文献翻译-数据类型泛化用于数据挖掘算法

合集下载

数据挖掘的基本原理和算法

数据挖掘的基本原理和算法

数据挖掘的基本原理和算法随着互联网的快速发展和大数据时代的到来,数据挖掘成为一门重要的技术。

它是通过发现数据中的模式、关系和规律,从而为商业、科学和决策提供有价值的信息和洞察力。

本文将介绍数据挖掘的基本原理和算法。

一、数据挖掘的基本原理1. 数据采集:首先需要收集相关的数据集。

数据可以来源于多种渠道,例如企业内部的数据库、社交媒体平台、网页等。

2. 数据清洗:经过数据采集后,需要对数据进行清洗和预处理。

这包括去除噪声数据、处理缺失值、处理异常值等步骤。

3. 数据转换:对于不同类型的数据,需要进行适当的转换,以便能够应用各种数据挖掘算法。

常见的数据转换包括标准化、归一化、离散化等。

4. 数据集划分:将数据集划分为训练集和测试集。

训练集用于构建模型,测试集用于评估模型的性能。

5. 模型构建:选择适当的算法来构建数据挖掘模型。

常见的算法包括分类算法、聚类算法、关联规则挖掘算法等。

6. 模型评估:通过评估指标,如准确率、精确率、召回率等来评估模型的性能。

7. 模型优化:如果模型的性能不理想,可以进行参数调优、特征选择等操作,以提升模型的准确度和泛化能力。

二、数据挖掘的常见算法1. 分类算法:分类算法用于将数据划分为不同的类别。

常见的分类算法有决策树、朴素贝叶斯、支持向量机等。

2. 聚类算法:聚类算法用于将数据分组为相似的类别。

常见的聚类算法有K均值、层次聚类、DBSCAN等。

3. 关联规则挖掘算法:关联规则挖掘算法用于发现数据集中的关联关系。

常见的关联规则挖掘算法有Apriori、FP-growth等。

4. 异常检测算法:异常检测算法用于识别数据中的异常点或异常行为。

常见的异常检测算法有基于统计的方法、基于聚类的方法等。

5. 预测算法:预测算法用于根据历史数据来预测未来的趋势或结果。

常见的预测算法有回归分析、时间序列分析等。

三、数据挖掘的应用领域1. 金融领域:数据挖掘可以应用于金融风险评估、信用评分、投资策略等方面。

数据挖掘中的模型泛化能力评估方法

数据挖掘中的模型泛化能力评估方法

数据挖掘中的模型泛化能力评估方法数据挖掘是一门利用各种算法和技术从大量数据中提取有用信息的学科。

在数据挖掘中,模型泛化能力评估是一个非常重要的问题。

模型的泛化能力是指模型在未见过的数据上的表现能力,即模型对于新样本的预测能力。

在实际应用中,我们常常需要评估模型的泛化能力,以判断模型是否具有足够的准确性和可靠性。

评估模型的泛化能力是一个复杂的过程,需要考虑多个因素。

下面将介绍几种常用的模型泛化能力评估方法。

1. 留出法(Holdout Method)留出法是最简单的一种评估方法,将数据集划分为训练集和测试集两部分,训练集用于模型的训练,测试集用于评估模型的泛化能力。

通常情况下,将数据集的70%用作训练集,30%用作测试集。

留出法的优点是简单易行,缺点是对于数据集的划分非常敏感,可能会导致评估结果的偏差。

2. 交叉验证法(Cross Validation)交叉验证法是一种更为稳健的评估方法,它将数据集划分为K个子集,每次选取其中一个子集作为测试集,其余子集作为训练集,重复K次,最后将K次的评估结果取平均值。

