2020年离散数学总结(精选干货)

合集下载

离散数学总结

离散数学总结

离散数学总结离散数学学习总结一、课程内容介绍:1.集合论部分:集合论是离散数学中第一个抽象难关,在老师的生动讲解下,深入浅出,使得集合论成了相当有趣的知识。

只是对于以后的应用还不是很了解,感觉学好它很重要。

直观地说,把一些事物汇集到一起组成一个整体就叫集合,而这些事物就是这个集合的元素或成员。

例如:方程x2-1=0的实数解集合;26个英文字母的集合;坐标平面上所有点的集合;集合通常用大写的英文字母来标记,例如自然数集合N(在离散数学中认为0也是自然数),整数集合Z,有理数集合Q,实数集合R,复数集合C等。

表示一个集合的方法有两种:列元素法和谓词表示法,如果两个集合的交集为,则称这两个集合是不相交的。

例如B和C 是不相交的。

两个集合的并和交运算可以推广成n个集合的并和交:A1∪A2∪…∪An={x|x∈A1∨x∈A2∨…∨x∈An}A1∩A2∩…∩An={x|x∈A1∧x∈A2∧…∧x∈An}2.关系二元关系也可简称为关系。

对于二元关系R,如果∈R,可记作xRy;如果R,则记作x y。

例如R1={<1,2>,},R2={<1,2>,a,b}。

则R1是二元关系,R2不是二元关系,只是一个集合,除非将a和b定义为有序对。

根据上面的记法可以写1R12,aR1b,aR1c等。

给出一个关系的方法有三种:集合表达式,关系矩阵和关系图。

设R是A上的关系,我们希望R具有某些有用的性质,比如说自反性。

如果R不具有自反性,我们通过在R中添加一部分有序对来改得到新的关系R',使得R'具有自反性。

但又不希望R'与R相差太多,换句话说,添加的有序对要尽可能的少。

满足这些要求的R'就称为R的自反闭包。

通过添加有序对来构造的闭包除自反闭保外还有对称闭包和传递闭包。

3.代数系统代数结构也叫做抽象代数,主要研究抽象的代数系统。

抽象的代数系统也是一种数学模型,可以用它表示实际世界中的离散结构。

离散知识点公式总结

离散知识点公式总结

离散知识点公式总结1. 集合论集合是离散数学中的基本概念,它是由一些确定的对象所组成的一个整体。

集合之间的运算包括并集、交集、差集、补集等。

其相关公式如下:- 并集:对于集合A和B,它们的并集定义为包含A和B中所有元素的集合,记作A∪B。

公式:A∪B={x|x∈A或x∈B}- 交集:对于集合A和B,它们的交集定义为同时属于A和B的所有元素的集合,记作A∩B。

公式:A∩B={x|x∈A且x∈B}- 差集:对于集合A和B,A与B的差集定义为属于A但不属于B的元素所组成的集合,记作A-B。

公式:A-B={x|x∈A且x∉B}- 补集:对于集合A,相对于全集合U而言,A的补集定义为全集合中不属于A的元素所组成的集合,记作A'。

公式:A'={x|x∈U且x∉A}2. 关系和函数关系是一种描述元素之间的对应关系的数学工具,而函数则是一种特殊的关系。

在离散数学中,关系和函数的定义和性质是非常重要的内容。

其相关公式如下:- 关系R:对于集合A和B,关系R定义为A和B的笛卡尔积中的元素对所组成的集合。

公式:R={(a,b)|a∈A且b∈B}- 函数f:对于集合A和B,如果f是从A到B的一个映射,那么对于任意元素a∈A,都有唯一的元素b∈B与之对应。

公式:f:A→B3. 图论图论是离散数学中的一个重要分支,它研究的是由顶点和边组成的数学结构。

图论的基本概念包括图的类型、路径和回路、连通性、树等。

其相关公式如下:- 有向图:对于图G=(V,E),如果E中的边是有方向的,则称G为有向图。

公式:G=(V,E),E={(u,v)|u,v∈V,u→v}- 无向图:对于图G=(V,E),如果E中的边是无方向的,则称G为无向图。

公式:G=(V,E),E={{u,v}|u,v∈V,u≠v}- 路径:在图G中,顶点v1,v2,...,vn的一个路径是图G中的一个顶点序列,其中相邻的顶点用一条边连接。

公式:v1,v2, (v)- 回路:在图G中,如果一条路径的起点和终点是同一个顶点,则称其为回路。

离散数学知识点总结

离散数学知识点总结

离散数学知识点总结离散数学是一门重要的数学学科,它涉及到离散的对象和离散的结构,而不是连续的对象和结构。

以下是离散数学的几个重要知识点的总结:集合论- 集合:集合是由元素组成的对象的集合。

集合的运算包括并集、交集和差集等。

集合:集合是由元素组成的对象的集合。

集合的运算包括并集、交集和差集等。

- 子集和超集:如果一个集合的所有元素都是另一个集合的元素,则称前者为后者的子集,反之则称后者为前者的超集。

子集和超集:如果一个集合的所有元素都是另一个集合的元素,则称前者为后者的子集,反之则称后者为前者的超集。

- 幂集:一个集合的幂集是所有可能的子集构成的集合。

幂集:一个集合的幂集是所有可能的子集构成的集合。

逻辑- 命题:一个命题是一个陈述句,可以被判断为真或假。

命题:一个命题是一个陈述句,可以被判断为真或假。

- 逻辑运算:逻辑运算包括与、或、非等,用来连接和否定命题,构成复合命题。

逻辑运算:逻辑运算包括与、或、非等,用来连接和否定命题,构成复合命题。

- 真值表:用来列出复合命题在各种可能情况下的真值。

真值表:用来列出复合命题在各种可能情况下的真值。

关系- 关系:关系用来描述元素之间的联系。

关系可以是二元的或多元的。

关系:关系用来描述元素之间的联系。

关系可以是二元的或多元的。

- 等价关系:等价关系是一种满足自反性、对称性和传递性的关系。

等价关系:等价关系是一种满足自反性、对称性和传递性的关系。

- 偏序关系:偏序关系是一种满足自反性、反对称性和传递性的关系。

偏序关系:偏序关系是一种满足自反性、反对称性和传递性的关系。

- 图的表示:图可以用邻接矩阵或邻接表来表示。

图的表示:图可以用邻接矩阵或邻接表来表示。

图论- 连通性:图中的连通性用来描述图中顶点之间是否存在路径。

连通性:图中的连通性用来描述图中顶点之间是否存在路径。

- 最短路径:最短路径问题是寻找两个顶点之间最短路径的问题。

最短路径:最短路径问题是寻找两个顶点之间最短路径的问题。

离散数学课程总结

离散数学课程总结

离散数学课程总结
作为一名计算机专业的学生,离散数学的学习尤为重要,在对问题的描述和逻辑分析方面,离散数学有着相当重要的作用。

目前为止我们已经学习了三章内容,刚开始学习时,内容还比较简单基础,随着课程的不断推进,所学习的知识环环相扣,有时候还没来得及巩固好某个知识点,在新学的内容中又遇到了,直接导致了我对于新知识的不理解,我一般都是在课后花更多的时间去补起来。

虽然是一名理科生,但是离散数学的学习并不容易,它与高中我所接触到的理科学科不同的是,离散数学的概念、定义、推论很多,而且很多都很相似,并且具有一定的抽象性,理解并不难,但要真正的记住并掌握并不容易。

