八年级数学等腰三角形课件
合集下载
浙教版数学八年级上册2.3等腰三角形的性质定理(共16张PPT)
直角三角形
四边形及特 殊四边形
……
1、必做题:课本P58页 作业题A, B组; 2、选做题:作业本拓展提高
证角等,找等腰,巧转化
综合—提高
如图,在△ ABC中,AD平分∠BAC,AD的垂 直平分线EF交BC的延长线于点F,连结AF,求 证: ∠CAF= ∠B.
感悟—展望
通过本节课的学习,请你畅所欲言, 谈谈自己学习到了哪些知识?有何收获 与体会?
感悟—展望 边
两边相等
角
两个底角 相等
整体
轴对称图形
感悟—展望 知识
能力
经验
1、等腰三角 形的两个底 角相等
2、等边三角 形的各个内角 都等于60 °
1、进行有关 角度的计算 (分类讨论 思想)
2、进行简单 的推理论证
1.证角等, 找全等,巧 构造
2.证角等, 找等腰,巧 转化
感悟—展望
全等三角形
定义 性质 判定
解决相关问题
等腰三角形
定义 性质 判定 解决相关问题
2.3 等腰三角形的性质定理(1)
回顾—思考
全等三角形
定义 性质 判定
解决相关问题
等腰三角形
定义 性质 判定 解决相关问题
回顾—思考
A
1、有两边相等的三角形叫做
顶
角
腰
腰
等腰三角形;
2、等腰三角形是 轴对称 图形,
底角 底角
B 顶角平分线所在的直线 是它的对称轴。 底边
C
发现—验证
如图在等腰三角形ABC中,AB=AC, AD平分∠BAC,交BC于D.
现将△ABC沿着AD所在的直线 对折,你发现∠B与∠C存在怎样
A
的数量关系?
八年级数学上册课件-等腰三角形的判定
问: △ABC是什么三角形?为什么?
A B
E 证明:∵AD∥BC,
1
∴∠1=∠B (两直线平行,同位角相等)
2 D ∠2=∠C (两直线平行,内错角相等)
∵∠1=∠2 (已知)
∴∠B=∠C (等量代换)
∴AB=AC (等角对等边) C
做一做
已知:如图,AD∥BC,BD平分 ∠ABC,求证:AB=AD
件
在一个三角形中, 在一个三角形中, 如果有两条边相等 如果有两个角相等
结论
这两条边所对的
这两个角所对的
两个角相等
两条边相等
简称
等边对等角
等角对等边
推理形 式
∵AB=AC, ∴∠B=∠C
∵∠B=∠C, ∴AB=AC
再见
1.如图:△ABC中,∠A=40°, ∠B=70° (1)求∠C等于多少度? (2)△ABC是什么三角形?为什么?
A
解(1)∵∠A+∠B+∠C=180°
∴∠C=180°-∠B-∠C=70°
40°
(2)∵ ∠B=∠C
70°
B
C
∴△ABC是等腰三角形 (等角对等边)
做一做
A
36°
2.如图:已知∠ A=36 °, ∠ DBC=36 °, ∠ C=72 °,计算∠ 1和∠ 2的度数,并说 明图中有哪些等腰三角形。
A
3D
证明:
∵BD是∠ABC的平分线
1
∴∠1=∠2 又∵AD∥BC
2
B
C
∴∠2=∠3(两直线平行,内错角相等)
∴ ∠1=∠3(等量代换)
即AB=AD(等角对等边)
想一想:
如图:利用今天学到的知识如何 A 测出旗杆的高度?
A B
E 证明:∵AD∥BC,
1
∴∠1=∠B (两直线平行,同位角相等)
2 D ∠2=∠C (两直线平行,内错角相等)
∵∠1=∠2 (已知)
∴∠B=∠C (等量代换)
∴AB=AC (等角对等边) C
做一做
已知:如图,AD∥BC,BD平分 ∠ABC,求证:AB=AD
件
在一个三角形中, 在一个三角形中, 如果有两条边相等 如果有两个角相等
结论
这两条边所对的
这两个角所对的
两个角相等
两条边相等
简称
等边对等角
等角对等边
推理形 式
∵AB=AC, ∴∠B=∠C
∵∠B=∠C, ∴AB=AC
再见
1.如图:△ABC中,∠A=40°, ∠B=70° (1)求∠C等于多少度? (2)△ABC是什么三角形?为什么?
A
解(1)∵∠A+∠B+∠C=180°
∴∠C=180°-∠B-∠C=70°
40°
(2)∵ ∠B=∠C
70°
B
C
∴△ABC是等腰三角形 (等角对等边)
做一做
A
36°
2.如图:已知∠ A=36 °, ∠ DBC=36 °, ∠ C=72 °,计算∠ 1和∠ 2的度数,并说 明图中有哪些等腰三角形。
A
3D
证明:
∵BD是∠ABC的平分线
1
∴∠1=∠2 又∵AD∥BC
2
B
C
∴∠2=∠3(两直线平行,内错角相等)
∴ ∠1=∠3(等量代换)
即AB=AD(等角对等边)
想一想:
如图:利用今天学到的知识如何 A 测出旗杆的高度?
