相似三角形的判定导学案1

合集下载

《相似三角形的性质》 导学案

《相似三角形的性质》 导学案

《相似三角形的性质》导学案一、学习目标1、理解相似三角形的对应角相等,对应边成比例。

2、掌握相似三角形的周长比、面积比与相似比之间的关系。

3、能运用相似三角形的性质解决简单的实际问题。

二、学习重点1、相似三角形的性质的理解和应用。

2、相似三角形周长比、面积比与相似比的关系。

三、学习难点相似三角形性质的综合应用,以及在实际问题中的灵活运用。

四、知识回顾1、什么是相似三角形?相似三角形是指对应角相等,对应边成比例的三角形。

2、如何判定两个三角形相似?(1)两角分别相等的两个三角形相似。

(2)两边成比例且夹角相等的两个三角形相似。

(3)三边成比例的两个三角形相似。

五、新课讲解(一)相似三角形的对应角相等,对应边成比例例 1:已知△ABC∽△DEF,∠A = 50°,∠B = 70°,则∠D =____,∠F =____。

解:因为△ABC∽△DEF,所以∠D =∠A = 50°,∠F = 180°∠D ∠E = 180° 50° 70°= 60°(二)相似三角形的周长比等于相似比例 2:若△ABC∽△A'B'C',相似比为 2:3,△ABC 的周长为 12,则△A'B'C'的周长为____。

解:因为相似三角形的周长比等于相似比,所以△ABC 的周长:△A'B'C'的周长= 2:3。

设△A'B'C'的周长为 x,则 12:x = 2:3,解得x = 18。

(三)相似三角形的面积比等于相似比的平方例 3:两个相似三角形的相似比为 1:4,它们的面积比为____。

解:因为相似三角形的面积比等于相似比的平方,所以面积比为1²:4²= 1:16。

六、课堂练习1、已知△ABC∽△A'B'C',相似比为 3:5,AB = 9,则 A'B' =____。

《2722相似三角形的性质》教案导学案

《2722相似三角形的性质》教案导学案

《2722相似三角形的性质》教案导学案教案:相似三角形的性质教学目标:1.了解相似三角形的性质;2.学会判断两个三角形是否相似;3.掌握相似三角形的判定方法。

教学重点:1.相似三角形的定义;2.相似三角形的判定方法。

教学难点:1.不同情况下相似三角形的判定方法;2.解决实际问题时如何应用相似三角形的性质。

教学准备:1.投影仪、教学PPT;2.相似三角形的例题和练习题。

教学过程:Step 1 引入新知识(10分钟)通过引入一个实际问题来引起学生的兴趣,例如:山顶的高度无法直接测量,如何利用相似三角形的性质估计山的高度?Step 2 相似三角形的定义和性质(20分钟)1.在投影仪上展示相似三角形的定义和性质的PPT,让学生了解相似三角形的基本概念。

2.通过例题和练习题,巩固学生对相似三角形的理解和应用。

Step 3 相似三角形的判定方法(30分钟)1.通过投影仪展示相似三角形的判定方法的PPT,并分别讲解三边对应相等、三角比相等、两角对应相等的判定方法。

2.通过例题和练习题,让学生熟练掌握相似三角形的判定方法。

Step 4 应用相似三角形解决实际问题(30分钟)1.通过一个实际问题的例子,引导学生应用相似三角形的性质解决问题。

2.组织学生进行小组讨论,让学生尝试自己解决一个实际问题,并在小组之间进行分享和讨论。

Step 5 检查与评价(10分钟)1.通过小组讨论和分享,检查学生对相似三角形的理解和应用;2.布置作业,要求学生在家完成相关的练习题。

导学案:相似三角形的性质导学目标:1.了解相似三角形的定义;2.熟悉相似三角形的判定方法;3.掌握相似三角形的性质。

导学过程:Step 1 相似三角形的定义(10分钟)1.请自学《2722相似三角形的性质》导学资料中的第1页,了解相似三角形的定义。

2.在思考的基础上,与同桌讨论并总结出相似三角形的定义。

Step 2 相似三角形的判定方法(10分钟)1.请自学《2722相似三角形的性质》导学资料中的第2页,了解相似三角形的判定方法。

相似三角形判定导学案(1)

相似三角形判定导学案(1)

相似三角形的判定导学案【课前延伸】1、全等三角形的性质:全等三角形的对应边、对应角。

全等三角形的判定方法:、、、。

(用字母表市即可)2、相似三角形的性质:相似三角形的对应边、对应角。

【学习目标】1、通过画图、测量,了解两角对应相等两三角形相似三角形的判定方法。

2、会灵活选取条件,证明两三角形相似。

3、会利用三角形相似解决简单的实际问题。

4、进一步培养学生的逻辑推理能力,能简练地写出证明过程。

【课内探究】实验与探究:画一个三角形,使三个角分别为60°,45°,75°。

①同桌分别量出两个三角形三边的长度;②同桌画的这两个三角形相似吗?换另三个角试试?小组总结:如果一个三角形的三个角分别与另一个三角形的三个角对应相等,那么这两个三角形_______。

小组讨论:两三角形相似一定要三个角相等吗?将你小组讨论的结果填写在下面:并说明理由。

知识应用一:例:如图所示,D,E分别是△ABC边AB,AC上的点,DE//BC。

(1)图中有哪些相等的角?(2)找出图中的相似三角形,并说明理由;(3)写出成比例的线段。

知识应用二:例:在阳光下,为了测量学校水塔的高度,小亮走进水塔的影子里,使自己的影子刚好被水塔的影子遮住,已知小亮的身高BC=1.6米,此时,他的影子的长AC=1米,他距水塔底部E处11.5米,水塔的顶部为点D,你能由此算出水塔的高度DE 吗?小组总结:通过以上两个例题的解答,你们发现利用相似三角形可以:练习:1.有一个锐角对应相等的两个直角三角形是否相似?为什么?画图说明。

2.一个角相等的两个等腰三角形是否相似?为什么?画图说明。

【课堂小结】小组谈谈本节课的收获和疑惑【课堂检测】1、图1中DE∥FG∥BC,找出图中所有的相似三角形。

2、图2中AB∥CD∥EF,找出图中所有的相似三角形。

3、在△ABC和△A′B′C′中,如果∠A=80°,∠C=60°,∠A′=80°,∠B′=40°,那么这两个三角形是否相似?为什么?4、找出图中所有的相似三角形你能写出对应边的比例式和相等的角吗? 图35、如图3,已知△ABC中D为AC的中点,AB=5,AC=7,∠AED=∠C,则ED=【课后提升】基础题:习题8.5A组1、2题能力题:习题8.5A组3题【课堂检测】1、图1中DE∥FG∥BC,找出图中所有的相似三角形。