况且进入大学,学习的态度对于高中来说都有所下降,在学习过程中缺少课后的练习和巩固,导致大量的定义学了就忘,这点我将在今后的学习中加以改善。

刘老师上课给我的感觉是干净利落,并且不和其他老师一样留下直播回放,这使得我们不敢错过课上的内容。

老师平时并不布置练习,学生的自控能力很差,作业方面可能需要老师的督促,我现在做过的练习很少,此后我会积极督促自己复习。

离散数学必备知识点总结资料

离散数学必备知识点总结资料

离散数学必备知识点总结资料离散数学是指离散的数学概念和结构,独立于连续的数学。

它是在计算机科学、信息科学、数学基础研究、工程技术等领域中的基础课程之一。

以下是离散数学必备的一些知识点总结。

一、逻辑与集合1. 命题与谓词:命题是一个陈述,可以被判断为真或假,而谓词是一种用来描述命题所涉及实体之间关系的语句。

2. 命题逻辑:重点关注命题真假和与或非等运算关系,包括真值表和主范式。

3. 一阶谓词逻辑:注意包含全称量词和存在量词,也包括a|b, a//b等符号的理解。

4. 集合与运算:集合是指不同元素组成的一个整体。

基本的集合运算包括并、交、差等。

5. 关系与函数:关系是一种元素之间的对应关系,而函数是一种具有确定性的关系,即每一个自变量都对应唯一的函数值。

6. 等价关系与划分:等价关系是指满足自反性、对称性和传递性的关系。

划分是指将一个集合分成若干个不相交的子集,每个子集称为一个等价类。

二、图论1. 图的定义和基本概念:图由节点和边构成,节点间的连线称为边。

包括度、路径、连通性等概念。

2. 图的表示方法:邻接矩阵和邻接表。

3. 欧拉图与哈密顿图:欧拉图是指能够一笔画出的图,哈密顿图是指含有一条经过每个节点恰好一次的路径的图。

4. 最短路径与最小生成树:最短路径问题是指在图中找出从一个节点到另一个节点的最短路径。

最小生成树问题是指在图中找出一棵覆盖所有节点的树,使得边权之和最小。

三、代数系统1. 代数结构:包括群、环、域等概念。

2. 群的定义和基本概念:群是在一个集合中定义一种二元运算满足结合律、单位元存在和逆元存在的代数结构。

四、组合数学1. 排列、组合和二项式系数:排列是指从n个元素中任选r个进行排序,组合是指从n个元素中任选r个但不考虑排序,二项式系数是指组合数。

2. 生成函数:将组合数与多项式联系起来的一种工具,用于求出某种算法或结构的某些特定函数。

3. 容斥原理:一个集合的容斥原理指在集合的并、交、补之间的关系。

考试必备离散数学概念总结

考试必备离散数学概念总结

考试必备离散数学概念总结1.1、单个命题变项和命题常项是合式公式, 称作原子命题公式2.1、若等价式A?B是重言式,则称A与B等值,记作A?B,并称A?B是等值式2.2、(1) 文字——命题变项及其否定的总称2.3、设C1=l∨C1', C2=lc∨C2', C1'和C2'不含l和lc, 称C1∨'C2'为C1和C2(以l和lc为消解文字)的消解式或消解结果, 记作Res(C1,C2)2.4、设S是一个合取范式, C1,C2,?,Cn是一个简单析取式序列. 如果对每一个i(1≤i≤n), Ci是S的一个简单析取式或者是Res(Cj,Ck)(1≤j<k<=""></k3.1、设A1, A2, …, Ak, B为命题公式. 若对于每组赋值,A1∧A2∧…∧Ak为假,或当A1∧A2∧…∧Ak为真时,B也为真,则称由前提A1, A2, …, Ak推出结论B的推理是有效的或正确的, 并称B是有效结论.4.1、个体词——所研究对象中可以独立存在的具体或抽象的客体个体常项:具体的事物,用a, b, c表示个体变项:抽象的事物,用x, y, z表示个体域(论域)——个体变项的取值范围4.2、谓词——表示个体词性质或相互之间关系的词谓词常项:如, F(a):a是人谓词变项:如, F(x):x具有性质F一元谓词(n=1)——表示性质多元谓词(n≥2)——表示事物之间的关系0元谓词——不含个体变项的谓词, 即命题常项或命题变项4.3、设L是一个非逻辑符集合, 由L生成的一阶语言L 的字母表包括下述符号:非逻辑符号(个体常项符号、函数符号、谓词符号)和逻辑符号(个体变项符号、量词符号、联结词符号、括号与逗号)4.4、设R(x1, x2, …, xn)是L的任意n元谓词,t1, t2, …, tn 是L 的任意n个项,则称R(t1,t2, …, tn)是L的原子公式.4.5、在公式?xA 和?xA 中,称x为指导变元,A为相应量词的辖域. 在?x和?x的辖域中,x的所有出现都称为约束出现,A中不是约束出现的其他变项均称为是自由出现.4.6、若公式A中不含自由出现的个体变项,则称A为封闭的公式,简称闭式.6.1、A?B??x ( x∈A →x∈B )6.2、A = B?A?B∧B?A6.3、A?B?A?B∧A≠BA?B??x ( x∈A ∧x?B )6.4、幂集:P(A)={ x | x ?A } (一定包含空集)6.5、并A?B = {x | x∈A∨x∈B}交A?B = {x | x∈A∧x∈B}相对补A-B = {x | x∈A∧x?B}对称差A⊕B = (A-B)?(B-A)绝对补~A = E-A6.6、广义并?A = { x | ?z ( z∈A∧x∈z )}广义交?A= { x | ?z ( z∈A →x∈z )}7.1、设A,B为集合,A与B的笛卡儿积记作A?B,且A?B = {| x∈A∧y∈B}.7.2、设A,B为集合, A×B的任何子集所定义的二元关系叫做从A 到B的二元关系, 当A=B时则叫做A上的二元关系.(计数:|A|=n, |A×A|=n^2, 所以A上有2^(n^2)个不同的二元关系。

离散数学知识点总结

离散数学知识点总结

注意/技巧:析取符号为V,大写字母Vx + y = 3不是命题前件为假时,命题恒为真运用吸收律命题符号化过程中要注意命题间的逻辑关系,认真分析命题联结词所对应的自然语言中的联结词,不能只凭字面翻译。

也就是说,在不改变原意的基础上,按照最简单的方式翻译通用的方法:真值表法VxP(x)蕴含存在xP(x)利用维恩图解题证明两个集合相等:证明这两个集合互为子集常用的证明方法:任取待证集合中的元素<,>构造相应的图论模型第一章命题逻辑命题和联结词命题的条件:表达判断的陈述句、具有确定的真假值。

选择题中的送分题原子命题也叫简单命题,与复合命题相对简单联结词的真值表要记住非(简单)合取(当且仅当P,Q都为真时,命题为真)析取(当且仅当P,Q都为假时,命题为假),P,Q可以同时成立,是可兼的或条件(→)(当且仅当P为真,Q为假时,命题为假)P是前件,Q是后件只要P,就Q等价于P→Q只有P,才Q等价于非P→非Q,也就是Q→PP→Q特殊的表达形式:P仅当Q、Q每当P双条件(↔)(当且仅当P与Q具有相同的真假值时,命题为真,与异或相反)命题公式优先级由高到低:非、合取和析取、条件和双条件括号省略条件:①不改变先后次序的括号可省去②最外层的括号可省去重言式(永真式)、矛盾式(永假式)、偶然式可满足式:包括重言式和偶然式逻辑等价和蕴含(逻辑)等价:这是两个命题公式之间的关系,写作“⇔”,要与作为联结词的↔区分开来。

如果命题公式A为重言式,那么A⇔T常见的命题等价公式:需要背过被标出的,尽量去理解。

关键是掌握公式是将哪个符号转换为了哪个符号,这对于解证明题有很大的帮助!验证两个命题公式是否等价:当命题变元较少时,用真值表法。

当命题变元较多时,用等价变换的方法,如代入规则、替换规则和传递规则定理:设A、B是命题公式,当且仅当A↔B是一个重言式时,有A和B逻辑等价。

蕴含:若A→B是一个重言式,就称作A蕴含B,记作A⇒B常见的蕴含公式的运用方法同上面的命题等价公式证明A⇒B:①肯定前件,推出后件为真②否定后件,推出前件为假当且仅当A⇒B且B⇒A时,A⇔B,也就是说,要证明两个命题公式等价,可以证明它们相互蕴含联结词的完备集新的联结词:条件否定、异或(不可兼或)、或非(析取的否定)、与非(合取的否定)任意命题公式都可由仅含{非,析取}或{非,合取}的命题公式来等价地表示全功能联结词集合极小全功能联结词集合对偶式对偶式:将仅含有联结词非、析取、合取(若不满足,需先做转换)的命题公式A中的析取变合取,合取变析取,T变F,F变T得到的命题公式A*称为A的对偶式范式析取式:否定+析取合取式:否定+合取析取范式:(合取式)析取(合取式)……析取(合取式)。

