电力电子课程设计报告材料
电力电子课程设计报告
学校电力电子课程设计报告课程名称:设计题目:班级:姓名:学号:指导教师:设计时间:目录一、设计方案 (3)1.1 设计题目 (3)1.2 主要技木指标和要求 (3)1.3 方案选择及电路工作原理; (3)二、主电路设计说明 (4)2.1 主电路结构 (4)2.2 参数计算 (4)三、控制电路设计说明 (5)3.1 PWM 波形发生器 (5)3.2 开通延迟电路 (6)3.3 自举电路 (6)3.4 稳压电源 (6)四、 Simulink 仿真(选做) (7)五、调试过程及结果分析 (8)5.1 调试过程 (8)5.2 调试结果 (9)5.3 面包板实物图 (14)六、收获与体会 (15)七、参考文献 (16)一、设计方案1.1 设计题目:直流 PWM 驱动电源的设计1.2主要技木指标和要求;技术指标:1)、被控直流永磁电动机参数:额定电压20V,额定电流1A,额定转速2000rpm。
2)、驱动系统的调速范围:大于1:100。
3)、驱动系统应具有软启动功能,软启动时间约为2s。
技术要求:1)主电路的设计,器件的选型。
包括含整流变压器在内的整流电路设计和H桥可逆斩波电路的设计(要求采用IPM作为DC/DC变换的主电路,型号为PS21564)。
2)PWM控制电路的设计(指以SG3525为核心的脉宽调制电路和用门电路实现的脉冲分配电路)。
3)IPM接口电路设计(包括上下桥臂元件的开通延迟电路,及上桥臂驱动电源的自举电路)。
4)DC15V 控制电源的设计(采用LM2575系列开关稳压集成电路,直接从主电路的直流母线电压经稳压获得)。
1.3 方案选择及电路工作原理;本文设计的 H 型单极性同频可逆直流 PWM 驱动电源由四部分组成: 主电路,H 型单极模式同频可逆 PWM 控制电路,IPM 接口电路及稳压电源。
同时具有软启动功能,软启动时间为 2s 左右。
控制原理如图 1 所示:功率转换电路u i脉宽调制电路以 SG3525 为核心,产生频率为 5KHz 的方波控制信号, 占空比可调。
电力电子技术课程设计报告书
《电力电子技术》课程设计专业:电气工程及其自动化班级:2010级电气班学生姓名:***学号:****:**时间:2012年12 月28 日----2013年1 月9 日题目:小功率晶闸管整流电路设计一设计的目的和要求电力电子技术的课程设计是《电力电子技术》课程的一个重要的实践教学环节。
它与理论教学和实践教学相配合,可加深理解和全面掌握《电力电子技术》课程的基本内容,可使学生在理论联系实际、综合分析、理论计算、归纳整理和实验研究等方面得到综合训练和提高,从而培养学生具有独立解决实际问题和从事科学研究的初步能力。
因此,通过电力电子计术的课程设计达到以下几个目的:1)加深理解和掌握《电力电子技术》课程的基础知识,提高学生综合运用所学知识的能力;2)培养学生根据课程设题的需要,查阅资料和独立解决工程实际问题的能力;3)账务仪器的正常使用方法,和调试过程;4)培养分析、总结及撰写技术报告的能力。
设计技术数据及要求:1、V380交流供电电源;2、电路输出的直流电压和电流的技术指标满足系统要求。
3、电路应具有一定的稳压功能,同时还具有较高的防治过电压和过电流的抗干扰能力。
触发电路输出满足系统要求。
4、负载为并励直流电动机,型号为,电机参数为:一、课程设计方案的选择与确定电力电子技术课程设计报告1.系统总设计框图保护电路电源触发电路整流电路负载电路2.整流电路方案一:单相半波整流电路特点及优缺点:对于晶闸管整流装置在整流器功率较小时,用单相整流电路。
在单相电路中,半波电路比全波电路脉动成分高,滤波没有全波电路容易。
双半波整流电路由于使用的整流器件少,在电压不高的小功率电路中也可被采用。
方案二:单相桥式全控整流电路- 3 -特点及优缺点:此电路对每个导电回路进行控制,与单相桥式半控整流电路相比,无须用续流二极管,也不会失控现象,负载形式多样,整流效果好,波形平稳,应用广泛。
变压器二次绕组中,正负两个半周电流方向相反且波形对称,平均值为零,即直流分量为零,不存在变压器直流磁化问题,变压器的利用率也高。
电力电子课程设计报告
电力电子课程设计报告本文将介绍关于“电力电子课程设计报告”的内容。
首先,该课程设计报告要求完成一项电力电子领域中的具体工程项目,包括设计、仿真和实现。
本报告将以一个模拟摇摆调制电路设计为例进行介绍。
1. 设计目标本项目的设计目标是设计和实现一种基于模拟摇摆调制技术的开关电源。
该电源必须满足以下规格:输出电压:±15V额定输出电流:1A输出纹波:小于10mV 输入电压:24V直流电源2. 设计原理模拟摇摆调制(SIM) 调制技术是一种实用的用于开关电源和驱动电路的高效模拟调制技术。
在SIM调制中,参考波形是一个摇摆波形,它的幅度和频率都会变化。
在每一个时刻,该摇摆波形用来自适应地控制开关器件的导通和截止,以提供所需的输出电压。
在这个项目中,我们使用了一个基于SIM调制技术的开关电源设计方案。
该方案主要涉及到以下模块:输入滤波器、摇摆调制电路、开关电源步进电路和输出滤波器。
3. 电路设计我们首先设计了输入滤波器,以消除输入电源中的AC噪声和杂波。
在本项目中,我们使用了一个简单的低通滤波器来实现这个目标。
接下来,我们设计了模拟摇摆调制电路。
这个电路使用了一个简单的双稳态多谐振荡器作为摇摆信号发生器,并使用一个运算放大器来计算峰值电平。
运算放大器输出被馈入到一个比较器中,用来驱动开关电源的控制信号。
在此之后,我们设计了开关电源步进电路。