探索三角形相似的条件1导学案

探索三角形相似的条件1导学案

§4.6.1 探索三角形相似的条件(一)教学目标1.掌握三角形相似的判定方法1.2.会用相似三角形的判定方法1来证明及计算.3.利用相似三角形的判定方法1进行有关计算及证明,训练学生的灵活 运用能力.教学重难点相似三角形的判定方法以及推导过程,并会用判定方法来证明和计算. 预习案(10分钟)(1) 如图4—6—1,在△ABC 中,DE ∥BC ,AD =3 cm ,BD =2 cm,△ADE 与△ABC 是否相似________,若相似,相似比是________.图4—6—1 图4—6—2 图4—6—3(2)如图4—6—2,D 、E 分别为△ABC 中AB 、AC 边上的点,请你添加 一个条件,使△ADE 与△ABC 相似,你添加的条件是_____________ (只需填上你认为正确的一种情况即可).(3)用数学眼光看世界如图4—6—3,长梯AB 斜靠在墙壁上,梯脚B 距墙80 cm ,梯上点D 距 墙70 cm ,量得BD 长55 cm ,求梯子的长.探究案(20分钟)在三角形中有六个元素,即三个角和三条边,要进行相似的判断,就 是要看在这两个三角形中角或边需满足什么条件,两个三角形就相似, 而在判断两个三角形全等时,也是讨论边、角关系的.下面我们先回 忆一下全等三角形的判定方法,然后进行类比,全等三角形的判定方法有:ASA ,AAS ,SAS ,SSS ,直角三角形除此 之外再加HL .相似三角形应该如何判断呢?(1)画一个△ABC ,使得∠BAC =60°,与同伴交流,你们所画的三角形 相似吗?(2)与同伴合作,一人画△ABC ,另一人画△A ′B ′C ′,使得∠A 和∠A都等于给定的∠α,∠B 和∠B ′都等于给定的∠β,比较你们画的两个三 角形,∠C 与∠C ′相等吗?对应边的比C B BC C A AC B A AB '''''',,相等吗?这样的两个三角形相似吗?改变∠α、∠β的大小,再试一试.请大家按照要求动手画图,然后进行交流.判定方法1:两角对应相等的两个三角形相似.1、如图,D 、E 分别是△ABC 边AB 、AC 上的点,DE ∥B C.(1)图中有哪些相等的角?(2)找出图中的相似三角形,并说明理由;(3)写出三组成比例的线段.2.想一想 在上面例题的条件下,AE CE AD BD 吗? 训练案(20分钟)1.(1)有一个锐角对应相等的两个直角三角形是否相似?为什么?(2)顶角相等的两个等腰三角形是否相似?为什么?2.(1)已知△ABC 与△A ′B ′C ′中,∠B =∠B ′=75°,∠C =50°,∠A ′=55°, 这两个三角形相似吗?为什么?(2) 已知一个三角形的两个角分别是70°和65°,你能画一个和这个 三角形相似的三角形吗?(2题图) (3题图) (4题图)3、如图4—6—3,测量小玻璃管口径的量具ABC 中,AB 的长是10毫米, AC 被分成60等份.如果小管口DE 正好对着量具上30份处(DE ∥AB ), 那么小管口径DE 的长是_____________毫米.4、如图4—6—4,在R t △ABC 中,∠ACB =90°,作CD ⊥AB 于点D , 则图中相似的三角形有________对,它们分别是_____________.5、认真选一选(1)下列各组图形中有可能不相似的是( )A.各有一个角是45°的两个等腰三角形B.各有一个角是60°的两个等腰三角形C.各有一个角是105°的两个等腰三角形D.两个等腰直角三角形(2)△ABC 和△A ′B ′C ′符合下列条件,其中使△ABC 和△A ′B ′C不相似的是( )A.∠A =∠A ′=45° ∠B =26° ∠B ′=109°B.AB =1 AC =1.5 BC =2 A ′B ′=4 A ′C ′=2 B ′C ′=3C.∠A =∠B ′ AB =2 AC =2.4 A ′B ′=3.6 B ′C ′=3D.AB =3 AC =5 BC =7 A ′B ′=3 A ′C ′=5 B ′C ′=7(3)如图4—6—5,AB ∥CD ,AD 与BC 相交于点O ,那么在下列比 例式中,正确的是( )A.AD OA CD AB =B.BC OB OD OA =C.OC OB CD AB =D.OD OBAD BC =图4—6—5 图4—6—6(3) 如图4—6—6,D 为△ABC 的边AB 上一点,且∠ABC =∠ACD , AD =3 cm,AB =4 cm ,则AC 的长为( )A.2 cmB.3 cmC.12 cmD.23 cm导、学反思。

相似三角形的判定(1)导学案ywm

相似三角形的判定(1)导学案ywm

3.3.1相似三角形的判定(一)【学习目标】(1) 会用符号“∽”表示相似三角形如△ABC ∽ △A′B′C′; (2) 知道当△ABC 与△A′B′C′的相似比为k 时,△A′B′C′与△ABC 的相似比为1k .(3) 掌握两边对应成比例,夹角相等的两个三角形相似的判定方法。

【学习重点】理解掌握三边对应成比例的两个三角形相似的判定方法及应用.【学习难点】 运用三边对应成比例的两个三角形相似判定三角形相似. 一、知识回顾平行于三角形一边与其它两边(或其延长线)相交,所截得的对应线段_________。

1、如图:MN//BC,则: ①AM AN =______=______. ②AM AB =______=______. 2、如图,DE//BC ,则: ①ADAB =______=______. ②BDAB=______. 3、把一个△ABC 放大后得到△A′B′C′,那么△ABC 与△A′B′C′有什么关系?①放大后AB 边对应______,BC 边对应______,AC 边对应ABCM NC BA A′B′C′______,∠A 对应______,∠B 对应______,∠C 对应______. ②对应边有什么关系?对应角有什么关系? 二 合作探究阅读教材P “说一说”,思考下列问题:1、什么叫作相似三角形?如何表示相似三角形? 在△ABC 与△A′B′C′中,如果∠A=∠A′, ∠B=∠B′, ∠C=∠C′, 且AB A ′B ′=BC B ′C ′=AC A ′C ′=k .我们就说△ABC 与△A′B′C′相似,记作:△ABC ∽△A′B′C′,对应边的比AB A ′B ′=BC B ′C ′=ACA ′C ′=k 叫△ABC 与△A′B′C′的相似比.【注意】①△A′B′C′与△ABC②两个相似三角形的相似比具有顺序性。