离散数学知识点总结及应用

离散数学知识点总结及应用

离散数学知识点总结及应用
知识点1: 集合论
- 集合的定义和表示方法
- 集合的运算:并、交、差、补
- 集合的基本性质和定律
知识点2: 逻辑与命题
- 命题的定义和特性
- 命题的联结词:与、或、非
- 命题的真值表和逻辑运算
- 命题的充分条件和必要条件
知识点3: 关系与函数
- 关系的定义和性质
- 关系的类型:自反、对称、传递、等价
- 函数的定义和基本概念
- 函数的特性和图像
知识点4: 图论
- 图的基本概念和术语
- 图的存储结构:邻接矩阵、邻接表
- 图的遍历算法:深度优先搜索、广度优先搜索
- 最短路径算法:Dijkstra算法、Floyd-Warshall算法
知识点5: 组合数学
- 排列和组合的基本概念
- 排列和组合的计算方法
- 随机变量和概率分布
- 组合数学在密码学等领域的应用
知识点6: 布尔代数
- 布尔代数的基本运算:与、或、非
- 布尔函数的最小化方法
- 布尔代数的应用:逻辑电路设计、编码器等
知识点7: 计算理论
- 自动机的基本概念和分类
- 正则语言和正则表达式
- 文法的定义和性质
- 上下文无关文法和巴科斯范式
知识点8: 数论
- 整数的性质和基本运算
- 质数和分解定理
- 同余关系和同余方程
- 数论在加密算法中的应用
以上是离散数学中的一些主要知识点和应用场景的简要总结,希望对你的研究有所帮助。

离散数学的基础知识点总结

离散数学的基础知识点总结

离散数学的基础知识点总结离散数学是研究离散结构和离散对象的数学分支。

它以集合论、图论和逻辑等为基础,涉及了许多重要的基础知识点。

下面是对离散数学的基础知识点进行的总结。

1. 集合论(Set theory):集合论是离散数学的基础,涉及了集合的概念、运算和恒等关系,以及集合的分类、子集、幂集和笛卡尔积等基本概念和性质。

2. 逻辑(Logic):逻辑是离散数学的重要组成部分,涉及了命题逻辑和谓词逻辑的基本概念和推理规则,包括命题的真值表、谓词的量化、逻辑等价和逻辑蕴含等概念。

3. 函数(Functions):函数是离散数学中的核心概念之一,涉及了函数的定义、域和值域、函数的性质、特殊的函数(如恒等函数、常值函数、单射函数和满射函数等)以及函数的复合和逆函数等。

4. 关系(Relations):关系是离散数学中的另一个核心概念,涉及了关系的定义、关系的特性(如自反性、对称性、传递性和等价关系等)、关系的闭包和自反闭包、关系的图示表示和矩阵表示、等价关系和偏序关系等。

5. 图论(Graph theory):图论是离散数学的重要分支,涉及了图的基本概念(如顶点、边、路径和圈等)、图的表示方法(如邻接矩阵和邻接表等)、图的遍历算法(如深度优先和广度优先等)、图的连通性和可达性、最小生成树和最短路径等基础知识。

7. 代数结构(Algebraic structures):代数结构是离散数学的一个重要方向,涉及了群、环、域和格等基本代数结构的定义、性质和分类,以及同态映射和同构等概念。

8. 数论(Number theory):数论是离散数学的一个重要分支,涉及了自然数的性质和结构,包括质数和素数、最大公因数和最小公倍数、同余和模运算、欧几里得算法和扩展欧几里得算法、费马小定理和欧拉函数等。

9. 排序和选择(Sorting and selection):排序和选择是离散数学中的一类重要问题,涉及了各种排序算法(如冒泡排序、插入排序、快速排序和归并排序等)和选择算法(如选择排序和堆排序等),以及它们的复杂度分析和应用。

《离散数学》课程总结

《离散数学》课程总结

《离散数学》课程总结第一篇:《离散数学》课程总结《离散数学》学期总结转眼之间,这学期要结束了。

我们的离散数学,这门课程的学习也即将接近尾声。

下面就是我对这门课一些认识及自己的学习心得。

首先我们这门课程离散数学到底包含了哪几大部分?每部分具体又有什么内?这门课程在计算机科学中有什么地位?这门课程在我们以后的学习生活中,以及在将来的工作中有什么帮助?下面我将以上几个方面具体谈一谈并将总结一下自己本人在这门课程学习过程中遇到的一些问题和心得体会。

这门课程有数理逻辑,集合论,代数系统和图论四部分。

这四大部分通常被称为离散数学的四大体系。

其中每一部分都是一个独立的学科,内容丰富。

而我们离散数学中的内容是其中最基本,最重要且和计算机科学最密切相关的内容吸收到离散数学中来,并使它们前后贯通,形成一个有机整体。

这门课的主要内容有命题逻辑、谓词逻辑,属于数理逻辑部分,集合论中有集合、二元关系、函数,代数系统包含代数系统基础、群、环、域以及格和布尔代数的知识(这部分我们没有涉及)。

那么这门课程在计算机科学中有着什么样的地位呢,这门课程是计算机科学专业中重要的专业基础课程,核心课程,可以这么说,离散数学,既是一门专业基础课,是一门工具性学科。

这门课讲授的内容,与后续专学习业密切相关。

在这门课里我们讲授了大量的计算机学科专业必要的基本概念,基本理论和基本方法。

为我们以后的学习,工作打下良好基础。

在算法设计,人工智能,计算机网络,神经网络,智能计算等学科中有着重要的作用。

在计算机科学中有着广泛的应用。

通过这门课可以对我们计算机算法的理解和逻辑思维得到提高。

那么我们具体学了什么内容呢?(一)首先集合论是整个数学的基础,(不管是离散数学还是连续数学)如果没有专门学过,那么出现在离散数学中还是很合适的。

至于由集合论引出的二元关系,函数的内容,也是理所应当的。

数理逻辑是一个让人眼前一亮的东西。

我第一次发现,原来有些复杂的推理问题是可以通过“计算”的方法解决的。

离散数学知识点总结

离散数学知识点总结

离散数学知识点总结离散数学是现代数学的一个重要分支,它在计算机科学、信息科学、物理学等领域都有着广泛的应用。

下面就来对离散数学中的一些重要知识点进行总结。

一、集合论集合是离散数学的基础概念之一。

集合是由一些确定的、互不相同的对象组成的整体。

集合的表示方法有列举法和描述法。

集合之间的关系包括子集、真子集、相等。

集合的运算有并集、交集、补集等。

集合的并集是由属于两个或多个集合中的所有元素组成的集合。

交集则是由同时属于两个或多个集合的元素组成的集合。

补集是在给定的全集 U 中,不属于某个集合 A 的元素组成的集合。

集合的运算遵循一些基本的定律,如交换律、结合律、分配律等。

这些定律在解决集合相关的问题时非常有用。

二、关系关系是集合论中的一个重要概念,它描述了两个集合元素之间的某种联系。

关系可以用集合的形式表示,也可以用关系矩阵和关系图来表示。

关系的性质包括自反性、反自反性、对称性、反对称性和传递性。

不同性质的关系在实际应用中有着不同的意义。

等价关系是一种特殊的关系,它同时具有自反性、对称性和传递性。

等价关系可以将集合中的元素进行分类,形成等价类。

偏序关系也是一种常见的关系,它具有自反性、反对称性和传递性。

偏序关系可以用来描述元素之间的顺序关系,例如在集合的包含关系中。

三、函数函数是一种特殊的关系,它对于定义域中的每个元素,在值域中都有唯一的元素与之对应。

函数的类型包括单射函数、满射函数和双射函数。

函数的复合是将两个函数依次作用,得到一个新的函数。

函数的逆是在函数是双射的情况下存在的,并且逆函数的复合等于原函数。

四、图论图是由顶点和边组成的结构。

图可以分为无向图和有向图。

图的基本概念包括顶点的度、路径、回路、连通性等。

图的存储方式有邻接矩阵和邻接表。

邻接矩阵适合表示稠密图,而邻接表适合表示稀疏图。

图的遍历算法有深度优先搜索和广度优先搜索。

这两种算法在图的处理中经常被用到,例如寻找图中的路径、判断图的连通性等。

离散数学必备知识点总结(word文档物超所值)