交叉验证法的优点是能够更充分地利用数据集,减少评估结果的偏差。

常用的交叉验证方法有K折交叉验证和留一法(Leave-One-Out)。

3. 自助法(Bootstrap)自助法是一种通过有放回地重复抽样来评估模型泛化能力的方法。

它通过从原始数据集中有放回地抽取样本,构建多个训练集和测试集,重复多次训练和评估,最后将多次评估结果取平均值。

自助法的优点是能够更好地评估模型的泛化能力,缺点是会引入一定的重复样本,可能导致评估结果的偏差。

4. 自适应方法(Adaptive Methods)自适应方法是一种根据模型的训练情况动态调整评估方法的方法。

它根据模型在训练集上的表现调整测试集的大小、划分方法等参数,以更准确地评估模型的泛化能力。

自适应方法的优点是能够更灵活地适应不同模型和数据集的特点,缺点是需要更复杂的算法和计算。

数据挖掘中的分类算法

数据挖掘中的分类算法

数据挖掘中的分类算法数据挖掘是一种通过分析大量数据来发现模式、关联和趋势的方法。

分类算法是数据挖掘中的一种核心技术,它可以将数据分为不同的类别,有助于我们理解和利用数据。

本文将介绍数据挖掘中常用的几种分类算法。

一、决策树算法决策树算法是一种基于树形结构的分类算法,它将数据集划分为多个子集,每个子集都对应一个决策节点。

通过不断选择最佳划分节点,最终形成一棵完整的决策树。

决策树算法简单易懂,可解释性强,适用于离散型和连续型数据。

常见的决策树算法包括ID3、C4.5和CART 算法。

二、朴素贝叶斯算法朴素贝叶斯算法是一种基于概率统计的分类算法,它基于贝叶斯定理和特征条件独立假设,通过计算后验概率来进行分类。

朴素贝叶斯算法在文本分类、垃圾邮件过滤等领域有广泛应用。

它的优点是简单高效,对小样本数据有较好的分类效果。

三、支持向量机算法支持向量机算法是一种通过寻找最优超平面来进行分类的算法。

它的核心思想是将数据映射到高维特征空间,找到能够最好地将不同类别分开的超平面。

支持向量机算法适用于高维数据和样本较少的情况,具有较好的泛化能力和鲁棒性。

四、K近邻算法K近邻算法是一种基于距离度量的分类算法,它的原理是通过计算新样本与训练样本的距离,选取K个最近邻的样本来进行分类。

K近邻算法简单直观,适用于多样本情况下的分类问题。

然而,K近邻算法计算复杂度高,对异常值和噪声敏感。

五、神经网络算法神经网络算法是一种模拟人脑神经元连接方式的分类算法。

它通过构建多层网络、定义激活函数和调整权重来实现分类。

神经网络算法能够处理非线性问题,但对于大规模数据和参数调整比较困难。

六、集成学习算法集成学习算法是一种通过组合多个分类器的预测结果来进行分类的方法。

常见的集成学习算法有随机森林、AdaBoost和梯度提升树等。

集成学习算法能够有效地提高分类准确率和鲁棒性,适用于大规模数据和复杂问题。

在选择分类算法时,需要综合考虑数据类型、数据量、准确性要求以及计算资源等因素。

数据挖掘技术在文献搜索中的应用

数据挖掘技术在文献搜索中的应用

数据挖掘技术在文献搜索中的应用背景介绍在当今信息爆炸的时代,各类数据不断涌现,人们获取信息的途径也越来越多。

而在学术研究中,文献的的搜索则显得尤为重要。

传统的文献搜索方式主要是通过不同的文献数据库进行检索,然而随着文献数量的不断增加以及文献之间的互联互通,传统的文献检索方式显得越来越难以满足研究者的需求。

为了提高文献检索的效率和准确度,数据挖掘技术应运而生。

通过分析海量的文献数据,挖掘潜在的关联性,可以为研究者提供更加全面、准确的研究参考。

数据挖掘技术在文献检索中的应用文本挖掘文本挖掘是数据挖掘的一个重要领域,主要用于从文本数据中提取有用信息。

在文献检索中,文本挖掘主要是通过对文献摘要、关键词等文本信息进行分析和挖掘,提高文献检索的准确率和效率。

具体而言,文本挖掘可以通过以下几个方面来实现:关键词提取在文献中,关键词是描述文中内容最为简洁、准确的词语。

通过对文献中关键词的提取,可以快速准确地了解文献的主题和领域。

传统的关键词提取方法主要是采用TF-IDF算法,根据单词的出现频率和文献中的重要性来计算出每个单词的权重,然后选取权重较高的词汇作为关键词。

近年来,随着深度学习技术的发展,基于深度学习的关键词提取方法也越来越受到关注。

相似性匹配在文献检索中,通常需要对文献进行相似性匹配,找到与查询文献相似的文献。

传统的相似性匹配方法主要是基于词汇的匹配,即将两篇文献中的词汇进行比对,然后通过某种算法计算相似性分值,选取分值高的文献作为检索结果。

但这种方法容易造成歧义和误判。

近年来,通过将文献映射到向量空间中,利用向量之间的距离来计算文献之间的相似性,已经成为一种较为有效的相似性匹配方法。

主题模型主题模型是一种可以从文本数据中挖掘主题的方法。

在文献检索中,主题模型可以通过发现文献中隐藏的主题,为研究者提供更多有用的信息。

常见的主题模型包括潜在狄利克雷分配(LDA)和隐含语义分析(LSA)等。

图挖掘除了文本挖掘外,数据挖掘技术还可以通过图挖掘等方法,挖掘文献之间的关联性。

r语言数据挖掘方法及应用参考文献写法

r语言数据挖掘方法及应用参考文献写法

R语言(R programming language)是一种用于统计分析和数据可视化的开源编程语言,因其功能强大且易于学习和使用而备受数据分析领域的青睐。

在数据挖掘领域,R语言被广泛应用于数据预处理、特征提取、模型建立和结果可视化等方面。

本文将介绍R语言在数据挖掘中的常用方法及其在实际应用中的效果,并给出相应的参考文献写法,以供读者参考。

一、数据预处理在进行数据挖掘之前,通常需要对原始数据进行清洗和预处理,以确保数据的质量和可用性。

R语言提供了丰富的数据处理函数和包,可以帮助用户快速进行数据清洗和整理工作。

其中,常用的数据预处理方法包括缺失值处理、异常值检测、数据变换等。

以下是一些常用的数据预处理方法及其在R语言中的实现方式:1. 缺失值处理缺失值是指数据中的某些观测值缺失或不完整的情况。

在处理缺失值时,可以选择删除缺失值所在的行或列,或者利用均值、中位数等方法进行填充。

R语言中,可以使用na.omit()函数删除包含缺失值的行或列,也可以使用mean()函数计算均值,并利用fillna()函数进行填充。

参考文献:Hadley Wickham, Rom本人n François, Lionel Henry, and KirillMüller (2018). dplyr: A Grammar of Data Manipulation. Rpackage version 0.7.6. xxx2. 异常值检测异常值是指与大部分观测值存在显著差异的观测值,通常需要进行检测和处理。

R语言中,可以使用boxplot()函数对数据进行箱线图可视化,或者利用z-score等统计方法进行异常值检测。

对于异常值的处理,可以选择删除、替换或保留,具体方法视实际情况而定。

参考文献:Rob J Hyndman and Yanan Fan (1996). Sample Quantiles in Statistical Packages. The American Statistician, 50(4), 361-365.3. 数据变换数据变换是指对原始数据进行变换,将其转换为符合模型要求或满足分布假设的形式。

