化工原理过滤实验

合集下载

化工原理实验报告 过滤

化工原理实验报告 过滤

化工原理实验报告过滤
《化工原理实验报告:过滤》
在化工工程中,过滤是一项非常重要的工艺操作。

通过过滤,我们可以将混合物中的固体颗粒或悬浮物分离出来,得到纯净的液体或气体。

在本次实验中,我们将探讨不同类型的过滤方法以及它们在化工生产中的应用。

首先,我们进行了简单的重力过滤实验。

通过将混合物倒入过滤纸上,我们观察到固体颗粒被过滤纸截留,而液体则通过过滤纸流出。

这种过滤方法适用于颗粒较大且浓度较低的混合物,但对于细小颗粒或高浓度混合物则不够有效。

接着,我们进行了真空过滤实验。

通过连接真空泵,我们可以提高过滤速度,同时也可以处理细小颗粒或高浓度混合物。

这种过滤方法在化工生产中应用广泛,能够大幅提高生产效率。

另外,我们还进行了压力过滤实验。

通过施加压力,我们可以迫使混合物通过过滤介质,从而加快过滤速度。

这种过滤方法在高浓度混合物或需要快速分离的情况下非常有效。

除了上述实验,我们还对不同过滤介质的性能进行了比较。

我们发现,不同的过滤介质对于不同类型的混合物有着不同的适用性。

有些过滤介质能够更好地截留细小颗粒,而有些则更适合处理高浓度混合物。

通过本次实验,我们深入了解了过滤的原理和应用,为今后的化工生产提供了重要的参考。

过滤作为化工工程中不可或缺的一环,其重要性不言而喻。

我们相信,通过不断的实践和研究,过滤技术将会不断得到改进和创新,为化工生产带来更大的便利和效益。

化工原理过滤实验报告

化工原理过滤实验报告

化工原理过滤实验报告实验目的:1.掌握过滤的基本原理和方法。

2.了解不同类型的过滤器及其适用范围。

3.熟悉过滤实验操作的步骤和技巧。

实验仪器和材料:1.实验室常见的过滤器,如漏斗、毛细管过滤器等。

2.过滤介质,如滤纸、石棉滤芯等。

3.待过滤的溶液或悬浊液。

实验原理:过滤是一种物理分离方法,利用介质阻挡固体杂质或液体颗粒,使纯净溶液或清洁液通过。

常用的过滤方法有重力过滤、压力过滤和真空过滤等。

过滤介质可以选择不同精度和材质的滤纸或滤棉,适用于不同类型和不同颗粒大小的溶液或悬浊液。

实验步骤:1.准备好所需的过滤器和过滤介质,将过滤器安装在漏斗或其他容器上。

2.在过滤介质上放置适量的溶液或悬浊液,注意不要超过介质可容纳的最大量。

3.一手握住漏斗颈部,另一手将容器中的溶液或悬浊液缓慢倒入漏斗中,控制速度以防溢出。

4.慢慢观察溶液或悬浊液通过过滤介质时的情况,注意不要让过滤介质完全干燥,需及时添加待过滤的液体。

5.过滤结束后,取出过滤介质,可以将其放在干燥器或通风中晾干。

实验注意事项:1.操作过程中要注意安全,避免溶液或悬浊液溅到皮肤或眼睛。

2.如果使用有毒溶液进行过滤实验,要戴好防护手套和眼镜,工作于通风良好的实验室环境。

3.操作过程中要注意避免过滤介质的破损或漏掉,导致过滤效果不理想。

4.实验结束后要及时清除漏斗和过滤介质上的残留物,清洗干净。

实验结果:通过实验,可以观察到溶液或悬浊液通过过滤介质后,固体颗粒被滤除,得到纯净的溶液或清洁液。

实验结论:过滤是一种常用的物理分离方法,通过选择不同类型和精度的过滤器和过滤介质,可以有效分离溶液中的固体杂质或悬浊液中的颗粒物质。

掌握过滤的基本原理和方法对于化工实验和工业生产都具有重要意义。

化工专业化工原理实验---过滤

化工专业化工原理实验---过滤

实验二 过滤实验1 实验目的(1)了解过滤设备的构造和操作方法。

(2)掌握过滤问题的简化工程处理方法。

(3)测定在恒压操作时的过滤常数K ,q e ,τe ,并以实验所得结果验证过滤方程式,增进对过滤理论的理解。

(4)改变压强差重复上述操作,测定压缩指数s 和物料特性常数k (选做)。

2 基本原理过滤过程是将悬浮液送至过滤介质及滤饼一侧,在其上维持另一侧较高的压力,液体则通过介质而成滤液,而固体粒子则被截留逐渐形成滤饼。

过滤速度由过滤介质两端的压力差及过滤介质的阻力决定。

过滤介质阻力由二部分组成,一为过滤介质,一为滤饼(先沉积下来的滤饼成为后来的过滤介质)。

因为滤饼厚度(亦即滤饼阻力)随着时间而增加, 所以恒压过滤速度随着时间而降低。

对于不可压缩性滤饼,在恒压过滤情况下,滤液量与过滤时间的关系可用下式表示:2e e ()(+) q q K θθ+= (2.1) (2.1)式中:q —单位过滤面积获得的滤液体积,m 3/m 2;q e —单位过滤面积的虚拟滤液体积,m 3/m 2;θ—实际过滤时间,s ;θe —虚拟过滤时间,s ;K —过滤常数,m 2/s 。

将(2.1)式微分,可以得到:e 22d q q dq K Kθ=+ (2.2) 当各数据点的时间间隔不大时,d θ/ d q 可以用增量之比△θ/△q 来代替,即:e 22q q q K Kθ∆=+∆ (2.3) 式(2.3)为一直线方程。

试验时,在恒压下过滤要测定的悬浮液,测出过滤时间θ及滤液累积量q 的数据,在直角坐标纸上标绘△θ/△q 对q 的关系,所得直线斜率为2/K ,截距为2q e /K ,从而可以分别得到K 和q e 。

式(2.1)中的θe 可由下式获得:2e e q K θ= (2.4)其中,过滤常数K 的定义式为:1=2s K k p -∆ (2.5) 将式(2.5)两边取对数,得到:l g =(1)l g ()l g K s p k -∆+(2.6)因为s 为常数,k =1/(μr 0v ),k 也为常数,故在双对数坐标体系中,K 与△p 为线性关系,直线的斜率为1-s ,截距为lg(2k ),由此可分别计算出压缩性指数s 和物料的特性常数k 。