根据相似三角形的定义,不难得到相似三角形性质:△ABC ∽△A′B′C′══>⎩⎨⎧∠A=_____、∠B=_____、∠C=____.AB A ′B ′=BC B ′C ′=AC A ′C ′2、【问题】如果k=1,这两个三角形有怎样的关系?3、【问题】已知:如图,DE//BC.求证:△AD E ∽△ABC.∵D E ∥BC∴∠B=∠ADE, ∠C=∠AEDAD AB =AE AC =DEBC;又:∠A=∠A∴△ADE ∽△ABC (相似三角形定义) 【归纳总结】相似三角形判定预备定理:平行于三角形一边的直线截其他两边(或两边延长线),所得的三角形与原三角形_________.∵D E ∥BC ∴△ABC ∽△ADE【注意】平行截相似的三种基本图形。

相似三角形的性质 导学案(含答案)

相似三角形的性质 导学案(含答案)

4.7相似三角形的性质 导学案 第1课时 相似三角形的性质定理(一)1、预习目标 1.三角形中除三条边外的主要线段有角平分线、高、中线.2.相似三角形对应高的比,对应角平分线的比,对应中线的比都等于相似比. 2、课堂精讲精练【例1】如图,某同学拿着一把12 cm 长的尺子,站在距电线杆30 m 的位置,把手臂向前伸直,将尺子竖直,看到尺子恰好遮住电线杆,已知臂长60 cm ,则电线杆的高度是(D)A .2.4 mB .24 mC .0.6 mD .6 m【跟踪训练1】若△ABC ∽△A ′B ′C ′,BD 和B ′D ′是它们的对应中线,已知BD ∶B ′D ′=5∶2,AC =10 cm ,则A ′C ′=4_cm .【跟踪训练2】已知△ABC ∽△DEF ,且相似比为4∶3,若△ABC 中∠A 的平分线AM =8,则△DEF 中∠D 的平分线DN =6.【例2】如图,△ABC 是一张锐角三角形的硬纸片,AD 是边BC 上的高,BC =40 cm ,AD =30 cm ,从这张硬纸片上剪下一个长HG 是宽HE 的2倍的矩形EFGH ,使它的一边EF 在BC 上,顶点G ,H 分别在AC ,AB 上,AD 与HG 的交点为M.(1)求证:AM AD =HGBC ;(2)求矩形EFGH 的周长.解:(1)证明:∵四边形EFGH 为矩形,∴EF ∥GH.∴∠AHG =∠ABC ,∠AGH =∠ACB.∴△AHG ∽△ABC. ∵AD ⊥BC ,∴AM ⊥HG. ∴AM AD =HG BC. (2)设HE =x cm ,则MD =x cm ,HG =2x cm.∵AD =30 cm ,∴AM =(30-x)cm. ∵AM AD =HG BC ,∴30-x 30=2x 40. 解得x =12.∴矩形EFGH 的周长为2(x +2x)=72 cm.【跟踪训练3】如图,已知正方形DEFG 的顶点D ,E 在△ABC 的边BC 上,顶点G ,F 分别在边AB ,AC 上.如果BC =4,△ABC 的面积是6,那么这个正方形的边长是127.3、课堂巩固训练1.已知△ABC ∽△A ′B ′C ′,相似比为3∶4,AD 与A ′D ′分别是△ABC 与△A ′B ′C ′的角平分线,则AD ∶A ′D ′等于(A)A .3∶4B .4∶3C .9∶16D .16∶92.如图,在边长为2的正方形ABCD 中,E 为AB 的中点,BM ⊥CE ,则Rt △BEM 与Rt △BCM 斜边上的高的比为(C)A .1∶3B .2∶3C .1∶2D .3∶53.如图,在梯形ABCD 中,AD ∥BC ,两腰BA 与CD 的延长线交于点P ,PF ⊥BC 于点F ,交AD 于点E.若AD =2,BC =5,EF =3,则PF =5.4.如图,在△ABC 中,BC =12,AD 是BC 边上的高,AD =8,P ,N 分别是AB ,AC 边上的点,Q ,M 是BC 上的点,连接PQ ,PN ,MN ,PN 交AD 于点E.若四边形PQMN 是矩形,且PQ ∶PN =1∶2,求PQ ,PN 的长.解:设PQ =y ,则PN =2y. ∵四边形PQMN 是矩形,∴PN ∥QM.∴∠APN =∠B ,∠ANP =∠C. ∴△APN ∽△ABC. ∴PN BC =AE AD ,即2y 12=8-y 8. 解得y =247.∴PQ =247,PN =487.第2课时 相似三角形的性质定理(二)1、预习目标1.相似三角形的周长比等于相似比,面积比等于相似比的平方.2.上述性质可推广到相似多边形,即相似多边形的周长比等于相似比,面积比等于相似比的平方. 2、课堂精讲精练【例1】如图,点D ,E 分别为△ABC 边AB ,AC 上的一点,且DE ∥BC ,S △ADE =4,S 四边形DBCE =5,则△ADE 与△ABC 的相似比为(D)A .5∶9B .4∶9C .16∶81D .2∶3【跟踪训练1】如图,把△ABC 沿着BC 的方向平移到△DEF 的位置,它们重叠部分的面积是△ABC 面积的一半.若BC =3,则△ABC 移动的距离是(D)A.32B.33C.62D.3-62【跟踪训练2】如图,在▱ABCD 中,E 为CD 的中点,AE 与BD 相交于点F.若△DEF 的面积为2,则▱ABCD 的面积为24.【例2】如图,在Rt △ABC 中,∠ACB =90°,点M 是斜边AB 的中点,MD ∥BC ,且MD =CM ,DE ⊥AB 于点E ,连接AD ,BD.(1)求证:△MED ∽△BCA ;(2)当S △BDM =13S △ABC 时,求S △BED ∶S △MED 的值.解:(1)证明:∵MD ∥BC , ∴∠DME =∠CBA. ∵∠DEM =∠ACB =90°, ∴△MED ∽△BCA.(2)∵∠ACB =90°,点M 是斜边AB 的中点,∴MB =12AB.∵MC =MD ,∴MD =12AB.∵△MED ∽△BCA ,∴S △MED S △ABC =(DM AB )2=14.∵S △BDM =13S △ABC ,∴S △MED S △BDM =34.又∵S △MED +S △BED =S △BDM , ∴S △BED ∶S △MED =1∶3.【跟踪训练3】如图所示,在▱ABCD 中,点E 是CD 的延长线上一点,且DE =12CD ,BE 与AD交于点F.(1)求证:△ABF ∽△CEB ;(2)若△DEF 的面积为2,求▱ABCD 的面积.解:(1)证明:∵四边形ABCD 为平行四边形, ∴∠A =∠C ,AB ∥CD ,AD ∥BC ,AB =CD. ∴∠ABF =∠E. ∴△ABF ∽△CEB. (2)∵AD ∥BC ,∴△DEF ∽△CEB.∴S △DEF S △CEB =(DE CE )2.∵DE =12CD ,AB =CD ,∴DE CE =13,DE AB =12.∴S △DEF S △ABF =14,S △DEF S △CEB =19. ∴S △ABF =8,S △CEB =18.∴S ▱ABCD =S △ABF +S △CEB -S △DEF =8+18-2=24.3、课堂巩固训练1.如图,△ABC 中,DE ∥BC ,若AD ∶DB =1∶2,△ADE 的周长是6,则△ABC 的周长是(C)A .6B .12C .18D .242.已知△ABC 与△DEF 相似且周长的比为2∶3,则△ABC 与△DEF 的面积比为(D)A .2∶3B .16∶81C .9∶4D .4∶93.如图,E为▱ABCD的边AB延长线上的一点,且BE∶AB=2∶3,△BEF的面积为4,则▱ABCD 的面积为(A)A.30 B.27 C.14 D.324.如果两个相似三角形的周长比为1∶2,那么它们某一组对应边上的高之比为1∶2.5.如图,在梯形ABCD中,AD∥BC,两腰的延长线相交于点P.若S△PAD∶S梯形ABCD=1∶2,且BC=26,求AD的长.解:∵S△PAD∶S梯形ABCD=1∶2,∴S△PAD∶S△PBC=1∶3.∵AD∥BC,∴△PAD∽△PBC.∴ADBC=33.∴AD=2 2.。