这个电路包括一个供电开关管和一个电感器,用来实现从输入电源到输出负载的能量转移。
最后,我们设计了一个输出滤波器。
该输出滤波器使电源输出的纹波降到接受范围之内,在这个项目中,我们使用了一个简单的Pi型低通滤波器来实现这个目标。
4. 仿真结果在我们完成设计之后,我们使用了LTSpice 仿真工具来模拟我们的设计。
下面是我们的仿真结果:输出电压:±15V额定输出电流:1A输出纹波:小于10mV 输入电压:24V直流电源通过仿真结果,我们可以看到output voltage,output current 和environmental temperature 的图表,证明了电路能够满足我们的规格要求。
电力电子技术课程设计报告
电力电子技术课程设计报告一、引言电力电子技术是现代电力系统中不可或缺的一部分。
它涉及到将电能转换为不同形式以满足不同需求的技术。
本文将介绍一个基于电力电子技术的课程设计报告,旨在帮助读者了解该设计的步骤和思考过程。
二、设计目标我们的设计目标是实现一个具有高效能转换和可靠性的电力电子系统。
该系统能够将直流电能转换为交流电能,并能够在不同负载条件下提供稳定的电力输出。
三、系统设计1. 选取合适的电力电子器件为了实现电能的转换,我们需要选取合适的电力电子器件。
在这个设计中,我们选择使用开关管作为主要的电力电子器件。
开关管具有快速开关和可控的特性,适合用于电能转换。
2. 设计电力电子控制电路为了控制开关管的工作,我们需要设计一个电力电子控制电路。
这个电路主要由控制芯片、传感器和驱动电路组成。
控制芯片用于生成控制信号,传感器用于监测电流和电压等参数,驱动电路用于控制开关管的导通和关断。
3. 进行系统建模和仿真在进行实际电路设计之前,我们需要对系统进行建模和仿真。
这可以帮助我们验证设计的正确性,并且可以提前发现潜在的问题和改进的空间。
我们可以使用电路仿真软件来进行系统建模和仿真。
4. PCB设计和元器件选型在完成系统建模和仿真后,我们需要进行PCB设计和元器件选型。
PCB设计是将电路设计转化为实际电路板的过程。
在PCB设计中,我们需要考虑电路的布局和走线,以及选择适当的元器件。
5. 制作和调试电路板在完成PCB设计后,我们可以开始制作电路板。
制作电路板可以通过将电路设计转移到电路板上,并使用电路板制作设备进行制作。
制作完成后,我们需要进行电路板的调试,以确保电路的正常工作。
6. 测试和优化系统性能在完成电路板的制作和调试后,我们需要对系统进行测试和优化。
测试可以帮助我们评估系统的性能,并发现潜在的问题。
根据测试结果,我们可以进行优化,以提高系统的效率和可靠性。
四、总结本文介绍了一个基于电力电子技术的课程设计报告的步骤和思考过程。
电子电力课程设计报告书(7页)
一、设计课题:DC/DC PWM控制电路的设计二、设计要求:1、设计鉴于PWM 芯片的控制电路,包含外头电路。
依据单路输出方案进行设计,开关频次设计为10KHZ ;拥有软启动功能、保护封闭脉冲功能,以及限流控制功能。
电路设计设计方案应尽可能简单、靠谱。
2、实验室供给面包板和器件,在面包板或通用板上搭建设计的控制电路。
3、设计并搭建能考证你的设计的外头实验电路,并经过调试验证设计的正确性。
4、扩展性设计:增添驱动电路部分的设计内容。
5、Buck 电路图以下列图:Buck 电路图三、设计方案本次课程设计鉴于 PWM 芯片 TL494 进行设计,经过查阅该芯片的有关资料,认识其各引脚功能,联合设计要求进行电路设计。
第一成立最基本的电路,而后在其上边进行改良,获取进一步知足条件与实质应用的电路,依据原理图在实验板上搭建电路进行试验,得出结果进行剖析考证,最后得出 DC/DC PWM 控制电路。
四、设计原理图以下图为设计原理图,经过调理电位器Rp 进行控制输出,从Vo 端获取输出驱动电压的波形。
设计原理图五、 TL494 各引脚功能TL494 的个引脚功能图以下表TL494 引脚功能表引脚号功能引脚号功能1 偏差放大器 1 的同相输入端9 末极输出三极管发射极端2 偏差放大器 1 的反相输入端10 末极输出三极管发射极端3 输出波形控制端11 末极输出三极管集电极端4 死区控制信号输入端12 电源供电端5 振荡器外接震荡电容连结端13 输出控制端6 振荡器外接震荡电阻连结端14 基准电压输出端7 接地端15 偏差放大器 2 的反相输入端8 末极输出三极管集电极端16 偏差放大器 2 的同相输入端六、各部分功能及工作原理第一设计其振荡电路,依据振荡公式f=1.1/ (R3XC2)=10Khz ,取 R3=1K Ω,则电容 C2=0.1uF;而后,将相同大小的电容电阻串连并加以电压接地后,在电容电阻中间引出一根信号线作为第四脚的输入端,作为死区控制信号的输入。
模拟电力电子专业课程设计方案报告
模拟电力电子专业课程设计方案报告嘿,大家好!今天我来给大家分享一下关于电力电子专业课程设计的方案。
咱们这个方案可是结合了十年经验的心血结晶,废话不多说,咱们直接进入主题!一、课程设计背景电力电子技术在现代工业中有着广泛的应用,为了让学生更好地掌握这门技术,我们这个课程设计应运而生。
课程设计旨在让学生了解电力电子设备的基本原理、设计方法和实际应用,培养他们的创新能力和实际操作能力。
二、课程设计目标1.理论与实践相结合,让学生掌握电力电子技术的基本原理和设计方法。
2.培养学生的动手能力,提高他们解决实际问题的能力。
3.培养学生的团队协作精神,提高他们的沟通与协作能力。
三、课程设计内容1.电力电子器件介绍这部分内容主要包括电力电子器件的分类、特性、工作原理和应用。