大数据挖掘外文翻译文献

大数据挖掘外文翻译文献

文献信息:文献标题:A Study of Data Mining with Big Data(大数据挖掘研究)国外作者:VH Shastri,V Sreeprada文献出处:《International Journal of Emerging Trends and Technology in Computer Science》,2016,38(2):99-103字数统计:英文2291单词,12196字符;中文3868汉字外文文献:A Study of Data Mining with Big DataAbstract Data has become an important part of every economy, industry, organization, business, function and individual. Big Data is a term used to identify large data sets typically whose size is larger than the typical data base. Big data introduces unique computational and statistical challenges. Big Data are at present expanding in most of the domains of engineering and science. Data mining helps to extract useful data from the huge data sets due to its volume, variability and velocity. This article presents a HACE theorem that characterizes the features of the Big Data revolution, and proposes a Big Data processing model, from the data mining perspective.Keywords: Big Data, Data Mining, HACE theorem, structured and unstructured.I.IntroductionBig Data refers to enormous amount of structured data and unstructured data thatoverflow the organization. If this data is properly used, it can lead to meaningful information. Big data includes a large number of data which requires a lot of processing in real time. It provides a room to discover new values, to understand in-depth knowledge from hidden values and provide a space to manage the data effectively. A database is an organized collection of logically related data which can be easily managed, updated and accessed. Data mining is a process discovering interesting knowledge such as associations, patterns, changes, anomalies and significant structures from large amount of data stored in the databases or other repositories.Big Data includes 3 V’s as its characteristics. They are volume, velocity and variety. V olume means the amount of data generated every second. The data is in state of rest. It is also known for its scale characteristics. Velocity is the speed with which the data is generated. It should have high speed data. The data generated from social media is an example. Variety means different types of data can be taken such as audio, video or documents. It can be numerals, images, time series, arrays etc.Data Mining analyses the data from different perspectives and summarizing it into useful information that can be used for business solutions and predicting the future trends. Data mining (DM), also called Knowledge Discovery in Databases (KDD) or Knowledge Discovery and Data Mining, is the process of searching large volumes of data automatically for patterns such as association rules. It applies many computational techniques from statistics, information retrieval, machine learning and pattern recognition. Data mining extract only required patterns from the database in a short time span. Based on the type of patterns to be mined, data mining tasks can be classified into summarization, classification, clustering, association and trends analysis.Big Data is expanding in all domains including science and engineering fields including physical, biological and biomedical sciences.II.BIG DATA with DATA MININGGenerally big data refers to a collection of large volumes of data and these data are generated from various sources like internet, social-media, business organization, sensors etc. We can extract some useful information with the help of Data Mining. It is a technique for discovering patterns as well as descriptive, understandable, models from a large scale of data.V olume is the size of the data which is larger than petabytes and terabytes. The scale and rise of size makes it difficult to store and analyse using traditional tools. Big Data should be used to mine large amounts of data within the predefined period of time. Traditional database systems were designed to address small amounts of data which were structured and consistent, whereas Big Data includes wide variety of data such as geospatial data, audio, video, unstructured text and so on.Big Data mining refers to the activity of going through big data sets to look for relevant information. To process large volumes of data from different sources quickly, Hadoop is used. Hadoop is a free, Java-based programming framework that supports the processing of large data sets in a distributed computing environment. Its distributed supports fast data transfer rates among nodes and allows the system to continue operating uninterrupted at times of node failure. It runs Map Reduce for distributed data processing and is works with structured and unstructured data.III.BIG DATA characteristics- HACE THEOREM.We have large volume of heterogeneous data. There exists a complex relationship among the data. We need to discover useful information from this voluminous data.Let us imagine a scenario in which the blind people are asked to draw elephant. The information collected by each blind people may think the trunk as wall, leg as tree, body as wall and tail as rope. The blind men can exchange information with each other.Figure1: Blind men and the giant elephantSome of the characteristics that include are:i.Vast data with heterogeneous and diverse sources: One of the fundamental characteristics of big data is the large volume of data represented by heterogeneous and diverse dimensions. For example in the biomedical world, a single human being is represented as name, age, gender, family history etc., For X-ray and CT scan images and videos are used. Heterogeneity refers to the different types of representations of same individual and diverse refers to the variety of features to represent single information.ii.Autonomous with distributed and de-centralized control: the sources are autonomous, i.e., automatically generated; it generates information without any centralized control. We can compare it with World Wide Web (WWW) where each server provides a certain amount of information without depending on other servers.plex and evolving relationships: As the size of the data becomes infinitely large, the relationship that exists is also large. In early stages, when data is small, there is no complexity in relationships among the data. Data generated from social media and other sources have complex relationships.IV.TOOLS:OPEN SOURCE REVOLUTIONLarge companies such as Facebook, Yahoo, Twitter, LinkedIn benefit and contribute work on open source projects. In Big Data Mining, there are many open source initiatives. The most popular of them are:Apache Mahout:Scalable machine learning and data mining open source software based mainly in Hadoop. It has implementations of a wide range of machine learning and data mining algorithms: clustering, classification, collaborative filtering and frequent patternmining.R: open source programming language and software environment designed for statistical computing and