八年级上册全册全套试卷测试卷(解析版)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级上册全册全套试卷测试卷(解析版)
一、八年级数学全等三角形解答题压轴题(难)
1.取一副三角板按图()1拼接,固定三角板60,()30ADC D ACD ∠=∠=,将三角板45()ABC BAC BCA ∠=∠=绕点A 依顺时针方向旋转一个大小为a 的角00)45(a ≤≤得到ABM ,图()2所示.试问:
()1当a 为多少时,能使得图()2中//AB CD ?说出理由,
()2连接BD ,假设AM 与CD 交于,E BM 与CD 交于F ,当00)45(a ≤≤时,探索DBM CAM BDC ∠+∠+∠值的大小变化情况,并给出你的证明.
【答案】(1)15°;(2)DBM CAM BDC ∠+∠+∠的大小不变,是105,证明见解析.
【解析】
【分析】
(1)由//AB CD 得到30BAC C ∠=∠=,即可求出a ;
(2)DBM CAM BDC ∠+∠+∠的大小不变,是105︒,由FEM CAM C ∠=∠+∠,30C ∠=︒, EFM BDC DBM ∠=∠+∠, 45M ∠=︒,即可利用三角形内角和求出答案.
【详解】
()1当a 为15时,//AB CD ,
理由:由图()2,若//AB CD ,则30BAC C ∠=∠=,
453015a CAM BAM BAC ∴=∠=∠-∠=-︒=︒,
所以,当a 为15时,//AB CD .
注意:学生可能会出现两种解法:
第一种:把//AB CD 当做条件求出a 为15,
第二种:把a 为15当做条件证出//AB CD ,
这两种解法都是正确的.
()2DBM CAM BDC ∠+∠+∠的大小不变,是105︒
证明: ,30FEM CAM C C ∠=∠+∠∠=︒,
30FEM CAM ∴∠=∠+︒,
EFM BDC DBM ∠=∠+∠,
DBM CAM BDC EFM CAM ∴∠+∠+∠=∠+∠,
180,45EFM FEM M M ∠+∠+∠=∠=︒,
3045180BDC DBM CAM ∴∠+∠+∠+︒+︒=︒,
1803045105DBM CAM BDC ∴∠+∠+∠=︒--=︒,
所以,DBM CAM BDC ∠+∠+∠的大小不变,是105.
【点睛】
此题考查旋转的性质,平行线的性质,三角形的外角定理,三角形的内角和,(2)中将角度和表示为三角形的外角是解题的关键.
2.(1)如图1,在Rt △ABC 中,AB AC =,D 、E 是斜边BC 上两动点,且
∠DAE=45°,将△ABE 绕点A 逆时针旋转90后,得到△AFC ,连接DF .
(1)试说明:△AED ≌△AFD ;
(2)当BE=3,CE=9时,求∠BCF 的度数和DE 的长;
(3)如图2,△ABC 和△ADE 都是等腰直角三角形,∠BAC=∠DAE=90°,D 是斜边BC 所在直线上一点,BD=3,BC=8,求DE 2的长.
【答案】(1)略(2)∠BCF=90° DE=5 (3)34或130
【解析】
试题分析:()1由ABE AFC ≌, 得到AE AF =,BAE CAF ∠=∠,
45,EAD ∠=45,BAE CAD ∴∠+∠=45,CAF CAD ∴∠+∠=即
45.DAF ∠=EAD DAF ∠=∠,
从而得到.AED AFD ≌ ()2 由△AED AFD ≌
得到ED FD =,再证明90DCF ∠=︒,
利用勾股定理即可得出结论. ()3过点A 作AH BC ⊥于H ,根据等腰三角形三线合一得,1 4.2
AH BH BC === 1DH BH BD =-=或7,DH BH BD =+=求出AD 的长,即可求得2DE .
试题解析:()1ABE AFC ≌,
AE AF =,BAE CAF ∠=∠,
45,EAD ∠=90,BAC ∠=
45,BAE CAD ∴∠+∠=
45,CAF CAD ∴∠+∠=
即45.DAF ∠=
在AED 和AFD 中,{AF AE
EAF DAE AD AD ,
=∠=∠=
.AED AFD ∴≌
()2AED AFD ≌,
ED FD ∴=,
,90.AB AC BAC =∠=︒
45B ACB ∴∠=∠=︒,
45ACF ,
∠=︒ 90.BCF ∴∠=︒
设.DE x =
,9.DF DE x CD x ===- 3.FC BE ==
222,FC DC DF +=
()2
2239.x x ∴+-=
解得: 5.x =
故 5.DE = ()3过点A 作AH BC ⊥于H ,根据等腰三角形三线合一得,
1 4.2
AH BH BC ==
= 1DH BH BD =-=或7,DH BH BD =+= 22217AD AH DH =+=或65.
22234DE AD ==或130.
点睛:D 是斜边BC 所在直线上一点,注意分类讨论.
3.(1)如图(1),已知:在△ABC 中,∠BAC =90°,AB=AC ,直线m 经过点A ,BD ⊥直线m, CE ⊥直线m,垂足分别为点D 、E.证明:DE=BD+CE.
(2)如图(2),将(1)中的条件改为:在△ABC 中,AB=AC ,D 、A 、E 三点都在直线m 上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE 是否成立?如成立,请你给出证明;若不成立,请说明理由.
(3)拓展与应用:如图(3),D 、E 是D 、A 、E 三点所在直线m 上的两动点(D 、A 、E 三点互不重合),点F 为∠BAC 平分线上的一点,且△ABF 和△ACF 均为等边三角形,连接BD 、CE,若∠BDA=∠AEC=∠BAC ,试判断△DEF 的形状.
【答案】(1)见解析(2)成立(3)△DEF 为等边三角形
【解析】
解:(1)证明:∵BD ⊥直线m ,CE ⊥直线m ,∴∠BDA =∠CEA=900.
∵∠BAC =900,∴∠BAD+∠CAE=900.
∵∠BAD+∠ABD=900,∴∠CAE=∠ABD .
又AB="AC" ,∴△ADB ≌△CEA (AAS ).∴AE=BD ,AD=CE .
∴DE="AE+AD=" BD+CE .
(2)成立.证明如下:
∵∠BDA =∠BAC=α,∴∠DBA+∠BAD=∠BAD +∠CAE=1800—α.∴∠DBA=∠CAE .