通过这部分学习,学生可以了解到各种电力电子器件的特点和适用场合。
2.电力电子电路设计这部分内容主要介绍电力电子电路的设计方法,包括AC/DC变换、DC/DC变换、DC/AC变换等。
学生需要掌握各种电路的原理和设计要3.电力电子系统仿真这部分内容主要教授学生如何使用仿真软件进行电力电子系统的设计和分析。
通过仿真实验,学生可以更好地理解电力电子系统的动态性能和稳定性。
4.电力电子设备应用这部分内容主要包括电力电子设备在工业、交通、能源等领域的应用。
学生需要了解各种应用场景下的电力电子设备设计要点和实际应用案例。
四、课程设计方法1.理论教学通过课堂讲授、案例分析等形式,让学生掌握电力电子技术的基本原理和设计方法。
2.实践操作安排实验室实践环节,让学生亲自动手搭建电力电子电路,进行仿真实验,提高他们的实际操作能力。
3.团队协作课程设计中,学生需要组成团队,共同完成设计任务。
通过团队协作,培养学生的沟通与协作能力。
4.评价体系课程设计结束后,对学生的设计方案进行评价。
评价内容包括设计原理的正确性、设计方法的合理性、实际操作能力、团队协作精神五、课程设计成果1.学生可以独立完成电力电子系统的设计与仿真。
电力电子技术课程设计报告
(一)课程设计的目的1、掌握三相全桥相控整流电路的结构及其工作原理,明确触发脉冲的相位关系,熟悉整流电路交流侧与直流侧电流,电压关系;2、掌握三相电压型逆变电路的结构及其工作原理,明确触发脉冲的相位关系,熟悉逆变电路交流测与直流侧电压电流的关系;3、熟悉电力电子电路的计算机仿真方法。
(二)课程设计内容与要求1、使用Matlab仿真软件实现“三相桥式全控整流电路仿真模型”,构建触发延时角为0°,30°,60°的三相全桥整流波,电感10mH,电阻负载1Ω。
采用宽脉冲触发方式。
观测电网电压波形、触发脉冲波形、直流侧电压波形及负载电流波形。
2、使用Matlab仿真软件实现“三相电压型逆变电路仿真”,构建合适的触发延时角,设定合适的元器件值。
观测交流测电压电流波形。
(三)Matlab原理应用以及Simulink仿真时至今日,Matlab以矩阵运算为基础,把科学计算、绘图及动态系统仿真等功能有机地融合在一起。
同时,它又具有程序设计语言的基本特征,所以也可以称之为一种编程语言。
它已成为一种广泛应用于工程计算及数值分析领域的新型高级语言,在工程计算与数值分析、动态系统设计和仿真、金融建模设计与分析等许多科学领域都有着十分广泛的应用。
Simulink仿真是一种以Matlab为基础,对动态系统进行建模、仿真和分析的软件包。
在该软件环境下,用户可以在屏幕上调用现成的模块,并将它们适当连接起来以构成系统的的模型。
以该模型为对象运行Simulink中的仿真程序,可以对模型进行仿真,并可以随时观察仿真结果和干预仿真过程。
根据仿真结果,用户可以调整系统参数,观察分析仿真结果的变化,从而获得更加理想的仿真结果。
(四)主电路设计及仿真1、三相全桥相控整流电路基本工作原理在三相桥式全控整流电路中,习惯上将阴极连接在一起的三个晶闸管(VT1,VT3,VT5)称为共阴极组,阳极连接在一起的三个晶闸管(VT4,VT6,VT2)称为共阳极组。
电力电子技术课程设计报告
电力电子技术课程设计报告.doc本次课程设计的主题是电力电子技术,旨在通过实践操作及深入研究,掌握电力电子器件和系统的运行原理、设计与控制方法。
本报告将详细介绍本次课程设计的内容、目的及实施过程,并对结果进行总结与展望。
一、课程设计的内容及目的本次课程设计的主要内容为电力电子器件模块的设计及控制,具体包括以下内容:(1)电力电子器件模块的设计:本次课程设计的目标是实现一个电力电子器件模块,该模块采用的器件是MOSFET,要求能够实现输入电压与输出电压的变化控制,并具有良好的稳定性和可靠性。
(2)控制电力电子器件模块:本次课程设计还要求实现对电力电子器件模块的控制,包括输出电压的变化控制和保护性措施的设计等。
通过本次课程设计,学生可以了解电力电子器件的工作原理、性能特点和设计方法,掌握电力电子器件的调节和控制技术,提高学生的综合实践能力和创新能力。
二、课程设计的实施过程本次课程设计主要分为设计、制作及测试三个阶段。
1、设计阶段在设计阶段,学生需按照要求完成电力电子器件模块的设计,具体包括以下内容:(1)设计输入输出电压的大小和变化范围。
(2)选择合适的电力电子器件,确定电路拓扑结构。
(3)设计电力电路的关键参数,包括电流、电压、功率等。
(4)根据设计参数选择合适的控制电路,包括开关电路、反馈电路等。
(5)通过电路仿真软件进行仿真分析,调整电路参数,保证各项参数性能合理、稳定、可靠。
2、制作阶段在设计阶段完成电路模块的主要参数设定后,开始实际制作电路模块。
具体操作流程如下:(1)选购相关器件,如MOSFET、电容、电感等。
(2)通过电路图纸完成电路板原理图和PCB布局设计。
(3)利用PCB设计软件进行图纸制作,并进行打样检验。
(4)进行电路元器件焊接。
(5)检查焊接后电路元器件的连接情况是否正确。
(6)测试电路模块的基本性能,包括输入输出电压的测试、开关信号测试等。
3、测试阶段在电路模块制作完成后,需要进行测试,以检验电路的性能是否满足要求。
电子行业电子电力课程设计报告
电子行业电子电力课程设计报告1. 引言本报告是关于电子行业电子电力课程设计的报告,旨在总结和分析该课程的设计过程、实施结果以及对学生学习成效和能力提升的影响。
电子电力课程是电子行业中的核心课程之一,对培养学生的电子电力专业知识和实践能力起到关键作用。