visualization. R was designed by Ross Ihaka and Robert Gentleman at the University of Auckland, New Zealand beginning in 1993 and is used for statistical analysis of very large data sets.MOA: Stream data mining open source software to perform data mining in real time. It has implementations of classification, regression; clustering and frequent item set mining and frequent graph mining. It started as a project of the Machine Learning group of University of Waikato, New Zealand, famous for the WEKA software. The streams framework provides an environment for defining and running stream processes using simple XML based definitions and is able to use MOA, Android and Storm.SAMOA: It is a new upcoming software project for distributed stream mining that will combine S4 and Storm with MOA.Vow pal Wabbit: open source project started at Yahoo! Research and continuing at Microsoft Research to design a fast, scalable, useful learning algorithm. VW is able to learn from terafeature datasets. It can exceed the throughput of any single machine networkinterface when doing linear learning, via parallel learning.V.DATA MINING for BIG DATAData mining is the process by which data is analysed coming from different sources discovers useful information. Data Mining contains several algorithms which fall into 4 categories. They are:1.Association Rule2.Clustering3.Classification4.RegressionAssociation is used to search relationship between variables. It is applied in searching for frequently visited items. In short it establishes relationship among objects. Clustering discovers groups and structures in the data.Classification deals with associating an unknown structure to a known structure. Regression finds a function to model the data.The different data mining algorithms are:Table 1. Classification of AlgorithmsData Mining algorithms can be converted into big map reduce algorithm based on parallel computing basis.Table 2. Differences between Data Mining and Big DataVI.Challenges in BIG DATAMeeting the challenges with BIG Data is difficult. The volume is increasing every day. The velocity is increasing by the internet connected devices. The variety is also expanding and the organizations’ capability to capture and process the data is limited.The following are the challenges in area of Big Data when it is handled:1.Data capture and storage2.Data transmission3.Data curation4.Data analysis5.Data visualizationAccording to, challenges of big data mining are divided into 3 tiers.The first tier is the setup of data mining algorithms. The second tier includesrmation sharing and Data Privacy.2.Domain and Application Knowledge.The third one includes local learning and model fusion for multiple information sources.3.Mining from sparse, uncertain and incomplete data.4.Mining complex and dynamic data.Figure 2: Phases of Big Data ChallengesGenerally mining of data from different data sources is tedious as size of data is larger. Big data is stored at different places and collecting those data will be a tedious task and applying basic data mining algorithms will be an obstacle for it. Next we need to consider the privacy of data. The third case is mining algorithms. When we are applying data mining algorithms to these subsets of data the result may not be that much accurate.VII.Forecast of the futureThere are some challenges that researchers and practitioners will have to deal during the next years:Analytics Architecture:It is not clear yet how an optimal architecture of analytics systems should be to deal with historic data and with real-time data at the same time. An interesting proposal is the Lambda architecture of Nathan Marz. The Lambda Architecture solves the problem of computing arbitrary functions on arbitrary data in real time by decomposing the problem into three layers: the batch layer, theserving layer, and the speed layer. It combines in the same system Hadoop for the batch layer, and Storm for the speed layer. The properties of the system are: robust and fault tolerant, scalable, general, and extensible, allows ad hoc queries, minimal maintenance, and debuggable.Statistical significance: It is important to achieve significant statistical results, and not be fooled by randomness. As Efron explains in his book about Large Scale Inference, it is easy to go wrong with huge data sets and thousands of questions to answer at once.Distributed mining: Many data mining techniques are not trivial to paralyze. To have distributed versions of some methods, a lot of research is needed with practical and theoretical analysis to provide new methods.Time evolving data: Data may be evolving over time, so it is important that the Big Data mining techniques should be able to adapt and in some cases to detect change first. For example, the data stream mining field has very powerful techniques for this task.Compression: Dealing with Big Data, the quantity of space needed to store it is very relevant. There are two main approaches: compression where we don’t loose anything, or sampling where we choose what is thedata that is more representative. Using compression, we may take more time and less space, so we can consider it as a transformation from time to space. Using sampling, we are loosing information, but the gains inspace may be in orders of magnitude. For example Feldman et al use core sets to reduce the complexity of Big Data problems. Core sets are small sets that provably approximate the original data for a given problem. Using merge- reduce the small sets can then be used for solving hard machine learning problems in parallel.Visualization: A main task of Big Data analysis is how to visualize the results. As the data is so big, it is very difficult to find user-friendly visualizations. New techniques, and frameworks to tell and show stories will be needed, as for examplethe photographs, infographics and essays in the beautiful book ”The Human Face of Big Data”.Hidden Big Data: Large quantities of useful data are getting lost since new data is largely untagged and unstructured data. The 2012 IDC studyon Big Data explains that in 2012, 23% (643 exabytes) of the digital universe would be useful for Big Data if tagged and analyzed. However, currently only 3% of the potentially useful data is tagged, and even less is analyzed.VIII.CONCLUSIONThe amounts of data is growing exponentially due to social networking sites, search and retrieval engines, media sharing sites, stock trading sites, news sources and so on. Big Data is becoming the new area for scientific data research and for business applications.Data mining techniques can be applied on big data to acquire some useful information from large datasets. They can be used together to acquire some useful picture from the data.Big Data analysis tools like Map Reduce over Hadoop and HDFS helps organization.中文译文:大数据挖掘研究摘要数据已经成为各个经济、行业、组织、企业、职能和个人的重要组成部分。

