粉煤灰的主要特性
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
粉煤灰的主要特性
一、粉煤灰的主要性状和技术特征
粉煤灰的性状是指粉煤灰颗粒和混合粉料的物理、化学性质以及形态、结构等的统称。
粉煤灰性状除包括上述化学成分、矿物组分和颗粒组分外,一般还包括表观色泽、粒径、细度、级配、比表面积、密度、堆积密度、含水率、烧失量、需水量比、火山灰活性以及其他各种物理力学性质和化学性质,特别还应包括均匀性这个重要的信息。
粉煤灰一般的性状,因为粉煤灰在水泥和混凝土的应用要比其他用途具有更高的性状要求,仍须摘要说明。
粉煤灰技术特征,这里主要是指粉煤灰用作水泥和混凝土的原材料时,与用途和质量有关的粉煤灰成分、结构和性能的技术信息,也是与粉煤灰混凝土技术相关的重要技术参量。
粉煤灰特征化研究,是粉煤灰水泥混凝土技术中的基础研究,直到20世纪80年代,粉煤灰特征化研究随着现代科学测试手段和研究方法的进步,取得了较多的成绩。
(一)、粉煤灰的性状
1.表观色泽
由于成分和组分不同,粉煤灰表观色泽变化很大。
低钙粉煤灰随着碳分含量从低到高,从乳白色变至灰黑色。
在一般情况下,粗略地可从色泽的变化观察粉煤灰性质的变化。
高钙粉煤灰一般呈浅黄色,可反映氧化钙含量。
目前,最新的研究认为,粉煤灰色泽不可以反映其结构。
2.粒径和细度
所收集的统灰粒径变化为0.5~300μm,这一范围与水泥接近,但其中大部分的颗粒要比水泥细得多。
国内沿用标准筛测定,现在的我国粉煤灰新标准把用于水泥和混凝土的粉煤灰的试验方法和筛余量指标从用80μm标准筛人工筛分法改为用气流筛测定45μm的筛余量。
如JGJ28-1986规定,以80μm标准筛测定细度,其筛余量:I级灰不大于5%,II级灰不大于8%,III级不大于25%。
因为45μm以下粉煤灰颗料对混凝土性质的贡献较大,GB1596-2005粉煤灰新标准中,采用45μm筛余量(%)为细度指标,规定I级灰不大于12%,II级灰不大于20%,III级灰不大于45%。
细度是粉煤灰最重要的参量,有的专家认为可以用来作为评估用于混凝土中粉煤灰质量的基本参量。
至于代替细集料或用以改善工作性的粉煤灰细度则不受上述规定的限制。
3.比表面积
因为粉煤灰中密实颗粒和内部表面积很大的多孔颗粒混在一起,用比表面积方法不易准确测定颗粒的粗细。
沿用测定水泥比表面积法测定粉煤灰比表面积的变化范围一般为1500~5000cm2/g,仍可用作反映粉煤灰组合颗粒内外表面积的综合情况。
4.颗粒级配
颗粒级配大致可分三种形式:
(1)细灰。
颗粒级配细于水泥,主要用于钢筋混凝土中取代水泥或水泥混合材料。
(2)粗灰。
包括统灰和分选后的粗灰,颗粒级配粗于水泥,主要用于素混凝土和砂浆中取代集料。
(3)混灰。
与炉底灰混合的粉煤灰,用作取代集料或用作水泥混合材料(尚须与熟料共同磨细或分别麿细),或者作填筑用粉煤灰。
5.密度
普通粉煤灰密度为1.8~2.3g/cm2,约等于硅酸盐水泥的2/3。
粉煤灰堆积密度的变化范围为0.6~0.9g/cm3,振实后的堆积密度为1.0~1.3 g/cm3。
高钙粉煤灰密度略大。
最近我国用于混凝土的粉煤灰特征化研究完全证实,密度是粉煤灰技术特征中一个很重要的参量,它可用于混凝土用粉煤灰的质量评定和质量控制,特别是能用于粉煤灰质量均匀性评定和控制。