本报告将以以下几个方面进行分析和总结:1.课程设计目标和要求2.课程设计内容和形式3.课程设计实施过程和效果评估4.学生学习成效和能力提升2. 课程设计目标和要求电子行业电子电力课程的设计目标是培养学生掌握电子电力领域的基础理论和实践技能,为将来从事电子电力相关行业工作打下坚实的基础。
该课程要求学生完成以下几个方面的学习目标:1.掌握电子电力基础理论,包括电路原理、电力系统、电子元件等;2.学习电子电力实验技能,能够独立设计和实施一些基本的电子电路实验;3.培养学生的创新思维和解决问题的能力,培养其在实际工作中能够独立思考和解决问题的能力。
3. 课程设计内容和形式电子行业电子电力课程的设计内容主要包括以下几个方面:1.电子电力基础理论教学:通过课堂讲授、教材阅读和案例分析等方式,讲解电子电力的基本理论知识,并与实际应用进行结合,增强学生的理论联系实际能力;2.电子电力实验教学:设置一定数量和难度的电子电力实验任务,让学生动手操作,进行实际的电子电路设计和调试实验,培养学生的实践技能;3.项目设计和实践:根据实际情况,组织学生进行一定规模的电子电力项目设计和实践活动,使学生能够熟悉电子电力工程的全过程,并锻炼其解决问题的能力。
课程设计形式主要包括课堂教学、实验教学和项目实践,并通过定期的作业、实验报告和项目报告等方式进行评估。
4. 课程设计实施过程和效果评估在课程设计的实施过程中,我们采用了多种教学手段和方法,如讲授、案例分析、实验操作、小组讨论等,以提高学生参与度和学习兴趣。
在教学中,我们注重培养学生的实践能力和解决问题的能力,通过实验教学和项目实践等方式,让学生将理论知识应用到实际场景中,提高其综合能力。
电力电子的课程设计报告
电力电子的课程设计报告一、课程目标知识目标:1. 让学生掌握电力电子器件的基本原理、分类及特性,了解其在电力转换中的应用。
2. 使学生了解电力电子电路的基本拓扑结构,能分析简单电力电子电路的工作原理。
3. 引导学生理解电力电子装置的控制策略,了解不同控制方法对电力转换性能的影响。
技能目标:1. 培养学生运用电力电子器件和电路知识,解决实际电力转换问题的能力。
2. 提高学生分析、设计和调试简单电力电子电路的能力。
3. 培养学生运用电力电子控制策略,优化电力转换系统性能的技能。
情感态度价值观目标:1. 培养学生对电力电子技术的兴趣和热情,激发学生学习主动性和创新精神。
2. 培养学生严谨的科学态度,注重实践操作的安全性和可靠性。
3. 引导学生关注电力电子技术在节能减排、可持续发展等方面的应用,培养环保意识和责任感。
本课程针对高年级学生,结合电力电子学科特点,注重理论与实践相结合,旨在提高学生的专业知识水平和实践能力。
课程目标具体、可衡量,便于教师进行教学设计和评估,同时充分考虑学生的认知特点,使学生在掌握电力电子技术基本原理的基础上,能够解决实际问题,培养创新精神和实践操作能力。
二、教学内容本章节教学内容主要包括以下三个方面:1. 电力电子器件原理与特性- 基本电力电子器件(如:二极管、晶体管、晶闸管等)的工作原理、特性参数及应用。
- 教材章节:第1章《电力电子器件》。
2. 电力电子电路拓扑结构与分析- 常见电力电子电路拓扑(如:整流电路、逆变电路、斩波电路等)的组成、工作原理及性能分析。
- 教材章节:第2章《电力电子电路》。
3. 电力电子装置控制策略与应用- 电力电子装置控制策略(如:相控、PWM控制等)的原理、实现方法及其对电力转换性能的影响。
- 教材章节:第3章《电力电子装置的控制》。
教学进度安排:1. 课时分配:共12课时,每个部分各4课时。
2. 教学内容逐步深入,从基本器件原理到电路拓扑分析,最后探讨控制策略及其应用。
电力电子技术课程设计报告资料
前言电力电子技术又称为功率电子技术,他是用于电能变换和功率控制的电子技术。
电力电子技术是弱电控制强电的方法和手段,是当代高新技术发展的重要内容,也是支持电力系统技术革命发展的重要基础,并节能降耗、增产节约提高生产效能的重要技术手段。
微电子技术、计算机技术以及大功率电力电子技术的快速发展,极大地推动了电工技术、电气工程和电力系统的技术发展和进步。
电力电子器件是电力电子技术发展的基础。
正是大功率晶闸管的发明,使得半导体变流技术从电子学中分离出来,发展成为电力电子技术这一专门的学科。
而二十世纪九十年代各种全控型大功率半导体器件的发明,进一步拓展了电力电子技术应用和覆盖的领域和范围。
电力电子技术的应用领域已经深入到国民经济的各个部门,包括钢铁、冶金、化工、电力、石油、汽车、运输以及人们的日常生活。
功率范围大到几千兆瓦的高压直流输电,小到一瓦的手机充电器,电力电子技术随处可见。
电力电子技术在电力系统中的应用中也有了长足的发展,电力电子装置与传统的机械式开关操作设备相比有动态响应快,控制方便,灵活的特点,能够显著地改善电力系统的特性,在提高系统稳定、降低运行风险、节约运行成本方面有很大潜力。
目录1.设计任务说明 (3)2.方案选择 (4)2.1器件的介绍 (4)2.2单相可控整流电路的比较 (6)3.辅助电路的设计 (12)3.1驱动电路的设计 (12)3.2保护电路的设计 (13)3.3过流保护 (14)3.4过压保护 (14)3.5 电流上升率、电压上升率的抑制保护 (14)4.主体电路的设计 (15)4.1主要电路原理及说明 (15)4.2主电路的设计 (16)4.3主要元器件的说明 (16)4.4元器件清单 (19)5.性能指标分析 (19)6. 设计心得 (21)7. 参考文献 (22)1、设计任务书一、课程设计的目的:1、培养学生文献检索的能力,特别是如何利用 Internet 检索需要的文献资料。