九年级数学 相似三角形的判定(教案、导学案)

九年级数学 相似三角形的判定(教案、导学案)

27.2相似三角形27.2.1 相似三角形的判定第1课时相似三角形的判定(1)【知识与技能】1.了解相似三角形的概念及其表示方法;2.掌握平行线分线段成比例定理及平行于三角形一边的直线的性质定理;3.掌握相似三角形判定的预备定理.【过程与方法】经历从探究到归纳证明的过程,发展学生的合情推理能力和逻辑思维能力.【情感态度】体验从一般到特殊及由特殊到一般的认知规律,发展辩证思维能力. 【教学重点】平行线分线段成比例定理及判定三角形相似的预备定理.【教学难点】探索平行线分线段成比例定理的过程.一、情境导入,初步认识问题1相似多边形的性质是否也适用于相似三角形呢?问题2如果△ABC与△A1B1C1相似,能类似于两个三角形全等,给出一种相似表示方法吗?△ABC 与△A 1B 1C 1的相似比为k ,那么△A 1B 1C 1与△ABC 的相似比也是k 吗?问题3 如何判定两个三角形相似呢?【教学说明】通过上述三个问题的设置,既帮助学生认识了相似三角形的一些基本知识,又为引出平行线分线段成比例定理作些铺塾,教师可釆用自问自答形式讲述这部分内容. 二、思考探究,获取新知问题1 如图,任意画两条直线l 1,l 2,再画三条与l 1,l 2相交的平行线l 3,l 4,l 5分别度量AB ,BC ,DE ,EF 长度,则EFDEBC AB 与相等吗?呢?与DF DE AC AB 呢?与DFEFCA BC【教学说明】教师可让学生在自己准备的 白纸上画出类似图形,测出所截各条线段的长度(尽可能准确些),然后求出相应比值的近似值,便于作出说明.教师巡视,发现问题及时引导.对出现比值相差较大情形,帮助他们分析,找出原因,尽量让学生们获得对应线段的比值近似相等这一结果,形成感性认知.最后,教师可综合大多数同学的认知,给予总结,得出结论.平行线分线段成比例定理 三条平行线截两条直线,所得的对应线段的比相等.【教学说明】这一结论不要求学生证明,只需形成感性认识.为了便于记忆,上述定理的结论可使用下面形象化的语言,如:.等全下全下,全上全上,上下上下,下上下上==== 问题 2 如图,当l 1//l 2//l 3时,在(1)中是否仍有呢?,,AF EFAC BCAF AE AC AB EF AE BC AB ===在(2)中是否仍有呢?,,DFBFACBCDF DB AC AB BF DB BC AB ===【教学说明】针对问题2,教师应引导学生利用“平行线分线段成比例定理”来进行说明,不可继续用测量方法得到,这样就由感性认识 上升到理性思考.这里建议将学生进行分组,小组讨论,相互交流,形成认识,最后教师再与全 班同学一道分析,得出结论.平行于三角形一边的直线截其他两边(或两边的延长线),所得到的对应线段的比相等.问题3 如图,在△ABC 中,DE// BC ,DE 分别交AB 、AC 于D 、E ,则△ABC 与△ADE 能相似吗?为什么?问题4如图,已知DE//BC,DE分别交AB.AC的反向延长线于D、E,则△ADE与△ABC能相似吗?为什么?【教学说明】将全班学生分成两组,分别完成问题3、4的探究,教师应先给予点拨,突破难点(即添加辅助线,达到两个三角形的三边的比能相等的目的),然后学生自主完成,锻炼逻辑思维能力和推理能力.平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似 (相似三角形判定的预备定理).三、运用新知,深化理解1.如图,DE//BC,EF//AB,请尽可能多地找出图中的相似三角形,并用符号表示出来.2.如图D 为△ABC 中BC 边的中点,E 为AD 中点,连接并延长BE 交 AC 于F.过E 作EG//AC 交BC 于G. (1) 求AC EG 的值;(2)求CF EG 的值;(3)求FCAF的值.3.如图,已知在△ABC 中,DE//BC ,AD=EC ,BD=1cm ,AE=4cm ,BC=5cm , 求 DE 的长.【教学说明】 让学生自主完成,也可合作完成,在练习中加深理解.教师巡视指导,及时点拨.在完成上述题目后,教师引导学生完成创 优作业中本课时的“名师导学”部分.【答案】1.解:△ADE ~△ABC ,△CEF ~△CAB, △ADE ~△EFC. 2.解:(1)∵EG//AC ,∴△DGE ~△DCA ,∴21==DA DE AC EG . (2)∵EG//AC ,E 是AD 的中点,∴G 是CD 的中点,即CG=DG.又D 是BC 的中点,∴BD=CD ,∴BG=3CG ,BC=4CG ,∴34BG BC = . ∵EG//FC, ∴△BEG ~△BFC,∴43==BC BG FC FG . (3)过D 点作DH//CF ,交BF 于H.易得DH=AF ,∴21==FC DH FC AF . 3.解:∵DE//BC ,∴ECAEDB AD =,又AD=CE ,∴AD 2=4,∴AD=2,∴AB=3.由DE//BC 可知△ADE ~△ABC ,∴)(cm 310352=⨯==BC DE AB AD . 四、师生互动,课堂小结 1.这节课你学到了哪些知识? 2.你还有哪些疑惑?【教学说明】师生以交谈方式回顾本节知识,重点应关注哪些内容,还有什么地方不太明白,及时解疑.完成创优作业中本课时的“课时作业”部分.本课时教学思路应从探究、猜想、验证归纳出发,遵循学生的理解认知能力,由浅入深、逐步推进,激发学生自主探究的学习热情,培养学生的自主学习能力.27.2 相似三角形 27.2.1 相似三角形的判定 第1课时 相似三角形的判定(1)一、新课导入 1.课题导入问题1:我们学过哪些判定两个三角形全等的方法?问题2:类比上面这些方法,猜一猜判定两个三角形相似的方法有哪些? 由此导入课题(板书课题). 2.学习目标(1)能用符号表示两个三角形相似,能确定它们的相似比、对应边和对应角.(2)能叙述平行线分线段成比例定理及其推论,并能结合图形写出正确的比例式.(3)能用平行线分线段成比例定理的推论证明三角形相似的判定引理. 3.学习重、难点重点:平行线分线段成比例定理及其推论. 难点:正确理解定理中的“对应线段”. 二、分层学习1.自学指导(1)自学内容:教材P29~P30思考上面的内容. (2)自学时间:8分钟.(3)自学方法:学生分小组采用度量的方法和已学知识探究平行线分线段成比例定理,并完成自学参考提纲.(4)自学参考提纲:①三个角相等,三条边成比例的两个三角形相似.