八年级数学《等腰三角形的性质》说课课件
问答法类比法探究法
说学法
三
实验法探究法讨论法
说教学过程
四
(一)回顾与引入(二)猜想与证明(三)应用与提高(四)心得与体会(五)作业与巩固
你们的三角形都是如何剪成的?
对折长方形纸片,剪下靠近对称轴一个角再展开。
先画一个等腰三角形,再剪下来。
教师提问
(一)回顾与引入
一学生回答
另一学生回答
1、回顾等腰三角形的定义
图1
图2
(三)应用与提高
例 : 如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD.求△ABC各角的度数
(三)应用与提高
练习2:如图,在△ABC中,AB=AC,D、E在AC、AB上,BC=BD,AD=DE=EB,求∠A的度数。
(三)应用与提高
练习3 填空:如图⑴∵AB=AC,AD⊥BC∴∠_=∠_,_=_; ⑵∵AB=AC,BD=DC∴∠_=∠_,_⊥_;⑶∵AB=AC,AD平分∠BAC∴_⊥_,_=_
重合的线段
重合的角
AB=AC
BD=CD
AD=AD
∠B = ∠C.
∠BAD = ∠CAD
∠ADB = ∠ADC
猜想2
等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合.
①已知:AB =AC,AD平分∠BAC 求证:②已知: AB =AC,AD平分BC 求证:③已知: AB =AC,AD⊥BC 求证:
WHAT MAKES USDIFFERENT?
85%
《等腰三角形的性质》是人教版数学的八年级上册第十三章第三节第一小节《等腰三角形》的第一课时,本节课的主要内容就是研究等腰三角形的两个性质。
1、教学内容
“
2、教材的地位和作用
说学法
三
实验法探究法讨论法
说教学过程
四
(一)回顾与引入(二)猜想与证明(三)应用与提高(四)心得与体会(五)作业与巩固
你们的三角形都是如何剪成的?
对折长方形纸片,剪下靠近对称轴一个角再展开。
先画一个等腰三角形,再剪下来。
教师提问
(一)回顾与引入
一学生回答
另一学生回答
1、回顾等腰三角形的定义
图1
图2
(三)应用与提高
例 : 如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD.求△ABC各角的度数
(三)应用与提高
练习2:如图,在△ABC中,AB=AC,D、E在AC、AB上,BC=BD,AD=DE=EB,求∠A的度数。
(三)应用与提高
练习3 填空:如图⑴∵AB=AC,AD⊥BC∴∠_=∠_,_=_; ⑵∵AB=AC,BD=DC∴∠_=∠_,_⊥_;⑶∵AB=AC,AD平分∠BAC∴_⊥_,_=_
重合的线段
重合的角
AB=AC
BD=CD
AD=AD
∠B = ∠C.
∠BAD = ∠CAD
∠ADB = ∠ADC
猜想2
等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合.
①已知:AB =AC,AD平分∠BAC 求证:②已知: AB =AC,AD平分BC 求证:③已知: AB =AC,AD⊥BC 求证:
WHAT MAKES USDIFFERENT?
85%
《等腰三角形的性质》是人教版数学的八年级上册第十三章第三节第一小节《等腰三角形》的第一课时,本节课的主要内容就是研究等腰三角形的两个性质。
1、教学内容
“
2、教材的地位和作用
沪科版八上数学1等腰三角形--含30°角的直角三角形的性质教学课件
第15章 轴对称图形与等腰三角形
第3节 等腰三角形
含30°角的直角三角形的性质
1 课堂讲授
含30°角的直角三角形的性质 含30°角的直角三角形的性质的应用
2 课时流程
逐点 导讲练
课堂 小结
课后 作业
知识点 1 含30°角的直角三角形的性质
知1-讲
1.定理:在直角三角形中,如果一个锐角等于30°, 那么它所对的直角边等于斜边的一半.
知2-讲
1 如图是屋架设计图的一部分,立柱BC垂直于横
梁AD,AB=8 m,∠A=30°,则立柱BC的长
度为( A )
A.4 m
B.8 mC.10 mD.16源自m知2-练知2-练
2 如图是某商场一楼与二楼之间的手扶电梯示意图,
其中AB,CD分别表示一楼、二楼地面的水平线,
∠ABC=150°,BC的长是8 m,则乘电梯从点B到
(1)画出礁石C的位置;(2)求从B处到礁石C的距离.
解:(1)以B为顶点,向北偏西60°作角, 这角一边与AC交于点C, 则点C为 礁石所在地.
知2-讲
解: (2)∵∠ACB= 60°-30°=30°,(三角形 的外角性质) 又∵∠BAC= 30°,∴∠BCA=∠BAC. ∴BC=BA. ∵BA=10×(10-8)=20(n mile), ∴BC=20(n mile). 即从 B处到礁石C的距离是20n mile.