6.需水量比
粉煤灰需水量比是按规定的水泥标准砂浆流动性试验方法,以30%的粉煤灰取代硅酸盐水
泥时所需的水量与硅酸盐水泥标准砂砂浆需水量之比。
这个性质指标能在一定程度上反映粉煤灰物理性质的优劣,而且可以用来估计粉煤灰对混凝土的一些重要性质的影响。
最劣粉煤灰的需水量比高达120%以上,特优粉煤灰则可能在90%以下。
GBJ146-1990、GB1596-2005和JGJ28-1986都规定I级粉煤灰需水量比不大于95%,II级灰不大于105%,III级灰不大于115%。
7.火山灰活性
现在世界各国的混凝土用粉煤灰标准中,粉煤灰火山灰活性的评定大都采用“抗压强度比”一类的试验方法,这类方法都是从传统的水泥或消石灰砂浆强度试验法改进而来的,也就是根据所掺粉煤灰对水泥砂浆或消石灰砂浆强度的贡献来评定粉煤灰活性的高低。
这类方法既不复杂,而且有一定可靠性,但是其试验结果却不能直接用来指导粉煤灰混凝土的配合比,也不能用来确定粉煤灰对混凝土强度的贡献。
为使粉煤灰在混凝土中充分发挥火山灰活性,还要作多方面综合的考虑。
GB1596-1991中只对用于水泥的粉煤灰规定“抗压强度比”的要求,而对用于混凝土的粉煤灰则无要求。
JGJ28-1986和GBJ146-1990也不作火山灰活性的规定,是鉴于粉煤灰的活性必须通过混凝土试验才能合理地反映出来,在混凝土制备阶段进行适当处理。
8.烧失量
粉煤灰中的碳分一向被认为是有害物质,有此国家标准主中对控制碳分含量的烧失量指标最大限值的规定比较宽容,而新标准的规定则越来越严格。
GBJ146-1990、GB/T1596-2005和JGJ28-1986都规定I级粉煤灰不大于5%,II级粉煤灰不大于8%,III级粉煤灰不大于15%。
值得注意的是,碳粒颗粒的粒径大部分在45μm以上,平均密度只有1.5g/cm3左右。
如以体积计算,碳粒的比例要比以质量计算的大得多,因此烧失量越大对混凝土的影响越不利,特别是要影响需水性和密实度以及化学外加剂掺量。
近年来国内有些专家认为,按我国的标准、规范和规程规定的粉煤灰烧失量限值,用于钢筋混凝土中的粉煤灰应不大于8%(II级灰),这样国内有许多地区的粉煤灰达不到这个要求。
上海市推广的磨细粉煤灰研究表明:磨细后烧失量虽不降低,但碳粒变成细屑后,其对混凝土的不利影响明显得到改善,在这种情况下,烧失量限值是可以适当放宽的。
9.含水率
粉煤灰的含水率影响卸料、贮藏等操作,GB/T1596-2005和JGJ28-1986都规定不得超过1%,对III级粉煤灰不作规定。
对高钙粉煤灰来说,含水还会明显影响粉煤灰的活性,并造成固化结块。
10.三氧化硫、氧化镁、有效碱等含量
通常情况下粉煤灰中三氧化硫、氧化镁、有效碱等被认为是对混凝土有害的物质,一般其含量是不大的,故危害的程度也不高。
而且硫酸盐、有效碱等物质在一定的条件下也可能产生一些有利的作用,但是往往为了绝对保证用于混凝土中粉煤灰的质量,在各国的规范中都对这类物质的含量加以限制。
GBJ146-1990、GB/T1596-2005和JGJ28-1986都规定三氧化硫不大于3%。
11.收缩性
美国ASTM C-618标准对粉煤灰砂浆试件28d的收缩性增加的最大限值为0.03%,虽然这一规定并非强制性的,但对选用粉煤灰却是很有好处的。
我国的有关规范、标准和规程对收缩性都不作规定。
12.均匀性
