华师大版七年级上册数学知识点
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1章 走进数学世界
1.在n ·n 的正方形方格中,有12+22+32+…+n2个正方形.
2.幻方: 三阶幻方:
四阶幻方:第2章 有理数
定义:像﹣2、﹣、﹣237、﹣这样的数是负数,像13、、500、这样的数是正
数.(正数前面有时也可以放上一个“+”<读作“正”>号)
注意:零既不是正数,也不是负数.
分类:方法1:整、分法 方法2:正、零、负法
16
2 3 13 5
11 10 8 9
7 6 12 4
14 15 1 有理数 整数 分数
正整数 负整数 零 正分数 负分数
数集的定义:把这些数(指上文提到的有理数)放在一起,就组成一个数的集合,简称数集.上文有理数组成的数集叫做有理数集.
定义:规定了原点、正方向和单位长度的直线叫做数轴.
方法:在数轴上表示的两个数,右边的数总比左边的数大.
正数都大于零,负数都小于零,正数都大于负数.
相反数
几何定义:1.在数轴上表示互为相反数的两个点分别位于原点的两旁,且与原点的距离相等.
2.只有正负号不同的数成为互为相反数.(例:数a的相反数
是﹣a,﹣a的相反数是a)
注意:零的相反数是零.
变为相反数的方法:通常在一个数的前面添上“﹣”号,表示这个数的相反数.(在一个数的前面添上“+”号,仍表示这个数本身. (例题解析)正负号组合化简方法:1.根据相反数的意义.
2.数前面负号的个数。负号的个数
为偶数个时,取正;负号的个数
为奇数个时,取负.
绝对值
定义:在数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|.
取一个数的绝对值的结果:1.一个正数的绝对值是它本身.
2.零的绝对值是零.
3.一个负数的绝对值是它的相反数.
4.任何一个有理数的绝对值总是正数或0(通
常也称非负数).即对任意有理数a,总有|a|
≥0.
有理数的大小比较
两个负数,绝对值大的反而小.
法则内容:1.同号两数相加,取与加数相同的正负号,并把绝对值相加;
2.绝对值不相等的异号两数相加,取绝对值较大加数的正负
号,并用较大的绝对值减去较小的绝对值;
3.互为相反数的两个数相加得零;
4.一个数与零相加,仍得这个数.
法则扩充总结:正正相加,和大于其中任意一个加数;负负相加,和小于其
中任意一个加数;正负相加,和大于负数,小于正数.(正指
正数,负指负数)
注意:一个有理数由正负号和绝对值两部分组成,进行加法运算时,应注意确定和的正负号及绝对值.
加法交换律:两个数相加,交换加数的位置,和不变.
字母表示:a+b=b+a
加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.
字母表示:(a+b)+c=a+(b+c).
有理数的减法
法则:减去一个数,等于加上这个数的相反数.
字母表示:a-b=a+(-b)
有理数的加减混合运算
方法:1.按照运算顺序,从左到右逐步运算.
2.用有理数减法法则,统一为只有加法运算的和式.
加法运算律的应用:因为有理数的加减法可以统一成加法,所以在进行有理
数加减混合运算时,可以适当应用加法运算律,简化运算. 补充概念:从1开始逐步增大的连续奇数的和等于奇数个数的平方;从2开始逐步增大的连续偶数的和,等于偶数个数的平方加偶数个数. 内容:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与零相乘,都得零.(两数相乘,若把一个因数换成它的相反数,则所得的积是
原来的积的相反数.)
乘法交换律:两个数相乘,交换因数的位置,积不变.
字母表示:ab=ba
乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变.
字母表示:(ab)c=a(bc)
分配律:一个数与两个数的和相乘,等于把这个数分别与这两个数相乘,再
把积相加.
字母表示:a(b+c)=ab+ac
积的正负号与各因数的正负号之间的关系:几个不等于零的数相乘,积的正
负号由负因数的个数决定,当负因数的
个数为奇数时,积为负;当负因数的个
数为偶数时,积为正.
几个数相乘,有一个因数为零,积就为零.
有理数的除法
倒数的定义:乘积是1的两个数互为倒数.
有理数的除法转为乘法的方法:除以一个数等于乘以这个数的倒数.
注意:零不能作除数.
有理数的除法法则:两数相除,同号得正,异号得负,并把绝对值相除.
零除以任何一个不等于零的数,都得零.
有理数的乘方
定义及相关内容:求几个相同因数的积的运算,叫做乘方,乘方的结果叫做幂.在a中,a叫做底数,n叫做指数,a读作a的n次方,
a看作是a的n次方的结果时,也可读作a的n次幂.
幂的特点:(根据有理数乘法法则)正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数.
科学记数法
定义:一个大于10的数就记成a×10的形式,其中1≤a<10,n是正整数.
像这样的记数法叫做科学记数法.
注意:的整数数位只有一位.
是原数的整数数位少1.
有理数的混合运算
混合运算的运算顺序:1.先算乘方,再算乘除,最后算加减;
2.同级运算,按照从左至右的顺序进行;
3.如果有括号,就先算小括号里的,再算中括号
里的,然后算大括号里的.
补充:加法和减法叫做第一级运算;乘法和除法叫做第二级运算;乘方和开方叫做第三级运算.
注意:进行分数的乘除运算时,一般要把带分数化为假分数,把除法转化为乘法.
近似数
一个与实际非常接近的数,称为近似数.
题型分析:科学记数法中a×10看它精确到哪一位,就看a最右边的那个数字在原数中是哪一位.
注意:1.题目要求精确到十位、百位等,往往采用科学记数法,而要求精确到十分位、百分位等,往往不采用科学记数法.
2.对一个比较大的数,取近似值往往采用科学记数法,因为科学记
数法中的精确度只看a.
3.取近似值有三种方法:四舍五入法、去尾法、进一法,要根据题
的要求和实际情况而定.
用计算器进行计算:略
第二章小结
第三章整式的加减
注意:1.式子中出现的乘号,通常写作“·”或忽略不写.