同济大学高等数学课件

合集下载

高等数学同济大学第六版32省名师优质课赛课获奖课件市赛课一等奖课件

高等数学同济大学第六版32省名师优质课赛课获奖课件市赛课一等奖课件

lim[af (h) bf (2h) f (0)] (a b 1) f (0) 0,
h0
f (0) 0, a b 1 0. 由罗必达法则得
0 lim af (h) bf (2h) f (0) lim af (h) 2bf (2h)
h0
h
h0
1
(a 2b) f (0), f (0) 0, a 2b 0.
g( x)
g( x)
限不存在,是否 f ( x)的极限也一定不存在? g( x)
举例说明.
思索题解答
不一定. 例 f ( x) x sin x, g( x) x
显然 lim f ( x) lim 1 cos x
x g( x) x 1
极限不存在.
但 lim f ( x) lim x sin x 1 极限存在. x g( x) x x
0) 0
lim
x0
ln sin ax (a 0, b 0), ln sin bx
(
)
定理1 设
(1) lim f ( x) lim F ( x) 0;
xa
xa
(2) 在 a 点的某去心邻域内, f ( x)及 F ( x) 都存在
且 F ( x) 0;
(3) lim f ( x) 存在(或为无穷大); xa F ( x)

原式
lim
x
e x x2
(
)
lim x
e x
2x
()
lim
2e x
2 x
.
lim
x
e x x
( 0, 0).
(2) 求 lim x
ln x x
(
0). 1

同济大学版本高数精品课件全册

同济大学版本高数精品课件全册
1+ x
理解为:
f
(

)
=
1− 1+
∆ ∆
(五)函数与图像
2、图像:平面点= 集 C {(x= , y) y f (x), x∈D}。
了解函数的直
例:画函数 y = x 的图像.
观手段!
y
一元函数的图像通常是二
维平面上的一条一维曲线.
注: 由曲线求取对应的函
数往往不易,由函数画图
o
x 像相对容易.
例如, 1 + 2 =3 1 − 2 =−1
负数的引入有实 际意义!如:记 帐有赢利亏欠, 温度有零上零 下…
2. Z(整数环)
对加法、减法都封闭; 对除法不能封闭。
例如, 1 ÷ 2 =0.5
3. Q(有理数域)
对加法、减法、乘法、除法都封闭;有理数域尽管稠密但不 连续,还有客观事物不能用有理数表示。
课后自测
1、 写出所有三角函数和反三角函数的定义域,并画出函数图像。
2、
已知函数
y
=
f
(x)
=
12+
x, x,
0≤ x ≤1 x >1

f
(
1 2
)

f
(
1 t
)
,
并写出定义域及值域 。
第十节 闭区间上连续函数的性质
一、有界性与最大值最小值定理 二、零点定理与介值定理
一、有界性与最大值最小值定理
二、预备知识
1、基本初等函数 (4) 三角函数
余弦函数 y = cos x 正切函数 y = tan x
余切函数 y = cot x
正割函数 y = sec x 余割函数 y = csc x

高等数学 同济大学第七版第1章第1节课件C1S1

高等数学 同济大学第七版第1章第1节课件C1S1

那么称函数f (x)在X上有上界
y
K1 称为函数f (x)在X上的一个上界
类似可以定义函数f (x)在X上有下界
o
x
函数的几种特性
1.函数的有界性
设函数f (x) 的定义域为D,数集 X D
如果存在数 K1, 使得 f ( x) K1 对任一 x X 都成立
那么称函数f (x)在X上有上界
o
x
注 函数f (x)在X上有界
函数f (x)在X上既有上界,又有下界
例:f ( x) sin x 在(, )内有界,f ( x) 1 在(0, 1)内无界 x
函数的几种特性
2.函数的单调性
设函数f (x) 的定义域为D,区间 I D
y
如果对于区间I上的任意两点x1及x2,
积 f g ( f g)( x) f ( x) g( x), x D
商 f g
f ( x) f ( x) , x D \ x | g( x) 0
g g(x)
概念
概念
集映 合射
逆映射
区邻 间域
构造 复合映射
初等函数 函
反函数