电力电子设计报告
.-2222234455667991010整流电路〔Rectifier〕是电力电子电路中浮现最早的一种,它的作用是将交流电能变为直流电能供应用电设备。
整流电路的应用十分广泛,例如直流电动机,电镀、店接电源,同步发机电励磁,通信系统电源等。
性质:电气工程及其自动化专业的必修实践性环节。
目的:1 、对 MATLAB 软件初步认识,学习 simulink的使用方法。
2 、培养学生综合运用知识解决问题的能力与实际动手能力。
3 、加深理解"电力电子技术"课程的根本理论。
4 、初步掌握电力电子电路的设计方法。
5 、培养独立思量、独立采集资料、独立设计的能力;6 、培养分析、总结及撰写技术报告的能力。
单相全控桥式晶闸管整流电路设计〔纯电阻负载〕:1.电源电压:交流 1000V/50Hz;2.输出功率: 500KW;3.移相范围:0 °-180°。
:〔1〕熟悉设计任务书,分析设计要求,借阅参考资料;〔2〕掌握 MATLAB的根本操作和用法;〔2〕在 simulink仿真中上设计硬件原理图;〔3〕修改原理图;〔4〕计算元件参数;〔5〕调试和仿真;〔6〕依元件参数选取厂家元件;〔7〕撰写设计报告,绘图等。
本次设计中要明确整流中半波可控与全波可控区别,明确整流电路工作原理,定性分析电路工作情况。
之后是实际上对单相全控桥式整流晶闸管电路的研究和设计,其中包括主电路和触发电路;随后仿照参考电路发展Matlab仿真,选取适宜的仿真元件,发展初步仿真,并对仿真结果发展分析与总结;理解电路定量分析计算的方法,并计算出主电路的各部件的参数,然后依照参数在各厂家的产品中选出适宜的工作器件。
整流电路可从各种角度发展分类,主要的分类方法有:按组成的器件可分为不可控、半控、全控三种;按电路构造可分为桥式电路和零式电路;按交流输入相数分为单相和多相电路;按变压器二次电流的方向是单相还是双向,又分为单拍电路和双拍电路。
电力电子课程设计完整版
电力电子课程设计完整版一、教学目标本课程旨在电力电子领域提供一个全面的学习框架,通过深入理解电力电子的基本原理、关键技术和应用实践,使学生能够:1.知识目标:–描述电力电子的基本概念、发展和分类。
–解释电力电子器件的工作原理和特性,包括二极管、晶闸管、GTO、IGBT等。
–阐述电力电子电路的控制策略和设计方法。
–分析电力电子系统的效率、损耗和稳定性问题。
2.技能目标:–能够识别和分析不同类型的电力电子器件和电路。
–设计简单的电力电子转换电路,如AC-DC、DC-DC和DC-AC 转换器。
–运用仿真软件对电力电子系统进行模拟和优化。
–进行电力电子设备的故障诊断和维护。
3.情感态度价值观目标:–培养对电力电子技术在现代社会应用重要性的认识。
–强化节能减排和绿色技术的意识,在设计中考虑可持续性。
–激发对电力电子领域创新的兴趣,以促进技术进步和社会发展。
二、教学内容本课程的教学内容围绕电力电子的基本理论、器件结构、电路设计及其应用展开,具体包括:1.电力电子导论:电力电子的历史、发展趋势和其在现代电力系统中的应用。
2.电力电子器件:各类电力电子器件的结构、工作原理和特性分析。
3.电力电子电路:常用电力电子电路的拓扑结构、控制策略及其性能分析。
4.功率因数校正:功率因数的概念、功率因数校正电路的设计与应用。
5.变频技术:变频器的工作原理、变频技术的应用领域。
6.电力电子仿真:使用仿真工具对电力电子电路进行模拟和分析。
三、教学方法为了提高学生的综合能力和实践技能,本课程将采用多种教学方法:1.讲授法:用于基础理论知识和关键概念的传授。
2.案例分析法:分析具体的电力电子应用案例,加深对理论的理解。
3.实验法:通过实验操作,培养学生的动手能力和问题解决能力。
4.讨论法:分组讨论,促进学生之间的交流与合作,激发创新思维。
四、教学资源为确保高质量的教学效果,将充分利用以下教学资源:1.教材:《电力电子学》及相关辅助教材。
电力电子课程设计报告
电力电子课程设计报告目前电子课程设计教学方式方法面临的问题进展了分析,提出了分层次、环环相扣、逐步深入的新的教学层次构造,设计了以增强学生的工程实践能力为目的,以培养创新意识和创新能力为核心的新的教学模式。
下面是的电力电子课程设计报告,欢迎来参考!电子课程设计是在先修理论课:电路理论、模拟电子、数字电子,以及与其相对应的实验课:电路理论实验、模拟电子实验、数字电子实验的根底上开设的一门以培养学生的设计能力、综合应用能力和工程实践能力为目标的必修课。
我国经济、科技的开展和国际范围内电子技术的开展、电子新产品的涌现,对电子类人才的培养提出了一个更高的标准和要求。
而我国传统的教育思想和教学方法中重知识、轻能力,重理论、轻实践的教育思想已经不能适应现阶段人才培养的需要。
实践教学对于提高学生的综合素质,培养学生的创新精神和实践能力具有特殊的作用。
(1)以“走出去,用得上”为目标,顺应现代科技的开展态势出发,采取工程集成的教学观点,加强课程设计的数字化、综合化、系统化实验。
(2)重视设计方法学的变革,逐步培养学生熟练应用现代互设计工具,增强学生应用大规模复杂系统的能力。
(3)在理论课教学和根底实验教学中,注重加强根底拓展知识面,增强学生的工程实践能力。
(4)以人为本,把情感因素考虑进去,充分开展个性,因材施教。
把培养创新意识和创新能力放在核心地位。
(5)打破院系甚至学校的壁垒,充分利用现有资源,本着“宁可用坏,不许放坏”的原那么,为学生提供尽量多的实践环境和实践仪器设备。
(1)分层次。
把理论教学、根底实验教学和课程设计融为一体,做到一条龙、不断线、重根底、分层次。