1.在直角三角形中,30°角所对的直角边等于斜边的一 半.这个定理将特殊的直角三角形中的角度关系转化 为直角三角形中边的等量关系.在一般情况下,遇到 30°角常用的添加辅助线的方法就是作垂线,构造含 30°角的直角三角形,解决相关的线段问题.
2.利用含30°角的直角三角形的性质求有关线段的 长:
第3节 等腰三角形
含30°角的直角三角形的性质
1 课堂讲授
含30°角的直角三角形的性质 含30°角的直角三角形的性质的应用
2 课时流程
逐点 导讲练
课堂 小结
课后 作业
知识点 1 含30°角的直角三角形的性质
知1-讲
1.定理:在直角三角形中,如果一个锐角等于30°, 那么它所对的直角边等于斜边的一半.
知2-讲
1 如图是屋架设计图的一部分,立柱BC垂直于横
梁AD,AB=8 m,∠A=30°,则立柱BC的长
度为( A )
A.4 m
B.8 mC.10 mD.16源自m知2-练知2-练
2 如图是某商场一楼与二楼之间的手扶电梯示意图,
其中AB,CD分别表示一楼、二楼地面的水平线,
∠ABC=150°,BC的长是8 m,则乘电梯从点B到
(1)画出礁石C的位置;(2)求从B处到礁石C的距离.
解:(1)以B为顶点,向北偏西60°作角, 这角一边与AC交于点C, 则点C为 礁石所在地.
知2-讲
解: (2)∵∠ACB= 60°-30°=30°,(三角形 的外角性质) 又∵∠BAC= 30°,∴∠BCA=∠BAC. ∴BC=BA. ∵BA=10×(10-8)=20(n mile), ∴BC=20(n mile). 即从 B处到礁石C的距离是20n mile.
1.在直角三角形中,30°角所对的直角边等于斜边的一 半.这个定理将特殊的直角三角形中的角度关系转化 为直角三角形中边的等量关系.在一般情况下,遇到 30°角常用的添加辅助线的方法就是作垂线,构造含 30°角的直角三角形,解决相关的线段问题.
2.利用含30°角的直角三角形的性质求有关线段的 长:
13.等腰三角形的判定PPT课件(华师大版)
两角相等 的三角形
互为逆命题
等腰三角形的判定 方法
基本模型
A
B
C
等腰三角形的判定定理是证明 线段相等的一种重要 的方法
等腰三角形性质与判定 的区分
等
腰
变式模型
三 角 形 的 判
A
3
D
21
定
B
C
已知:⊿ABC中,∠B=∠C
求证:A⊿BA=BACC等腰三角形
证明:经过点A作AD⊥BC,垂足为D. A
∴ ∠1= ∠2=90°
练习 在ΔABC中,OB平分∠ABC, OC平分∠ACB,过O点作MN ∥BC.
A (2)线段BM、CN与MN 的长度有什么关系?
M 3 1
O
6
N
∴MN=BM+CN
5
2
4
B
C
(3) ΔAMN的周长=AB+AC吗?为什么?
∵ ΔAMN的周长= AM+MN+AN
=AM+
+AN
=AB +AC
两边相等 的三角形
∵ AD∥BC
E
)
A1 2
D
∴ ∠1=∠B ( 两直线平行, 同位角相等 )
∠2=∠C ( 两直线平行,内错角相等) B
C
∴∠1=∠2 ( 等量代换 )
即 AD平分∠CAE ( 角平分线的定义 )
如图,OA=OB, AB∥DC, 求证:OC=OD. 分析:
(1)从求证看: 要证 OC=OD
需证 ∠D=∠C
(2)从已知看:
由OA=OB 得到 ∠B=∠A 由AB∥DC得到∠D= ∠B ∠C= ∠A
所以:∠D=∠C
如图,OA=OB, AB∥DC, 求证:OC=OD.
八年级等腰三角形的性质北师大版数学课件
证明后的结论,以后可以直接运用.
隋堂练习P4 1
成功者的摇篮
1.证明:等边三角形的三个角都相等并且每个角都 等于600. 2. 如图,在△ABD中, C是BD上的一点,且 AC⊥BD,AC=BC=CD. (1).求证:△ABD是等腰三角形; (2). 求∠BAD的度数.
A
B
D
C
第2题
下课了!
结束寄语
已知:
A
如图,在△ABC中, AB=AC.
求证: ∠B=∠C.
分析:
要证明∠B=∠C,只要能使∠B、∠C为 两个全等三角形的一对对应角即可.因 此,需要作辅助线“过点A作高线AD”. 证明: 过点A作AD⊥BC,交BC于点D.
在Rt△ABD与Rt△ACD中 ∵ AB=AC (已知),
AD=AD(公共边), ∴ △ABD≌△ACD(HL).