离散数学必备知识点总结(word文档物超所值)

总结离散数学知识点第2章命题逻辑1.→.前键为真.后键为假才为假;<—>.相同为真.不同为假;2.主析取范式:极小项(m)之和;主合取范式:极大项(M)之积;3.求极小项时.命题变元的肯定为1.否定为0.求极大项时相反;4.求极大极小项时.每个变元或变元的否定只能出现一次.求极小项时变元不够合取真.求极大项时变元不够析取假;5.求范式时.为保证编码不错.命题变元最好按P,Q,R的顺序依次写;6.真值表中值为1的项为极小项.值为0的项为极大项;7.n个变元共有个极小项或极大项.这为(0~-1)刚好为化简完n2n2n2后的主析取加主合取;8.永真式没有主合取范式.永假式没有主析取范式;9.推证蕴含式的方法(=>):真值表法;分析法(假定前键为真推出后键为真.假定前键为假推出后键也为假)10.命题逻辑的推理演算方法:P规则.T规则①真值表法;②直接证法;③归谬法;④附加前提法;第3章谓词逻辑1.一元谓词:谓词只有一个个体.一元谓词描述命题的性质;多元谓词:谓词有n个个体.多元谓词描述个体之间的关系;2.全称量词用蕴含→.存在量词用合取^;3.既有存在又有全称量词时.先消存在量词.再消全称量词;第4章 集合1.N.表示自然数集.1,2,3…….不包括0;2.基:集合A 中不同元素的个数.|A|;3.幂集:给定集合A.以集合A 的所有子集为元素组成的集合.P(A);4.若集合A 有n 个元素.幂集P(A)有个元素.|P(A)|==;n 2||2A n25.集合的分划:(等价关系)①每一个分划都是由集合A 的几个子集构成的集合;②这几个子集相交为空.相并为全(A);6.集合的分划与覆盖的比较:分划:每个元素均应出现且仅出现一次在子集中;覆盖:只要求每个元素都出现.没有要求只出现一次;第5章 关系1.若集合A 有m 个元素.集合B 有n 个元素.则笛卡尔A×B 的基数为mn.A 到B 上可以定义种不同的关系;mn22.若集合A 有n 个元素.则|A×A|=.A 上有个不同的关系;2n 22n3.全关系的性质:自反性.对称性.传递性;空关系的性质:反自反性.反对称性.传递性;全封闭环的性质:自反性.对称性.反对称性.传递性;4.前域(domR):所有元素x 组成的集合;后域(ranR):所有元素y 组成的集合;5.自反闭包:r(R)=RU ;x I 对称闭包:s(R)=RU ;1-R 传递闭包:t(R)=RU U U……2R 3R 6.等价关系:集合A 上的二元关系R 满足自反性.对称性和传递性.则R 称为等价关系;7.偏序关系:集合A 上的关系R 满足自反性.反对称性和传递性.则称R 是A 上的一个偏序关系;8.covA={<x,y>|x,y 属于A.y 盖住x};9.极小元:集合A 中没有比它更小的元素(若存在可能不唯一); 极大元:集合A 中没有比它更大的元素(若存在可能不唯一); 最小元:比集合A 中任何其他元素都小(若存在就一定唯一); 最大元:比集合A 中任何其他元素都大(若存在就一定唯一);10.前提:B 是A 的子集上界:A 中的某个元素比B 中任意元素都大.称这个元素是B 的上界(若存在.可能不唯一);下界:A 中的某个元素比B 中任意元素都小.称这个元素是B 的下界(若存在.可能不唯一);上确界:最小的上界(若存在就一定唯一);下确界:最大的下界(若存在就一定唯一);第6章 函数1.若|X|=m,|Y|=n,则从X 到Y 有种不同的关系.有种不同的函mn 2mn 数;2.在一个有n 个元素的集合上.可以有种不同的关系.有种不同22n n n 的函数.有n!种不同的双射;3.若|X|=m,|Y|=n.且m<=n.则从X 到Y 有种不同的单射;A m n4.单射:f:X-Y.对任意,属于X,且≠.若f()≠f();1x 2x 1x 2x 1x 2x 满射:f:X-Y.对值域中任意一个元素y 在前域中都有一个或多个元素对应;双射:f:X-Y.若f 既是单射又是满射.则f 是双射;5.复合函数:f ºg=g(f(x));6.设函数f:A-B.g:B-C.那么①如果f,g 都是单射.则f ºg 也是单射;②如果f,g 都是满射.则f ºg 也是满射;③如果f,g 都是双射.则f ºg 也是双射;④如果f ºg 是双射.则f 是单射.g 是满射;第7章 代数系统1.二元运算:集合A上的二元运算就是到A的映射;2A2. 集合A上可定义的二元运算个数就是从A×A到A上的映射的个数.即从从A×A到A上函数的个数.若|A|=2,则集合A上的二元运算的个数为==16种;2*22423. 判断二元运算的性质方法:①封闭性:运算表内只有所给元素;②交换律:主对角线两边元素对称相等;③幂等律:主对角线上每个元素与所在行列表头元素相同;④有幺元:元素所对应的行和列的元素依次与运算表的行和列相同;⑤有零元:元素所对应的行和列的元素都与该元素相同;4.同态映射:<A,*>,<B,^>,满足f(a*b)=f(a)^f(b),则f为由<A,*>到<B,^>的同态映射;若f是双射.则称为同构;第8章群1.广群的性质:封闭性;半群的性质:封闭性.结合律;含幺半群(独异点):封闭性.结合律.有幺元;群的性质:封闭性.结合律.有幺元.有逆元;2.群没有零元;3.阿贝尔群(交换群):封闭性.结合律.有幺元.有逆元.交换律;4.循环群中幺元不能是生成元;5.任何一个循环群必定是阿贝尔群;第10章格与布尔代数1.格:偏序集合A中任意两个元素都有上、下确界;2.格的基本性质:1) 自反性a≤a对偶: a≥a2) 反对称性a≤b ^ b≥a => a=b对偶:a≥b ^ b≤a => a=b3) 传递性a≤b ^ b≤c => a≤c对偶:a≥b ^ b≥c => a≥c4) 最大下界描述之一a^b≤a对偶avb≥aA^b≤b对偶avb≥b5)最大下界描述之二c≤a,c≤b => c≤a^b对偶c≥a,c≥b=> c≥avb6) 结合律a^(b^c)=(a^b)^c对偶 av(bvc)=(avb)vc7) 等幂律a^a=a 对偶 ava=a8) 吸收律a^(avb)=a 对偶 av(a^b)=a9) a≤b <=> a^b=a avb=b10) a≤c,b≤d => a^b≤c^d avb≤cvd11) 保序性b≤c => a^b≤a^c avb≤avc12)分配不等式av(b^c)≤(avb)^(avc)对偶a^(bvc)≥(a^b)v(a^c)13)模不等式a≤c<=> av(b^c)≤(avb)^c3.分配格:满足a^(bvc)=(a^b)v(a^c)和av(b^c)=(avb)^(avc);4.分配格的充要条件:该格没有任何子格与钻石格或五环格同构;5.链格一定是分配格.分配格必定是模格;6.全上界:集合A中的某个元素a大于等于该集合中的任何元素.则称a为格<A,<=>的全上界.记为1;(若存在则唯一)全下界:集合A中的某个元素b小于等于该集合中的任何元素.则称b为格<A,<=>的全下界.记为0;(若存在则唯一)7.有界格:有全上界和全下界的格称为有界格.即有0和1的格;8.补元:在有界格内.如果a^b=0,avb=1.则a和b互为补元;9.有补格:在有界格内.每个元素都至少有一个补元;10.有补分配格(布尔格):既是有补格.又是分配格;11.布尔代数:一个有补分配格称为布尔代数;第11章图论1.邻接:两点之间有边连接.则点与点邻接;2.关联:两点之间有边连接.则这两点与边关联;3.平凡图:只有一个孤立点构成的图;4.简单图:不含平行边和环的图;5.无向完全图:n个节点任意两个节点之间都有边相连的简单无向图;有向完全图:n个节点任意两个节点之间都有边相连的简单有向图;6.无向完全图有n(n-1)/2条边.有向完全图有n(n-1)条边;7.r-正则图:每个节点度数均为r的图;8.握手定理:节点度数的总和等于边的两倍;9.任何图中.度数为奇数的节点个数必定是偶数个;10.任何有向图中.所有节点入度之和等于所有节点的出度之和;11.每个节点的度数至少为2的图必定包含一条回路;12.可达:对于图中的两个节点,.若存在连接到的路.