复合函数 构造
四则运算
第一讲 映射与函数

特例



概念




映射的概念
定义 设X、Y是两个非空集合,如果存在一个法则f,使得 对X中每个元素x,按法则f,在Y中有唯一确定的元素 y与之对应,那么称f为从X到Y的映射,记作:y=f (x)
f Xx
原像

定义域
Y y
值域

(1) 映射的三要素:定义域、值域的范围、对应法则; (2) 映射的像唯一,但原像不一定唯一; (3) 映射又称为算子,在不同数学分支中有不同的名称

同济大学高等数学第七版1-7无穷小的比较省公开课获奖课件说课比赛一等奖课件

同济大学高等数学第七版1-7无穷小的比较省公开课获奖课件说课比赛一等奖课件

lim
lim
A(或).

lim
lim(
)
lim
lim
lim
lim A(或).
17
定理2(等价无穷小替代定理)

~
,
~

lim
A(或),

lim
lim
A(或).
替代意义??
lim
lim
复杂
简朴
将常用旳等阶无穷小列举如下: 当 x0时
sin x ~ x
(4)
如果
lim
k
C
(C 0, k 0),
就说是关于 的 k 阶无穷小.
(5) 如果 lim 1, 则称与是等价无穷小,
记作 ~ .
6
因为lim 3x 2 0 ,所以当x 0时,3x 2是比x 高阶旳无穷小, x0 x
即3x 2o(x)( x 0).

比较无穷小:
1, n
1 n2
(n )
tan x x o( x),
arcsin x ~ x,所以 当x 0时有 arcsin x x o( x),
1 - cos x ~ 1 x2 , 所以 当x 0时有 2
1 - cos x 1 x2 o( x2 ). 2
16
定理2(等价无穷小替代定理)

~
,
~

lim
A(或),

8.
2
27
小结
1. 无穷小旳比较 反应了同一过程中, 两无穷小趋于零旳速度
快慢, 但并不是全部旳无穷小都可进行比较. 高(低)阶无穷小; 同阶(等价)无穷小; 无穷小旳阶. 2. 等价无穷小旳替代

第一课同济大学高等数学上预备知识ppt课件

第一课同济大学高等数学上预备知识ppt课件

例 设 X 1 ,2 ,3 ,Y 2 ,4 ,6 ,8 ,
T
X Y,
x
2 x,
则T 是 X 到 Y 的映射.
例 设 X 1 ,1 ,Y , ,
X Y
T
x
tan
2
x
则T 是 X 到 Y 的映射.
从使用情况来看,闭胸式的使用比较 广泛。 敞开式 盾构之 中有挤 压式盾 构、全 部敞开 式盾构 ,但在 近些年 的城市 地下工 程施工 中已很 少使用 ,在此 不再说 明。
例 试说明函数 f x 1 sin 1 在 x 0 的任何空心邻
xx
域内是无界函数.
解 只要证明在 x 0 的任何空心邻域内,无论对怎样的
正数 M 0,总是存在该邻域内一点 x 0 ,使得
f x0 M.
1
现设
M
0,取
x0
2n
/

2
其中取
n
1
2
M
2
的正整数,
并且使得 x 0 在空心邻域内,
例:设 X R ,Y 1 ,1 ,Z 0 ,1 ,
X Y,
T1
x
sin
x,
Y Z,
T2
y
y2,
则复合映射T2 T1为
X Z, T x(sinx)2.
从使用情况来看,闭胸式的使用比较 广泛。 敞开式 盾构之 中有挤 压式盾 构、全 部敞开 式盾构 ,但在 近些年 的城市 地下工 程施工 中已很 少使用 ,在此 不再说 明。
从使用情况来看,闭胸式的使用比较 广泛。 敞开式 盾构之 中有挤 压式盾 构、全 部敞开 式盾构 ,但在 近些年 的城市 地下工 程施工 中已很 少使用 ,在此 不再说 明。