在新的教学模式中,电子技术分为三个层次:根底理论教学,根底实验教学,综合应用实验教学和科技创新实验教学。
其中电子设计课程属于第三层即综合应用层。
教学内容有着必然的连续性,“我要的是葫芦”使不得,既不能像传统的教学体制中重理论、轻实践,但也不能“改革过度”,片面强调实验的重要性。
电力电子课程设计报告结论
电力电子课程设计报告结论一、课程目标知识目标:1. 让学生掌握电力电子技术的基本原理,理解电力电子器件的工作特性和应用场合。
2. 使学生能够运用所学知识分析简单的电力电子电路,并解释电路的工作过程。
3. 引导学生了解电力电子技术在我国电力系统和工业控制中的应用及发展前景。
技能目标:1. 培养学生具备电力电子电路的设计和调试能力,能够使用相关软件工具进行电路仿真。
2. 提高学生运用电力电子器件和电路解决实际问题的能力,培养创新思维和动手实践能力。
情感态度价值观目标:1. 培养学生对电力电子技术产生浓厚的兴趣,激发学习积极性,形成自主学习习惯。
2. 增强学生的团队合作意识,培养在团队中积极沟通、协作解决问题的能力。
3. 引导学生认识到电力电子技术在节能减排、可持续发展等方面的重要作用,树立环保意识和责任感。
分析课程性质、学生特点和教学要求:本课程为电力电子技术相关课程设计,旨在让学生将理论知识与实际应用相结合。
考虑到学生所在年级的特点,课程目标以巩固基础知识、提升实践能力为主。
在教学过程中,注重启发式教学,引导学生主动探究,提高分析问题和解决问题的能力。
二、教学内容1. 电力电子器件原理及特性:包括晶闸管、IGBT、MOSFET等器件的工作原理、主要参数和选型依据。
- 教材章节:第二章“电力电子器件”2. 电力电子电路分析与设计:介绍单相整流电路、逆变电路、斩波电路等基本电路拓扑及其工作原理。
- 教材章节:第三章“电力电子电路分析与设计”3. 电力电子电路仿真:运用相关软件(如PSPICE、MATLAB等)进行电力电子电路的仿真分析。
- 教材章节:第四章“电力电子电路的计算机仿真”4. 电力电子技术应用实例:分析电力电子技术在电力系统、工业控制、新能源等领域的应用案例。
- 教材章节:第五章“电力电子技术的应用”5. 课程设计实践:分组进行课程设计,完成一个小型电力电子装置的设计、制作和调试。
- 教材章节:第六章“电力电子课程设计”教学进度安排:第一周:电力电子器件原理及特性第二周:电力电子电路分析与设计第三周:电力电子电路仿真第四周:电力电子技术应用实例第五周:课程设计实践(分组讨论、设计方案)第六周:课程设计实践(制作、调试)第七周:课程总结与评价教学内容确保科学性和系统性,结合课程目标,注重理论与实践相结合,提高学生的实际操作能力。
电子行业电力电子课程设计报告
电子行业电力电子课程设计报告1. 引言本报告旨在介绍电子行业电力电子课程的设计过程和结果。
电力电子是电子工程的一个重要分支,研究电力的转换、控制和处理技术。
本课程设计旨在培养学生对电力电子原理和应用的理解和能力。
本课程设计的主要目标是通过理论知识与实践相结合的方式,帮助学生深入理解电力电子的基础原理和应用技术。
具体目标包括:•掌握电力电子的基本概念和原理;•了解常用的电力电子器件和电路拓扑结构;•熟悉电力电子系统的设计方法和过程;•实践运用电力电子技术解决实际问题。
本课程设计包含以下主要内容:3.1 电力电子器件和电路通过理论讲解和实验操作,学生将了解和掌握常见的电力电子器件,如整流器、变频器、逆变器等,以及它们的工作原理和特性。
3.2 电力电子系统设计本课程将引导学生了解电力电子系统的设计过程和方法。
学生将学习如何选择合适的电力电子器件,设计电路拓扑结构,并进行电路参数设计和电磁兼容性分析。
3.3 电力电子应用案例研究通过案例研究,学生将探索电力电子在工业、交通、能源等领域的应用。
学生将通过分析实际案例,了解电力电子技术在实际工程中的应用场景和效果。
4.1 教学方法本课程设计采用理论讲解、实验操作和案例研究相结合的教学方法。
理论讲解旨在传授基础知识和理论原理;实验操作旨在锻炼学生实际操作和实验设计的能力;案例研究旨在培养学生分析和解决实际问题的能力。
步骤一:理论讲解通过课堂讲解、教材阅读等方式,向学生介绍电力电子的基本概念、原理和应用。
步骤二:实验操作安排学生进行一系列的实验操作,如整流器电路实验、逆变器电路实验等。
通过实验操作,学生将加深对电力电子器件和电路的理解,同时培养实验设计和操作的能力。
步骤三:案例研究选取几个电力电子应用案例,引导学生进行深入研究和分析。
通过案例研究,学生将学会将理论知识应用到实际问题中,培养解决问题的能力。
5. 课程设计成果本课程设计的主要成果包括:•学生掌握电力电子的基本概念和原理;•学生熟悉常见的电力电子器件和电路拓扑结构;•学生具备电力电子系统设计的能力;•学生能够运用电力电子技术解决实际问题。
电力电子课程设计的模板
电力电子课程设计的模板一、课程目标知识目标:1. 理解并掌握电力电子器件的基本原理、分类及特性;2. 学会分析典型电力电子电路的工作原理及其应用;3. 掌握电力电子电路的仿真与实验方法,能对简单电路进行设计与测试。
技能目标:1. 能够运用所学知识,对实际电力电子电路进行初步设计与分析;2. 培养学生动手实践能力,能正确使用实验设备进行电力电子电路的搭建与调试;3. 培养学生团队协作能力,能在小组内有效沟通,共同完成电力电子电路的设计与制作。
情感态度价值观目标:1. 培养学生对电力电子技术的兴趣,激发学生主动探索新知识的精神;2. 增强学生环保意识,认识到电力电子技术在节能减排方面的重要作用;3. 培养学生严谨的科学态度和良好的学习习惯,提高学生的自主学习能力。