数据挖掘的常用算法

数据挖掘的常用算法

数据挖掘的常用算法数据挖掘是通过对大量数据进行分析和挖掘,发现其中隐藏的模式、规律和知识的过程。

在数据挖掘中,常用的算法有很多种,每种算法都有其特点和适用场景。

本文将介绍数据挖掘中常用的算法,并对其原理和应用进行简要说明。

一、聚类算法聚类算法是将数据集中的对象分组或聚类到相似的类别中,使得同一类别的对象相似度较高,不同类别的对象相似度较低。

常用的聚类算法有K-means算法和层次聚类算法。

1. K-means算法K-means算法是一种基于距离的聚类算法,它将数据集分为K个簇,每个簇以其质心(簇中所有点的平均值)为代表。

算法的过程包括初始化质心、计算样本点到质心的距离、更新质心和重复迭代,直到质心不再变化或达到最大迭代次数。

2. 层次聚类算法层次聚类算法是一种自底向上或自顶向下的聚类方法,它通过计算样本点之间的相似度来构建聚类树(或聚类图),最终将数据集划分为不同的簇。

常用的层次聚类算法有凝聚层次聚类和分裂层次聚类。

二、分类算法分类算法是将数据集中的对象分为不同的类别或标签,通过学习已知类别的样本数据来预测未知类别的数据。

常用的分类算法有决策树算法、朴素贝叶斯算法和支持向量机算法。

1. 决策树算法决策树算法是一种基于树形结构的分类算法,它通过对数据集进行划分,构建一棵决策树来进行分类。

决策树的节点表示一个特征,分支表示该特征的取值,叶子节点表示一个类别或标签。

2. 朴素贝叶斯算法朴素贝叶斯算法是一种基于概率模型的分类算法,它假设特征之间相互独立,并利用贝叶斯定理来计算后验概率。

朴素贝叶斯算法在处理大规模数据时具有较高的效率和准确率。

3. 支持向量机算法支持向量机算法是一种基于统计学习理论的分类算法,它通过将数据映射到高维空间中,找到一个超平面,使得不同类别的样本点尽可能远离该超平面。

支持向量机算法具有较强的泛化能力和较好的鲁棒性。

三、关联规则挖掘算法关联规则挖掘算法用于发现数据集中的频繁项集和关联规则,揭示数据中的相关关系。

数据挖掘的10大算法

数据挖掘的10大算法

数据挖掘的10大算法数据挖掘的10大算法1.线性回归算法线性回归算法是一种基本的数据挖掘算法,它通过建立一个线性模型来预测因变量和自变量之间的关系。

该算法的目标是找到最佳拟合直线,使得预测误差最小化。

2.逻辑回归算法逻辑回归算法是一种分类算法,主要用于二分类问题。

它通过建立一个逻辑模型来预测一个变量的可能取值。

逻辑回归将线性回归的结果通过一个sigmoid函数映射到0,1之间,从而得到分类的概率。

3.决策树算法决策树算法是一种通过分支结构来对数据进行分类或回归的算法。

它通过一系列的判断条件将数据划分为不同的子集,直到达到预定的终止条件。

决策树算法易于理解和解释,但容易产生过拟合问题。

4.随机森林算法随机森林算法是一种集成学习算法,通过组合多个决策树来进行分类或回归。

它在每棵树的建立过程中随机选择特征子集,并根据投票或平均法来进行最终的预测。

随机森林算法不易过拟合,且具有较好的泛化能力。

5.支持向量机算法支持向量机算法是一种通过在高维空间中找到一个最优超平面来进行分类或回归的算法。

它通过最大化间隔来寻找最优超平面,从而使得不同类别的样本能够被很好地分开。

支持向量机算法适用于线性和非线性分类问题。

6.K近邻算法K近邻算法是一种基于相似度度量的算法,它通过选择与待分类样本最相似的K个样本来进行分类。

该算法不需要明确的模型假设,但对数据规模和特征选择比较敏感。

7.朴素贝叶斯算法朴素贝叶斯算法是一种基于贝叶斯定理和特征条件独立性假设的算法,主要用于分类问题。

它通过计算特征在给定类别下的条件概率来进行分类。

朴素贝叶斯算法简单快速,但对特征之间的相关性比较敏感。

8.主成分分析算法主成分分析算法是一种降维算法,它通过线性变换将原始数据映射到一个更低维的空间。

主成分分析算法能够最大程度地保留原始数据的方差,从而提取出最重要的特征。

9.聚类算法聚类算法是一种无监督学习算法,它通过将相似的样本归为同一类别来进行数据的分组。

数据挖掘十大经典算法及适用范围

数据挖掘十大经典算法及适用范围

数据挖掘⼗⼤经典算法及适⽤范围1. C4.5C4.5算法是机器学习算法中的⼀种分类决策树算法,其核⼼算法是ID3算法. C4.5算法继承了ID3算法的优点,并在以下⼏⽅⾯对ID3算法进⾏了改进:1) ⽤信息增益率来选择属性,克服了⽤信息增益选择属性时偏向选择取值多的属性的不⾜;2) 在树构造过程中进⾏剪枝;3) 能够完成对连续属性的离散化处理;4) 能够对不完整数据进⾏处理。

C4.5算法有如下优点:产⽣的分类规则易于理解,准确率较⾼。

其缺点是:在构造树的过程中,需要对数据集进⾏多次的顺序扫描和排序,因⽽导致算法的低效(相对的CART算法只需要扫描两次数据集,以下仅为决策树优缺点)。

优点:计算复杂度不⾼,输出结果易于理解,对中间值的缺失不敏感,可以处理不相关特征数据缺点:可能会产⽣过度匹配问题适⽤数据类型:数值型和标称型数据2. The k-means algorithm 即K-Means算法k-means algorithm算法是⼀个聚类算法,把n的对象根据他们的属性分为k个分割,k < n。

算法的核⼼就是要优化失真函数J,使其收敛到局部最⼩值但不是全局最⼩值。

其中N 为样本数,K 是簇数,rnk b 表⽰n 属于第k 个簇,uk 是第k 个中⼼点的值。

然后求出最优的uk。

优点:易于实现缺点:可能收敛到局部最⼩值,在⼤规模数据集上收敛较慢。

适⽤数据类型:数值型数据3. Support vector machines⽀持向量机,英⽂为Support Vector Machine,简称SV机(论⽂中⼀般简称SVM)。