同济高数第4章课件第三节

同济高数第4章课件第三节
同济高数第4章课件第三节

CONTENCT

• 引言 • 知识点一:极限的定义与性质 • 知识点二:连续函数的概念与性质 • 知识点三:导数的概念与性质 • 知识点四:微积分基本定理
01
引言
背景介绍
本节内容是同济大学高等数学教材第4章的第三节, 主题是导数的概念及其几何意义。
导数作为微积分的基本概念之一,是研究函数变化 率的重要工具。
极限的性质
唯一性
若 $lim_{x to x_0} f(x)$ 存在,则极限值唯一。
有界性
若 $lim_{x to x_0} f(x) = A$,则函数 $f(x)$ 在 $x_0$ 的去心邻域内有界。
局部保号性
若 $lim_{x to x_0} f(x) = A$ 且 $A > 0$,则存在 $x_0$ 的去心邻域,在该邻域内 $f(x) > 0$。
极限的计算方法
四则运算法则
若 $lim_{x to x_0} f(x) = A$ 和 $lim_{x to x_0} g(x) = B$,则 $lim_{x to x_0} [f(x) pm g(x)] = A pm B$。
等价无穷小替换
在求极限过程中,当两个无穷小量在一定条件下可以相互替换时,可以使用等价无穷小替换 简化计算。例如,当 $x to 0$ 时,$sin x approx x$,$tan x approx x$ 等。
知识点二:连续函数的概念与性质
连续函数的定义
函数在某点连续是指,当自变 量在该点处接近时,因变量的 极限值等于函数值。
具体来说,如果函数在某点的 极限值等于该点的函数值,则 称函数在该点连续。
数学表达式为:$lim_{{x to a}} f(x) = f(a)$

大学高数同济大学版PPT

大学高数同济大学版PPT

( n 1, 0! 1)
( n) 设 y sin x , 求 y . 例5 解:y cos x sin( x ) 2 y cos( x ) sin( x ) sin( x 2 ) 2 2 2 2 y cos( x 2 ) sin( x 3 ) 2 2
u
( n)
v
( n)
(2) (Cu )
( n 1)
( n)
Cu
( n)
(3) (u v)
(n)
u v nu
(n)
n(n 1) ( n 2 ) v u v 2!
n(n 1) (n k 1) ( n k ) ( k ) (n) u v uv k!
x0
2.
x ( n) 设 y a ( a 0 , a 1 ), 求 y . 例2
解: y a ln a,
x
y a ln a,
x 2
y a ln a,
x 3

(a ) a ln a
x ( n) x n
特殊地: (e ) e
x ( n)
x
例3
设 y x ( R), 求y ( n) .
f ( x) f (0) f (0) lim x 0 x0 lim ( x 1)( x 2) ( x 99) 99!
x 0
方法2 利用求导公式.
f ( x) ( x)
x
f (0) 99!
x, 3.设 f ( x ) ln( 1 x ),
1 y d dx d dy dy dy
d2x 2 dy

同济大学高等数学课件D121基本概念

同济大学高等数学课件D121基本概念
可微性:偏导数是多元函数的偏导数之和,因此偏导数是可微 的 输入你的智能图形项正文,请尽量言简意赅的阐述观点。
全微分的定义 全微分的基本性质 全微分与偏导数的关系 全微分在多元函数中的应用
偏导数的定义
全微分的定义
偏导数与全微 分的关系
偏导数与全微 分的应用
二重积分的定义:二重 积分是定积分在二维空 间上的推广,表示函数 在某个区域上的面积。
输入你的智能图形项正文,请尽量言简意赅的阐述观点。
逼近性:傅里叶级数可以逼近任何周期函数
输入你的智能图形项正文,请尽量言简意赅的阐述观点。
三角恒等式:傅里叶级数中的系数满足三角恒等式
输入你的智能图形项正文,请尽量言简意赅的阐述观点。
傅里叶级数是无穷级数的一种特殊 形式
傅里叶级数的收敛性和基本性质
计算方法:定积分可以使 用牛顿-莱布尼茨公式计 算,不定积分可以使用微 积分的基本原理计算。
应用:定积分可以用于求 解面积、体积、平均值等 问题,不定积分可以用于 求解原函数、导数、微分 等问题。
偏导数的定义:对于多元函数,偏导数表示函数在某一自变量 固定,其他自变量变化时函数的变化率 输入你的智能图形项正文,请尽量言简意赅的阐述观点。
二重积分和三重积分的计算方法基本相同,都是通过累加累减的方式进行
二重积分和三重积分的物理意义不同,二重积分表示面积,而三重积分表示体积
二重积分和三重积分的几何意义也不同,二重积分表示二维平面上的曲线与x轴围成的面积, 而三重积分表示三维空间中的曲面与x轴、y轴围成的体积
定义:常微分方程是描述一个或多个未知函数及其 导数之间关系的方程
分类:线性偏微分方程和非线性偏微分方程 偏微分方程的解法
偏微分方程的解法
有限差分法:用离散的有限个点上的近似值 来逼近偏微分方程的解