则称i v j v i v j v 与相互可达.也称与是连通的;在有向图中.若存在到的i v j v i v j v i v j v 路.则称到可达;i v j v 13.强连通:有向图章任意两节点相互可达;单向连通:图中两节点至少有一个方向可达;弱连通:无向图的连通;(弱连通必定是单向连通)14.点割集:删去图中的某些点后所得的子图不连通了.如果删去其他几个点后子图之间仍是连通的.则这些点组成的集合称为点割集; 割点:如果一个点构成点割集.即删去图中的一个点后所得子图是不连通的.则该点称为割点;15.关联矩阵:M(G).是与关联的次数.节点为行.边为列;ij m i v j e 无向图:点与边无关系关联数为0.有关系为1.有环为2; 有向图:点与边无关系关联数为0.有关系起点为1终点为-1. 关联矩阵的特点:无向图:①行:每个节点关联的边.即节点的度;②列:每条边关联的节点;有向图:③所有的入度(1)=所有的出度(0);16.邻接矩阵:A(G).是邻接到的边的数目.点为行.点为列;ij a i v j v 17.可达矩阵:P(G).至少存在一条回路的矩阵.点为行.点为列;P(G)=A(G)+(G)+(G)+(G)2A 3A 4A 可达矩阵的特点:表明图中任意两节点之间是否至少存在一条路.以及在任何节点上是否存在回路;A(G)中所有数的和:表示图中路径长度为1的通路条数; (G)中所有数的和:表示图中路径长度为2的通路条数;2A (G)中所有数的和:表示图中路径长度为3的通路条数;3A (G)中所有数的和:表示图中路径长度为4的通路条数;4A P(G)中主对角线所有数的和:表示图中的回路条数;18.布尔矩阵:B(G).到有路为1.无路则为0.点为行.点为列;i v j v 19.代价矩阵:邻接矩阵元素为1的用权值表示.为0的用无穷大表示.节点自身到自身的权值为0;20.生成树:只访问每个节点一次.经过的节点和边构成的子图;21.构造生成树的两种方法:深度优先;广度优先;深度优先:①选定起始点;0v ②选择一个与邻接且未被访问过的节点;0v 1v ③从出发按邻接方向继续访问.当遇到一个节点所1v 有邻接点均已被访问时.回到该节点的前一个点.再寻求未被访问过的邻接点.直到所有节点都被访问过一次;广度优先:①选定起始点;0v ②访问与邻接的所有节点,,……,,这些作为0v 1v 2v k v第一层节点;③在第一层节点中选定一个节点为起点;1v ④重复②③.直到所有节点都被访问过一次;22.最小生成树:具有最小权值(T)的生成树;23.构造最小生成树的三种方法:克鲁斯卡尔方法;管梅谷算法;普利姆算法;(1)克鲁斯卡尔方法①将所有权值按从小到大排列;②先画权值最小的边.然后去掉其边值;重新按小到大排序; ③再画权值最小的边.若最小的边有几条相同的.选择时要满足不能出现回路.然后去掉其边值;重新按小到大排序;④重复③.直到所有节点都被访问过一次;(2)管梅谷算法(破圈法)①在图中取一回路.去掉回路中最大权值的边得一子图;②在子图中再取一回路.去掉回路中最大权值的边再得一子图; ③重复②.直到所有节点都被访问过一次;(3)普利姆算法①在图中任取一点为起点.连接边值最小的邻接点;1v 2v ②以邻接点为起点.找到邻接的最小边值.如果最小边值比2v 2v 邻接的所有边值都小(除已连接的边值).直接连接.否则退回.连1v 1v 接现在的最小边值(除已连接的边值);1v③重复操作.直到所有节点都被访问过一次;24.关键路径例2 求PERT图中各顶点的最早完成时间, 最晚完成时间, 缓冲时间及关键路径.解:最早完成时间TE(v1)=0TE(v2)=max{0+1}=1TE(v3)=max{0+2,1+0}=2TE(v4)=max{0+3,2+2}=4TE(v5)=max{1+3,4+4}=8TE(v6)=max{2+4,8+1}=9TE(v7)=max{1+4,2+4}=6TE(v8)=max{9+1,6+6}=12最晚完成时间TL(v8)=12TL(v7)=min{12-6}=6TL(v6)=min{12-1}=11TL(v5)=min{11-1}=10TL(v4)=min{10-4}=6TL(v3)=min{6-2,11-4,6-4}=2TL(v2)=min{2-0,10-3,6-4}=2TL(v1)=min{2-1,2-2,6-3}=0缓冲时间TS(v1)=0-0=0TS(v2)=2-1=1TS(v3)=2-2=0TS(v4)=6-4=2TS(v5=10-8=2TS(v6)=11-9=2TS(v7)=6-6=0TS(v8)=12-12=0关键路径: v1-v3-v7-v825.欧拉路:经过图中每条边一次且仅一次的通路;欧拉回路:经过图中每条边一次且仅一次的回路;欧拉图:具有欧拉回路的图;单向欧拉路:经过有向图中每条边一次且仅一次的单向路;欧拉单向回路:经过有向图中每条边一次且仅一次的单向回路;26.(1)无向图中存在欧拉路的充要条件:①连通图;②有0个或2个奇数度节点;(2)无向图中存在欧拉回路的充要条件:①连通图;②所有节点度数均为偶数;(3)连通有向图含有单向欧拉路的充要条件:①除两个节点外.每个节点入度=出度;②这两个节点中.一个节点的入度比出度多1.另一个节点的入;度比出度少1;(4)连通有向图含有单向欧拉回路的充要条件:图中每个节点的出度=入度;27.哈密顿路:经过图中每个节点一次且仅一次的通路;哈密顿回路:经过图中每个节点一次且仅一次的回路;哈密顿图:具有哈密顿回路的图;28.判定哈密顿图(没有充要条件)必要条件:任意去掉图中n个节点及关联的边后.得到的分图数目小于等于n;充分条件:图中每一对节点的度数之和都大于等于图中的总节点数;29.哈密顿图的应用:安排圆桌会议;方法:将每一个人看做一个节点.将每个人与和他能交流的人连接.找到一条经过每个节点一次且仅一次的回路(哈密顿图).即可;30.平面图:将图形的交叉边进行改造后.不会出现边的交叉.则是平面图;31.面次:面的边界回路长度称为该面的次;32.一个有限平面图.面的次数之和等于其边数的两倍;33.欧拉定理:假设一个连通平面图有v个节点.e条边.r个面.则 v-e+r=2;34.判断是平面图的必要条件:(若不满足.就一定不是平面图)设图G是v个节点.e条边的简单连通平面图.若v>=3.则e<=3v-6;35.同胚:对于两个图G1,G2.如果它们是同构的.或者通过反复插入和除去2度节点可以变成同构的图.则称G1.G2是同胚的;36.判断G是平面图的充要条件:图G不含同胚于K3.3或K5的子图;37.二部图:①无向图的节点集合可以划分为两个子集V1.V2;②图中每条边的一个端点在V1.另一个则在V2中;完全二部图:二部图中V1的每个节点都与V2的每个节点邻接;判定无向图G为二部图的充要条件:图中每条回路经过边的条数均为偶数;38.树:具有n个顶点n-1条边的无回路连通无向图;39.节点的层数:从树根到该节点经过的边的条数;40.树高:层数最大的顶点的层数;41.二叉树:①二叉树额基本结构状态有5种;②二叉树内节点的度数只考虑出度.不考虑入度;③二叉树内树叶的节点度数为0.而树内树叶节点度数为1; ④二叉树内节点的度数=边的总数(只算出度);握手定理“节点数=边的两倍”是在同时计算入度和出度的时成立;⑤二叉树内节点的总数=边的总数+1;⑥位于二叉树第k 层上的节点.最多有个(k>=1);12 k ⑦深度为k 的二叉树的节点总数最多为-1个.最少k 个(k>=1);k 2 ⑧如果有个叶子.个2度节点.则=+1;0n 2n 0n 2n 42.二叉树的节点遍历方法:先根顺序(DLR );中根顺序(LDR );后根顺序(LRD );43.哈夫曼树:用哈夫曼算法构造的最优二叉树;44.最优二叉树的构造方法:①将给定的权值按从小到大排序;②取两个最小值分支点的左右子树(左小右大).去掉已选的这两个权值.并将这两个最小值加起来作为下一轮排序的权值; ③重复②.直达所有权值构造完毕;45.哈夫曼编码:在最优二叉树上.按照左0右1的规则.用0和1代替所有边的权值;每个节点的编码:从根到该节点经过的0和1组成的一排编码;。

