2质点动力学_图文.ppt.ppt
大学物理课件第二章质点动力学
m0g N
N
a’ B mg
联立解得
(m m0 )sin m cos sin a g, a ' g 2 2 m0 m sin m0 m sin
例题2 质量为m的快艇以速率v0行驶,关闭发动 机后,受到的摩擦阻力的大小与速度的大小成 正比,比例系数为k,求关闭发动机后 (1)快艇速率随时间的变化规律; (2)快艇位置随时间的变化规律
B
A
F
B
m0g
A
解:隔离两物体,分别受力分析, aA-地对楔块A N sin m0a
N
F ( N cos m0 g ) 0
N
对物体B(aB地 aB A aA地 )
B
a
B-A
a
N sin m(aB A cos a)
A-地
mg
N cos mg m(aB A sin 0)
m0 m sin
(m m0 )sin 联立解得 a m cos sin g , aB A g 2 2 m0 m sin
B
A
F A a
解:隔离两物体,分别受力分析, 对楔块A N sin m0a N cos m0 g F 物体B相对楔块A以a’加速下滑
二、牛顿第二定律 1.动量: p mv
2.力的定义: dp d (mv ) F dt dt --牛顿第二定律(质点运动微分方程)
v c 物体质量为常量时:
dv F m ma dt
惯性演示实验
当锤子敲击在一大铁块上时,铁块下的手 不会感到有强烈的冲击;而当用一块木头取代 铁块时,木块下的手会感到明显的撞击。
大学物理课件 第2章,质点动力学
本章题头§2-1 牛顿运动定律英国物理学家, 经典物理学的奠基人.创立了经典力学的 基本体系光学,牛顿致力于光的颜色和光 的本性数学,建立了二项式定理,创立 了微积分牛顿 Issac Newton (1643-1727)天文学,发现了万有引力定律, 创制反射望远镜,初步观察到了 行星运动的规律。
一、牛顿第一定律 (Newton first law)惯性定律 任何物体都保持静止或匀速直线运动的状态, 直到受到力的作用迫使它改变这种状态为止。
意义惯性以及力的概念 1、定义了物体(质点)的惯性;2、说明了力是物体运动状态改变的原因定义了惯性参考系二、牛顿第二定律 (Newton second law)质点加速度的大小与所受合力的大小成正比 , 与质点自身的质量成反比; 加速度方向与合力方向相同。
牛顿第二定律的数学形式为 Fma 原始形式:F dPd mv dmvm dvdtdtdtdt当 v c 时,m 为常量 Fm dvmadt宏观低速运动时1、瞬时性: 之间一一对应(同生、同向、同变、同灭) n 2、力的叠加性:F F1 F2 Fi Fii =13、矢量性:具体运算时应写成分量式直角坐标系中: Fma maximay jmaz k Fxmaxmdv x dt Fyma ymdv y dt Fzmazmdvz dt 自然坐标系中: Fmam at anF mdv dtFnmv24、说明了质量是物体惯性的量度5、在一般情况下力, F是一个变力常见的几中变力形式:F F x kx常见的几中变力形式:F F t F F v kv弹性力 打击力 阻尼力6、适用对象:质点 7、成立的参考系:惯性系 8、成立的条件:宏观低速10'T 三、牛顿第三定律(Newton third law)物体A 以力F AB 作用于物体B 时, 物体B 也必定同时以力F BA 作用于物体A , F AB 与F BA 大小相等, 方向相反, 并处于同一条直线上,(物体间相互作用规律)mmT P 'P 地球F AB = F BA作用力与反作用力:1、它们总是成对出现。
大学物理第二章质点动力学PPT课件
•若物体与流体的相对速度接近空气中的声速时,阻 力将按 f v3 迅速增大。
•常见的正压力、支持力、拉力、张力、弹簧的恢复 力、摩擦力、流体阻力等,从最基本的层次来看, 都属于电磁相互作用。
2021
12
五、牛顿定律的应用
•应用牛顿运动定律解题时,通常要用分量式:
如在直角坐标系中:
在自然坐标系中:
Fn
man
mv2
2021
6
三、牛顿第三定律
物体间的作用是相互的。两个物体之间的作用