在△ABC 和△A′B′C′中, 如果∠A=∠A′, ∠B=∠B′, ∠C=C′,AB BC CAk A B B C C A ==='''''', 那么△ABC 和△A′B′C′相似,记作△ABC ∽△A′B′C′,△ABC与△A′B′C′的相似比为k,△A′B′C′与△ABC的相似比为1 k .全等三角形也是相似三角形, 它们的相似比为1.②相似三角形的对应角相等,对应边成比例.③完成教材P29探究:a.如图1,量一量,算一算,ABBC与DEEF相等吗?BCAB与EFDE呢?ABAC与DEDF呢?BCAC与EFDF呢?b.由上一步可得:∵l3∥l4∥l5,∴ABBC=DEEF,BCAB=EFDE,ABAC=DEDF,BC AC =EFDF.c.平行线分线段成比例定理:两条直线被一组平行线所截,所得的对应线段成比例.d.指出图1中的所有对应线段(如AB与DE):BC与EF,AC与DF.④把平行线分线段成比例定理应用到三角形中,会出现图2和图3两个基本图形:在这两个图形中,把DE看成平行于△ABC的边BC的直线,截其他两边(如图1)或其他两边的延长线(如图2),于是可得推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.即:∵DE∥BC,∴ADDB=AEEC,ADAB=AEAC,BDAB=CEAC.2.自学:结合自学指导进行自学.3.助学(1)师助生:①明了学情:能否正确理解“对应线段”,尤其是在推论的两个图形中.②差异指导:根据学情,指导学生结合图形理解“对应线段”.(2)生助生:小组交流、研讨.4.强化(1)分清平行线分线段成比例定理的条件与结论,弄清哪些是“对应线段”.(2)平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段的比相等(强调“对应”).1.自学指导(1)自学内容:教材P30思考~P31.(2)自学时间:6分钟.(3)自学方法:学生分小组对不同类型的相似三角形进行证明,并完成自学参考提纲.(4)自学参考提纲:①已知DE∥BC,运用定义证明△ADE∽△ABC(如图1,作EF∥AB).证三个角相等:∠A公共,由DE∥BC可得∠ADE=∠B,∠AED=∠C.证三条边成比例:由DE∥BC可得ADAB=AEAC,由EF∥AB可得BFBC=AEAC.由DE∥BC,EF∥AB可得四边形BFED是平行四边形,所以BF=DE.故DE BCADAB=AEAC=BFBC.所以△ADE∽△ABC.②如图2, DE∥BC分别交BA、CA的延长线于点D、E,那么△ADE与△ABC 相似吗?能否给予证明?相似.∵DE ∥BC,∴∠E=∠C,∠D=∠B.过E 作EF ∥BD 交CB 的延长线于点F. ∵DE ∥BC ,EF ∥BD ,∴,AE AD BF AEAC AB BC AC==. 又∵四边形BDEF 是平行四边形,∴DE=BF,∴AE AD DEAC AB BC==. ∴△ADE ∽△ABC.③如图3,△ABC 中,DE ∥BC ,EF ∥AB ,求证:△ADE ∽△EFC. ∵DE ∥BC ,EF ∥AB ,∴∠CEF=∠A,∠ADE=∠B=∠EFC,AD AE DB EC =,BF AEFC EC=. 又∵四边形BDEF 是平行四边形, ∴BD=EF,DE=BF. ∴AD AE DEEF EC FC==, ∴△ADE ∽△EFC.④如图4,DE ∥FG ∥BC ,找出图中所有的相似三角形. 由DE ∥FG ∥BC ,易知△ADE ∽△AFG ∽△ABC. 2.自学:结合自学指导进行自学. 3.助学 (1)师助生:①明了学情:看学生能否添加辅助线构造比例线段进行转化. ②差异指导:根据学情指导学生弄清引理的证明思路和方法. (2)生助生:小组交流、研讨. 4.强化(1)判定三角形相似的预备定理及其两个基本图形. (2)点两名学生板演自学参考提纲中第③、④题,并点评. 三、评价1.学生学习的自我评价:这节课你有什么收获?还有哪些不足?2.教师对学生的评价:(1)表现性评价:从学生的课堂参与程度、思维状况、小组协作等方面的课堂表现去评价.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思).本课时先给出相似三角形的定义,说明有关概念,明确相似三角形的符号表示和相似比的意义.由于三角形的相似与比例线段密不可分,因此在形成相似三角形的概念之后,主要安排学习比例线段,进而讨论平行于三角形一边的平行线的性质与判定以及平行线分线段成比例定理,为研究相似三角形提供了必要的知识准备.教学过程中应遵循学生的理解认知能力,由浅入深,逐步推进.一、基础巩固(70分)1.(10分)如图,在△ABC中,DE∥BC, 且AD=3,DB=2.图中的相似三角形是△ADE∽△ABC,其相似比是35.第1题图第2题图2.(10分)如图,DE∥BC,DF∥AC,则图中相似三角形一共有(C)A.1对B.2对C.3对D.4对3.(10分)如图,DE∥BC,12ADDB,则AEAC=(B)A.12B.13C.23D.32第3题图第4题图4.(10分)如图,已知AB ∥CD ∥EF ,那么下列结论正确的是(A )5.(10分)如图,AB ∥CD ∥EF,AF 与BE 相交于点G ,且AG=2,GD=1,DF=5,求BC CE .解:∵AB ∥CD ∥EF,∴35BC AD AG GD CE DF DF +===. 6.(20分)如图,DE ∥BC.(1)如果AD=5,DB=3,求DE ∶BC 的值;(2)如果AD=15,DB=10,AC=15,DE=7,求AE 和BC 的长.解:(1)∵DE ∥BC ,∴△ADE ∽△ABC,∴58DE AD BC AB ==. (2)AE AD AC AB =,即151525AE =,求得 AE=9. DE AD BC AB =,即71525BC =,求得 BC=353. 二、综合应用(20分)7.(20分)如图,△ABC ∽△DCA ,AD ∥BC ,∠B=∠DCA.(1)写出对应边的比例式;(2)写出所有相等的角;(3)若AB=10,BC=12,CA=6,求AD 、DC 的长.解:(1)BC AB AC CA DC DA==; (2)∠BAC=∠CDA,∠B=∠ACD,∠ACB=∠DAC; (3)由(1)中的结论和已知条件可知121066DC AD==,求得AD=3,DC=5. 三、拓展延伸(10分)8.(10分)如图,在△ABC 中,DE ∥BC 分别交AB 、AC 于点D 、E ,试证明:ADAB=DOCO.证明:∵DE ∥BC ,∴△ADE ∽△ABC,△DOE ∽△COB,∴,AD DE DO DE AB BC CO CB==. ∴AD DO AB CO =.。