高等数学第六版上下册(同济大学出版社)课件

高等数学第六版上下册(同济大学出版社)课件
具有重要的作用。
不定积分的几何意义
不定积分表示的是一种曲线族 ,每一条曲线都有一个与之对
应的方程。
积分的应用场景
01
物理应用
积分在物理中有广泛的应用,例 如计算物体的质量、重心、转动 惯量等。
工程应用
02
03
经济应用
积分在工程中有广泛的应用,例 如计算曲线的长度、面积、体积 等。
积分在经济中有广泛的应用,例 如计算总成本、总收益、总利润 等。
05
多重积分与向量分析
二重积分的概念与性质
二重积分的定义
二重积分是定积分在二维平面上的推广,表示一个二元函数在某个区域上的累积值。
二重积分的性质
二重积分具有可加性、可减性、可交换性等性质,这些性质使得二重积分在解决实际问题中具有广泛的应用。
三重积分的概念与性质
三重积分的定义
三重积分是定积分在三维空间上的推广 ,表示一个三元函数在某个区域上的累 积值。
03
导数与微分
导数的概念与性质
导数的定义
导数描述了函数在某一点附近的变化率,是函数局部 性质的一种体现。
导数的几何意义
导数在几何上表示函数图像在某一点的切线的斜率。
导数的性质
导数具有一些基本的性质,如线性性质、乘积法则、 商的导数法则等。
微分的概念与性质
微分的定义
01
微分是函数在某一点附近的小变化量,用于近似计算函数的值
求函数的最值
导数可以用于求函数在一定区间内的最大值和最小值,这在优化问题中具有广泛的应用。
04
积分
定积分的概念与性质
01
定积分的定义
定积分是积分的一种,是函数在区间上与区间的乘积在区间的两个端点

同济版高数PPT课件

同济版高数PPT课件
五、88.2(千牛).
第26页/共178页
第二节 定积分的性质、中值定理
一、基本内容 二、小结 思考题
第42页/共178页
一、基本内容
对定积分的补充规定:
(1)当a
b
时, b a
f
(
x)dx
0;
(2)当a
b 时, b a
f
( x)dx
a b
f
( x)dx .
说明 在下面的性质中,假定定积分都存 在,且不考虑积分上下限的大小.
第25页/共178页
练习题答案
n
一、1、lim 0
i 1
f ( i )xi ;
2、被积函数,积分区间,积分变量;
3、介于曲线y f ( x) ,x 轴 ,直线x a , x b 之间
各部分面积的代数和;
4、 b dx . a
二、1 (b3 a 3 ) b a . 3
三、1 (b2 a 2 ). 2
b
b
a g( x)dx a f ( x)dx 0,
于是
b
a
f
(
x)dx
b
a g(
x)dx
.
第49页/共178页
性质5的推论:
一、问题的提出
实例1 (求曲边梯形的面积)
y
曲边梯形由连续曲线
y f (x)
y f ( x)( f ( x) 0)、
x轴与两条直线 x a 、
x b 所围成.
A?
oa
bx
第1页/共178页
用矩形面积近似取代曲边梯形面积
y
y
oa
b xo a
bx
(四个小矩形)
(九个小矩形)