推论:
等腰三角形顶角的平分线,底边上的中线,底边上
的已高知:互相重合(三线合一).
A
如图,在△ABC中, AB=AC, ∠1=∠2.
求证:BD=CD,AD⊥BC.
分析:
12
要证明BD=CD,AD⊥BC,只要能证明
△ABD≌△ACD即可.由公理(SAS)易证. 证明: 在△ABD与△ACD中 ∵ AB=AC (已知),
证明: ∵ ∠A=∠A′,∠C=∠C′(已知)
A′ ●
● ● C′
∴∠B=∠B′(三角形内角和定理).
在△ABC与△A′B′C′中
∵ ∠A=∠A′ (已知), AB=A′B′(已知),
驶向胜利 的彼岸
∠B=∠B′ (已证),
∴ △ABC≌△A′B′C′(ASA).
回顾与思考 6
几何的三种语言
1第1课时等腰三角形的性质-冀教版八年级数学上册课件
目录
归纳: 等边三角形的性质: 等边三角形的三个角都_相__等___,并且每一个角都等于__6_0_°__. 等边三角形的顶角_平__分__线__、底边上的__中__线__及底边上的__高____ 互相重合(__三__线__合__一____).
新知导入 课程讲授 随堂练习 课堂小结
等边三角形的性质
目录
新知导入 课程讲授 随堂练习 课堂小结
目录
等腰三角形的性质
问题3.2 由这些重合的角,你能发现等腰三角形的性质吗?说一说你的猜想.
线段
角
AB与__A__C__重合 ∠BAD与∠合__C_A__D__重 AD与__A_D___重合 ∠ABD与∠合__A_C_D___重
BD与__C_D___重合 ∠ADB与合∠__A_D__C__重
新知导入 课程讲授 随堂练习 课堂小结
目录
CONTENTS
4
新知导入 课程讲授 随堂练习 课堂小结
等腰三角 形的性质
等腰三角形 的性质
等腰三角形的两个底角相等
等腰三角形的顶角平分线、底边 上的中线及底边上的高互相重合
等边三角形 的性质
等边三角形的三个角都相等,并 且每一 个角都等于60°.
目录
A
B
C
目录
新知导入 课程讲授 随堂练习 课堂小结
目录
等边三角形的性质
问题2 等腰三角形“三线合一”的性质同样存在与等边三角形中吗?
等腰三角形
等边三角形
等腰三角形顶角的平分线、底边的高、 等边三角形顶角的平分线、底边的高、 底边的中线三线合一(一条对称轴) 底边的中线三线合一(三条对称轴)
新知导入 课程讲授 随堂练习 课堂小结 等边三角形的性质
初中数学课件等腰三角形的性质(几何)ppt课件
接求出等腰三角形的面积。
利用三角函数
通过已知角度和边长,利用三角函 数求出高或底,再代入公式计算面 积。
利用向量
在平面直角坐标系中,可以利用向 量表示三角形的顶点,通过向量的 运算求出三角形的面积。
案例分析:不同类型题目解法
01
02
03
04
已知等腰三角形的底和高,直 接代入公式求解。
已知等腰三角形三边长度,利 用海伦公式求解。
勾股定理在等腰三角形中的推广
对于非直角的等腰三角形,可以通过作高将其分为两个直角三角形,再利用勾股定理求解 相关问题。
相似三角形与等腰三角形关系探讨
相似三角形定义
两个三角形如果它们的对应角相等,则称这两个三角形相 似。
等腰三角形的相似性质
对于两个等腰三角形,如果它们的顶角相等,则这两个三 角形相似。此外,如果两个等腰三角形的底边和腰成比例 ,则这两个三角形也相似。
实际应用:测量、作图等问题
01
测量
在实际生活中,等腰三角形的性质可以应用于测量问题。例如,在无法
直接测量某一边长时,可以通过测量等腰三角形的底角和腰长来间接计
算。
02
作图
在几何作图中,等腰三角形的性质也有广泛应用。例如,可以通过作等
腰三角形的高来平分底边,或者通过作等腰三角形的角平分线来得到对
称的图形。
初中数学课件等腰三角形的性质(几 何)ppt课件
目录
• 等腰三角形基本概念与性质 • 等腰三角形判定方法 • 等腰三角形面积计算 • 等腰三角形在生活中的应用 • 等腰三角形相关定理和推论 • 练习题与课堂互动环节
01
等腰三角形基本概念与性质
等腰三角形定义及特点
定义
有两边相等的三角形叫做等腰三 角形。
利用三角函数
通过已知角度和边长,利用三角函 数求出高或底,再代入公式计算面 积。
利用向量
在平面直角坐标系中,可以利用向 量表示三角形的顶点,通过向量的 运算求出三角形的面积。
案例分析:不同类型题目解法
01
02
03
04
已知等腰三角形的底和高,直 接代入公式求解。
已知等腰三角形三边长度,利 用海伦公式求解。
勾股定理在等腰三角形中的推广