离散数学必备知识点总结汇总

离散数学必备知识点总结汇总

离散数学必备知识点总结汇总
1.集合论:集合的概念、元素、子集、交集、并集、差集、补集、空集、集合的运算、集合的等价关系、集合的序关系等。

2.命题逻辑:命题的概念、命题的联接词(与、或、非)、命题的否
定形式、命题的蕴涵、等价命题、命题的充分条件和必要条件、命题的合
取范式和析取范式、蕴涵式、逻辑等价式、命题的否定形式的推理。

3.谓词逻辑:谓词的概念、谓词的量化、全称量化和存在量化、谓词
逻辑的等价式和推理规则、归纳定理和应用。

4.关系:关系的概念、关系的性质、关系的运算、关系的性质和关系
的代数结构。

5.图论:图的概念、图的表示、连通图、树、度数和定理、欧拉图、
哈密顿图、图的平面性质等。

6.混合图:有向图、无向图、有向图和无向图的表示、混合图的回路、可达矩阵、连通度、强连通图等。

7.布尔代数:布尔运算、布尔函数、布尔代数的运算规则、完备性和
最小化。

8.代数结构:半群、群、环、域的定义和性质、同态和同构。

9.组合数学:排列组合、二项式系数、排列、组合、分配原理、鸽巢
原理、生成函数、容斥原理等。

10.图的着色:图的着色问题、邻接矩阵、边界点、图的着色问题的
算法、四色定理等。

11.概率论:基本概念、概率的性质、条件概率、独立事件、贝叶斯定理、随机变量、概率分布函数、期望、方差、协方差、相关系数、大数定理和中心极限定理等。

12.递归:递归关系、递归函数、递归算法、递归树、递归求解等。

离散数学知识点总结

离散数学知识点总结

离散数学知识点总结离散数学知识点总结同时要善于总结,在学习《离散数学》的过程,对概念的理解是学习的重中之重。

本文就来分享一篇离散数学知识点总结,希望对大家能有所帮助!一、认知离散数学离散数学是计算机科学基础理论的核心课程之一,是计算机及应用、通信等专业的一门重要的基础课。

它以研究量的结构和相互关系为主要目标,其研究对象一般是有限个或可数个元素,充分体现了计算机科学离散性的特点。

学习离散数学的目的是为学习计算机、通信等专业各后续课程做好必要的知识准备,进一步提高抽象思维和逻辑推理的能力,为计算机的应用提供必要的描述工具和理论基础。

1.定义和定理多离散数学是建立在大量定义、定理之上的逻辑推理学科,因此对概念的理解是学习这门课程的核心。

在学习这些概念的基础上,要特别注意概念之间的联系,而描述这些联系的实体则是大量的定理和性质。

在考试中有一部分内容是考查学生对定义和定理的识记、理解和运用,因此要真正理解离散数学中所给出的每个基本概念的真正的含义。

比如,命题的定义、五个基本联结词、公式的主析取范式和主合取范式、三个推理规则以及反证法;集合的五种运算的定义;关系的定义和关系的四个性质;函数(映射)和几种特殊函数(映射)的定义;图、完全图、简单图、子图、补图的定义;图中简单路、基本路的定义以及两个图同构的定义;树与最小生成树的定义。