美国ASTM C-618标准对粉煤灰密度和细度的均匀性都明确规定变化范围不得大于5%,这是粉煤灰重要的品质指标,不容忽视。
我国对此不作规定,但强调,应在粉煤灰产品生产控制中测定粉煤灰的均匀性。
ASTM C-618还对引气剂需要量的均匀性规定不得大于20%(非强制性)。
(二)粉煤灰的技术特征
与上节粉煤灰性状直接相关的是混凝土用粉煤灰的技术特征的研究,也叫做粉煤灰的“特征化”研究,主要是指有重点地研究粉煤灰的若干技术上特征,以确定粉煤灰对某种用途的适用性,对于粉煤灰混凝土来说,特征研究是非常重要的应用技术基础研究,其主要目的在于确定粉煤灰质量,以判断某种粉煤灰是否适用于所要求的水泥和混凝土生产,并把研究结果用来作为质量控制和质量保证的依据。
粉煤灰技术特征大体上可以分为结构特征和功能特征两大类。
粉煤灰的化学成分、矿物组分、颗粒组分以及一些外观色泽、比表面积、密度、堆积密度等都属于结构特征,粉煤灰的火山灰活性、需水性、稳定性等都是功能特征,这都是专指混凝土用途而言的。
第二节粉煤灰颗粒分类及铁、铝、碳产物
一、粉煤灰颗粒分类和特性
粉煤灰是一种混合物,它包含品种繁多的物质。
精细利用则是将它们一一分选出来,按各自的特性,将其中高附加值的品种充分利用,以达到物尽其用,提高粉煤灰综合利用的经济效益。
粉煤灰按其颗粒分类可分为珠状颗粒和渣状颗粒两大类。
在珠状颗粒中包括漂珠(常称空心微珠)、空心沉珠、复珠(子母珠)、密实沉珠(实心微珠)和富铁玻璃微珠等五大品种;在渣状颗粒中包括海绵状玻璃渣粒、碳粒、钝角颗粒、碎屑和粘聚颗粒等五大品种。
由于全国各地电厂所用煤种和燃烧工况不完全相同,因此,其颗粒形貌、结构和数量也不尽相同。
如有些电厂粉煤灰中含有大量空心沉珠(厚壁空心玻璃微珠),有些电厂粉煤灰中则空心沉珠含量相对较少。
美国曾对该产品进行开发,据介绍,这类产品承受静水压力可高达700MPa。
此外,较多电厂的粉煤灰主要含有密实沉珠。
为便于查考、比较和利用,现将其珠状和渣状颗粒的分类和特性等列于表中,以供参考。
粉煤灰中颗粒的分类和特征
注:本表摘自沈旦申《粉煤灰混凝土》。
大掺量粉煤灰高性能混凝土的试验研究
长沙铁道学院土木建筑学院
陈瑜周士琼龙广成袁庆莲
摘要:本文探讨了中等强度打掺量粉煤灰高性能混凝土的社会经济童义、工怍性、力学性能及耐久性。
在大量试验的基础上,对不同掺量粉煤灰高性能混凝土的坍落度损失,抗压强度、干缩以及耐久性等性能进行了全面的分析。
研究表明,它在道路工程、大体积工程及房建工程等方面有着广阔的应用前景。
关健词:粉煤灰混凝土掏煤灰复合超细粉后期强度塌落度损失
长期以来高强度一直被认为是优秀混凝土的特征,强度成为配合比设计以及生产和应用的首要性能指标。
随着混凝土技术的发展,高性能越来越受到重视。
在普通混凝土中掺入火山灰材料和外加剂制备的高性能混凝土被誉为“二十一世纪混凝土”,应用范围不断扩大。
然而,我们不能走用高成本换取高性能的发展道路。
近几年来,国内外许多学者纷纷提出生态环保型混凝土是混凝土材料今后的发展方向之一,发展绿色高性能混凝土(Green High Performance Concrete )迫在眉睫。
本文着重探讨大掺量粉煤灰高性能混凝土的社会经济意义、技术性能以及应用前景。
1、推广应用大掺量粉煤灰高性能混凝土的社会经济意义