力和反作用力,沿同一直线,大小相等,方向相反,
分别作用在两个物体上。
F21F12
第三定律主要表明以下几点:
(1)物体间的作用力具有相互作用的本质:即力总 是成对出现,作用力和反作用力同时存在,同时消 失,在同一条直线上,大小相等而方向相反。
(4)由于力、加速度都是矢量,第二定律的表示式 是矢量式。在解题时常常用其分量式,如在平面直 角坐标系X、Y轴上的分量式为 :
2021
5
Fx mxamddxvtmdd22xt Fy myamddyvtmd d22yt
在处理曲线运动问题时,还常用到沿切线方向 和法线方向上的分量式,即:
Ft
mat
mdv dt
2021
27
1983年第17届国际计量大会定义长度单位用真空中 的光速规定:
c = 299792458 m/s
因而米是光在真空中1299,792,458秒的时间间 隔内所经路程的长度。
❖其它所有物理量均为导出量,其单位为导出单位
如:速度 V=S/ t, 单位:米/秒(m/s)
加速度a=△V/t,单位:米/秒2(m/s2)
•摩擦力:两个相互接触的物体在 沿接触面相对运动时,或者有相对 运动趋势时,在接触面之间产生的
高一物理章节内容课件 第二章质点动力学
地面的加速度是多少?(以竖直向上为
正)
解:以绳为参照系,设绳对地 的加速度为 a绳对地
T '
T a绳对地
人 T mg (ma绳对地) ma0 物 Mg T (Ma绳对地) M 0
Mg ♕ mg
▲ 注意:ห้องสมุดไป่ตู้于滑轮这种左右两边的情形, 左右两边的正方向应相反
3 a绳对地 g a0 方向:右向上,左向下
★ 作用于桌面的压力
N1 N m已落下部分g , 3gm已落下的部分
4. 质点系的动量定理 任意一段时间间隔内质点系所受合外力 的冲量等于在同一时间间隔内质点系内 所有质点的动量矢量和的增量。
5.动量守恒定律(Law of Conservation of Momentum) (1)※
度,是Vx
N mg CyVx2
N
CxVx2
m
dVx dt
(mg CyVx2 ) CxVx2
m dVx dx
dx dt
dx dt
(mg CyVx ) CxVx m
2
2 dVx dx
条件:Vx V0 90km/ h时,
Vx
N
0
mg
C yV02
解:★ 注意 摩此擦M力分r布F在整个圆盘上,因
第一步:在距轴为 r 处取质量元 dm ,它受到
的摩擦力为 df
df kdm g
方向:
df
r
第二步:求 df 产生的摩擦力矩 dM 大小、方向
dM rdf sin rkdm g 方向:沿轴
dm
m
R2
质点动力学的基本方程最新课件.ppt
则x 求:
l 1
0,
2
4
r
cos t cos 2
4
时杆AB受力F
t
?
r l
1
2
解:研究滑块
max F cos
其中 ax x r2cos t cos2 t
当 0时, ax r21 ,且 0,
得 F mr21
当
l2 r2 l
伽利略通过实验得到了“摆的小摆动周期与摆长的平方根成 正比”的结论,从理论上为钟表的核心装置——摆奠定了基础。 伽利略对自由落体和摆的研究也标志着人类对动力学研究的开始。
1657年,惠更斯完成了摆钟的设计。他还发表了一系列关 于单摆与动力学的重要研究结果,如向心力和向心加速度的概念。
1676年,英国学者胡克发表了胡克定律,使人们对弹簧出现 了两项改进;弹簧发条储能器的改进;弹簧摆轮(或游丝)的发 明。基于这两项改进,便于携带的钟表、怀表、手表开始出现。
例9-1 曲柄连杆机构如图所示.曲柄OA以匀角速
度 转动,OA=r,AB=l,当 r / l 比较小时,以O 为坐
标原点,滑块B 的运动方程可近似写为
x
l
1
2
4
r
cos
t
4
cos
2
t
如滑块的质量为m, 忽 略摩擦及连杆AB的质量,试
求当 t 0和 时 ,
连杆AB所受的力. 2
已知: 常量, OA r, AB l, m。 设
0
mk 0
得质点运动方程
x v0t,
y
eA mk2
coskt 1
(c)
轨迹方程
y
eA mk2
cos
k v0
第二章--质点动力学2
W W1 W2
o