化工原理实验:恒压过滤常数的测定

化工原理实验:恒压过滤常数的测定
设备编号:2#
化工原理实验1:恒压过滤常数的测定 过滤面积:A=0.00423m2 系统存液量:V, =183.8ml
△P1=0.02MPa θ 0:00:00 0:03:21 0:07:05 0:11:03 0:15:20 0:19:58 0:24:47 0:29:58 0:35:22 △θ (s) △θ /△q θ 0 201 224 238 257 278 289 311 324 8502.18 9475.06 10067.26 10870.94 11759.23 12224.53 13155.11 13705.00 0:00:00 0:01:19 0:02:48 0:04:23 0:06:07 0:07:57 0:09:52 0:11:57 0:14:11 △P2=0.04MPa △θ (s) △θ /△q θ 0 79 89 95 104 110 115 125 134 3341.65 3764.65 4018.44 4399.14 4652.93 4864.43 5287.42 5668.12
滤液量/ml qn/(m3/m2) q平均(m3/m2) Δ q(m3/m2) 100 200 300 400 500 600 700 800 900
, ,
0.000000 0.023641 0.047281 0.070922 0.094563 0.118203 0.141844 0.165485 0.189125
其中q =V /A=183.8/0.00423=0.0435 计算实例:以△P1=0.02MPa数据为例: ①当滤液量达到100ml时,V=0ml,△V=0ml,q1=0,△q=△V/A=0 q平均=(0+0.023641)/2=0.011820 当滤液增加到200ml时,V=100ml,q2=V/A=100/0.00423=0.023641,△q=△V/A=0.023641,q平均=(0.023641+0.047281)/2=0.035461 当滤液增加到300ml时,V=200ml,q3=V/A=200/0.00423=0.047281,△q=△V/A=0.023641,q平均=(0.047281+0.070922)/2=0.059102 ②当滤液量从100ml增加到200ml,用时201s,△θ /△q=201/0.023641=8502.18

化工原理实验报告 过滤

化工原理实验报告 过滤

化工原理实验报告过滤化工原理实验报告过滤一、实验目的本实验旨在通过过滤实验,掌握化工原理中的过滤操作,并了解过滤的原理和应用。

二、实验原理过滤是一种常见的分离技术,通过孔径较小的过滤介质(如滤纸、滤膜等)将混合物中的固体颗粒分离出来,从而获得纯净的溶液或悬浊液。

过滤的原理主要包括两种:表层过滤和深层过滤。

表层过滤是指颗粒截留在过滤介质表面形成过滤膜,而深层过滤是指颗粒截留在过滤介质内部。

三、实验步骤1. 准备实验所需材料和设备:滤纸、漏斗、烧杯、橡胶塞等。

2. 将滤纸折叠成合适的形状,放入漏斗内,使其与漏斗壁贴紧。

3. 将需要过滤的混合物倒入漏斗中,让其自然下滤。

4. 若过滤速度过慢,可用玻璃棒轻轻搅拌混合物,但要避免破坏滤纸。

5. 待过滤液完全通过滤纸后,将滤液收集在烧杯中。

四、实验结果与分析在实验中,我们选择了含有固体颗粒的悬浊液进行过滤操作。

通过观察实验现象和收集到的滤液,我们可以得出以下结论:1. 过滤操作可以有效地将固体颗粒从悬浊液中分离出来,得到较为纯净的滤液。

2. 过滤速度受到多种因素的影响,包括颗粒的大小、浓度、过滤介质的孔径等。

在实验中,我们可以通过调整这些因素来控制过滤速度。

3. 过滤后的滤液可以进一步用于其他化工操作,如结晶、蒸发等。

五、实验总结通过本次实验,我们对过滤操作有了更深入的了解。

过滤作为一种常见的分离技术,在化工生产中具有重要的应用价值。

通过掌握过滤的原理和操作技巧,我们可以有效地分离混合物中的固体颗粒,得到纯净的溶液或悬浊液。

在实际应用中,我们还可以根据具体情况选择不同的过滤介质和操作条件,以获得更好的过滤效果。

六、实验注意事项1. 在进行过滤操作时,要注意保持实验环境的清洁,避免杂质的污染。

2. 操作过程中要小心操作,避免滤纸破裂或漏斗倾倒。

3. 实验结束后,要及时清洗实验器材,保持实验室的整洁。

七、参考文献[1] 张三. 化工原理与实验[M]. 北京:化学工业出版社,2010.[2] 李四. 过滤技术及应用[M]. 上海:上海科学技术出版社,2015.以上为本次实验的报告内容,希望能对读者对化工原理中的过滤操作有所了解和掌握。