目前我国混凝土中掺入的粉煤灰量,—般都在取代水泥的20%左右,很少达到30%,大掺量粉煤灰高性能混凝土着眼于更充分地利用粉煤灰潜在活性,减少水泥用量,降低混凝土生产成本;更大地发挥高性能优势,改善混疑工作性、耐久性;鉴于我国当前大量应用中等级混凝土,若大量掺加粉煤灰等混合材科,将高性能混凝土下限丛C50-C60降至C30左右,扩大绿色高性能混凝土的应用范围,可取得更大的环境与技术经济效益。
2、试验方法及材料’
2.1试验方法
混凝土力学性能按《普通混凝土力学性能实验方法》GBJ81-85,砂浆干缩性能按《水泥胶砂干缩实验方法》JC/T603-1995,细度按《水泥比表面积测定方法(勃式法)》GB8074-87实验。
粉煤灰按《用于水泥和混凝土中的粉煤灰》GB1596-97进行实验。
2.2试验材料
水泥:韶峰牌525号普通水泥
R3=32.1MPa R28=55.3MPa
砂:湘江河砂,组配符合Ⅱ区要求,细度模数为2.39
石:5-20mm碎卵石(湘江河卵石经轧碎而成)
外加剂:潭建牌高效减水剂或以FDN的主要复合高效减水剂
超细粉:将Ⅱ级粉煤灰磨细并掺入少量无机矿物改性复合而成粉煤灰复合超细粉(简写为PFAC)其比表面积为5640cm2/g,28d强度比为96.8%原状粉煤灰(FA)的化学成分及性能见表1。
表1 粉煤灰的化学成分及性能(%)
3 粉煤灰高性能混凝土的能
3.1工作性
对粉煤灰掺量不同的新拌高性能混凝土进行坍落度实验。
为使试验结果具有可比性,保持混凝土配合比不变,只改变粉煤灰的用量,粉煤灰等量取代水泥的比例分别为0%、20%、25%、30%、40%、55%以及70%。
以基准混凝土的坍落度为1,不同掺量粉煤灰高性能混凝土的相对坍落度见图1。
从图中可看出,掺加粉煤灰对混凝土工作性的改善十分明显,各掺量粉煤灰高性能混凝土的坍落度均大于基准混凝土。
PFAC取代水泥率取代率大于40%以后,随着掺量的提高,由于粉煤灰的密度比水泥小,胶疑材料体积增大,同时该种粉煤灰的需水量比高达106%,因此需水量有所上升,但即使粉煤灰掺量高达70%,混凝土坍落度仍大于基准混凝土。
同时,在实践中可看到粉煤灰高性能混凝土的粘聚性、保水性好,无离析沁水现象。
图1 不同掺量粉煤灰高性能混凝土的相对坍落度
注:潭建牌高效减水剂掺量为胶凝材料总量的0.5%,用水量W=170kg/m3表2 粉煤灰混凝土的塌落度经时损失
序号
PFAC
(kg/m3)
C
(kg/m3)
W
(kg/m3)
塌落度(mm)
Oh 1h 2h 3h
1 0 540 153 235 215 190 150
2 216(40%)324 150 230 255 230 220
3 270(50%)270 153 250 240 225 220
注:1.FDN掺量为总胶凝材料的1.5%
2.PEAC指物煤灰复合超细粉用量,C指水泥用量,W指用水量。
表2是粉煤灰混凝土拌合物坍蒋度经时损失试验结果,Ih坍落度损失小于5%,2h小于10%,3h小于15%。
粉煤灰掺量为40%时(2号),1h坍落度略有增加,3h坍落度损失仅为4.5%;粉煤灰掺量为50%时(3号),3h坍落度损失为12%,远远小于基准混凝土,这—点对商品混凝土的运输大有裨益。
3.2力学性能与变形性能
众所周知,普通粉煤灰混凝土尽管后期强度高,但早期强度低,并且粉煤灰掺量越大,早期强度下降越厉害。