r
r1 dr r2
(3)功是过程量:功总是和质点旳某个运
动过程相联络
W dW F dr F cos d r
2、重力、引力、弹性力旳功
(1)重力作功
物体m沿途径 A 过B程中重力
旳功
W
B
dW
B mg dr
y2 mgdy
W
A
mgy2A
mgy1
y1
t1
i1 若 Fi合 0
i 1 n
则 P
mivi
恒矢量
i 1
动量守恒定律:
当系统合外力为零时,系统
旳总动量保持不变。t2
nn
讨论:
Fi合dt mivi mivi0
t1
i 1
i 1
(1)合外力为零或不受外力作用系统总
动量保持不变。
(2)合外力不为零,但合力在某方向分量 为零,则系统在该方向上旳动量守恒。
W mgy2 mgy1 重力势能 Ep mgh
W
G
m'm rB
G
m'm rA
W
1 2
kx22
1 2
kx12
引力势能 弹性势能
Mm
Ep G r
Ep
1 2
kx2
所以能够得到保守力旳功与势 能旳关系式
W Ep2 Ep1 Ep
(2)势能旳讨论 势能是属于存在保守内力旳系统旳, 具有保守力才干引入势能旳概念。 势能是状态旳函数。 势能值旳相对性与势能差旳绝对性。
式
(2)直角坐标系中,定理分量式 t2
I x Fxdt px2 px1
t1 t2
I y Fydt py2 py1
高中物理奥林匹克竞赛专题--质点动力学的基本方程(共27张ppt)
mxmgv
FR
返回首页
10.3 质点动力学的两类基本问题
例题
d2 x m dt2 mgv
令 b/m
dv g bv
FR
dt
运动的起始条件为:t = 0时,v0 = 0,x0 = 0
v dv
t
dt
0 g bv 0
v g 1ebt b
x g dx
求:1》 小球在最低处A和最高处B时绳子的拉力。
2》小球在绳子与铅垂成任意夹角θ 时的速度。
O
o
B A
10.3 质点动力学的两类基本问题
例题
解: 1》 取小球分析
an
由 对 A 位置
m s 2
Fn
m
v
2 o
L
F1
mg
F1
A
vo
F1
m
v
2 0
L
mg
mg F2
对 B位 置 0F2mcgo0s F2mcgo0s
d g sin d 积分得
A
L
2 g cos D L
由 v 0 得 0 L
D
v
2 0
L2
2g L
2
v
2 0
L2
2g L
( 1 cos
)
O
S
an
aτ
B
vo
mg
在下面两种情况下,可以把物体视为质点: 物体作平移的时候; 当物体的运动范围远远大于它自身的尺寸、忽 略其大小对问题的性质无本质影响的时候。
刚体:有质量、不会变形的物体。 质点系:由若干个质点组成的、有内在联系的系统。
质点动力学-动量及动量定理 (2)
柔绳对桌面的冲力F=-F’ 即:
M 2 2 Fv v 而 v 2 g x FM 2 g x / L L
2
而已落到桌面上的柔绳的重量为mg=Mgx/L 所以F总=F+mg=2Mgx/L+Mgx/L=3mg
fi 0
i
'
f
质点系
结论:质点系的内力之和为零
F
外力: 系统外部对质点系内部质点的作用力 约定:系统内任一质点受力之和写成 外力之和
F i fi
内力之和
二、质点系的动量定理
•两个质点的系统
m
1
f
F1
F2
d P1 F1 f dt
m
2
f
d P P 1 d 2 F f F f 1 2 d t d t
解:以链条为系统,向上为X正向,地面为原点建立 坐标系。 t时刻,系统总动量 P X v xv a d x d v dP d(xv) v x x d t d t dt dt
v ax
2
O
变质量问题
系统动量对时间的变化率为:
d P 2 3 ax v ax 2 ax ax d t t时刻,系统受合外 Iy Iz
t2 t1 t2 t1 t2 t1
F x dt F y dt F z dt
+
0 t1 t2 t
(注意可取 + -号)
冲量的几何意义:冲量
I x 在数值上等于
Fx ~ t 图线与坐标轴所围的面积。
3、质点的动量定理
d v d P F m a m d t d t
质点动力学之二
答案:
v v0 e
t m
0
O
t
P.4/25
质点动力学