它是⼀种監督式學習的⽅法,它⼴泛的应⽤于统计分类以及回归分析中。

⽀持向量机将向量映射到⼀个更⾼维的空间⾥,在这个空间⾥建⽴有⼀个最⼤间隔超平⾯。

在分开数据的超平⾯的两边建有两个互相平⾏的超平⾯。

分隔超平⾯使两个平⾏超平⾯的距离最⼤化。

假定平⾏超平⾯间的距离或差距越⼤,分类器的总误差越⼩。

机器翻译中的泛化和迁移学习方法

机器翻译中的泛化和迁移学习方法

机器翻译中的泛化和迁移学习方法近年来,随着人工智能技术的快速发展,机器翻译系统在不同语言之间的翻译任务中扮演着重要角色。

然而,由于语言之间的复杂性和多样性,机器翻译系统在面对一些特定领域或语种的翻译时,往往会出现困难和不足。

为了解决这一问题,泛化和迁移学习方法被引入到机器翻译系统中,以提高系统的性能和泛化能力。

本文将深入探讨的原理、应用和挑战。

泛化和迁移学习是机器学习领域中的重要研究方向,其目标是通过利用不同任务之间的相关性和相似性,从而提高学习算法在新任务上的性能。

在机器翻译领域,泛化和迁移学习方法的核心思想是通过在一个或多个相关任务上学习知识,然后将这些知识迁移到目标任务中,从而提高系统的性能和泛化能力。

泛化学习指的是在一个给定的任务上学习到的知识能够被有效地应用到其他任务上,而不需要重新学习或调整参数。

在机器翻译中,泛化学习方法通过在大规模的多语言语料库上进行训练,学习到丰富的语言知识和规律,从而提高系统在不同语言对之间的翻译性能。

通过泛化学习,机器翻译系统可以更好地捕捉不同语言之间的语法、句法和语义信息,从而提高翻译质量和准确性。

另一方面,迁移学习则是指在一个任务上学习到的知识可以被迁移到一个相关但不同的任务上,以提高目标任务的性能。

在机器翻译中,迁移学习方法通常通过在相似语种对之间进行知识迁移,来提高系统在目标语种对上的翻译性能。

例如,通过在英语-法语和英语-德语语种对上进行训练,可以提高系统在法语-德语语种对上的翻译性能,从而实现跨语种的知识迁移。

泛化和迁移学习方法在机器翻译中的应用可以分为两种类型:基于数据的方法和基于模型的方法。

基于数据的方法主要是通过使用大规模的多语言语料库进行训练,学习到丰富的语言知识和规律,从而提高系统的泛化能力。

这些方法包括使用多语言语料库进行预训练、使用数据增强技术增加训练数据、以及使用迁移学习技术进行知识迁移等。

基于模型的方法则是通过设计更加灵活和泛化的模型结构,来提高系统在不同任务上的性能。

数据挖掘原理基本概念与算法介绍

数据挖掘原理基本概念与算法介绍

DBSCAN
基于密度的聚类,能够发现任意形状的集群。
ABCD
层次聚类
通过迭代将数据点或集群组合成更大的集群,直 到满足终止条件。
谱聚类
利用数据的相似性矩阵进行聚类,通过图论的方 法实现。
关联规则挖掘
Apriori算法
用于频繁项集挖掘和关联规则学习的算法。
FP-Growth算法
通过频繁模式树(FP-tree)高效地挖掘频繁项集和关联规则。
数据挖掘原理基本 概念与算法介绍
contents
目录
• 数据挖掘概述 • 数据挖掘的基本概念 • 数据挖掘算法介绍 • 数据挖掘实践与案例分析
01
CATALOGUE
数据挖掘概述
数据挖掘的定义
总结词
数据挖掘是从大量数据中提取有用信息的过程。
详细描述
数据挖掘是一种从大量数据中通过算法搜索隐藏信息的过程。这些信息可以是有关数据的特定模式、 趋势、关联性或异常。数据挖掘广泛应用于各种领域,如商业智能、医疗保健、金融和科学研究。
分类算法
决策树分类
通过构建决策树对数据进行分类,核心是特 征选择和剪枝。
K最近邻(KNN)
根据数据点的k个最近邻居的类别进行分类 。
朴素贝叶斯分类
基于贝叶斯定理和特征条件独立假设的分类 方法。
支持向量机(SVM)
构建超平面以将数据分隔到不同的类别中。
聚类算法
K均值聚类
将数据划分为k个集群,使得每个数据点与其所 在集群的中心点之间的距离之和最小。
数据挖掘的起源与发展
总结词
数据挖掘起源于20世纪80年代,随着数 据库和人工智能技术的发展而发展。
VS
详细描述
数据挖掘的起源可以追溯到20世纪80年 代,当时数据库系统日益庞大,人们开始 意识到需要一种方法来分析和利用这些数 据。随着人工智能和机器学习技术的进步 ,数据挖掘在90年代得到了快速发展。 现代的数据挖掘技术已经融合了多种学科 ,包括统计学、数据库技术、机器学习和 人工智能。

数据挖掘的算法和应用

数据挖掘的算法和应用

数据挖掘的算法和应用数据挖掘是一种从大量数据中寻找模式、关系和规律的技术,随着大数据时代的到来,数据挖掘在商业、科研以及社会等多个领域得到了广泛应用。

本文将介绍数据挖掘的算法和应用。

一、数据挖掘的算法1. 分类算法分类算法是一种监督学习算法,通过将数据组织成已知类别的训练样本集,建立起一个从输入变量到输出分类的映射关系,来对未知数据进行分类预测。