化工原理过滤实验报告

化工原理过滤实验报告

化工原理过滤实验报告化工原理过滤实验报告一、引言过滤是化工工艺中常用的一种分离技术,通过选用不同的过滤介质和操作条件,可以实现对混合物中固体颗粒的分离。

本实验旨在通过对不同过滤介质的比较和实验数据的分析,探究过滤效果与过滤介质性能之间的关系,为工业生产中过滤操作的优化提供参考。

二、实验方法1. 实验材料和设备准备:- 水:作为实验中的过滤介质,用于模拟工业生产中的过滤操作。

- 玻璃瓶:用于装载待过滤的水溶液。

- 不同过滤介质:包括滤纸、砂子和活性炭等,用于比较其过滤效果。

- 过滤漏斗:用于进行过滤操作,将过滤介质放置其中。

- 秤:用于称量过滤前后的固体颗粒质量变化。

- 计时器:用于记录过滤操作所需的时间。

2. 实验步骤:- 步骤一:将待过滤的水溶液倒入玻璃瓶中,使其充满瓶口。

- 步骤二:将滤纸放置于过滤漏斗中,将过滤漏斗放置于玻璃瓶上方,使其底部与水溶液接触。

- 步骤三:打开计时器,记录从开始过滤到水溶液完全通过滤纸所需的时间。

- 步骤四:将通过滤纸过滤后的固体颗粒收集起来,用秤称量其质量。

- 步骤五:重复以上步骤,分别使用砂子和活性炭作为过滤介质进行实验。

三、实验结果与分析通过实验测得的数据,我们可以得出以下结论:1. 过滤时间:使用滤纸、砂子和活性炭作为过滤介质时,所需的过滤时间分别为10秒、20秒和30秒。

可以看出,滤纸的过滤速度最快,而活性炭的过滤速度最慢。

这是因为滤纸的孔隙较小,能够有效地阻挡固体颗粒的通过,而活性炭的孔隙较大,固体颗粒可以更容易地通过。

2. 固体颗粒质量:经过滤纸过滤后,固体颗粒的质量几乎没有变化;而经过砂子和活性炭过滤后,固体颗粒的质量分别减少了0.5g和1g。

这说明滤纸对固体颗粒的截留效果较好,而砂子和活性炭的截留效果较差。

根据以上实验结果,我们可以得出以下结论:1. 过滤介质的选择对过滤效果有重要影响。

不同过滤介质的孔隙大小和形状不同,会导致对固体颗粒的截留效果不同。

过滤化工原理实验报告

过滤化工原理实验报告

过滤化工原理实验报告化工原理实验报告筛选是一个重要的工程技术手段,可以通过筛选的方式去除不必要的固体颗粒或者溶解在液体中的杂质,提高产品的质量。

本次实验旨在通过筛选实验来研究过滤的工作原理,了解过滤的基本过程,并探索不同材料的过滤效果。

实验使用的设备和材料有滤纸、玻璃漏斗、洗瓶、蒸馏水、铁盐溶液等。

首先,将装有铁盐溶液的洗瓶放入制冷槽中加热使其溶解,然后将热溶液慢慢倒入玻璃漏斗中,漏斗下方放置一个干燥的容器用于接收过滤后的纯净液体。

接下来,在漏斗中放入滤纸,调整好漏斗的位置使之与容器间有足够的空隙,然后将热溶液倒入漏斗中,观察过滤的情况。

实验的结果显示,过滤纸具有良好的过滤效果,可以有效地过滤掉溶解在溶液中的铁盐颗粒,得到较为纯净的液体。

经过重复的操作,发现随着过滤次数的增加,滤纸上的沉淀物会越来越少,过滤效果会逐渐变好。

这说明在实际应用中,过滤操作需要进行多次以提高过滤效果。

过滤的基本过程是利用滤纸的孔隙结构和颗粒的物理特性,将固体颗粒从液体中分离出来。

滤纸具有不同孔径的孔隙,通过孔隙的大小选择合适的滤纸可以实现对不同颗粒的过滤。

在过滤过程中,溶解在液体中的固体颗粒会被滤纸的孔隙所阻挡,而液体则通过孔隙的间隙流出。

这样,我们就可以将颗粒与液体分离开来,得到我们想要的纯净液体。

根据实验结果,不同材料的过滤效果也会有所不同。

对比实验中使用的滤纸、棉花和砂子,发现滤纸具有最好的过滤效果,其次是棉花,砂子的过滤效果较差。

这是因为滤纸具有较小的孔径,可以过滤掉更小的颗粒,而棉花的孔径较大,只能过滤掉较大的颗粒,而砂子则更加粗糙,孔径更大,过滤效果最差。

总结起来,过滤是化工工艺中常用的分离技术,本次实验研究了过滤的工作原理和过程,并对不同材料的过滤效果进行了比较。

实验结果表明滤纸具有良好的过滤效果,是最常用的过滤材料之一。

通过这次实验的学习,我深刻理解了过滤的原理和过程,并明确了不同材料过滤效果的差异。

这对我今后在工程实践中的过滤操作选择和优化有很大的指导意义。

化工原理过滤实验报告思考题

化工原理过滤实验报告思考题

化工原理过滤实验报告思考题化工原理过滤实验报告一、引言过滤是化工工艺中常用的一种分离技术,通过将混合物通过过滤介质,将固体颗粒或悬浮物分离出来。

本实验旨在探究不同条件下的过滤效果,并分析影响过滤效果的因素。

二、实验目的1. 掌握过滤操作的基本原理和方法。

2. 研究不同条件下的过滤效果。

3. 分析影响过滤效果的因素。

三、实验原理1. 过滤介质选择:根据需要分离的物质特性选择合适的过滤介质,如纸膜、石棉网等。

2. 过滤方式:常见的过滤方式有压力过滤和重力过滤两种。

压力过滤适用于需要快速分离固体颗粒或悬浮物的情况,而重力过滤适用于需要较长时间进行分离的情况。

3. 过滤速度:影响过滤速度的因素有溶液浓度、温度、粒径大小等。

较高浓度和较低温度会降低溶液流动性,从而减慢过滤速度。

较小的颗粒大小会增加过滤阻力,降低过滤速度。

四、实验步骤1. 准备实验器材:取一个玻璃漏斗和一个滤纸,将滤纸折叠成合适大小放入漏斗中。

2. 准备溶液:取一定量的悬浮物溶液,调整其浓度和温度。

3. 过滤操作:将准备好的溶液缓慢倒入漏斗中,观察过程中的变化。

4. 记录实验数据:记录过滤时间、溶液体积等数据。

五、实验结果与分析根据实验数据得出不同条件下的过滤效果如下:1. 过滤时间随着溶液浓度的增加而延长。

这是因为高浓度溶液会增加溶液的黏稠性,导致流动性降低,从而减慢了过滤速度。

2. 过滤时间随着温度的降低而延长。

低温会使溶液黏稠度增大,进一步降低了流动性,从而影响了过滤速度。

3. 过滤时间随着颗粒大小的增加而延长。

较小的颗粒会增加过滤介质的阻力,降低了过滤速度。

六、实验总结通过本次实验,我们掌握了过滤操作的基本原理和方法,并研究了不同条件下的过滤效果。

实验结果表明,过滤时间受到溶液浓度、温度和颗粒大小等因素的影响。

在实际工程中,我们应根据具体情况选择合适的过滤方式和条件,以提高过滤效果。

七、思考题1. 除了溶液浓度、温度和颗粒大小外,还有哪些因素可能影响过滤效果?2. 你认为如何提高过滤效果?请给出你的建议。

化工基础实验~过滤实验

化工基础实验~过滤实验

实验三过滤实验(一)板框过滤实验本实验设备由我校化工原理实验室与天津大学化工基础实验中心共同研制。

该设备由过滤板、过滤框、旋涡泵等组成,是一种小型的工业用板框过滤机。

本套装置可进行设计型、研究型、综合型实验。

由于设备接近工业生产状况,通过实验可培养学生的工程观念、实验研究能力、设计能力以及解决生产实际问题的能力。

一、实验任务根据实验指导教师要求,从下列实验任务中选择其中一项实验。

1.板框压滤机选型:工业用过滤机选型的依据是物料的性能、分离任务和要求。

为使过滤机的选型最为恰当,通常是用同一悬浮液在小型过滤实验设备中进行实验,以取得必要的过滤数据作为主要依据,然后从技术和经济两方面进行综合分析,确定过滤机的种类和型号。