掌握和理解这些概念对于学好离散数学是至关重要的。

2. 方法性强在离散数学的学习过程中,一定要注重和掌握离散数学处理问题的方法,在做题时,找到一个合适的解题思路和方法是极为重要的`。

如果知道了一道题用怎样的方法去做或证明,就能很容易地做或证出来。

反之,则事倍功半。

在离散数学中,虽然各种各样的题种类繁多,但每类题的解法均有规律可循。

所以在听课和平时的复习中,要善于总结和归纳具有规律性的内容。

在平时的讲课和复习中,老师会总结各类解题思路和方法。

作为学生,首先应该熟悉并且会用这些方法,同时,还要勤于思考,对于一道题,进可能地多探讨几种解法。

离散数学课程总结

离散数学课程总结

离散数学课程总结引言离散数学是计算机科学中重要的基础课程之一。

它不仅涉及离散结构的数学理论和方法,还包括离散数学在计算机科学中的应用。

在这门课程中,我们学习了离散数学的基本概念、原理和技巧,并且通过实际例子和练习掌握了离散数学在计算机科学中的具体应用。

在这篇文章中,我将总结我在离散数学课程中学到的知识和经验,并对其重要性和应用进行讨论。

知识概述离散数学是一门研究数量的离散性质和结构的数学学科。

在离散数学课程中,我们学习了以下几个主要主题:1.集合论:集合是离散数学的基础,我们学习了集合的定义、运算和基本性质,还学习了集合的关系和函数的基本概念。

2.逻辑与证明:逻辑是离散数学中重要的一部分,它涉及命题、命题逻辑、谓词逻辑等内容。

我们学习了逻辑运算、命题逻辑的规则和谓词逻辑的基本概念,还学习了如何进行数学证明。

3.图论:图论是离散数学中的一个分支,它研究图和图的性质。

我们学习了图的基本概念,如顶点、边、路径和回路,还学习了常见的图算法,如深度优先搜索和广度优先搜索。

4.关系与函数:关系和函数是离散数学中的重要内容,它们用于描述元素之间的关系和映射关系。

我们学习了关系和函数的定义、性质和运算,还学习了等价关系、偏序关系和全序关系等概念。

5.计数:计数是离散数学中的一个重要主题,它涉及组合分析、排列组合等内容。

我们学习了排列、组合和二项式系数的计算方法,还学习了鸽笼原理和容斥原理等重要概念。

重要性与应用离散数学在计算机科学中具有重要的地位和广泛的应用。

以下是离散数学的重要性和应用的几个方面:1.算法分析:离散数学理论为算法设计和分析提供了基础。

通过离散数学的学习,我们可以理解算法的时间复杂度、空间复杂度等重要概念,从而更好地设计和优化算法。

2.数据结构:离散数学的概念和方法对数据结构的设计和实现起着重要的指导作用。

例如,图论和关系的知识可以帮助我们设计高效的图算法和数据库模型。

3.计算机网络:离散数学的图论和关系理论对计算机网络的设计和优化有着重要的作用。

离散数学知识点总结

离散数学知识点总结

离散数学知识点总结离散数学是数学的一个分支,主要研究离散的数学结构和离散的数学对象。

它包括了许多重要的概念和技术,是计算机科学、通信工程、数学和逻辑学等领域的基础。

本文将对离散数学的一些核心知识点进行总结,包括命题逻辑、一阶逻辑、图论、集合论和组合数学等内容。

1. 命题逻辑命题逻辑是离散数学的一个重要分支,研究命题之间的逻辑关系。

命题是一个陈述语句,要么为真,要么为假,而且不能同时为真和为假。

命题逻辑包括逻辑运算和逻辑推理等内容,是离散数学的基础之一。

1.1 逻辑运算逻辑运算包括与(∧)、或(∨)、非(¬)、蕴含(→)和双条件(↔)等运算。

与、或和非是三种基本的逻辑运算,蕴含和双条件则是基于这三种基本运算得到的复合运算。

1.2 逻辑等值式逻辑等值式是指在命题逻辑中具有相同真值的两个复合命题。

常见的逻辑等值式包括德摩根定律、双重否定定律、分配率等。

1.3 形式化证明形式化证明是命题逻辑的一个重要内容,研究如何利用逻辑规则和等值式来推导出给定命题的真值。

形式化证明包括直接证明、间接证明和反证法等方法,是离散数学中的常见技巧。

2. 一阶逻辑一阶逻辑是命题逻辑的延伸,研究命题中的量词和谓词等概念。

一阶逻辑包括量词、谓词逻辑和形式化证明等内容,是离散数学中的重要部分。

2.1 量词量词包括全称量词(∀)和存在量词(∃),用来对命题中的变量进行量化。

全称量词表示对所有元素都成立的命题,而存在量词表示至少存在一个元素使命题成立。

2.2 谓词逻辑谓词逻辑是一阶逻辑的核心内容,研究带有量词的语句和谓词的逻辑关系。

谓词是含有变量的函数,它可以表示一类对象的性质或关系。

2.3 形式化证明形式化证明在一阶逻辑中同样起着重要作用,通过逻辑规则和等值式来推导出给定命题的真值。

一阶逻辑的形式化证明和命题逻辑类似,但更复杂和抽象。

3. 图论图论是离散数学中的一个重要分支,研究图和图的性质。

图是由节点和边组成的数学对象,图论包括图的表示、图的遍历、最短路径、最小生成树等内容,是离散数学中的一大亮点。

离散数学知识点总结

离散数学知识点总结

离散数学知识点总结离散数学是数学中的一个分支,研究离散对象及其关系的数学理论。

它与连续数学形成鲜明的对比,连续数学主要研究连续对象和其性质。

离散数学在计算机科学、信息科学、电子工程等领域具有重要的应用价值。

下面将对离散数学的主要知识点进行总结。

1.命题逻辑:命题逻辑研究由命题符号组成的复合命题及其逻辑关系。

其中命题是一个陈述性的语句,可以是真或假。

命题逻辑包括命题的逻辑运算、真值表、命题的等价、充分必要条件等。

2.谓词逻辑:谓词逻辑是对命题逻辑的扩充,引入了量词、谓词和项。

它的研究对象是命题函数,可以表示个体之间的关系。

谓词逻辑包括谓词的运算、量词的运算、公理化和推理规则等。

3.集合论:集合论是研究集合及其操作的数学分支。

集合是一种由确定的对象组成的整体。

集合论包括集合的基本运算(交、并、差、补)、集合的关系(包含、相等、子集、真子集)以及集合的运算律和推导定理等。

5.组合数学:组合数学是研究物体的组合与排列问题的数学分支。

它包括排列、组合、分配、生成函数等内容,经常应用于计数和概率问题中。

6.图论:图论是用来描述物体间其中一种关系的图形结构的数学理论。

它研究的对象是由顶点和边构成的图,包括无向图、有向图、带权图等。

图论研究的内容包括图的性质、连通性、路径、回路、树、图的着色等。

7.代数系统:代数系统是一种由一组元素及其相应的运算规则构成的数学结构。

常见的代数系统有群、环、域、格等,它们分别研究了集合上的不同运算规律和结构。

8.布尔代数:布尔代数是一种应用于逻辑和计算机的代数系统。

它以真和假为基础,通过逻辑运算(与、或、非)构成了布尔代数。

布尔代数在计算机硬件设计和逻辑推理中广泛应用。

9.图的同构与图的着色:图的同构是指两个图在结构上相同,也就是说,它们具有相同的顶点和边的连接关系。

图的同构判断是一个NP难问题,需要借助于图的着色等方法来判断。

图的着色是给图的顶点分配颜色,使得相邻顶点的颜色不同。

根据离散数学知识点归纳总结(精华版)

根据离散数学知识点归纳总结(精华版)