高等数学第六版同济大学公开课一等奖优质课大赛微课获奖课件

高等数学第六版同济大学公开课一等奖优质课大赛微课获奖课件

首页
上页
返回
下页
结束
第22页
思考题解答
f ( x)在 x0连续,
lim x x0
f (x)
f ( x0 )
且 0 f ( x) f ( x0 ) f ( x) f ( x0 )
lim x x0
f (x)
f ( x0 )
lim
x x0
f
2
(
x)
lim
x x0
f
(
x
)
lim
x x0
x3
下页
x
结束
第18页
例8 当a取何值时,
函数
f
(x)
cos a
x, x,
x 0, 在 x 0处连续. x 0,
解 f (0) a,
lim f ( x) lim cos x 1,
x0
x0
lim f ( x) lim(a x) a,
x0
x0
要使 f (0 0) f (0 0) f (0), a 1,
故函数 f ( x)在点 x 0处不连续.
首页
上页
返回
下页
结束
第7页
4.连续函数与连续区间
在区间上每一点都连续函数,叫做在该区间上连 续函数,或者说函数在该区间上连续.
如果函数在开区间 (a,b)内连续, 并且在左端点 x a处右连续, 在右端点 x b处左连续, 则称 函数 f ( x)在闭区间 [a,b]上连续.
y
y
y f (x)
y f (x)
y
y
x
x
0 x0 x0 x x 0 x0 x0 x x
首页
上页
返回

《同济版高数》课件

《同济版高数》课件

BIG DATA EMPOWERS TO CREATE A NEW
ERA
多元函数的极限与连续性
总结词
理解多元函数的极限与连续性的 概念和性质,掌握判断多元函数 极限与连续性的方法。
多元函数的极限
理解极限的定义,掌握计算多元 函数极限的方法,如分别求极限 、累次极限等。
多元函数的连续性
理解连续性的概念,掌握判断多 元函数在某点或某区域的连续性 的方法。
极限的概念与性质
总结词
极限是高数的核心概念,理解极限的概念和性质是学习高数的关键。
详细描述
极限是指当自变量趋近某一值时,因变量的变化趋势。极限的性质包括唯一性 、局部有界性、局部保序性等。这些性质在高数的各个章节中都有重要的应用 。
极限的运算规则
总结词
掌握极限的运算规则是解决极限问题的关键。
详细描述
一阶常微分方程的解法
总结词
掌握一阶常微分方程的解法是解决这类问题的关键。
详细描述
一阶常微分方程的一般形式是dy/dx = f(x, y),可以 通过分离变量法、积分因子法、公式法等求解。
高阶常微分方程的解法
总结词
理解高阶常微分方程的解法一般形式是y''(x) + p1(x)y'(x) + p2(x)y(x) = f(x),可以通过降 阶法、变量代换法、积分因式分解法等求解
则更加注重应用和与其他学科的交叉融合,不断涌现出新的分支和领域。
高数与其他学科的联系
要点一
总结词
高数与其他学科有着密切的联系,如物理、工程、计算机 科学等。这些学科在高数的理论和方法的基础上不断发展 。
要点二
详细描述
高数与物理学的联系尤为紧密,许多物理问题的解决需要 高数的理论和方法。例如,在力学、电磁学、光学等领域 中,高数的微积分和向量分析被广泛应用。在工程领域中 ,高数的理论和方法也是解决实际问题的关键工具。计算 机科学在高数的基础上发展出了算法设计和数据结构等重 要领域。此外,经济学、统计学等领域也与高数有着密切 的联系。

同济六版七版高等数学课件

同济六版七版高等数学课件

例1 脉冲发生器产生一个单三角脉冲,其波形如图
所示,写出电压U与时间
的函数关系式.

单三角脉冲信号的电压
例2 解

三、函数的特性
1.函数的有界性:
y M
y=f(x)
o
x
有界 X
-M
y M
o
X
x 无界
-M
2.函数的单调性:
y
o
x
y
o
x
3.函数的奇偶性:
y
-x o x
x
偶函数
y
-x
o
xx
意义 关于无穷大的讨论,都可归结为关于无穷小 的讨论.
四、小结
无穷小与无穷大是相对于过程而言的. 1、主要内容: 两个定义;四个定理;三个推论. 2、几点注意:
(1) 无穷小( 大)是变量,不能与很小(大)的数混 淆,零是唯一的无穷小的数; (2)无穷多个无穷小的代数和(乘积)未必是无穷小. (3) 无界变量未必是无穷大.
1.幂函数
2.指数函数
3.对数函数
4.三角函数 正弦函数
余弦函数
正切函数
余切函数
正割函数
余割函数
5.反三角函数
幂函数,指数函数,对数函数,三角函数和反 三角函数统称为基本初等函数.
二、复合函数 初等函数
1.复合函数
定义:
注意:1.不是任何两个函数都可以复合成一个复 合函数的;
一、基本概念
1.集合: 具有某种特定性质的事物的总体. 组成这个集合的事物称为该集合的元素.
有限集 无限集
数集分类: N----自然数集 Q----有理数集
数集间的关系:
Z----整数集 R----实数集