§2-2 惯性参考系与非惯性参考系
一、惯性系和非惯性系 第一定律:指出了惯性的存在
甲对地:静止 甲对乙:
匀速运动 符合第一定律
甲对丙:
加速运动, 但没有受力, 第一定律不符合
P.5/25
质点动力学
惯性参考系(inertial reference frame)(简称惯性系inertial frame) : 牛顿第一定律适用的参考系
F 0时,
a 0 非惯性系
P.7/25
质点动力学
三、惯性力(inertial force) 1.加速平动参考系
以加速度 a0 相对于惯性系
F0
T W
s 平动的非惯性系 s
a0
设想其中所有物体都受一虚拟力(惯性力)的作用
大小:物体质量非惯性系对惯性系的加速度 方向:与非惯性系对惯性系的加速度方向相反
+
P.2/25
质点动力学
m m g-F-kA v ln t kA mg F m g F kAv e mg F
kA t m
v
vm
kA t mg F m v 1 e kA
o
t
讨论潜艇 运动情况
dv t 0 v 0, t v , dt mg F t v vmax 恒量 kA
太 空 舱 的 人 造 重 力
P.14/25
质点动力学
二战中的小故事:
美Tinosa号潜艇携带16枚鱼雷,在太平洋离敌舰4000 码斜向攻击,发射4枚,使敌舰停航. 但离敌舰875码垂直攻击发射11枚,均未爆炸.
第二章 质点动力学
.3.
§2-1 牛顿运动定律
(Newton’s Law of Motion)
惯性定律) 一、牛顿第一定律(惯性定律 牛顿第一定律 惯性定律
如果物体没有受到力的作用, 如果物体没有受到力的作用,都将保持原有的静止 或匀速直线运动状态. 或匀速直线运动状态. 1. 定义了惯性参考系 2. 定性了物体的惯性和力 力可改变物体运动状态,而保持运动状态不需力. 力可改变物体运动状态,而保持运动状态不需力.
xm
v v
v F
v v ∫ F ⋅ dx = E末 − E初
0
1 即 ∫ − kx dx = 0 − mv 2 2 0 2 k 4 1 2mv 1 4 2 − x m = − mv ) ∴ xm = ( 4 2 k
3
x o x
m
Xቤተ መጻሕፍቲ ባይዱ
m
.12.
§2-3 保守力的功 势能
(The Work of Conservative Force, Potential Energy)
选参考点(势能零点 , 选参考点 势能零点),设 EP末 = 0 则 EP初 = A保守力 势能零点 1.重力势能 EP = mgh (常选地面为零势能 常选地面为零势能) 重力势能 常选地面为零势能 1 2 弹簧原长度为零势能) 弹簧原长度为零势能 2.弹性势能 E p = kx (弹簧原长度为零势能 弹性势能 2 mM 3.万有引力势能 E p = −G (无限远为零势能 无限远为零势能) 万有引力势能 无限远为零势能 r
.2.
第二章 质点动力学
(The Particle Dynamics)
§2-1 牛顿运动定律 §2-2 功 动能 动能定理 §2-3 保守力的功 势能 §2-4 质点系的机械能守恒定律 §2-5 冲量 动量 动量定理 §2-6 质点系动量守恒定律 §2-7 质点的角动量 §2-8 质点系对定轴的角动量
高中物理奥林匹克竞赛——质点动力学(动量·牛顿运动定律·)(共28张PPT)
第三章 质点动力学
力学
2. 牛顿第二定律
牛顿第二定律:物体受到外力作用时,它所获
得的加速度的大小与外力的大小成正比,并与物体
的质量成反比,加速度的方向与外力的方向相同。
F
ma
对应单位: N kg m/s2
第三章 质点动力学
力学
3. 牛顿第三定律
两个物体之间的作用力 F 和反作用力 F 沿
同一直线,大小相等,方向相反,分别作用在两
大小:取决于挤压程度。
方向:垂直于接触面指向对方。
N
第三章 质点动力学
力学
(2)绳对物体的拉力;
大小:取决于绳的收紧程度。
T
方向:沿着绳指向绳收紧的方向。
(3)弹簧的弹力;
弹性限度内,弹性
x
力满足胡克定律:
F kx
F
F O
方向:指向要恢复 弹簧原长的方向。
第三章 质点动力学
力学
3.