相似三角形的性质及其应用-导学案

相似三角形的性质及其应用-导学案

3月16日-相似三角形的性质及其应用-导学案一:知识梳理相似三角形定义:对应角相等,对应边成比例的两个三角形叫做相似三角形知识点1:性质定理1:相似三角形对应角相等,对应边成比例。

知识点2:性质定理2:相似三角形对应线段(高线、中线、角平分线)的比等于相似比。

实战训练一:1. 两个相似三角形的对应边之比是1:2,那么它们的对应中线之比是1:2 。

2. 两个相似三角形的对应高之比是1:4,那么它们的对应中线之比是1:4 。

3. 两个相似三角形的对应角的平分线的长分别是3cm和5cm,那么它们的相似比是3:5 ,对应高的比是3:5 。

知识点3:性质定理3:相似三角形的周长比等于相似比。

实战训练二:1. 两个相似三角形的相似比是1:2,其中较小三角形的周长为6cm,则较大三角形的周长为12cm 。

2. 如果△ABC ∽△DEF,且△ABC的三边长分别为3、4、5,△DEF的最短边长为6,那么△DEF的周长为24 。

3. 如果两个相似三角形的周长比是2:3,其中小三角形一角的角平分线长是6cm,那么大三角形对应角平分线长是9cm 。

知识点4:性质定理4:相似相似三角形面积的比等于相似比的平方。

实战训练三:1. 若△ABC ∽△A’B’C’且相似比为1:2,则△ABC 与△A’B’C’面积之比为1:4 。

2. 两个相似三角形的面积之比是4: 9,则这两个三角形相似比是2:3 。

3. 判断:两个三角形的面积之比是4: 9,则这两个三角形的周长之比是2:3。

(×)二:典例分析例1:如图,已知△ACE△△BDE,AC=6,BD=3,AB=12,CD=18,求AE和DE的长。

解:∵△ACE∽△BDE∴ACBD =AEBE即63=AE12−AE解得AE=8△ ACBD =CEDE即63=18−DEDE解得DE=6相似三角形的应用——测量不能到达顶端的物体高度例2: 《周髀算经》中记载了“偃矩以望高”的方法,“矩”在古代指两条边呈直角的曲尺(即图中的ABC).“偃矩以望高”的意思是把“矩”仰立放,可测量物体的高度.如图,点A、B、Q在同一水平线上,∠ABC和∠AQP均为直角,AP与BC相交于点D.测得AB=40cm,BD=20cm,AQ=12m,则树高为6m 。

《相似三角形的性质1》说课稿及导学案

《相似三角形的性质1》说课稿及导学案

《相似三角形的性质1》说课稿说课的内容是初中数学九年级上册,第23章《相似三角形的性质》第一课时,下面我从教材分析、目标分析、教学与学法、教学设计、板书设计几个方面对本节课的教学设计进行说明。

一、教材分析:1、教材的地位与作用:《相似三角形的性质》的主要内容是相似三角形的性质。

本节是在相似三角形的概念及三角形相似的判定的基础上,进一步研究相似三角形的性质的。

根据定义,相似三角形的对应角相等,对应边成比例,相似三角形还有对应高、对应中线、对应角平分线的比等于相似比、周长比等于相似比、面积比等于相似比的平方的性质。

这些性质在几何研究中起着很重要的作用。

本节课主要介绍相似三角形对应高的比、对应中线的比,对应角平分线的比等于相似比的性质。

2、教学重点和难点:相似三角形性质定理的引入形成过程二、教学目标分析:根据《初中数学课程改革教学大纲》的要求和教学内容的特征,结合学生的现有实际水平,制定本节课的教学目标具体表现为以下四个方面:1、知识目标:(1)让学生进一步理解相似三角形的定义(2)掌握相似三角形对应高、对应中线、对应角平分线的比都等于相似比;2、能力目标:(1)数学思考目标: 通过相似三角形性质的探索过程培养学生分析问题的能力、探究问题能力、归纳和总结的能力等。