现有某一工厂需过滤含CaCO3 5.0~5.5 % 的水悬浮液,过滤温度为25℃,固体CaCO3的密度为2930kg/m3。

工业过滤机在0.28MPa的压强差下进行过滤,规定每一操作循环处理悬浮液10m3,过滤时间为30min,滤饼不洗涤,过滤至框内全部充满滤渣时为止,卸饼、清洗、重装等辅助时间为20min。

请你利用实验室的小型板框压滤机(详见设备流程部分,该过滤机的最高过滤推动力(表压力)为0.2Mpa)进行实验,测定有关的过滤参数,根据表1所提供的过滤机型号与规格,从中选择一种合适型号的压滤机,并确定滤框的数目,求出该过滤机的生产能力,为工厂提供选型的技术依据。

表1 过滤机的型号与规格表1中板框压滤机型号如BMS20/635-25的意义为:B表示板框压滤机,M表示明流式(若为A,则表示暗流式),S表示手动压紧(若为Y,则表示液压压紧),20表示过滤面积为20m2,635表示滤框边长为635mm的正方形,25表示滤框的厚度为25mm。

2.回转真空过滤机设计:设计工业用过滤机时,必须先测定有关的过滤参数,这项工作一般是用同一悬浮液在小型过滤实验设备中进行。

现有某一工厂需过滤含CaCO 3 5.0 ~ 5.5 % 的水悬浮液,过滤温度为25℃,固体CaCO 3的密度为2930kg/m 3。

(化工原理实验)过滤试验

(化工原理实验)过滤试验
化工原理实验 - 过滤试验
过滤试验是为了研究和了解过滤的原理、方法及其应用领域。本实验将介绍 过滤试验的目的、实验步骤和要点,以及评价过滤效果的指标。
过滤试验的目的
通过过滤试验,可以了解不同物质在过滤过程中的行为和性质,进一步认识过滤的原理和应用。
实验步骤和要点
1. 准备实验所需的材料和设备。 2. 按照实验要求,选择合适的过滤介质和方法。 3. 进行实验操作,注意控制实验条件,记录实验数据和观察结果。 4. 分析实验结果,总结实验经验和要点。
结论和总结
通过对过滤试验的了解,我们可以更好地掌握过滤的原理和方法,并在实际 应用中选择合适的过滤介质和条件,达到理想的过滤效果。
过滤试验的原理
过滤试验基于物质的分离和筛选原理,通过过滤介质的孔隙大小和特性,将 固体颗粒或杂质从液体或气体中分离出来。
常பைடு நூலகம்的过滤方法
重力过滤
利用重力作用,使液体通过过滤介质,固体颗粒滞留在过滤介质上。
压力过滤
通过施加压力,强制将液体通过过滤介质,实现更高效的过滤效果。
真空过滤
利用负压条件,将液体从上部抽出,通过过滤介质,实现快速过滤。
过滤试验的应用领域
化学工程
在化工工艺中,过滤试验 广泛应用于分离和纯化液 体中的固体颗粒。
环境工程
在环境治理中,过滤试验 用于去除水中的悬浮物、 微生物和有机污染物。
生物制药
在生物制药过程中,过滤 试验用于分离和提纯生物 制品。
过滤效果的评价指标
• 过滤效率:固体颗粒被过滤掉的百分比。 • 透明度:过滤后液体的清澈程度。 • 过滤速度:单位时间内过滤液体的体积。

化工原理过滤实验报告处理

化工原理过滤实验报告处理

化工原理过滤实验报告处理一、实验目的1. 学习过滤的基本原理和过滤设备的结构与性能。

2. 了解不同的过滤介质对过滤效果的影响。

3. 熟悉过滤实验的操作方法,掌握数据记录和处理。

二、实验原理1. 过滤的基本原理过滤是用过滤介质(固体)来分离混合物的一种物理方法。

基本原理是使混合物通过过滤介质,其中较小的颗粒(或分子)不能通过介质间的孔隙,而较大的颗粒则可以通过孔隙,从而实现分离。

过滤设备通常由过滤器和支撑层组成。

支撑层是介质的一种形式,可以是粉末或纤维状。

支撑层不仅提供良好的支撑力,还可以通过支撑介质之间的孔隙,使过滤介质保持均匀的分布。

过滤器一般是塑料材料制成的筒状或碗状容器。

过滤器的内壁与支撑层相连,并通过支撑层上的孔隙与介质相连。

过滤器的主要作用是集流介质,将混合物均匀地分布到过滤介质上。

过滤设备的性能取决于过滤器和介质的选择、结构和操作条件。

常见的过滤介质有滤纸、滤布、滤棉、活性碳、硅胶和聚乙烯等。

三、实验步骤和记录1. 以几种不同的过滤介质为实验对象,测定其紫外吸收度与过滤效果的关系。

选择一个连通滤器,设置过滤器的压力为5 psig,然后将1 ml的混合物通过过滤介质,记录滤液的紫外光谱峰值,以此来评估过滤效果。

结果如下表所示:| 过滤介质 | 紫外吸收值(AU) || 滤纸 | 0.27 |3. 测定滤布的质量效率曲线。

选择补偿型滤器,设置压力为10 psig,用此醇作为给定溶液,通过过滤时,将5毫升的溶液过滤到滤布上,接着将滤布取出来并称重。

重复此操作10次,记录滤液的紫外光谱峰值和滤布的重量。

结果如下表所示:四、数据处理和分析1. 紫外吸收度与过滤效果从表中可以看出,滤棉的紫外吸收值最低,为0.16 AU,说明滤棉的过滤效果最好。

相比而言,滤纸和滤布的效果略差。

2. 质量效率曲线将滤纸、滤布和滤棉的质量效率曲线以图形方式表示出来。

图2中的垂直轴表示滤液的紫外光谱峰值,水平轴表示滤体重量。

化工原理实验讲义 (过滤)

化工原理实验讲义 (过滤)

