩 短寿命;阴极温度过高,使阴极物质熔化;放电不正常,
灯光强度不稳定灯。灯电流太小,灯光强低,稳定性和信
(2)峰值吸收 1955年Walsh提出,在温度不太高的稳定火焰情况下,
峰值吸收系数与被测元素的原子浓度也成正比。通常情况下,
吸收轮廓决定于多普勒变宽,吸收系数为
2 ( 0 ) ln 2 D 2
K K 0e
K0 2 D
D 是多普勒 半宽度
K d mc N
于分析化学的原因。
e 2
0
f
m 是电子质量,f是振子强度,即能被入射 辐射激发的每个原子的平均电子数,正比 于原子对特定波长光的吸收概率。
若能测定积分吸收,则可以求出原子浓度。但是,测定谱 线宽度仅仅10-3nm的积分吸收,需要分辨率很高的色散仪器,
难以做到,这也是100多年前发现原子吸收现象却一直未能用
空心阴极灯工作原理:
当正、负两电极间施加适当的直流电压(300V—500V)
时,便开始放电,阴极发射的电子在电场作用下,高速射

第八章 原子吸收光谱

第八章 原子吸收光谱
12:19:39
(3)火焰
试样雾滴在火焰中,经蒸发,干燥,离解等过程产生大 量基态原子。
火焰温度的选择:
只要保证待测元素充分离解为基态原子就可以,超过所需 温度,使激发态原子增加;
(a)确保待测元素充分离解为基态原子的前提下,选用低 温火焰
(b)火焰温度取决于燃气与助燃气类型。(表8-3)
12:19:39


虚线:阶梯升温
oC
实线:斜坡升温
干燥
灰化
原子化 净化
时间,t
干 燥:去除溶剂,防样品溅射; 灰 化:使易挥发的基体和有机物尽量除去; 原子化:待测物化合物分解为基态原子 净 化:样品测定完成,高温去残渣,净化石墨管。
12:19:39
(3)石墨管原子化器的优缺点
优点:原子化程度高,试样用量少 缺点:背景干扰比火焰法大,精密度差(自动进样装置)
或由标准试样数据获得线性方程,将测定试样的吸光度A
数据带入计算。
12:19:39
2.标准加入法 取若干份体积相同的试液(cX),依次按比例加入不同
量的待测物的标准溶液(cO),定容后浓度依次为: cX , cX +cO , cX +2cO , cX +3cO , cX +4 cO ……
分别测得吸光度为:AX,A1,A2,A3,A4……。 以A对加入量做图得一直线,图中cX点即待测溶液浓度 。
2 π ln 2 e2
A 0.434 D mc N0 fL kLN0 当使用锐线光源时,吸光度与原子蒸汽中待测元素的 基态原子数成正比 A kLN0
12:19:39
火焰温度低于3000K时,可以用基态原子数代表待测元 素的原子总数
当使用锐线光源时,A = k N0 L =k’ c (比尔定律)

第十章 原子吸收光谱法

第十章  原子吸收光谱法
20
二、原子化系统
作用是将试样中待测元素转变成原子蒸气。 1.火焰原子化法 (1)雾化器:作用是将试样溶液雾化。当助
燃气高速通过时,在毛细管外壁与喷嘴口构 成的环形间隙中,形成负压区,将试样溶液 吸入,并被高速气流分散成气溶胶,在出口 与撞击球碰撞,进一步分散成微米级的细雾。 (2)混合室:作用是将未被细微化的较大雾 滴在混合室内凝结为液珠,沿室壁流入泄漏 管排走;并让气溶胶在室内与燃气充分混匀。
第十章 原子吸收光谱法
§10-1 §10-2 §10-3 §10-4 §10-5 §10-6
试题
概述 原子吸收法的基本原理 原子吸收分光光度计 定量分析方法 干扰及其抑制方法 灵敏度与检出限
1
§10-1 概述
一、 原子吸收光谱法
原子吸收光谱是利用待测元素的原子蒸 气中基态原子对特征电磁辐射(共振线)的吸 收来测定的。
式中ν0为谱线中心频率;M 为吸光原子的相对 原子质量;T 为绝对温度。 ΔνD约10-3数量
级,是谱线变宽的主要原因。 3.碰撞变宽(压力变宽) 由于原子相互碰撞使能量发生轻微变化。
劳伦兹变宽ΔνL :待测原子和其他原子碰撞引
起的谱线变宽。
ΔνL约10-3数量级,是碰撞变宽的主要因素。
10
赫鲁兹马克变宽ΔνH :同种原子碰撞引起的
29
二、标准加入法
取若干份体积相同的试液(cX),依次按比 例加入不同量的待测物的标准溶液(cO), 定容后浓度依次为:cX、cX+cO、cX+2cO、 cX+3cO、cX+4cO,分别测得吸光度为:A0、 A1、A2、A3、A4。以A对浓度c做图得一直 线,图中cX点即待测溶液浓度。
30
注意: 1.本法只能消除基体效应带来的干扰,不能消