这是粉煤灰混凝土主要的缺点,严重阻碍了其应用范围,如表3所示,采用PFAC和高效减水剂制备的粉煤灰高性能混凝土不但后期强度相当高,更关键是早期强度明显提高。
例如,5号混凝土粉煤灰掺量高达43%,其100mmX1000mmX100mm试件3d抗压强度就达到56.5MPa,28d抗压强度为92.4MPa,56d为113.3MPa.通过观察发现界面区已不再是粉煤灰高性能混凝土的最薄弱环节,混凝土的破坏是由于出现了贯穿水泥石以及粗集料的裂纹所致。
通过对混凝土其它力学性能的试验分析可知28d、90d龄期混凝土抗压比分别为1/11和1/10,与高强度混凝土相比,抗压比提高,特别是C80粉煤灰高性能混凝土抗折强度达10.1MPa,充分说明PFAC对混凝土的受拉性能有所改善。
表3 粉煤灰高性能混凝土抗压强度试验结果
序号
PFAC
(kg/m3)
C
(kg/m3)
W
(kg/m3)
塌落度
(mm)
抗压强度(MPa)
3d 28d 56d
注:1 FDN掺量为胶凝材料总量的1.3%-2.0%;
2 试件尺寸均为100mmX100mmX100mm。
表4 中等强度粉煤灰高性能混凝土强度试验结果
注1.R P1代表28d劈裂抗拉强度,B代表胶凝材料总量;
2.试件尺寸均为100mmXl00mmXl00mm;
3.潭建牌高效减水剂掺理为胶凝材料总量的0.8%-1.2%.
上表为高强混凝土的实验结果,其胶凝材料用量为540-560kg/m3,且高效减水剂掺量大,取得了优良的力学性能,但成本较高。
针对我国国情,实际工程应用的混凝土等级较低,应当推广应用胶凝材料及外加剂用量较少,粉煤灰掺量大的高性能混凝土,以扩大绿色混凝土的应用范围。
表4说明,用PFAC制备的中等强度粉煤灰高性能混凝土成本低,节能利废效果显著,早期强度和劈裂抗拉强度明显提高,很好地解决了粉煤灰混凝土的早强问题。
即使PFAC掺量高达50%,其28d抗压强度仍可达C50以上。
为研究PFAC掺量对混凝土强度的影响,采用等量取代法,保持其它组成成分不变,分别在混凝土中掺入25%、40%、55%、以及70%的PFAC,试验测定混凝土各龄期抗压强度、28d劈裂抗拉强度以及弹性模量。
混凝土配合比为:B=460kg/m3,W=170kg/m3,砂率为38%,潭建牌高效减水剂掺量为0.5%,试验结果见表5。
表5 不同掺量粉煤灰高性能混凝土的力学性能(单位:MPa)
从表3、表4和表5可看出,PFAC大量取代水泥后,混凝土的用水量及水胶比是控制强度的最主要因素。
由于用水量较多(W=170kg/m3),粉煤灰高性能混凝土的早期强度偏低,后期强度发展较慢,并且劈裂抗拉强度、轴心抗压强度等其它力学性能均受到不同程度影响。
表5中混凝土试件的养护温度为170C,是标准养护强度的下限,偏低。
这也是造成混凝土早期强度偏低,后期强度发展较慢的因素之一,说明粉煤灰高性能混凝土对早期养护温度敏感性较大。
因此,粉煤灰高性能混凝土的用水量以小于150kg/m3为宜。
另外,根据《混凝土结构设计规范》GBJ10-89规定,C45、C50、C55及C60等级混凝土的弹性模量分别为3.25、3.35、3.45、3.55和3.60X104MPa,对比表5最后一栏可知,不同掺量粉煤灰高性能混凝土的弹性模量均大于标准值。
表6是根据《水泥胶砂干缩试验方法》JC/T603-1995规定,进行不同掺量粉煤灰干缩试验的结果。
表6 不同掺量粉煤灰的胶砂干缩率(X10-6)。