其中常用的算法包括决策树、朴素贝叶斯分类器、支持向量机等。

2. 聚类算法聚类算法是一种无监督学习算法,通过将数据归类到相似性较高的组别中,来寻找数据中的潜在结构和规律。

其中常用的算法包括K-means聚类、层次聚类、DBSCAN等。

3. 关联规则挖掘算法关联规则挖掘算法用于寻找数据中相互关联的项集,如在购物数据中,需要挖掘出哪些商品会被一起购买。

其中常用的算法包括Apriori算法、FP-growth算法等。

4. 时间序列分析算法时间序列分析算法用于挖掘时间序列数据中的趋势、周期、季节性等特征,例如股票价格走势预测、气象预测等。

其中常用的算法包括ARIMA模型、MA模型等。

5. 神经网络算法神经网络算法是一种通过仿生学的方式来模拟人类神经系统,从而实现学习、分类、预测等功能的算法。

其中常用的算法包括BP神经网络、RBF神经网络等。

二、数据挖掘的应用1. 商业领域在商业领域,数据挖掘可以应用于市场营销、客户关系管理、风险评估等方面。

例如,在经典的购物篮分析中,可以通过关联规则挖掘算法来发现商品之间的关联性,从而进行优惠、促销等活动。

2. 科学研究在科学研究中,数据挖掘可以应用于生物信息学、天文学等多个领域。

例如,在生物信息学中,可以使用聚类算法对基因进行分类和聚类,从而预测基因的功能和表达规律。

3. 社会领域在社会领域,数据挖掘可以应用于犯罪预测、舆情分析等方面。

例如,在犯罪预测中,可以使用分类算法来预测犯罪的发生概率,并提供相应的预警信息。

4. 医疗领域在医疗领域,数据挖掘可以应用于疾病预测、药物研发等方面。

数据挖掘的10大算法

数据挖掘的10大算法

数据挖掘的10大算法数据挖掘的10大算法提供了一些广泛使用的工具和技术,用于从大规模数据集中发现有用的模式和信息。

本文将介绍这些算法,并提供详细的说明和示例。

1.关联规则算法:关联规则算法用于发现数据集中的频繁项集和关联规则。

通过分析数据中的项目之间的关联性,它可以帮助我们了解不同项目之间的依赖关系。

常用的关联规则算法有Apriori算法和FP-growth算法。

- Apriori算法:Apriori算法基于频繁项集的概念,通过迭代候选项集和计算支持度来发现频繁项集和关联规则。

- FP-growth算法:FP-growth算法使用一种称为FP树的数据结构,通过压缩数据和利用数据的频繁项集属性来高效地发现频繁项集和关联规则。

2.分类算法:分类算法用于预测数据实例的类别。

它通过学习从已标记的训练数据中提取的规则和模式,来对未标记数据进行分类。

常用的分类算法包括决策树、朴素贝叶斯、支持向量机等。

- 决策树算法:决策树算法通过构建树状的分类模型,根据属性值将数据实例分类到不同的类别中。

它能够提供可解释性较强的分类结果。

- 朴素贝叶斯算法:朴素贝叶斯算法基于贝叶斯定理和特征条件独立性假设,通过计算后验概率来进行分类。

- 支持向量机算法:支持向量机算法通过在特征空间中构建一个超平面,将不同类别的实例分隔开来。

3.聚类算法:聚类算法用于根据数据项之间的相似性将它们分组为若干个簇。

相似的数据项将分配到同一个簇中。

常用的聚类算法有K均值算法和层次聚类算法。

- K均值算法:K均值算法通过计算数据项和簇中心之间的距离来将数据项分配到最近的簇中。

该算法迭代更新簇中心,直到达到收敛。

- 层次聚类算法:层次聚类算法通过计算数据项之间的相似性来构建一个层次结构,从而划分数据项到不同的簇中。

4.预测分析算法:预测分析算法用于根据历史数据和趋势来预测未来的趋势和结果。

它可以通过分析数据中的模式和关系来预测模型。

常用的预测分析算法包括线性回归、时间序列分析等。

数据挖掘的算法和模型

数据挖掘的算法和模型

数据挖掘的算法和模型随着现代技术的不断发展,数据挖掘作为一种有效的数据分析技术,越来越受到人们的重视。

数据挖掘是一种从海量数据中自动发现潜在模式和知识的过程,可以帮助企业和组织更好地了解自己的业务、客户和市场。

数据挖掘的关键在于算法和模型的选择。

下面将介绍一些常用的数据挖掘算法和模型。

一、分类算法分类算法是一种预测性算法,用于将数据分成不同的类别。

常见的分类算法包括决策树、朴素贝叶斯分类器、支持向量机(SVM)等。

决策树算法是一种根据已知数据生成树状结构的算法,用于分类和预测。

决策树的主要特点是易于理解和解释,并且可以处理多种数据类型。

朴素贝叶斯分类器是一种基于贝叶斯定理的统计分类模型,用于处理大规模数据集。

该算法的主要特点是快速、简单和准确。

SVM算法是一种监督学习算法,用于分类和回归。

该算法的主要特点是高精度和泛化能力强。

二、聚类算法聚类算法是一种非监督学习算法,用于在没有类别标签的情况下将数据分组。

常见的聚类算法包括K-Means算法、层次聚类算法、DBSCAN算法等。

K-Means算法是一种基于距离度量的聚类算法,用于将数据分成K个簇。

该算法的主要特点是简单、快速且不需要先验知识。

层次聚类算法是一种基于树状结构的聚类算法,可以将数据聚类成一棵树形结构。

该算法的主要特点是易于解释和可视化。

DBSCAN算法是一种基于密度的聚类算法,用于检测数据集中的密度相似区域。

该算法的主要特点是不需要预先确定聚类数目。

三、关联规则挖掘算法关联规则挖掘算法是一种用于发现数据项之间关系的算法,主要用于市场分析、购物运营等领域。

常见的关联规则挖掘算法包括Apriori算法、FP-growth算法等。

Apriori算法是一种基于频繁项集的关联规则挖掘算法,可以发现数据项之间的频繁集。

该算法的主要特点是快速、简单且可扩展性好。

FP-growth算法是一种快速挖掘频繁项集的算法,用于解决Apriori算法的效率问题。

数据挖掘的10大算法

数据挖掘的10大算法

数据挖掘的10大算法数据挖掘是从海量数据中发现有意义的模式、关联和规律的过程。

在数据挖掘的实践中,有许多经典的算法被广泛应用。