过滤试验实验目的1、 通过测定恒压过滤常数K 、通过单位过滤面积当量滤液量q e 、当量过滤时间θe ,加深对K 、q e 、θe 的概念和影响因素的理解。

2、学习(qd d )-q 一类关系的实验测定方法。

3、学习恒压过滤常数K 、通过单位过滤面积当量滤液量qe 、当量过滤时间θe 的测定方法。

实验流程1.配料槽2.配料槽放空阀3.放料阀4.配料槽进水阀5.进水总阀6.贮浆罐7.返料阀8.贮浆罐排空阀 9.搅拌机 10.压力表 11.贮浆罐泄压阀 12.贮浆罐压缩空气进口阀 13.料浆进口阀 14.计量桶 15.洗水罐出口阀 16.滤液出口阀 17.洗水出口阀18.洗水进口阀19.板框过滤机 20.空压机 21.洗水罐压缩空气进口阀 22.洗水罐进水阀 23.减压阀过滤实验流程简图24.贮浆灌目镜验操作要点1、实验前熟悉实验流程,熟悉实验各装置的作用。

2、开启进水总阀(5),开启空压机,关闭贮浆罐泄压阀(11),打开贮浆罐的压缩空气进口阀(12),调节减压阀(23),使贮浆罐内压力保持在0.1Mpa-0.15 Mpa 之间,调节好后关闭贮浆罐的压缩空气进口阀(12)。

3、配制浆液:在配料槽(1)中加入5厘米左右深的水,再加入适量的碳酸钙粉末,初步混合。

4、开动搅拌电机(9)使浆液混合均匀,打开贮浆罐泄压阀(11)泄压,然后开启放料阀(3)向贮浆罐内加料。

5、分多次开启配料槽进水阀(4)加水,使配料槽(1)底部残余的碳酸钙粉末冲洗至贮浆罐内,再开启配料槽进水阀(4)加清水使贮浆罐内料浆液位接近贮浆罐目镜(24)的最高点,立即关闭贮浆罐的放料阀(3)和配料槽进水阀(4)停止加水,加水过程中药保持配料槽基本无水积存;再关闭贮浆罐泄压阀(11),开启贮浆罐的压缩空气进口阀(12),使贮浆罐内压力保持在步骤2调节好的压力。

6、检查板框过滤机(18),确认板框、滤布是否安装正确,打开滤液出口阀(14),关闭料浆进口阀(13)、洗水进口阀(15)、洗水出口阀(16)。

实验3 过滤实验.ppt -化工原理实验

实验3 过滤实验.ppt -化工原理实验

过滤实验一数学模型法1 主要步骤(1)合理地简化复杂的真实过程,使简化了的物理模型在某一侧面与真实过程等效,并易于数学描述。

(2)建立数学模型。

(3)通过实验检验数学模型的合理性,并测定模型参数( 这是实验在“数学模型法”中的二个作用)。

量纲分析法与数学模型法的比较∗过滤定义∗过滤是借一种能将固体物截留而让流体通过的多孔介质,将固体物从液体或气体中分离去来的过程。

∗过滤本质上是低Re 数下流体通过固体颗粒层的流动221u d L L p h e e f ××=∆=λ二过滤过程数学模型的建立1 先建立固定床的数学模型(1)真实过程的特点L * 流体流动通道复杂多变。

u u* 流体通过颗粒层的流动多呈爬流,而爬流状态下的流动阻力由单位体积床层所具有的表面积所决定。

(2)简化真实过程* 简化思路:在当量管径和当量床层高的条件下,将流动通道拉成许多等径等长的直通管道。

* 简化的等效性:a .所有细管的内表面积等于床层颗粒的全部表面积。

e d e L e L e d 1ub .所有细管的流动空间等于床层总的空隙容积。

这二个等效要求体现在和的定义上。

(3)建立数学模型由出发,经整理,得康采尼方程(即固定床的数学模型):2 过滤过程的数学描述(1)过滤过程与固定床的差异(颗粒不溶胀的物系)* 床层高L 随时间而变化。

* 存在过滤介质。

221ud L P he ef λρ=∆=ua K L P µεε322')1(−=∆e L e d的方法定态下进行物料衡算,得由过滤速率的定义,康采尼方程和上式,得过滤速率表达式:* 过滤介质阻力的大小可视为通过位过滤面积获得单某当量滤液量所形成的虚拟滤饼层的阻力。

(3)建立过滤过程的数学模型经上述处理,可得过滤过程数学表达式:e q ϕqr P d dq u ϕµτ∆==)(2e q q K d dq +=τ过滤:* 恒压条件建立以前已有了和,则本实验采用此式。

化工原理实验——恒压过滤

化工原理实验——恒压过滤

化⼯原理实验——恒压过滤实验四恒压过滤常数的测定⼀、实验装置:见图4-1、图4-2设备流程如图4-1所⽰,滤浆槽内放有已配制有⼀定浓度的碳酸钙~⽔悬浮液。

⽤电动搅拌器进⾏搅拌使滤浆浓度均匀(但不要使流体旋涡太⼤,使空⽓被混⼊液体的现象),⽤真空泵使系统产⽣真空,作为过滤推动⼒。

滤液在计量瓶内计量。

设备参数表⼆、实验内容测定不同压⼒下恒压过滤的过滤常数K 、e q 、e 。

图4-1 恒压过滤实验流程⽰意图1─滤浆槽; 2─过滤漏⽃; 3─搅拌电机; 4─真空旋塞. 5─积液瓶; 6─真空压⼒表; 7─针型放空阀; 8─缓冲罐.9─真空泵; 10─放液阀; 11─真空胶⽪管.三、实验原理恒压过滤⽅程)()(2e e K q q θθ+=+ (4-1)式中:q —单位过滤⾯积获得的滤液体积,m 3/m 2; e q —单位过滤⾯积上的虚拟滤液体积,m 3/m 2;θ—实际过滤时间,s ; e θ—虚拟过滤时间,s ; K —过滤常数,m 2/s 。

将式(4-1)进⾏微分可得:e q Kq K dq d 22+=θ(4-2)这是⼀个直线⽅程式,于普通坐标上标绘q dq d -θ的关系,可得直线。

其斜率为K2,截距为e q K2,从⽽求出K 、e q 。

⾄于e θ可由下式求出:e e K q θ=2 (4-3)当各数据点的时间间隔不⼤时,dqd θ可⽤增量之⽐qθ来代替.在实验中,当计量瓶中的滤液达到100ml 刻度时开始按表计时,作为横压过滤时间的零点。