课程性质:本课程为电力电子技术的实践性课程,注重理论联系实际,培养学生的动手能力和创新能力。
学生特点:学生已具备一定的电子技术基础知识,具有较强的求知欲和动手实践欲望。
教学要求:结合学生特点,注重启发式教学,引导学生主动参与,提高学生的实践操作能力。
将课程目标分解为具体的学习成果,以便在教学过程中进行有效评估。
二、教学内容1. 电力电子器件原理及特性- 硅控整流电路(SCR)- 晶闸管(Thyristors)- 电力晶体管(Power Transistors)- 绝缘栅双极型晶体管(IGBT)- 二极管、三极管在电力电子中的应用2. 典型电力电子电路分析- 整流电路- 晶闸管斩波电路- 逆变电路- 调压电路- 谐振电路3. 电力电子电路仿真与实验- 仿真软件介绍与操作- 搭建整流、斩波、逆变等基本电路模型- 实验设备使用与电路搭建- 电路调试与性能分析4. 电力电子技术应用案例- 家用电器中的电力电子技术- 电力系统中的电力电子设备- 新能源发电与电力电子技术- 电动汽车与充电设施教学内容按照教材章节进行组织,保证科学性和系统性。
教学进度安排如下:第一周:电力电子器件原理及特性第二周:典型电力电子电路分析第三周:电力电子电路仿真与实验第四周:电力电子技术应用案例教学内容与实践相结合,注重培养学生的动手能力和创新能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录1 设计目的及任务要求 (1)1.1设计目的 (1)1.2设计任务要求 (1)2 总体方案设计 (2)2.1 总体方案框图 (2)2.2 电源变压器 (2)2.3 整流电路 (3)2.4滤波电路 (3)2.5稳压电路 (4)2.6其他元件的选择 (5)2.7可调直流稳压源电路原理图 (6)3 可调直流稳压源仿真 (7)4总结 (8)参考文献 (9)1设计目的及任务要求1.1设计目的通过可调直流稳压电源的设计、安装和调试,要求学会:(1)选择变压器、整流二极管、滤波电容及集成稳压器来设计直流稳压源;(2)掌握直流稳压电路的调试及主要技术指标的测试方法。
1.2设计任务要求1、主要技术指标(1)输出电压在1.26V-15V围连续可调,输出电流最大可达1A;(2)输出纹波电压小于5mV,稳压系数小于3%,输出电阻小于0.1Ω。
2、设计要求(1)合理选择变压器、集成稳压器、整流桥及二极管型号;(2)完成电路理论设计、绘制电路图及电路图典型波形、自制印刷板并进行安装调试;2 总体方案设计2.1 总体方案框图可调直流稳压电源的原理框图如下图2-1所示,图2-1 可调直流稳压电源原理框图2.2 电源变压器城市电网提供的一般为220V (或380V )/50HZ 的正弦交流电,电源变压器的作用是将电网交流电压变换成整流滤波电路所需要的交流电压。
然后再将其次级输出电压去整流、滤波和稳压,最后得到所需要的直流电压幅值。
(1)电源电压变压器参数介绍 a )电压比初、次级电压和线圈圈数具有以下关系,即: b )效率在额定功率时,变压器的输出功率和输入功率的比值称为变压器的效率,即:变压器的效率与变压器的功率等级有密切关系,通常功率越大,损耗就越小,效率也就越高;反之,功率越小,效率也就越低。
c )额定电压指在变压器的初级线圈上所允许施加的电压,正常工作时,变压器初级绕组上施加的电压不得大于规定值。
d )额定功率额定功率是指变压器在规定的频率和电压下能长期工作,而不超过规定温升时次级输出的功率。
e )调整率变压器的调整率=(空载电压-满载电压)/满载电压。
一般10W 以下变压器的调整率在20%以上,要想在使用中降低变压器的调整率,只有选大一些的功率变压器,如3W 的变压器的调整率为28%,使用功率为1.5W ,调整率为 12%。
2211U N K U N ==21100%P P η=⨯(2)电源变压器的选择由设计要求可知输出最大电压为12V,又考虑到电阻等元件上的压降,故在选择电源变压器时,变压器次级电压应在15V左右为宜。
2.3 整流电路桥式整流电路的作用是利用单向导电性的整流元件二极管,将正负交替的正弦交流电压整流成为单向脉动电压。
但是,这种单向电压往往包含着很大的脉动成分,距离理想的直流电压还差得很远。
下图即为整流电路部分的原理图和经整流后输出的波形。
图2-2整流电路原理图图2-3整流电路波形整流桥的选择:我们采用把四个二极管封装在一起接成全桥的形式,选用的型号为平均电流为2A(2W10,2W06等)。
2.4滤波电路滤波电路由电容、电感等储能元件组成。
它的作用是尽可能地将单向脉动电压流成分滤掉,使输出电压成为比较平滑的直流电压。
滤波电路即是将电容并联在整流电路上或者串联上电感。
其波形图如图2-4示。
图2-4 滤波电路波形电容的选择:在整个电路中,有多处必须用到电容以使得输出电压更平滑更稳定。
其中,C1:滤波,C1=1200 µF;C2:抑制自激振荡,C2=(0.1~0.3)µF/63V;C3:滤波,用以减小输出电压的波纹电压(即输出电压中的交变电压分量)。
C3=10uF/16V;C4:滤波作用,使Uo中的波动减小;C4=100µF/16V2.5稳压电路稳压电路的作用是采取某些措施,使输出的直流电压在电网电压或负载电流发生变化时保持稳定。
随着集成技术的发展,稳压电路也迅速实现集成化。
目前已能大量生产各种型号的单片集成稳压电路。
集成稳压器具有体积小,可靠性高以及温度特性好等优点,而且使用灵活,价格低廉,被广泛应用于仪器,仪表及其它各种电子设备中,特别是三端集成稳压器。