对于非直角的等腰三角形,可以通过作高将其分为两个直角三角形,再利用勾股定理求解 相关问题。
相似三角形与等腰三角形关系探讨
相似三角形定义
两个三角形如果它们的对应角相等,则称这两个三角形相 似。
等腰三角形的相似性质
对于两个等腰三角形,如果它们的顶角相等,则这两个三 角形相似。此外,如果两个等腰三角形的底边和腰成比例 ,则这两个三角形也相似。
实际应用:测量、作图等问题
01
测量
在实际生活中,等腰三角形的性质可以应用于测量问题。例如,在无法
直接测量某一边长时,可以通过测量等腰三角形的底角和腰长来间接计
算。
02
作图
在几何作图中,等腰三角形的性质也有广泛应用。例如,可以通过作等
腰三角形的高来平分底边,或者通过作等腰三角形的角平分线来得到对
称的图形。
初中数学课件等腰三角形的性质(几 何)ppt课件
目录
• 等腰三角形基本概念与性质 • 等腰三角形判定方法 • 等腰三角形面积计算 • 等腰三角形在生活中的应用 • 等腰三角形相关定理和推论 • 练习题与课堂互动环节
01
等腰三角形基本概念与性质
等腰三角形定义及特点
定义
有两边相等的三角形叫做等腰三 角形。
北师大版八年级数学下册1.1等腰三角形课件(第2课时共32张)
A.1 cm
B.2 cm
C.3 cm
D.4 cm
课堂精练
7. 如图,在等边三角形ABC中,BD,CE是两条中 线,则∠1的度数为( C ) A.90° B.30° C.120° D.150°
课堂精练
8.【中考·南充】如图,等边三角形OAB的边长为 2,则点B的坐标为( D ) A.(1,1) B.( 3,1) C.( 3, 3) D.(1, 3)
北师版八年级数学下册
第1章 三角形的证明
1.1 等腰三角形 第2课时 等边三角形的性质
复习导入
等腰三角形有哪些性质? 1.等腰三角形的性质:等边对等角. 2.等腰三角形性质的推论:三线合一,
即等腰三角形顶角的平分线、底边上 的中线及底边上的高线互相重合.
新知探究
一. 等腰三角形中相等的线段
在等腰三角形中画出一些线段(如角平分 线、中线、高等),你能发现其 中一些相等 的线段吗?能证明你的结论吗?
A.BD,CE为AC,AB边上的高
B.BD,CE都为△ABC的角平分线
C.∠ABD=
1 3
∠ABC,
∠ACE= 1 ∠ACB 3
D.∠ABD=∠BCE
课堂精练
3. 求等边三角形两条中线相交所成锐角的度数. 解:如图,在等边三角形ABC中,CE,BF分别是AB,
AC边上的中线,且CE与BF相交于点O, 则CE垂直平分AB,BF垂直平分AC, 在Rt△ABF中,∵∠A=60°, ∴∠ABF=30°. 在Rt△BEO中,∵∠EBO=30°,∴∠EOB=60°, 即等边三角形两条中线相交所成锐角的度数为60°.
②点G与点H一定重合;③点I与点H一定重合;④点G,点I
与点H一定重合.其中正确的有( D )
人教版数学八年级上册13.3.1等腰三角形(一)-课件
AB=AC ( 已知 ) ∠1=∠2 ( 已作 )
B DC
AD=AD (公共边)
∴ △BAD ≌ △CAD (SAS).
∴ ∠ B= ∠C (全等三角形的对应角相等).
方法三:作底边的高线
等腰三角形的两个底角相等。
已知: 如图,在△ABC中,AB=AC.
求证: ∠B= ∠C.
证明:作底边的高线AD,则
(3) ∵AD是角平分线,∴_A__D_ ⊥__B_C_ ,__B_D__ =__C_D__.
知一线得二线
A
“三线合一”可以帮助我
们解决线段的垂直、相等
以及角的相等问题。
B
DC
2、等腰三角形一个底角为70°,它的顶角为4_0__°___.
3、等腰三角形一个角为70°,它的另外两个角为 7_0_°__,_4_0_°__或____5_5_°__,5_5.°
A
B
D
C
性质3 等腰三角形是轴对称图形,其顶角的平分
线(底边上的中线、底边上的高)所在的直线就是
等腰三角形的对称轴。
1. 根据等腰三角形性质2填空, 在△ABC中, AB=AC,
(1) ∵AD⊥BC,∴∠_B_A__D_ = ∠__C_A__D,_B_D__=C__D__.
(2) ∵AD是中线,∴_A_D__⊥_B__C_ ,∠__B_A_D_ =∠__C_A__D.
DF⊥AC于F
E
F 求证:DE=DF
BD C
(2)如果DE、DF分别是AB,AC上的中线或∠ADB,
∠ADC的平分线,它们还相等吗?由等腰三角形是轴对
称图形,利用类似的方法,还可以得到等腰三角形中哪
些相等的线段?