同济大学 高等数学 课件 .ppt

同济大学 高等数学 课件 .ppt

设数列
lim
n
xn 存在,则对于
xn
的任一子列(xnk )

lim
n
xn

lim
k
xn k
.
用此定理,即可说明数列 1n 的极限不存在。事
实上:
lim
n
x2n1

1,
lim
n
x2n
1,
所以,lim n
xn
不存在.
值得注意的是,对于函数,我们不能用此定理来证明
个不同的子列,使函数收敛到两个不同的值,则说明函
数在这一点无极限.
lim
n
f
(xn )
y

A
lim
xx0
f
(x).
f (x2 )
f (x4 )
A
f (xn )
f (x3 )
f (x1)
O x1 x3
xn x0
y f x
lim
n
xn

x0,
x4 x2
x
例 证明函数 f (x) sin 在x 0时极限不存在.
即: f x 在x0的某个空心邻域内有界.

局部有界的几何意义
从图中可以看出局部有界的含义:函数 f x 在 x0 处 o
的极限为 A,则存在点x0的一个空心邻域 U (x0, ), 当
点 x0 在该邻域中,对应
的函数图形在某一个带
y
A+1
y f x
形区域中,而该邻域外 A
的点所对应的函数图形, A-1
x
证令
1
1
xn 2n 1 , yn 2n ,
2

同济大学高等数学课件

同济大学高等数学课件
同济大学高等数学课件
目录
• 函数与极限 • 导数与微分 • 不定积分与定积分 • 多元函数微积分 • 常微分方程
01
函数与极限
函数的概念与性质
函数定义
01
函数是数学上的一个概念,它定义了一个输入值对应一个输出
值的规则。
函数的性质
02
函数的性质包括奇偶性、单调性、周期性等,这些性质对于理
解和应用函数都非常重要。
03
全微分的概念与计 算
理解全微分的概念,掌握全微分 的计算方法,理解全微分在近似 计算中的应用。
二重积分
1 2
总结词
理解二重积分的概念及性质,掌握计算二重积分 的方法。
二重积分的定义与性质
理解二重积分的定义,掌握二重积分的计算方法 ,理解二重积分在面积和体积计算中的应用。
3
二重积分的几何意义与物理应用
分部积分法
通过将两个函数的乘积进行积分,将问题转化为求两个函数的原函 数的问题。
04
多元函数微积分
多元函数的极限与连续性
总结词
理解多元函数的极限与连续性的 概念和性质,掌握判断多元函数 极限与连续性的方法。
多元函数的极限
理解极限的定义,掌握计算多元 函数极限的方法,包括累次极限 和同时极限的概念及计算方法。
导数的计算
基本初等函数的导数
对于一些常见的初等函数,如幂函数、指数函数、三角函数等, 可以直接查表得到它们的导数。
链式法则
如果一个复合函数由两个或多个函数组成,那么它的导数可以通 过链式法则进行计算。
参数式函数的导数
对于参数式函数,可以通过对参数求导来得到函数的导数。
微分的概念与性质
微分的定义
微分是函数在某一点的变化率的近似值,表示函数在 该点附近的小增量。