摩擦力
摩擦力:两个相互接触的物体在沿接触面相对
当棒的最下端距水面距离为时x,浮 力大小为:
B xg
此时棒受到的合外力为:
F mg xg g(l x)
B
l
mgx o
x
第三章 质点动力学
力学
利用牛顿第二定律建立运动方程:
m d v g(l x)
dt
B
要求出速度与位置的关系式,利用
速度定义式消去时间
m d v v g(l x) d x
力学
少年时代的牛顿,天资平常,但很喜
欢制作各种机械模型,他有一种把自然现
象、语言等进行分类、整理、归纳的强烈
嗜好,对自然现象极感兴趣。
青年牛顿
1661年考入剑桥大学三一学院
第2章质点动力学1动力学
m
d
(
v
u
)
m
dv
m
a
F
即
F
m
a
dt
dt
K 也为惯性系
dt
2020/3/24
—— 不存在绝对参考系 ( 相对性 )
质点动力学
非惯性系中的力学定律
绝 对 加 速 度a( 惯 性 系) 相 对 加 速 度a ( 非 惯 性 系)
a a 定 义 惯 性 力:
ai Fi
F ma
F m ai
代入数据计算得: a1 1.96 m/s2 a2 1.96 m/s2 T1 15.7 N T2 7.85 N
a3 5.88 m/s2
2020/3/24
质点动力学
特别注意: 如果物体所受是变力,必须采用牛顿第二定律的微分形式。
F (t) m dv vt dv t F (t) dt
2020/3/24
质点动力学
(2) 、牛顿定律的解题步骤:
①、把每个研究对象隔离开来(平移),画受力图-------隔 离体图法;
②、选取惯性参考系,建立坐标系(尽量使加速度的方向与 坐标轴正向一致)
③、根据物体受力图, 运用第二定律列出联立方程。
直线运动
Fi x m ax Fi y m a y
〔P124 习题2.18〕长为l,质量为 m 的均匀绳子,一端系在 竖直转轴上,以角速度ω在光滑水平面上旋转。求距转轴r处 的张力。
解: T(r) T(r dr) dT dm 2r m dr 2r
o T(r) T(r+dr) dr
r
l
T(r)
dT
m
2
r
rdr
T(l)
大学物理(上)课件-第02章质点动力学3-2
(
)
50
� � � dL � 质点系角动量定理: M = ∑ ri × Fi = dt
质点系对某一参考点的角动量随时间的变化率等 于系统所受各个外力对同一参考点力矩之矢量和。 质点系角动量定理的积分式:
∫
t2
t1
� � � Mdt = L2 − L1
作用于质点系的冲量矩等于质点系在作用时 间内的角动量的增量 。
例6 宇宙飞船在宇宙尘埃中飞行,尘埃密度为ρ。如 果质量为mo的飞船以初速vo穿过尘埃,由于尘埃粘在 飞船上,致使飞船速度发生变化。求飞船的速度与其 在尘埃中飞行的时间的关系。(设飞船为横截面面积 为S的圆柱体) 解: 某时刻飞船速度: v,质量:m 动量守恒: 质量增量:
m0v0 = mv
dm = ρ Sv dt
2.质点系的动量定理:
∫
t
t0
� � � � ∑ Fi dt = p − p0 = ∆p
� � dp ∑ Fi = dt
质点系统所受合外力的冲量等于系统总动量的增量。 微分式:
注意:系统的内力不能改变整个系统的总动量。
31
设 有n个质点构成一个系统 第i个质点: 质量
� � 内力 F 外力 Fi 内i
O
y
48
3. 质点的角动量定理
� � dL MO = dt
质点对某一参考点的角动量随时间的变化率等于 质点所受的合外力对同一参考点的力矩。 角动量定理的积分式:
∫
t2
t1
� � � M O dt = L2 − L1
∫
t2
t1
� M O dt
称为“冲量矩”
49
n � n � � � 质点系的角动量: L = ∑ Li = ∑ ( ri × pi ) i =1 i =1