活动5:反馈练习
练习1:小试牛刀
B DC
AD=AD (公共边)
∴ △BAD ≌ △CAD (SAS).
∴ ∠ B= ∠C (全等三角形的对应角相等).
方法三:作底边的高线
等腰三角形的两个底角相等。
已知: 如图,在△ABC中,AB=AC.
求证: ∠B= ∠C.
证明:作底边的高线AD,则
(3) ∵AD是角平分线,∴_A__D_ ⊥__B_C_ ,__B_D__ =__C_D__.
知一线得二线
A
“三线合一”可以帮助我
们解决线段的垂直、相等
以及角的相等问题。
B
DC
2、等腰三角形一个底角为70°,它的顶角为4_0__°___.
3、等腰三角形一个角为70°,它的另外两个角为 7_0_°__,_4_0_°__或____5_5_°__,5_5.°
A
B
D
C
性质3 等腰三角形是轴对称图形,其顶角的平分
线(底边上的中线、底边上的高)所在的直线就是
等腰三角形的对称轴。
1. 根据等腰三角形性质2填空, 在△ABC中, AB=AC,
(1) ∵AD⊥BC,∴∠_B_A__D_ = ∠__C_A__D,_B_D__=C__D__.
(2) ∵AD是中线,∴_A_D__⊥_B__C_ ,∠__B_A_D_ =∠__C_A__D.
DF⊥AC于F
E
F 求证:DE=DF
BD C
(2)如果DE、DF分别是AB,AC上的中线或∠ADB,
∠ADC的平分线,它们还相等吗?由等腰三角形是轴对
称图形,利用类似的方法,还可以得到等腰三角形中哪
些相等的线段?
活动5:反馈练习
练习1:小试牛刀
北师大版数学八年级下册1.等腰三角形的判定及反证法课件
解:△BDE 是等腰三角形. ∵ BD 平分∠ABC, ∴∠ABD = ∠DBC, 又∵DE∥BC, ∴∠DBC = ∠EDB, ∴∠ABD =∠EDB, ∴△BDE 是等腰三角形.
练习
1-1 如图,AE平分∠BAC,DE∥AB,若 AD=5,则DE的长是____5___.
知识点二:反证法
于是∠A +∠B +∠C = 180°+∠C >180°. 这与三角形内角和定理相矛盾,因此“∠A 和∠B 是直角”的假设不成立. 所以,一个三角形中不能有两个角是直角.
【选自教材P9随堂练习第2题】
2. 已知五个正数的和等于1,用反证法证明:
这五个数中至少有一个大于或等于 1 . 5
证明:假设这五个数是a1,,a3,a4,a5全
∴AB = AC.
B
D
C
定理 有两个角相等的三角形是等腰三角形.
这一定理可以简述为:等角对等边.
几何语言:
A
在△ABC中,
∵∠B =∠C (已知)
∴ AB = AC(等角对等边) B
C
例 已知:如图,AB = DC,BD = CA, BD 与 CA 相交于点 E.求证:△AED 是等腰三 角形.
第3课时 等腰三角形的判定及反证法
北师版八年级数学下册
学习目标
1、掌握并运用等腰三角形的判定定理; 2、理解反证法的含义,并运用反证法证明命 题.
回顾复习
等腰三角形的特殊性质: 等腰三角形_两__底__角__的__平__分__线__相等、_两__腰__上__的__高_ 相等、_两__腰__上__中__线__相等. 等腰三角形的性质定理: 等腰三角形的两个底角相等.
A C
反证法:在证明时,先假设命题的结论不 成立,然后推导出与定义、基本事实、已有定 理或已知条件相矛盾的结果,从而证明命题的 结论一定成立.这种证明方法称为反证法.
等腰三角形的判定PPT课件
八年级数学湘教版·上册
第2章 三角形
2.3.2等腰三角形的判定
授课人:X
学习目标
1.掌握等腰三角形和等边三角形的判定定理;(重点) 2.掌握等腰三角形和等边三角形的判定定理的运用.(难点)
新课导入
复习
1、等腰三角形是怎样定义的? 有两条边相等的三角形叫作等腰三角形.
2、等腰三角形有哪些性质?
① 等腰三角形的两个底角相等.(简写成“等边对等角”)
三角形吗?试说明理由.
解:是等边三角形.理由如下:
A
∵ △ABC是等边三角形,
∴ ∠A= 60°.
D
E
∵ AD=AE,
B
C
∴ △ADE是等腰三角形. ∴ △ADE是等边三角形.
课堂小结
等腰(边)三角形的判定
等角对等边,注意是指同一个三角形中.
1.三个角都相等的三角形是等边三角形. 2.有一个角是60°的等腰三角形是等边三角形.
新知探究
已知:如图,在△ABC中, ∠B=∠C,那么它们所对的边 AB和AC有什么数量关系?