根据离散数学知识点归纳总结(精华版)离散数学是数学中的一个分支,主要研究离散结构及其相应的理论。

它在计算机科学、信息论、密码学等领域有着广泛的应用。

本文将对离散数学的若干知识点进行归纳总结,以帮助读者更好地理解离散数学的核心概念和应用。

集合论集合论是离散数学的基础,它研究集合的性质、操作和关系。

在集合论中,我们常用的符号有∈表示属于、∪表示并集、∩表示交集等。

集合论中的重要概念包括子集、空集、幂集等。

逻辑与命题逻辑是一门研究推理和论证的学科,它在离散数学中起着重要作用。

逻辑符号包括与、或、非等。

命题是逻辑的基本单位,它可以是真值为真或假的陈述句。

在逻辑中,我们还会遇到蕴含、等价、逆否等概念。

关系与函数关系是研究元素之间的联系的数学概念。

在离散数学中,我们经常会遇到等价关系、偏序关系等。

函数是一种特殊的关系,它将一个集合的元素映射到另一个集合。

函数在计算机科学中具有广泛的应用,如编程语言中的函数。

图论图论是离散数学中的重要分支,它研究图的性质和应用。

图由顶点和边组成,可以分为有向图和无向图。

图的相关概念有路径、连通性、最短路径等。

图论在网络分析、路由算法等领域有广泛的应用。

组合数学组合数学是离散数学的一个分支,研究离散对象的排列组合方式。

在组合数学中,我们常用的概念有排列、组合、二项式系数等。

组合数学在密码学、编码理论等领域有着重要的应用。

以上是根据离散数学的若干知识点进行的归纳总结,希望能够对读者加深对离散数学的理解,并为进一步学习和应用离散数学提供帮助。

如需深入了解每个知识点的具体内容,建议查阅相关教材和参考资料。

离散数学知识点总结

离散数学知识点总结

离散数学知识点总结1. 集合论- 集合的基本概念:集合、元素、子集、幂集、并集、交集、差集、补集。

- 集合的运算:德摩根定律、分配律、结合律、交换律。

- 有限集合和无限集合:可数与不可数集合、阿列夫零、阿列夫一。

2. 数理逻辑- 命题逻辑:命题、联结词、真值表、逻辑等价、逻辑蕴含、逻辑独立。

- 一阶谓词逻辑:量词、谓词、解释、满足、逻辑公式、全称量词、存在量词。

- 证明方法:直接证明、间接证明、反证法、数学归纳法。

3. 递归关系和函数- 递归定义:递归方程、初始条件、递归函数。

- 递归函数的例子:阶乘、斐波那契数列。

- 函数的性质:单射、满射、双射、复合函数。

4. 图论- 图的基本概念:顶点、边、路径、回路、图的同构。

- 图的类型:无向图、有向图、简单图、多重图、连通图、强连通图。

- 图的算法:欧拉路径、哈密顿回路、最短路径(Dijkstra算法)、最小生成树(Prim算法、Kruskal算法)。

5. 组合数学- 排列与组合:排列数、组合数、二项式定理。

- 组合恒等式:Pascal三角形、组合恒等式。

- 组合问题:计数原理、Inclusion-Exclusion原理。

6. 布尔代数- 布尔运算:AND、OR、NOT、XOR、NAND、NOR、XNOR。

- 布尔表达式的简化:卡诺图、奎因-麦克拉斯基方法。

- 布尔函数的表示:真值表、卡诺图、逻辑表达式。

7. 关系论- 关系的基本概念:笛卡尔积、自反性、对称性、传递性。

- 关系的类型:等价关系、偏序关系、全序关系。

- 关系的闭包:自反闭包、对称闭包、传递闭包。

8. 树和森林- 树的基本概念:节点、边、根、叶、子树、兄弟、祖先、子孙。

- 特殊类型的树:二叉树、平衡树、B树、B+树。

- 树的遍历:前序遍历、中序遍历、后序遍历、层次遍历。

9. 算法复杂度- 时间复杂度:最好情况、最坏情况、平均情况、大O表示法。

- 空间复杂度:算法空间需求的分析。

- 渐进分析:渐进紧确界、大Θ表示法、小o和大O的非正式描述。

离散数学知识点归纳

离散数学知识点归纳

离散数学知识点归纳一、集合论。

1. 集合的基本概念。

- 集合是由一些确定的、彼此不同的对象组成的整体。

这些对象称为集合的元素。

例如,A = {1,2,3},其中1、2、3是集合A的元素。

- 集合的表示方法有列举法(如上述A的表示)和描述法(如B={xx是偶数且x < 10})。

2. 集合间的关系。

- 子集:如果集合A的所有元素都是集合B的元素,则称A是B的子集,记作A⊆ B。

例如,{1,2}⊆{1,2,3}。

- 相等:如果A⊆ B且B⊆ A,则A = B。

- 真子集:如果A⊆ B且A≠ B,则A是B的真子集,记作A⊂ B。

3. 集合的运算。

- 并集:A∪ B={xx∈ A或x∈ B}。

例如,A = {1,2},B={2,3},则A∪B={1,2,3}。

- 交集:A∩ B = {xx∈ A且x∈ B}。

对于上述A和B,A∩ B={2}。

- 补集:设全集为U,集合A相对于U的补集¯A=U - A={xx∈ U且x∉ A}。

二、关系。

1. 关系的定义。

- 设A、B是两个集合,A× B的子集R称为从A到B的关系。

当A = B时,R称为A上的关系。

例如,A={1,2},B = {3,4},R={(1,3),(2,4)}是从A到B的关系。

2. 关系的表示。

- 关系矩阵:设A={a_1,a_2,·s,a_m},B={b_1,b_2,·s,b_n},R是从A到B的关系,则R的关系矩阵M_R=(r_ij),其中r_ij=<=ft{begin{matrix}1,(a_i,b_j)∈ R0,(a_i,b_j)∉ Rend{matrix}right.。

- 关系图:对于集合A上的关系R,用节点表示A中的元素,若(a,b)∈ R,则用有向边从a指向b。

3. 关系的性质。

- 自反性:对于集合A上的关系R,如果对任意a∈ A,都有(a,a)∈ R,则R 是自反的。

例如,A={1,2,3},R = {(1,1),(2,2),(3,3)}是自反关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• A∪B={ x | x∈A ∨ x∈B } • A-B={ x | x∈A ∧ x B }
• …… • 掌握基本的集合恒等式(等幂律、交换律、结合律、分配律、德·摩根
律、收律、零律、同一律、排中律、矛盾律、余补律、双重否定律、补 交转换律)。
• 运用逻辑演算或利用已知的集合恒等式或包含式证明新的等式或包含 式。
(4)对析取项补入没有出现的命题变元,即添加如(p∧┐p)式,然后应用分
配律展开公式。 方法二、真值表法 (1)写出 A 的真值表。 (2)找出 A 的成假赋值。 (3)求出每个成假赋值对应的极大项(用名称表示),按角标从小到大顺
序析取。
2020-11-30
8
数理逻辑-命题逻辑 • 推理的形式结构 推理的前提 推理的结论 推理正确
• 对于给定的推理,正确地构造出它的证明。
2020-11-30
11
集合论-集合代数 • 掌握集合的子集、相等、空集、全集、幂集等概念及其符号化表示。
• B A x (x∈B → x∈A) • B A x (xB xA)
• ……
• 掌握集合的交、并、(相对和绝对)补、对称差、广义交、广义并的定 义及其性质。
• 与范式有关的概念:简单合取式、简单析取式、析取范式、合取范式、 极小项、极大项、主析取范式、主合取范式。
2020-11-30
5
求给定公式范式的步骤 (1)消去联结词→、(若存在)。 A→B ┐A∨B AB (┐A∨B)∧(A∨┐B)
(2)否定号的消去(利用双重否定律)或内移(利用德摩根律)。 ┐┐A A ┐(A∧B) ┐A∨┐B ┐(A∨B) ┐A∧┐B
离散数学总结
Dr.Feng
2020-11-30
1
• 离散数学(Discrete Mathematics)
• 离散数学是以研究离散量的结构和相互间的关系为主要目标,其研究对 象一般地是有限个或可数个元素,因此它充分描述了计算机科学离散性 的特点。
代数结构
数理逻辑
集合论
图论
2020-11-30
2
离散数学的应用举例 • 关系型数据库的设计(关系代数) • 表达式解析(树) • 优化编译器的构造(闭包) • 编译技术、程序设计语言(代数结构) • Lisp和Prolog、人工智能、自动推理、机器证明(数理逻辑) • 网络路由算法(图论) • 游戏中的人工智能算法(图论、树、博弈论) • 专家系统(集合论、数理逻辑—知识和推理规则的计算机表达) • 软件工程—团队开发—时间和分工的优化(图论—网络、划分) • (各种)算法的构造、正确性的证明和效率的评估(离散数学的各分支)
2020-11-30
10
数理逻辑-一阶逻辑 • 深刻理解重要的等值式,并能熟练地使用它们。
• 熟练地使用置换规则、换名规则和代替规则。
• 准确地求出给定公式的前束范式(形式可以不唯一)。
• 正确地使用UI、UG、EI、EG规则,特别地要注意它们之间的关系。 • 一定对前束范式才能使用UI、UG、EI、EG规则,对不是前束范式的公 式要使用它们,一定先求出公式的前束范式。 • 记住UI、UG、EI、EG规则的各自使用条件。 • 在同一推理的证明中,如果既要使用UI规则,又要使用EI规则,一定 要先使用EI规则,后使用UI规则,而且UI规则使用的个体常项一定是EI 规则中使用过的。
• 判断推理是否正确的方法 真值表法 等值演算法 主析取范式法
• 对于正确的推理,在自然推理系统P中构造证明 自然推理系统P的定义 自然推理系统P的推理规则 附加前提证明法 归谬法
2020-11-30
9
数理逻辑- 一阶逻辑 • 个体词(个体域、全总个体域),谓词(特性谓词),量词(全称量词、 存在量词) • 命题符号化: • 当给定个体域时,在给定个体域内将命题符号化。 • 当没给定个体域时,应在全总个体域内符号化。 • 在符号化时,当引入特性谓词时,注意全称量词与蕴含联结词的搭 配,存在量词与合取联结词的搭配。 • 逻辑有效式、矛盾式、可满足式 • 闭式的性质:在任何解释下均为命题。 • 对给定的解释,会判别公式的真值或不能确定真值。
2020-11-30
12
集合恒等式的证明方法 • 逻辑演算法 利用逻辑等值式和推理规则
• 集合演算法 利用集合恒等式和已知结论
2020-11-30
13
逻辑演算法的格式
题目:A=B
证明: x, x∈A
……
x∈B
所以 A=B 或证 AB ∧ AB
(4)对合取项补入没有出现的命题变元,即添加如(p∨┐p)式,然后应用分
配律展开公式。 方法二、真值表法 (1)写出 A 的真值表。 (2)找出 A 的成真赋值。 (3)求出每个成真赋值对应的极小项(用名称表示),按角标从小到大顺
序析取。
2020-11-30
7
求公式A的主合取范式的方法与步骤 方法一、等值演算法 (1)化归为合取范式。 (2)除去合取范式中所有永真的合取项。 (3)将合取式中重复出现的析取项和相同的变元合并。
(3)利用分配律:利用∧对∨的分配律求析取范式, ∨对∧的分配律求合取范式。
A∧(B∨C) (A∧B)∨(A∧C) A∨(B∧C) (A∨B)∧(A∨C)
2020-11-30
6
求公式A的主析取范式的方法与步骤 方法一、等值演算法 (1)化归为析取范式。 (2)除去析取范式中所有永假的析取项。 (3)将析取式中重复出现的合取项和相同的变元合并。
2020-11-30
3
离散数学的学习要领
• 概念(正确) 必须掌握好离散数学中大量的概念
• 判断(准确) 根据概念对事物的属性进行判断
• 推理(可靠) 根据多个判断推出一个新的判断
2020- 命题、真值、简单命题与复合命题、命题符号化。 • 联结词:┐,∧,∨,→,。 • 命题公式、求公式的赋值。 • 真值表、公式的成真赋值和成假赋值。 • 公式的类型:重言式、矛盾式、可满足式。 • 等值式与等值演算。 • 基本的等值式,其中含:双重否定律、幂等律、交换律、结合律、分配 律、德·摩根律、吸收律、零律、同一律、排中律、矛盾律、蕴含等值式、 等价等值式、假言易位、等价否定等值式、归谬论。
相关文档
最新文档