(2)问题解决目标:培养学生勇于探索,勤于思考的精神;培养学生合作学习和互相交流的能力;3、情感目标:让学生体验学习的乐趣以及获得成功的喜悦。

三、教学与学法:根据上述教材分析和目标分析,为体现以教师为主导,学生为主体的新的教学改革思想,进一步体现素质教育的重要性,本课主要运用我学校的五步尝试导学法。

根据教学内容和学生的特点,本节课的教学学生自主尝试贯穿始终。

经历了尝试导入目标定向—----尝试探究引导发现—--尝试练习引领提升—---尝试自结引导拓展的教学过程。

充分发挥教师的主导和学生的主体作用。

学生在尝试中发现新知,在交流合作中探索,在尝试练习中提高,在尝试自结中感悟。

湘教版下东中学相似三角形的判定定理一的学案

湘教版下东中学相似三角形的判定定理一的学案

一.新课引入:1。复习相似多边形的定义及相似多边形相似比的定义 2.相似三角形的定义及相似三角形相似比的定义 3.回顾全等三角形的概念及判定方法(SSS) 4.相似三角形的概念及判定相似三角形的思路。 二.合作探究: 探究方法:探究 1:在一张方格纸上任意画一个三角形,再画一个三角形,使它的各边长都 是原来三角形各边长的 k 倍,度量这两个三角形的对应角,它们相等吗?这两个三角形相 似吗? 分析:学生通过度量,不难发现这两个三角形的对应角都相等,根据相似三角形的定义, 这两个三角形相似。 (学生小组交流) 在学生小组交流的基础上引导学生思考证明探究所得结论的途径。 分析:作 A1D=AB,过 D 作 DE∥B1C1,交 A1C1 于点 E ∆A1DE∽∆A1B1C1。用几何画板演示∆ABC 平移至∆A1DE 的过程 A1D=AB,A1E=AC,DE=BC ∆A1DE≌∆ABC ∆ABC∽∆A1B1C1
↓ 归纳:如果两个三角形的 三组对应边的比相等,那 么这两个三角形相似。
C
A、 四课堂检测: 已知:
AD AB AE AC DE BC
B、
C、
D、
,求证:∠ BAD =∠ CAE .
D
E
A
E
B
B1
C1
D

B
五、 总结反思 这节课你有什么收获?
C

AB A1 B 1
BC B 1C 1 Nhomakorabea
CA C 1 A1
k ,则 ∆ABC∽∆A1B1C1
三.课堂练习: 1:根据下列条件,判断△ABC 与△A’B’C’是否相似,并说明理由. (1)∠A=1200,AB=7cm,AC=14cm,∠A′=1200,A′B′=3cm,A′C′=6cm.

相似三角形的判定(1)导学案

相似三角形的判定(1)导学案

年级:九年级 班级: 学生姓名: 制作人: 不知名 编号:2023-1227.2.1相似三角形的判定(1)【学习目标】1.掌握相似三角形的定义和相似三角形的相似比;2.掌握平行线分线段成比例定理的基本事实以及推论 (重点)3.应用平行线分线段成比例定理及推论来解决问题.(难点)预学案1. 在相似多边形中,最简单的就是相似三角形.如图,在△ABC 与△A ′B ′C ′中,如果△A =△A ′, △B =△B ′, △C =△C ′, 且k C A AC C B BC B A AB ===''''''. 即 ,我们就说△ABC 与△A ′B ′C ,记作△ABC △△A ′B ′C ′,k 就是它们的相似比.反之如果△ABC △△A ′B ′C ′,则有△A =△A ′, △B =△B ′, △C =△C ′, 且k C A AC C B BC B A AB ===''''''.即 . 2.问题:如果k =1,这两个三角形有怎样的关系?3.两条直线被一组平行线所截,所得的对应线段 .探究案探究 一:平行线分线段成比例(基本事实)如图,任意画两条直线l 1,l 2,再画三条与l 1,l 2 相交的平行线l 3,l 4,l 5.分别度量l 3,△ABC ,l 5.在l 1上截得的两条线段AB ,BC 和在l 2上截得的两条线段DE ,EF 的长度.(1) 计算的值,它们相等吗? (2) 任意平移l 5,根据上述操作,度量AB ,BC ,DE ,EF , 同(1)中计算,它们还相等吗?总结:若l 3△l 4△l 5,则,, ,...归纳:平行线分线段成比例基本事实 两条直线被 所截,所得的线段成比例.(平行线分线段成比例基本事实中相比线段同线) EFDE BC AB =EF DE BC AB =DEEF AB BC =DF DE AC AB =DFEF AC BC =探究二:平行线分线段成比例定理的推论如果把所画的两条相交直线的交点A 刚好落到“横线”上,如图△,△示,所得的对应线段成比例吗?依据是什么?图(1)中,把l 4看成平行于△ABC 的边BC 的直线;图(2)中把l 3看成平行于△ABC 的边BC 的直线.把平行线分线段成比例的基本事实应用到三角形中,于是可以得到结论:_____于三角形一边的直线截其他两边(或两边的延长线),所得的_____线段 .检测案1.如图AB ∥CD ∥EF ,那么下列结论正确..的是( ) A .CE BC DF AD = B .AD DF CE BC = C .BE BC EF CD = D .AFAD EF CD =第1题 第2题 第3题2. 如图,已知D 、E 分别为AB 、AC 上的两点,且DE △BC ,AE =2CE ,AB =6,则AD的长为( )A .3B .4C .5D .63. 如图,l 1△l 2△l 3,AB =2,BC =4,DB =3,则DE 的长为( )A .4B .5C .6D .9 4. 如图,直线l 1、l 2、l 3分别交直线l 4于点A 、B 、C ,交直线l 5于点D 、E 、F ,直线l 4、l 5交于点O ,且l 1∥l 2∥l 3,已知EF ∶DF =5∶8,AC =24.(1) 求CB AB 的值;(2) 求AB 的长.。