简述原子吸收光谱法的基本原理,并从原理

简述原子吸收光谱法的基本原理,并从原理

简述原子吸收光谱法的基本原理,并从原理
入手探讨其应用和限制。

原子吸收光谱法是一种用于分析和鉴定物质中含有的金属元素的方法。

其基本原理是在样品中的金属元素通过光束中的某一特定波长的光被激发到高能态,然后会通过吸收光束中特定波长的光而返回到基态。

测量吸收光的强度或峰值的变化,可以得到金属元素的含量信息。

原子吸收光谱法的应用非常广泛。

它在环境监测、食品安全、药物分析、化工生产等领域均有重要应用。

其优势在于其高灵敏度和较高的选择性,可以检测到极小量的金属元素,并且对其他干扰物质的响应较小。

原子吸收光谱法也有一些限制。

首先,它只能检测金属元素,无法检测非金属元素。

其次,由于原子吸收光谱法需要满足特定的能级差条件,所以只有特定波长的光才能被吸收,这限制了其应用范围。

此外,原子吸收光谱法在样品制备过程中易受到干扰,需要仔细控制样品的溶解过程和干扰物的消除,以保证准确性和精确性。

综上所述,原子吸收光谱法通过检测金属元素的吸收光强度变化来分析和鉴定样品中金属元素的含量。

虽然具有灵敏度高、选择性强等优点,但其应用受到波长选择、样品制备等因素的限制。

原子吸收光谱分析法知识详解

原子吸收光谱分析法知识详解

原子吸收光谱分析法知识详解原子吸收光谱分析法是实验室元素分析最常用的方法之一。

原子吸收光谱分析(又称原子吸收分光光度分析)是基于从光源辐射出待测元素的特征光波,通过样品的蒸汽时,被蒸汽中待测元素的基态原子所吸收,由辐射光波强度减弱的程度,可以求出样品中待测元素的含量。

一、原子吸收光谱的理论基础1、原子吸收光谱的产生在原子中,电子按一定的轨道环绕原子核旋转,各个电子的运动状态是由4个量子数来描述。

不同量子数的电子,具有不同的能量,原子的能量为其所含电子能量的总和。

原子处于完全游离状态时,具有最低的能量,称为基态。

在热能、电能或光能的作用下,基态原子吸收了能量,最外层的电子产生跃迁,从低能态跃迁到较高能态,它就成为激发态原子。

激发态原于很不稳定,当它回到基态时,这些能量以热或光的形式辐射出来,成为发射光谱。

其辐射能量大小,用下列公式示:ΔE=Eq-E0=hv=hc/λ式中:H:普朗克常数,其数值为:6.626*10-23J·S;C:光速(3*105km/s);V、入:分别为发射光的频率和波长;E0、E q:分别代表基态和激发态原子的能量,它们与原子的结构有关。

由于不同元素的原子结构不同,所以一种元素的原子只能发射由其已与Eq决定的特定频率的光。

这样,每一种元素都有其特征的光谱线。

即使同一种元素的原子,它们的Eq也可以不同,也能产生不同的谱线。

原子吸收光谱是源于发射光谱的逆过程。

基态原子只能吸收频率为:υ=(Eq-E0)/h的光,跃迁到高能态Eq。

因此,原子吸收光谱的谱线也取决于元素的原子结构,每一种元素有其特征的吸收光谱线。

原子的电子从基态激发到最接近于基态的激发态,称为共振激发。

当电子从共振激发态跃迁回基态时,称为共振跃迁。

这种振跃迁所发射的谱线称为共振发射线,与此过程相反的谱线称为共振吸收线。

元素的共振吸收线一般有好多条,其测定灵敏度也不同。

在测定时,一般选用灵敏线,但当被测元素含量较高时,也可采用次灵敏线(有些元素有好几条线,有的只有一条,次灵敏线能量太低不能使用)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

13
Ni / N0 = gi / g0 exp(- Ei / kT)
温度越高, Ni / N0值越大,即激发态原子数随温度 升高而增加,而且按指数关系变化; 在相同的温度条件下,激发能越小,吸收线波长越 长,Ni /N0值越大。 在原子吸收光谱中,原子化温度一般小于3000K,大 多数元素的最强共振线都低于 600 nm, Ni / N0值绝大 部分在10-3以下,激发态和基态原子数之比小于千分之 一,激发态原子数可以忽略。即:
吸收主 共振线
共振吸收线
E0
11
原子吸收线的特征
E h h
c

1. 不同元素的原子结构和能级不同,电子从基态 跃迁到激发态吸收的能量不同,因此共振线的波 长不同,具有特征性。 2. 电子从基态跃迁到第一激发态,所需能量最低 ,最易发生,相应的吸收线(主共振线)最强。 这条共振线是最灵敏线。 3.原子吸收光谱位于光谱的紫外区和可见区。
谱线具有一定的宽度,即有相当窄的频率或波长范围。
I I0 0
16
(1)透过光强度对频率作图:
一束不同频率强度为I0的平行光通过原子蒸气,一部分 光被吸收,透过光的强度为I 中心频率 0 :透过光强度最小,吸收最大处对应的频率。 由原子能级决定。
锐 I0 线 光 源 I 原子 I
I0