但是,在此之前吸率早已开始,这部分系统存液量可视为常量,以V '表⽰(V '=360ml ),则对单位过滤⾯积上来说这部分滤液为q ′,(q ′=AV ,),这些滤液对应的滤饼视为过滤介质以外的另⼀层过滤介质,在整理数据时应考虑进去,则⽅程应改为:qθ=K 2q+K2(e q +q ′)(4-4)以qθ与相应区间的平均值q 作图。

在普通坐标纸上以qθ为纵坐标,q 为横坐标标绘qθ~q 关系,其直线的斜率为:K 2;直线的截距为:K2(e q +q ′)。

化工原理过滤实验报告

化工原理过滤实验报告
0.391133081
0.354917055
1791.334032
6
145.4
1
0.001
0.072432052
2007.3986
0.463565134
0.427349108
1932.845969
7
139
1
0.001
0.072432052
1919.039927
0.535997186
0.49978116
1
34.4
1.2
0.0012
0.086918463
395.7732223
0.086918463
0.043459231
395.7732223
2
74.3
1.2
0.0012
0.086918463
854.8241401
0.173836925
0.130377694
625.2986812
3
104.3
1
0.001
(4)
最后就可写出过滤方程式(2)的型式。
图1—2方程(3)图解
板框压滤是间歇式操作,始点和终点数据误差较大,作图时应舍去。又因式(3)中 与q为阶梯型函数关系,故作图时先作阶梯线,后经各阶梯水平线中点联直线以求取过滤操作线。
三、实验流程
实验流程由贮槽、齿轮泵和板框机等组成。滤液量用容量法或重量法测定,如图1—3所示。请注意:齿轮泵是正位移泵,泵出口必须设回流管路进行流量调节。
1—滤浆槽2—齿轮泵3—电动机4—回流阀5—调节阀
6—压力表7—板框机8—压紧螺旋9—容器10—磅称
图1—3板框过滤实验流程图
四、实验步骤
1、熟悉实验流程、板框结构、排列方法。

化工原理过滤实验

化工原理过滤实验

化工实验二 过滤实验13生物工程2班 陈忠杰 201330550204 指导老师:李璐一、实验目的1.了解板框过滤机的构造、流程和操作方法。

2.测定某一压力下过滤方程中的过滤常数K 、e q 、e τ值,增进对过滤理论的理解。

3.测定洗涤速率与最终过滤速率间的关系。

二、基本原理恒压过滤是在恒定压力下,使悬浮液中的液体通过介质(成为滤液),而固体粒子被介质截留,形成虑饼,从而达到固—液分离目的的操作。

过滤速度由过滤介质两侧的压差及过滤阻力决定。

因为过滤过程滤渣厚度不断增加,过滤阻力亦不断增大,故恒压过滤速度随过滤时间而降低。

当过滤介质及阻力均应计入时,恒压过滤方程如下: )()(22e e KA V V ττ+=+ (5-1))()(2e e K q q ττ+=+ (5-2)将式(5-2)微分,得:e e q Kq K dqd Kd dq q q 22)(2+==+ττ(5-3) 式(5-3)为一条直线,但dqd τ难以测得,实际可用q ∆∆/τ代替,即 e q Kq K q 22+=∆∆τ (5-4) 因此,只需在恒压下进行过滤试验,测取一系列的τ∆、q ∆,做q ∆∆/τ与q 的关系图,得一直线,这条直线斜率为K2,截距为e qK 2,进而可算出K 、e q 的值:再以q=0,τ=0带入式(5-2),即可求得e τ。

2洗涤速率与最终过滤速率的测得:在一定压力下洗涤速率是恒定不变的。

w d dV )(τ=ww Vτ (5-5) 最终过滤速率的确定比较困难,因为它是一个变数,为了测得比较准确,应让过滤操作进行到率框全部被滤渣充满后在停止。

根据恒压过滤方程,可得恒压过滤方程的最终过滤速率E d dV)(τ为: E d dV )(τ=)(2)(22e e q q KAV V KA +=+ (5-6) 式中:V —整个过滤时间内所得的滤液总量:q —整个过滤时间内通过单位过滤面积所得的滤液总量。

三、实验装置与流程本实验装置GL200B 由空压机、配料槽、压力料槽、板框过滤机等组成,其流程示意如图5-1.MgCO3 的悬浮液在配料桶内配制一定浓度后,利用压差送入压力槽中,用压缩空气加以搅拌使MgCO3不致沉降,同时利用压缩空气的压力将滤浆送入板框压滤机过滤,滤液流入量筒计量,压缩空气从压力槽上排空管中排出。

化工原理过滤实验报告

化工原理过滤实验报告

化工原理过滤实验报告
【摘要】
本实验列出了各种化学工业废水处理的原理,它们包括含量控制、物
理去除及化学去除。

然后研究了化学去除方案,它们又分为氧化、吸附、
预混凝、活性污泥等。

最后,结合实际情况,分析了各种工艺系统的优缺点,指出了最恰当的应用方法。

【引言】
化工原理过滤作为一种保护和治理水源的重要手段,在污染物的处理
和控制方面发挥着重要作用。

传统的生物处理技术受到空间限制,耗费大
量的能量和高昂的成本,因此,很多原理过滤已被广泛应用于化工生产中
以及水处理设施中。

本实验旨在对各种化学工业应用中的原理过滤系统设
计进行研究,并提出最优解决方案。

【实验内容】
首先,本实验研究了各种化学工业废水处理的原理,它们包括含量控制、物理去除及化学去除。

其中,物理去除可以采用过滤、膜分离、沉淀、浮选等方法。

而化学去除则主要有氧化、吸附、预混凝、活性污泥等方法。

化工原理基础恒压滤饼过滤实验实验报告(一)

化工原理基础恒压滤饼过滤实验实验报告(一)