A
画一个△ABC,其中∠B=∠C=30°,
请你量一量AB与AC的长度,它们 B
C
之间有什么数量关系,你能得出什
AB=AC
么结论?
你能验证你的结论吗?
新知探究
如图,在△ABC中,∠B=∠C.沿过点A的直线把∠BAC 对折,得∠BAC的平分线AD交BC于点D,
课堂小测
1.如图,已知∠A=36°,∠ABD=36°,∠C=72°,则 ∠DBC=__3_6_°_,∠BDC=_7_2_°__,图中的等腰三角形有 △__A_B_C__, _△_D__B_A_,__△_B__C_D_____.
第2章 三角形
2.3.2等腰三角形的判定
授课人:X
学习目标
1.掌握等腰三角形和等边三角形的判定定理;(重点) 2.掌握等腰三角形和等边三角形的判定定理的运用.(难点)
新课导入
复习
1、等腰三角形是怎样定义的? 有两条边相等的三角形叫作等腰三角形.
2、等腰三角形有哪些性质?
① 等腰三角形的两个底角相等.(简写成“等边对等角”)
三角形吗?试说明理由.
解:是等边三角形.理由如下:
A
∵ △ABC是等边三角形,
∴ ∠A= 60°.
D
E
∵ AD=AE,
B
C
∴ △ADE是等腰三角形. ∴ △ADE是等边三角形.
课堂小结
等腰(边)三角形的判定
等角对等边,注意是指同一个三角形中.
1.三个角都相等的三角形是等边三角形. 2.有一个角是60°的等腰三角形是等边三角形.
新知探究
已知:如图,在△ABC中, ∠B=∠C,那么它们所对的边 AB和AC有什么数量关系?
A
画一个△ABC,其中∠B=∠C=30°,
请你量一量AB与AC的长度,它们 B
C
之间有什么数量关系,你能得出什
AB=AC
么结论?
你能验证你的结论吗?
新知探究
如图,在△ABC中,∠B=∠C.沿过点A的直线把∠BAC 对折,得∠BAC的平分线AD交BC于点D,
课堂小测
1.如图,已知∠A=36°,∠ABD=36°,∠C=72°,则 ∠DBC=__3_6_°_,∠BDC=_7_2_°__,图中的等腰三角形有 △__A_B_C__, _△_D__B_A_,__△_B__C_D_____.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x 36
0
在△ABC中∠A=36度
∠ABC=∠C=72度
基础训练
(1)已知等腰三形的一个顶角为36° ,则它的两个底角
分别为 72° 、72° .
。
(2)已知等腰三角形的一个角为40°,则其它两个角 或 40° 、100° 分别为 70° 、70° .
小结:求等腰三角形的内角度数既要分类讨论 又要注意三角形的内角和为180°.
A
△ABC中,AB=AC,D是BC边上的中点,
DE⊥AB 于E DF⊥AC于F. 求证:DE=DF
E
B D
证明:
∵DE⊥AB,DF⊥AC(已知) ∴∠BED=∠CFD
F
C
又∵D是BC中点(已知) ∴BD=DC ∵AB=AC(已知) ∴∠B=∠C(等边对等角) 在△DBE与△DCF中 ∠DEB=∠DFC(已证)
解: ① 如果5cm长的边是腰,那么两腰的和是10cm,它 大于另一边8cm,能构成三角形, 所以这个三角形的 周长为: 5+5+8=18(cm) ②如果8cm长的边是腰,那么两腰的和是16cm, 它 大于另一边5cm,能构成三角形, 所以这个三角形的 周长为: 8+8+5=21(cm) 答:这个三角形的周长是18cm或21(cm) 小结:求等腰三角形的周长既要分类讨论又 要注意三边关系。
B AD=AD(公共边)
` D
AB=AC(已知)
C AD=AD(公共边)
B D
C
∴ △ABD ≌ △ACD(SAS)
∴ ∠B=∠C
∴ △ABD ≌ △ACD(HL) ∴ ∠B=∠C
议一议:说说为什么在添加辅助线时,作顶角平分线,
底边中线,底边高都能使分成的两个三角形全等?
性质2:等腰三角形的顶角平分线,底边上的中线,底边
⑴等腰三角形具有轴对称性 ⑵等腰三角形两底角相等 (简称:等边对等角) ⑶等腰三角形的顶角平分线、底上的高和底边上的中
线完全重合. (简称:三线合一)
3、本节课学习了数学思想及方法:
分类讨论和一题多解
1、预习课本P52-53 2、书面作业P56面、1、2
A
B
C
(2)把剪出的等腰三角形△ABC沿折痕对折,除两腰重合外还 有没有重合的部分?并指出重合的部分是什么?
A
B
CHale Waihona Puke (2)把剪出的等腰三角形△ABC沿折痕对折,除两腰重合外还 有没有重合的部分?并指出重合的部分是什么?
A
B
C
(2)把剪出的等腰三角形△ABC沿折痕对折,除两腰重合外还 有没有重合的部分?并指出重合的部分是什么?