基态原子数N0可以近似等于总原子数N
14
四.原子吸收线轮廓
1. 原子吸收光谱是线状光谱
• 原子的能级是不连续的(量子化的); • 电子在能级之间跃迁是不连续的; • 跃迁产生的原子吸收光谱是不连续的,是线状光谱。
E3
E2 E1
3 2
1
4
1
2
3
4
Eo
15
2. 原子吸收光谱线的宽度




重点:原子吸收光谱法基本原理。 难点:AAS的定量原理
2

教学要求:



1.掌握原子吸收光谱法的基本原理。 2.掌握原子吸收光谱仪的结构系统,理解系统的 元件及工作原理。 3.学会选择仪器最佳工作条件。 4.熟练掌握原子吸收分析的干扰及消除方法 5. 掌握原子吸收光谱的应用范围及定量分析的主 要方法 。 6. 掌握定量分析的灵敏度的表示方法。
E3
Energy
E2 E1 a b c Eo
}
Excited States
激发态
c b a
基态
Ground State
10
二、原子吸收光谱


共振吸收线(简称共振线):原子的外层电子 从基态跃迁到激发态所产生的吸收谱线。 主共振线:原子的外层电子从基态跃迁到第一 激发态所产生的吸收谱线。
E3 E2 E1
12
四. 基态原子数与激发态原子数的关系
• 在通常的原子吸收测定条件下,在原子蒸气中 有基态原子,也有少量激发态原子存在。 • 根据热力学的原理,在一定温度下达到热平衡 时,基态与激发态的原子数的比例遵循 Boltzman分布定律。 Ni / N0 = gi / g0 exp(- Ei / kT)
5
6
二、仪器装置
光源
原子化器
分光系统
检测器
7
三、优点与局限性


优点: 检出限低,10-10~10-14 g(GF-AAS); 准确度高,1%~5%; 选择性高,一般情况下共存元素不干扰; 应用广,可测定70多个元素(各种样品 中); 局限性: 难熔元素、非金属元素测定困难,不能同时 多元素测定。
原子吸收光谱法
基于气态基态原子对其特征辐射的吸收 , 通过辐射减弱的程度进行元素定量分析的 方法。
1

教学内容: 1.原子吸收光谱法概述 2.原子吸收光谱法基本原理 3.原子吸收光谱法的仪器 4.原子吸收分析最佳条件的选择、原子吸收的定量分析 方法 5.原子吸收分析的干扰及消除 6.原子荧光光谱法简介
20

检测器 测
测 = 发 测 > 发 测 < 发 λ测 = λ发 λ测 < λ发 λ测 > λ发
V=0 v v
多普勒效应:一个运动着的原子发出光辐 射,如果运动方向离开观察者(检测器), 则在观察者看来,其频率较静止原子所发 射的频率低,反之,高。
21
(3)碰撞变宽 由于吸收原子与其它粒子(分子、原子、离子和电 子等)间的相互碰撞而产生的谱线变宽,又称为 压力变宽。 共振变宽: 同种粒子碰撞引起的变宽 劳伦兹( Lorentz )变宽: 异种粒子碰撞引起的 变宽 劳伦兹变宽一般可达10-3nm,是谱线变宽的主要 因素。
3
Sun
Sunlight
Atmosphere
Energy Transitions
E3
E2
E1
3 2

1
Resonance lines: defined as those originate from ground state
4
第一节 概述
一、一般分析过程 o 待测物质在原子化器中被分解为气态基态原子; o 气态基态原子吸收同种原子发射出来的特征辐 射,外层电子由基态跃迁至激发态而产生原子吸 收光谱; o 根据谱线强度减弱的程度进行定量分析。
I 与 的关系
17
0

(2)吸收系数对频率作图 (k:基态原子对频率为的光的吸收系数)
中心频率O :最大吸收系数对应的频率,由原
子能级决定。 半宽度Δ : 吸收系数极大值一半处,谱线轮廓 上两点之间的频率差(或波长差)。
18
3.谱线变宽的原因
•由原子性质所决定 •外界影响引起 例如,自然宽度; 例如,热变宽、碰撞变宽等。
8
第二节 基本原理
一、原子吸收光谱的产生



当电磁辐射通过自由原子蒸气时, 如果辐射的频率等于原子外层电子从基态跃迁 到激发态所需要的能量频率时, 原子将吸收电磁辐射的能量, 电子从基态跃迁到激发态, 电磁辐射的强度减弱,产生原子吸收光谱。
9
E
Ionization 电离
Excitation
(1) 自然宽度 没有外界影响,谱线仍有一定的宽度称为 自然宽度。 自然宽度,多数情况下约为10-6 - 10-5nm数 量级。
19
(2)多普勒变宽 原子在空间作无规则热运动所引起的谱线变 宽,又称为热变宽.



辐射原子处于无规则的热运动状态,可以看 作运动的波源。 由于不规则的热运动,辐射原子与观测器之 间形成相对位移运动,从而发生多普勒效应, 使谱线变宽。 多普勒变宽一般可达10-3nm,是谱线变宽 的主要因素。
相关文档
最新文档