化工原理基础恒压滤饼过滤实验实验报告(一)实验报告:化工原理基础恒压滤饼过滤实验引言•实验目的:了解恒压滤饼过滤实验的原理和操作方法,熟悉实验设备的使用。

•实验原理:利用外加压力强迫悬浮液通过滤饼,实现固液分离。

•实验器材:恒压滤饼过滤装置、悬浮液、滤纸、计时器等。

实验步骤1.准备工作:–检查恒压滤饼过滤装置是否正常,无泄漏现象。

–准备好所需悬浮液和滤纸。

2.实验操作:–将恒压滤饼过滤装置放置在水槽中,并连接好进出口管道。

–打开水槽的出水阀门,调节水流速度,保证实验过程中水位维持在设定高度。

–在滤饼上方放置滤纸,并将悬浮液缓慢倒入滤饼上。

3.数据记录:–开始计时,记录悬浮液通过滤饼的时间,直到滤饼上无水滴流出为止。

–记录实验条件,如水流速度、滤饼厚度等。

4.实验分析:–根据实验数据计算滤饼的过滤速度。

–分析滤饼厚度与过滤速度的关系,讨论可能的原因。

–结合理论知识,对实验结果进行解释。

实验结果与讨论•实验数据:滤饼过滤时间为10分钟,水流速度为50 mL/s,滤饼厚度为5 cm。

•计算:滤饼过滤速度为0.5 cm/min。

•讨论:滤饼厚度与过滤速度的关系可能受到滤纸的孔径大小、悬浮液浓度等因素的影响。

结论•实验结果表明,在恒压条件下,滤饼过滤速度与滤饼厚度存在一定关系。

•进一步研究滤纸孔径、悬浮液浓度等因素对滤饼过滤速度的影响,有助于优化过滤过程。

参考文献•[1] J. Doe, “Filter Cake Filtration Principles,”Journal of Chemical Engineering, vol. 123, no. 4, pp. , 2021.•[2] H. Smith, “Fundamentals of Pressure Filtration,”Journal of Applied Chemistry, vol. 45, no. 2, pp. ,2020.实验报告:化工原理基础恒压滤饼过滤实验引言•实验目的:了解恒压滤饼过滤实验的原理和操作方法,熟悉实验设备的使用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

化工实验二 过滤实验13生物工程2班 陈忠杰 201330550204 指导老师:李璐一、实验目的1.了解板框过滤机的构造、流程和操作方法。

2.测定某一压力下过滤方程中的过滤常数K 、e q 、e τ值,增进对过滤理论的理解。

3.测定洗涤速率与最终过滤速率间的关系。

二、基本原理恒压过滤是在恒定压力下,使悬浮液中的液体通过介质(成为滤液),而固体粒子被介质截留,形成虑饼,从而达到固—液分离目的的操作。

过滤速度由过滤介质两侧的压差及过滤阻力决定。

因为过滤过程滤渣厚度不断增加,过滤阻力亦不断增大,故恒压过滤速度随过滤时间而降低。

当过滤介质及阻力均应计入时,恒压过滤方程如下: )()(22e e KA V V ττ+=+ (5-1))()(2e e K q q ττ+=+ (5-2)将式(5-2)微分,得:e e q Kq K dqd Kd dq q q 22)(2+==+ττ(5-3) 式(5-3)为一条直线,但dqd τ难以测得,实际可用q ∆∆/τ代替,即 e q Kq K q 22+=∆∆τ (5-4) 因此,只需在恒压下进行过滤试验,测取一系列的τ∆、q ∆,做q ∆∆/τ与q 的关系图,得一直线,这条直线斜率为K2,截距为e qK 2,进而可算出K 、e q 的值:再以q=0,τ=0带入式(5-2),即可求得e τ。

2洗涤速率与最终过滤速率的测得:在一定压力下洗涤速率是恒定不变的。

w d dV )(τ=ww Vτ (5-5) 最终过滤速率的确定比较困难,因为它是一个变数,为了测得比较准确,应让过滤操作进行到率框全部被滤渣充满后在停止。

根据恒压过滤方程,可得恒压过滤方程的最终过滤速率E d dV)(τ为: E d dV )(τ=)(2)(22e e q q KAV V KA +=+ (5-6) 式中:V —整个过滤时间内所得的滤液总量:q —整个过滤时间内通过单位过滤面积所得的滤液总量。

三、实验装置与流程本实验装置GL200B 由空压机、配料槽、压力料槽、板框过滤机等组成,其流程示意如图5-1.MgCO3 的悬浮液在配料桶内配制一定浓度后,利用压差送入压力槽中,用压缩空气加以搅拌使MgCO3不致沉降,同时利用压缩空气的压力将滤浆送入板框压滤机过滤,滤液流入量筒计量,压缩空气从压力槽上排空管中排出。

板框压滤机的结构尺寸:框厚度20mm ,每个框过滤面积0.0177m3,框数2个。

空气压缩机规格型号:风量0.06m3/min ,最大气压0.8Mpa 。

四、实验步骤过滤实验 1、 试验准备(1)配料:在配料罐内配制含MgCO 32%~3%的水悬浮液,MgCO 3事先由天平沉重,水位高度按标尺示意,筒身直径35mm 。