同济大学高数PPT课件

同济大学高数PPT课件

恩格斯
CHENLI
数学中的转折点是笛卡儿的变数. 有了变数 , 运动进入了数学, 有了变数,辩证法进入了数学 ,
有了变数 , 微分和积分也就立刻成 为必要的了,而它们也就立刻产生.
1
笛卡儿 目录 上页 下页 返回 结束
主要内容
1. 分析基础: 函数 , 极限, 连续 2. 微积分学: 一元微积分 (上册)
多元微积分 (下册) 3. 向量代数与空间解析几何 4. 无穷级数 5. 常微分方程
CHENLI
2
机动 目录 上页 下页 返回 结束
二、如何学习高等数学 ?
1. 认识高等数学的重要性, 培养浓厚的学习兴趣.
一门科学, 只有当它成功地运用数学时, 才能达到真正完善的地步 .
马克思
要辨证而又唯物地了解自然 ,
就必须熟悉数学.
恩格斯
2. 学数学最好的方式是做数学.
聪明在于学习 , 天才在于积累 .
学而优则用 , 学而优则创 .
华罗庚 CHENLI 由薄到厚 , 由厚到薄 .
3
第一节 目录 上页 下页 返回 结束
他在解析数论自守函数论高维数值积分等广泛的数学领域中都作出了卓几何学典型群他对青年学生的成长非常关心他提出治学之道是即基础要宽专业要专要使自己的专业知识漫到其它领域
引言
一、什么是高等数学 ?
初等数学 — 研究对象为常量, 以静止观点研究问题. 高等数学 — 研究对象为变量, 运动和辩证法进入了数学.

同济大学高等数学ppt第一章

同济大学高等数学ppt第一章
同济大学高等数 学ppt第一章
contents
目录
• 第一章绪论 • 第一章极限论 • 第一章连续论 • 第一章导数论 • 第一章微分论 • 第一章不定积分论
01
CATALOGUE
第一章绪论
高等数学的研究对象
变量与函数
级数与广义积分 空间解析几何与向量代数
极限理论 微积分学
高等数学的发展历程
线性性质
不定积分具有线性性质,即对于 任意常数C1,C2,有 (C1+C2)*f(x)=C1*f1(x)+C2*f2( x)。
积分常数
不定积分的结果是一个函数,其 常数项为0。
区间可加性
如果在区间(a,b)上有f(x)=f(x), 则在(a,b)上,f(x)的积分等于f(x) 在(a,b)上定积分的值。
不定积分的计算方法
直接积分法
利用不定积分的定义和性质,将 已知函数进行恒等变形,从而得 到其原函数。
换元积分法
通过引入新的变量,将已知函数 进行换元,从而将复杂函数分解 为简单函数的组合,以便于计算 。
分部积分法
通过将两个函数乘积的导数与其 中一个函数求导再与另一个函数 乘积进行交换,从而得到两个函 数的积的不定积分的一种方法。
利用微分的近似性,我们可以对一些复杂的 函数进行近似计算,从而简化计算过程。例 如,当我们需要计算一个复杂函数的值时, 我们可以先找到这个函数在某一点的微分, 然后用这个微分来近似计算函数的值。
微分在近似计算中的应用
在实际的科学研究和工程设计中,经常会遇 到一些复杂的数学问题,如求解方程、优化 问题等。在这些情况下,利用微分进行近似 计算可以提供一种有效的解决问题的方法。
02
微分的近似性

高等数学同济大学课件下第82偏导数

高等数学同济大学课件下第82偏导数
证:
利用对称性 , 有
方程

定理.
例如, 对三元函数 u = f (x , y , z) ,
说明:
本定理对 n 元函数的高阶混合导数也成立.
函数在其定义区域内是连续的 ,
故求初等函数的高阶导
数可以选择方便的求导顺序.
因为初等函数的偏导数仍为初等函数 ,
当三阶混合偏导数
在点 (x , y , z) 连续时, 有
例4. 已知理想气体的状态方程
求证:
证:
说明:
(R 为常数) ,
不能看作
分子与分母的商 !
此例表明,
整体记号,
二、高阶偏导数
设 z = f (x , y)在域 D 内存在连续的偏导数
若这两个偏导数仍存在偏导数,
则称它们是z = f ( x , y )
的二阶偏导数 .
按求导顺序不同, 有下列四个二阶偏导
则该偏导数称为偏导函数,
也简称为
偏导数 ,
记为
或 y 偏导数存在 ,
例如, 三元函数 u = f (x , y , z) 在点 (x , y , z) 处对 x 的
偏导数的概念可以推广到二元以上的函数 .
偏导数定义为
(请自己写出)
二元函数偏导数的几何意义:
是曲线
在点 M0 处的切线
对 x 轴的斜率.
思考与练习
解答提示:
P73 题 5
P73 题 5 , 6
即 x=y=0 时,
P73 题6
(1)
(2)
作业
P18 1(4),(6),(8); 3; 5; 6(3); 7; 8; 9(2)
备用题

方程Байду номын сангаас
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档