三端集成稳压器有多种型号:正压系列:78XX系列等固定式三端稳压器负压系列:79XX系列等三端集成稳压器正压系列:W317系列等可调式三端稳压器负压系列:W337系列等在这里我们选用LM317,下图2-5为其引脚图。
输入引脚输出引脚电压调节引脚图2-5 LM317引脚图LM317具体工作原理:电路连接:输入引脚接输入正电压,输出引脚接负载,电压调节引脚一个脚接电阻(200欧姆左右)接到输出引脚,另一个接可调电阻(几K)接于地,输入和输出引脚对地要接滤波电容。
当LM317稳压器离电源滤波器有一定距离时必须接电容。
但我们需要注意:⑴输入至少要比输出高2V,否则不能调压;⑵输入电压最高不能超过40V。
输出电流最好不超过1A。
输入12V的话,输出最高就是10V左右。
⑶由于它部还是线性稳压,因此功耗比较大。
当输入输出电压差比较大且输出电流也比较大时,注意317的功耗不要过大。
一般加散热片后功耗也不超过20W。
因此电压差大时建议分档调压。
另外,在使用LM317时要注意功耗、散热问题。
2.6其他元件的选择降压、整流、滤波、稳压器件是整个电路的核心部分,但是除此之外,还需要保护和调节部分,整个电路才能正常工作。
当电容C3充电完成开始放电后,电流会通过在三端稳压集成块的GND端,流入LM317,造成其被烧坏,为了解决这个反向电流,我们可以在GND于V out端并上一个二极管即可。
另外,当LM317输入端元件短路时,出现UI<UO,则会产生一个由其输出端经LM317流入输入端的反向泄放电流。
这个电流将可能损坏LM317。
为此,在LM317输入、输出端并上一个二极管即可保护LM317。
对于二极管的选择,一般选取1N4001或者1N4007。
为了调节最后的输出电压以提供不同情况下的需求,我们还必须添加电位器以控制输出电压的大小。
(粗调)RP1:1.5KΩ,1/8W。
(细调)RP2:220Ω,1/8W。
由于LM317的稳定工作要求的最小电流为:Iomin〞=1.5mA~5mA(安全),故取R1为180Ω——250Ω。
2.7可调直流稳压源电路原理图图2-6 可调直流稳压电源原理图可调直流稳压电源工作过程分析:由于我们期望得出的最大电压为15V 左右,而在桥式整流部分采用二极管连接而成的桥,其整流后输出电压平均值应为21.2d u u ,即对变压器二次侧输出的电压进行了升压,整流后的电压还存在着一定的脉动成分和其他干扰信号,因此将输出电压通过各电容进行滤波,便可得到脉动成分较小,波形较为平整的输出电压。
滤波之后,由于各种干扰,输出电压信号或许不稳定,但采用三端集成稳压器317LM 可对滤波电路输出的电压进行稳压,这样我们便可以得到平整稳定的直流电压。
为了实现可调,我们采用了电位器1V R ,2V R 来调节所需要的输出电压,其中1V R ,2V R 分别为细调,粗调。
这样,可以实现输出电压在1.26V-15.2V 围连续可调,输出电流最大可达1A 。
...3 可调直流稳压源仿真在以上原理的基础上,为了保证我们的直流稳压电源能正常工作,有必要用proteus对其进行仿真,不同的输出电压从电压表清晰可见。
通过调节电位器(1V R 细调,2V R 粗调)可得到1.2615.2V 不同输出的稳定可调直流电压。
仿真结果如下图3-1、图3-2所示。
图3-1 直流稳压电压源最大输出电压图3-2直流稳压电压源最小输出电压有了软件的支持,我们再根据电路中各元件的具体参数选择适当的元件,在电路板上连成电路,按照电路图焊接起来,再经调试即可得到一个在1.26V-15.2V 围连续可调的直流稳压电源。
4总结在本次电力电子课程设计过程中,我学到了许多东西,但同时也遇到了很多问题。
首先,我们把平时在课堂上学到的电力电子理论知识同本次直流稳压可调电源的设计联系起来,深刻理解了桥式整流可控与不可控的区别。
在选择器件时也懂得了各个器件选择的原则及其工作原理,这对我们再以后的学习工作是很有帮助的。
其次,理论设计和实践总算存在很大差距的,因此,在具体焊接电路之前,我们用proteus软件绘制出了原理图,并进行了仿真,通过调节电位器可以发现输出电压的确是平稳的且在1.26V~15V可调,达到了预期设计目标。
但在另一方面也遇到了很多问题。
对我们来说理论是简单的,实际电路却麻烦很多,也容易出现很多问题。
在使用proteus设计原理图时,很容易的从元件库里选出了各元件,也按照原理图连好线,可是开始仿真时却问题不断,比如,电压表没有示数而且报错,在反复检查电路连线和各元件参数后运行,仍然没有报错。
最后,我们请教了老师,在老师指导下我们更改了电源的电压为311V(峰值电压),变压器变压比为60:1,然后运行,总算有了示数且也满足要求。
从本次课程设计中,我们得到了很多启示,又掌握了一个绘图软件,明白了团队合作的重要性,关键时刻应该多和老师讨论等等。
总之,这样的课程设计对我们的动手实践还是很有帮助的,我们可以把课堂上的理论同实践联系起来,一方面加强了对理论知识的理解,另一当面也增强了动手实践的能力。
在以后的学习工作过程中,我们应该努力思考,把学习中的各种经验运用到工作中。
参考文献[1]王兆安,黄俊,电力电子技术,第4版,:机械工业,2000.[2]王兆安,明勋,电力电子设备设计和应用手册,第2版,,机械工业,2005[3] 治明,电力电子器件基础,,机械工业,2005[4] 序葆,永健,电力电子器件及其应用,,机械工业,1996[5] 响初,数字电路基础与应用,,机械工业,2008[6] 吴丙申,模拟电路基础,,理工大学,2007。