配置时,应将配料罐底部阀门关闭。

利用波镁计,在其度数2.5-3.0之间,偏小加粉末,偏大加水。

(2)搅拌:开启空压机,将压缩空气通入配料罐(空压机的出口小球阀保持半开,进入配料罐的两个阀门保持适当开度),使MgCO悬浮液搅拌均匀。

搅拌时,应将配料罐的顶盖合3上。

(3)设定压力:分别打开进压力罐的三路阀门,空压机过来的压缩空气经各定值调节阀分别设定为0.1、0.2MPa。

设定定值调节阀时,压力罐泄压阀可略开。

建议第一次操作压力控制在0.1MPa(表压),第二次控制在0.2MPa(表压)。

(4)装板框:按板、框的钮数1-2-3-2-1-2-3的顺序排列好板框过滤机的板与框。

正确装好滤板、滤框及滤布。

滤布使用前用水浸湿,滤布要绷紧,不能起皱。

滤布紧贴滤板,密封垫贴紧滤布,以免漏液,然后用压紧螺杆压紧板和框。

(注意:用螺旋压紧时,千万不要把手指压伤,先慢慢转动手轮使板框合上,然后再压紧)。

(5)灌清水:向清水罐通入自来水,液面打视镜2/3高度左右。

灌清水时,应将阀门处的泄压阀打开。

(6)灌料:在压力罐泄压阀打开的情况下,打开配料罐和压力罐间的进料阀门,使料浆自动出配料桶流入压力罐至其视镜1/2~2/3处,关闭进料阀门。

2、过滤过程(1)鼓泡:通压缩空气至压力罐,使容器内料浆不断搅拌。

压力料槽的排气阀应不断排气,但又不能喷浆。

(2)过滤:将中间双面板下通孔切换阀开到通孔通路状态。

打开进板框前料液进口的两个阀门,打开出板框后清液出口球阀。

此时,压力表表示过滤压力,清液出口流出滤液。

每次实验应在滤液从汇集管刚流出的时候作为开始时刻,开始用秒表记录时间,计量筒中液面升至约600mL记录一次时间,使时间不至于中断。

即每次ΔV取600 mL,记录相应的过滤时间Δ。

当滤液流速渐慢,呈细线状流出,表明滤渣已充满整个滤框,关闭滤浆进口阀门,停止过滤实验。

量筒交换接滤液是不要流失滤液,等量筒内滤液静止后读出ΔV值(注意:若ΔV约600mL时交替换量筒,这时量筒内滤液量并非正好600mL。

要事先熟悉量筒刻度,不要打碎量筒),此外,要熟练双秒表轮流读数的方法。

每个压力下,测量8~10个读数即可。

3.洗涤过程(1)关闭板框过滤的进出阀门。

将中间双面板下通孔切换阀开到通孔关闭状态(阀门手柄与滤板平行为过滤状态,垂直为洗涤状态)。

(2)维持洗涤压力与过滤时压力相同,开启洗水进出口阀(板框前两个进口阀,板框后一个出口阀)进行洗涤。

洗水穿过滤渣后由滤液出口流出,并流入计量筒,同时记录时间,测取有关数据。

洗涤速度比同压力下过滤速度小很多。

每次ΔV取100~300ml左右。

记录两组数据即可。

(3)洗涤完毕,关闭洗液进板框的阀门、关闭进气阀门。

一个压力下的实验完成后,先打开泄压阀使压力罐泄压。

放开压紧螺杆将滤框拉开,卸出滤渣,清洗滤布,清洗时滤布不要折,重新组装。

调节另一压力数值进行另一次实验。

注意若清水罐水不足,可补充一定水源,补水时仍应打开该罐的泄压阀。

每次滤液几滤饼均收集在小桶内,以便下次实验使用。

4、实验结束(1)先关闭空压机出口球阀,关闭空压机电源。

(2)打开安全阀处泄压阀,使压力罐和清水罐泄压。

(3)卸下滤框、滤板、滤布进行清洗,清洗时滤布不要折。

(4)将压力罐内物料反压到配料罐内备下次使用,或将该二罐物料直接排空后用清水冲洗,以免沉淀堵塞罐管道和阀门。

(5)做好设备、地面的清洁。

五、实验数据及数据处理表5-1 过滤实验数据整理表过滤机类型: GL200B 滤框个数: 2 滤布种类:帆布虑框尺寸(长、宽、高):_____133⨯133⨯20_mm 过滤总面积:0.0708 m2滤浆名称: MgCO 3 温度: 26 ℃数据记录表过滤实验数据整理表压力压)0.1MPa 0.2MPa序号q/(m3/m 2) Δq/(m3/m2)ΔT/(s)ΔT/Δq(s/m)q Δq/(m3/m2)ΔT/(s) ΔT/Δq(s/m)(m3/m2) 1 0.007768 0.007768 4126.996364 0.008474576 0.0084751784.16 2 0.0155080.007745930.145985 0.01680791 0.0083332584.8 3 0.022994 0.007486 7614.339623 0.025282486 0.0084752920.5 4 0.030621 0.007627 7365.822222 0.033403955 0.0081214055.917 50.038672 0.0080519191.578947 0.041454802 0.0080514584.611 6 0.046723 0.00805110538.021050.04964680.0081925320.986937 0.054915 0.008192 30887.11034 0.057980226 0.0083336183.6 80.061102 0.006186120151.47950.0661723160.0081927243.57291、 根据以上处理结果,作出不同压力下的q qt-∆曲线,如图1,图2,图3。

图1图2图32、计算举例:以0.1MPa 第一次实验结果为例,计算如下 以qT∆∆为纵坐标,q 为横坐标作图,如图1,得到直线的斜率为a=1188.3,截距为b=3302.1 K=2/a=2/1188.3=1.683*10-5m 2/sqe=b/a=3302.1/1188.3=2. 779m 3/m2te=qe2/k=2.7792/(1.683*10-5)=4588.73s(dv/dt)w=Vw/tw=150*10-6/91.31=1.643*10-6(dv/dt)E=KA/2(q+qe)=1.683*10-5*1.0177*4/2*(0.061102+2.779)=2.098*10-5(dv/dt)w/(dv/dt)e=1.643*10-6/(2.098*10-5)六、实验结果讨论与分析1、在数据处理时,发现0.1Mpa 下的最后一个数据与0.2Mpa 下的第7、8组数据,,明显偏大,过滤时间比之前都要长,但是,滤液还是很少。

其原因为:随着过滤的进行,滤饼不断在滤框形成,阻力不断增大,过滤速率逐渐下降,直到过滤的后期,滤饼形成充满了滤框,使过滤速率几乎为零。

所以,在进行数据处理时,把这些数据舍弃了。

2、比较0.1MPa 与0.2MPa 压力下的过滤常数K :K 0.1=1.683*10-5,K 0.2=2.627*10-5,K 0.1< K 0.2。

表明,过滤常数受压力的影响。

在过滤同种物料时,压力越大,过滤常数越大。

3、在一定压力下洗涤速率变化中,0.1Mpa 的w dVd τ()均比0.2Mpa 的要小,而最终过滤速率e dVd τ(),0.1Mpa 的小于0.2Mpa 下的最终过滤速率。

一般情况下,加压或减压均可加快过滤速率,但可压缩滤饼会使过滤速率变慢。

一般在压力恒定时,洗涤速率不变,当其他条件不变时,压差变大,洗涤速率加快。

实验中,理论上,洗涤速率与过滤速率的比值应该为0.25,但是实际上的比值偏差比较大。

这可能是:在进行0.1Mpa 压力洗涤过程中,人为操作使设备调节过快,使洗涤速率过快,引起结果误差。

4、在理论上,在过滤相同的物料,而且在压差相同是,洗涤速率约为过滤最终的速率的1/4。

在这次实验中,都出现了很大的误差,0.1Mpa 下,洗涤速率约为过滤最终的速率的0.07倍,0.2Mpa 下,洗涤速率约为过滤最终的速率的0.1倍。

其原因有可能为:在0.1Mpa 下的过滤时,过滤速率有点慢,但是,洗涤时,速率很快七、思考题1、板框过滤机的优缺点是什么?适用于什么场合?答:板框过滤机的优点是构造简单、制作方便、价格低;过滤面积大,可根据需要增减滤板以调节过滤能力;推动力大,对物料的适应能力强,对颗粒细小而液体较大的滤浆也能适用。

相关文档
最新文档