数学《相似三角形的判定》教案

数学《相似三角形的判定》教案

相似三角形的判定(一)一、教学内容的说明1、教材所处的地位:三角形相似的判定是相似形这一章的教学重点,是在学习三角形相似的定义和预备定理的基础上作进一步研究。

从知识的系统性来看,相似三角形是全等三角形知识的发展,它们存在一般与特殊的关系,因此可类比三角形全等的判定方法得到三角形相似的判定方法。

同时判定定理1的证明方法又为进一步学习其它几个判定定理奠定了基础。

2、这一内容可分为四课时完成,本教学设计是第一课时。

3、本节课注重分层教学,在各个环节均照顾不同层次的学生,使各层次学生均有所得,体会到成功的喜悦,树立自信心,主动发展。

教学重点:三角形相似的判定定理1的理解和应用。

教学难点:三角形相似的判定定理1的证明方法。

因为它的证明是在只有相似三角形的定义和预备定理的条件下完成的,需要添加辅助线转化为预备定理。

二、教学目标的确定根据本节课的具体内容并结合学生的实际情况,我从知识与技能、过程与方法、情感态度价值观三方面制定了教学目标:1、使学生理解定理内容及其证明方法,初步会运用定理解决有关问题;2、通过学生探索、证明、理解和应用定理,进一步发展符号感和推力能力,使学生学会学习,体验成功;3、通过图形变式,使学生体验数学活动充满着探索性和创造性,并享受数学美;通过小组讨论,培养学生合作意识。

三、教学方法与教学手段的选择为了充分调动学生学习的积极性,使学生变被动学习为主动愉快地学习,我引导学生类比联想,猜想命题,形成定理,采用讨论、探究式的教学方法.在教学手段方面,我选择了计算机辅助教学的方式,运用Powerpoint和几何画板,增加图形的直观性和课堂密度.四、教学过程的设计为了实现教学目标,我遵循学生的认知规律,根据“循序渐进原则”;把这节课分为三个阶段:“定理探索阶段”;“定理运用阶段”;“定理巩固阶段”.下面我将对教学步骤作出说明。

(一)定理探索阶段1、类比,猜想三角形相似的判定方法由于探索三角形相似的新的判定方法首先应让学生对已有知识有一个清晰的认识,所以先让学生复习相似三角形的定义和判定三角形相似的预备定理,教师引导学生思考,现有的判定三角形相似的方法中:①定义需要对应角分别相等,对应边成比例,条件多,过于苛刻;②预备定理要求有三角形一边的平行线,条件过于特殊,使用起来有局限性.说明探索三角形相似的新的判定方法的必要性。

《相似三角形的性质》 导学案

《相似三角形的性质》 导学案

《相似三角形的性质》导学案一、学习目标1、理解相似三角形的对应角相等,对应边成比例。

2、掌握相似三角形的周长比等于相似比,面积比等于相似比的平方。

3、能运用相似三角形的性质解决相关的计算和证明问题。

二、学习重难点1、重点(1)相似三角形的性质及其应用。

(2)相似三角形的周长比和面积比与相似比的关系。

2、难点相似三角形性质的灵活运用,尤其是涉及到周长比和面积比的综合问题。

三、知识回顾1、相似三角形的定义:如果两个三角形的对应角相等,对应边成比例,那么这两个三角形叫做相似三角形。

2、相似三角形的判定方法:(1)两角对应相等,两三角形相似。

(2)两边对应成比例且夹角相等,两三角形相似。

(3)三边对应成比例,两三角形相似。

四、新课导入我们已经知道了什么是相似三角形以及如何判定两个三角形相似,那么相似三角形具有哪些性质呢?这就是我们本节课要探究的内容。

五、相似三角形的性质1、相似三角形的对应角相等,对应边成比例。

例如,在△ABC 和△A'B'C'中,如果△ABC∽△A'B'C',那么∠A=∠A',∠B =∠B',∠C =∠C',且\(\frac{AB}{A'B'}=\frac{BC}{B'C'}=\frac{AC}{A'C'}\)。

2、相似三角形的对应高的比、对应中线的比、对应角平分线的比都等于相似比。

(1)如图,△ABC∽△A'B'C',AD 和 A'D'分别是△ABC 和△A'B'C'的高。

因为∠ADB =∠A'D'B' = 90°,且∠B =∠B',所以△ABD∽△A'B'D',所以\(\frac{AD}{A'D'}=\frac{AB}{A'B'}\),即相似三角形对应高的比等于相似比。

4.4探索三角形相似的条件1导学案

4.4探索三角形相似的条件1导学案

4.4探索三角形相似的条件(1)学习目标:1、经历类比、猜想、验证等过程,探索两个三角形相似的条件,进一步体会分类、归纳等思想方法。

2、初步掌握“两角对应相等的两个三角形相似”的判定3、能够运用三角形相似的条件解决简单问题,进一步发展合情推理能力和初步的逻辑推理能力学习重点: 1.相似三角形的判定方法1以及探索过程。

2.会用判定方法来证明和计算。

学习难点: 1.相似三角形的判定方法1的运用。

2.找对应线段和对应角。

学习过程:一、复习回顾1.什么是相似多边形?2.什么是相似比?3.相似多边形有哪些性质?二、相似三角形的定义及性质1、定义:我们把 、 的两个三角形叫做相似三角形.△ABC 和△A'B'C'相似,表示为 。

注意:对应顶点的字母写在对应位置上。

2、性质:如果两个三角形相似,那么三角分别___ ___,三边___ ______。

符号语言:跟踪练习:如图, 已知△ABC ∽△MNP,且∠A=80°,∠N=40°,则∠M= ,∠B= ,∠C= ,∠P= ;从图中能得到的比例线段是 = = , 若AB=4.5cm ,MN=1.5cm ,MP=1cm ,PN=2cm , 则AC= cm ,BC= cm 。

B B'三、相似三角形的判定:1.定义法:如果三角对应______ 三边对应_________,那么两个三角形相似. 符号语言:2.类比探究:判断两个三角形相似是不是必须按照定义满足所有的条件?至少需要几个条件?类比探索三角形全等的条件的方法,想一想:①如果两个三角形有一个内角对应相等,那么这两个三角形一定相似吗?能举例说明吗? ②如果有两个角分别相等,那么这两个三角形一定相似吗?与同伴合作 ,画△ABC(同位左边)与△A 1B 1C 1 (同位右边),使∠ A=∠A 1=45°,∠B=∠B 1=60°, 先量出自己所画的三角形三边的长度,再合作求出 比值(比值精确到0.1),它们比值相等吗? 那么,△ABC 与△A 1B 1C 1相似吗? 通过验证发现: 。

相似三角形的判定数学教学教案(优秀6篇)

相似三角形的判定数学教学教案(优秀6篇)

相似三角形的判定数学教学教案(优秀6篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、策划方案、合同协议、条据文书、竞聘演讲、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, planning plans, contract agreements, documentary evidence, competitive speeches, insights, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!相似三角形的判定数学教学教案(优秀6篇)学习可以这样来看,它是一个潜移默化、厚积薄发的过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档