等腰三角形
兴国县方太中学
文兴庆
图中有些你熟悉的图形吗?它们有什么共同特点?
埃及金字塔 体育观看台架
斜拉桥梁
北京五塔寺 西安半坡博物馆
有两条边相等的三角形叫做等腰三角形.
A
顶 角
腰
腰
底角
底角
B 底边
C
等腰三角形中,相等的两边叫做腰,另一边叫做底边, 两腰的夹角叫做顶角,腰和底边的夹角叫做底角.
写一写
(2)把剪出的等腰三角形△ABC沿折痕对折,除两腰重合外还 有没有重合的部分?并指出重合的部分是什么?
A
B
C
(2)把剪出的等腰三角形△ABC沿折痕对折,除两腰重合外还 有没有重合的部分?并指出重合的部分是什么?
A
B
C
(2)把剪出的等腰三角形△ABC沿折痕对折,除两腰重合外还 有没有重合的部分?并指出重合的部分是什么?
应用格式:∵AB=AC ∴AD⊥BC
BD=DC (已知) ∠1=∠2 (等腰三角形三线合一)
D
C
3、等腰三角形的底边上的高,既是底边上的中线,又是顶角平分线。
应用格式:∵AB=AC ∴BD=DC
AD⊥BC (已知) ∠1=∠2 (等腰三角形三线合一)
例1.等腰三角形中,如果已知三角形的两边长分 别为5cm和8cm,求出这个三角形的周长.
图形 条件
腰 底边 顶角
AB=AC
AB、AC BC ∠A
CA=CB
CA、CB AC ∠C
∠A、 ∠B
AC=AD
AC、AD DC ∠CAD
∠ACD、 ∠ADC
底角 ∠B、 ∠C
1、动手操作:用一张长方形纸片,折剪一个等腰三角形。
(只剪一刀)
2、想一想:
(1)剪出的三角形是等腰三角形吗?并指出其中的腰、底边、顶角、底角。 (2)把剪出的等腰三角形△ABC沿折痕对折,除两腰重合外还有没有重合 的部分?并指出重合的部分是什么? (3)由这些重合的部分,你能发现等腰三角形的性质吗?说一说你的猜想。
A
B
C
(2)把剪出的等腰三角形△ABC沿折痕对折,除两腰重合外还 有没有重合的部分?并指出重合的部分是什么?
A
B
C
(2)把剪出的等腰三角形△ABC沿折痕对折,除两腰重合外还 有没有重合的部分?并指出重合的部分是什么?
A
C
你发现了什么?
A 结论:1 等腰三角形是轴对称图形
2 等腰三角形的两底角相等
例2:如图在△ABC中,AB=AC,点D在AC上, A 且BD=BC=AD, 求△ABC各角的度数 解:∵AB=AC,BD=BC=AD
∴∠ABC=∠C=∠BDC ∠A=∠ABD(等边对等角) 设∠A= x 则
∠BDC=∠A+∠ABD=2 x ∴∠ABC=∠C=∠BDC=2 x
D B C
x 2 x 2 x 180 0 ∴∠A+∠ABC+∠C=
∴∠B=∠C(全等三角形对应角相等)
方法一:作顶角∠BAC的平分线AD。 ∵AD平分∠BAC ∴∠1=∠2 在△ABD与△ACD中 AB=AC(已知) 1 A 2
方法二:作底边BC的高AD。 ∵AD⊥BC ∴ ∠ADB =∠ADC=90° 在△ABD与△ACD中 ∠ADB =∠ADC=90° A
∠1=∠2(已证)
方法二:连AD
∵AB=AC,BD=DC(已知) ∴AD是∠BAC的平分线。
(等腰三角形三线合一)
又∵DE⊥AB DF⊥AC
∠B=∠C(已证)
BD=DC(已证) ∴ △BDE ≌ △CDF(AAS)
∴DE=DF
(角平分线上的点到这个角 的两边距离相等)
∴DE=DF
1、等腰三角形的定义, 2、等腰三角形的性质:
B D
C
A
已知: △ABC 中,AB=AC
求证:∠B=∠C 证明:作底边BC边上的中线AD
在△ABD与△ACD中: AB=AC(已知) B
C D
A
BD=DC(作图)
AD=AD(公共边) ∴△ABD≌△ACD(SSS)
B C
性质1、等腰三角形的两个底角相等。(简称等边对等角) 性质1的应用格式:在△ABC 中∵AB=AC(已知) ∴∠B=∠C(等边对等角)
上的高互相重合。(通常说成等腰三角形的“三线合一”)
性质2可分解成下面三个方面来理解:
1、等腰三角形的顶角的平分线,既是底边上的中线,又是底边上的高。
A
应用格式:∵AB=AC ∴BD=DC
∠1=∠2(已知) AD⊥BC(等腰三角形三线合一)
12
2、等腰三角形的底边上中线,既是底边上的高,又是顶角平分线。 B