本文将介绍数据挖掘领域的10大算法,这些算法在处理分类、预测、聚类和关联规则挖掘等任务中都具有较高的效果和可靠性。

1. 决策树决策树是一种基于树状结构的分类和回归方法。

它通过将数据集和属性进行划分,构建一棵树,每个节点代表一个属性,每个叶子节点代表一个分类结果或回归值。

决策树算法简单直观,易于理解和解释,在处理大规模数据集时也能保持较高的性能。

2. 支持向量机支持向量机是一种二分类模型,通过在高维特征空间中找到一个超平面,将不同类别的样本分隔开。

支持向量机在处理线性可分和近似线性可分的问题上表现良好,它不依赖于数据分布,对于高维数据和小样本也适用。

3. 最大熵模型最大熵模型是一种概率模型,它通过最大化熵的原理来构建模型,使得模型能够表达尽可能多的不确定性。

最大熵模型广泛应用于分类、标注和机器翻译等任务中,具有较好的泛化能力和鲁棒性。

4. K近邻算法K近邻算法是一种基于实例的学习方法,它通过寻找训练集中与待测样本最近的K个样本,来进行分类和回归。

K近邻算法简单有效,但在处理大规模数据集时性能较差。

5. 朴素贝叶斯算法朴素贝叶斯算法是一种基于概率的分类方法,它通过利用贝叶斯定理来计算后验概率,从而进行分类。

朴素贝叶斯算法假设所有特征之间相互独立,忽略了特征之间的相互关系,但在处理高维数据和大规模数据集时表现出色。

6. 随机森林随机森林是一种集成学习算法,它通过对多个决策树进行训练,再将它们的结果进行集成,来进行分类和回归。

随机森林具有较好的鲁棒性和泛化能力,可以有效避免过拟合和欠拟合问题。

7. AdaBoostAdaBoost是一种提升算法,它通过迭代训练一系列弱分类器,然后将它们进行加权组合,构建一个强分类器。

AdaBoost具有较好的性能,能够在处理复杂问题时提供较高的准确性。

k-means 泛化能力计算

k-means 泛化能力计算

k-means 泛化能力计算
k-means算法是一种常用的无监督学习算法,它被广泛应用于
聚类分析和数据挖掘中。

它的基本思想是将数据点划分为k个簇,
使得每个数据点都属于离它最近的簇中心。

然而,k-means算法的
泛化能力一直是一个备受关注的问题,尤其是在处理大规模高维数
据时。

泛化能力是指模型在未见过的数据上的表现能力。

在k-means
算法中,泛化能力的计算通常涉及到对簇的划分是否能够适应新的
数据集。

一般来说,k-means算法的泛化能力取决于以下几个因素:
1. 数据的分布,如果数据点的分布是非凸的或者是高度重叠的,k-means算法可能无法很好地对数据进行划分,导致泛化能力较差。

2. 簇的个数选择,k-means算法需要事先指定簇的个数k,但
在实际应用中,往往很难确定合适的k值。

选择不合适的k值可能
会导致簇的划分不准确,进而影响泛化能力。

3. 初始簇中心的选择,k-means算法对初始簇中心的选择敏感,不同的初始值可能会导致不同的簇划分结果,进而影响泛化能力。

为了评估k-means算法的泛化能力,可以采用交叉验证等方法
来验证算法在不同数据集上的表现。

此外,还可以通过调整算法的
参数,如簇的个数和初始簇中心的选择,来提高算法的泛化能力。

总之,k-means算法的泛化能力计算是一个复杂且具有挑战性
的问题。

通过深入研究算法的原理和参数调整,可以提高k-means
算法在未见过的数据上的表现能力,从而更好地应用于实际问题中。

数据挖掘的常用分类算法

数据挖掘的常用分类算法

数据挖掘的常用分类算法数据挖掘是从大量数据中提取出有用信息的过程。

在数据挖掘中,分类算法被广泛应用于将数据样本分为不同的类别。

下面将介绍一些常见的分类算法。

1.决策树算法:决策树是一种基于树形结构的分类算法。

它通过对样本的特征进行逻辑分割,最终得到一个决策树模型。

决策树有许多不同的变种,例如ID3、C4.5和CART算法。

决策树算法易于理解和实现,它能够处理连续和离散的数据,并且能够提供特征的重要性排名。

2.朴素贝叶斯算法:朴素贝叶斯算法是基于贝叶斯定理和特征条件独立性假设的统计分类算法。

该算法假设所有特征之间相互独立,因此计算条件概率时只需要考虑个别特征的概率。

朴素贝叶斯算法在文本分类和垃圾邮件过滤等领域具有广泛的应用。

3. 逻辑回归算法:逻辑回归是一种适用于二分类问题的线性模型。

该算法通过将特征的线性组合映射到一个sigmoid函数上,从而将实数域的输入映射到0~1之间的输出。

逻辑回归算法可以用于预测二分类概率,并且容易解释和使用。

4.支持向量机算法:支持向量机是一种用于二分类和多分类的机器学习算法。

它通过在特征空间中构建一个超平面来实现分类。

支持向量机算法具有稳定的表现、鲁棒性和优化能力,并且在高维空间中效果良好。

5.K近邻算法:K近邻算法是一种基于邻居的分类算法。

该算法将未知数据点分类为其最近邻居所属的类别。

K近邻算法没有显式的训练过程,可以用于处理大型数据集。

然而,该算法对于高维数据和异常值敏感。

6.随机森林算法:随机森林是一种集成学习算法,它综合了多个决策树的分类结果。

随机森林通过随机选择特征子集进行决策树的训练,并采用投票机制来确定最终分类结果。

随机森林算法可以降低过拟合风险,并提供特征重要性排名。

7.梯度提升算法:梯度提升是一种集成学习算法,它通过迭代地训练一系列弱分类器,并将它们组合成一个强分类器。

梯度提升算法通过最小化损失函数的梯度来优化模型,从而能够处理分类和回归问题。

这些分类算法在数据挖掘中被广泛应用,并且具有各自的优缺点。

文献数据挖掘方法与应用研究

文献数据挖掘方法与应用研究

文献数据挖掘方法与应用研究文献数据是指各种文献信息,包括文本、图片、音频、视频等多种形式。

随着社会信息化和数字化的发展,文献数据量急剧增长。

如何从庞大的文献数据中发掘有价值的信息,成为了重要的研究课题。

文献数据挖掘作为一种应用数据挖掘技术的方法,可以在文献数据中挖掘出隐含的知识和规律。

本文重点探讨文献数据挖掘方法和应用研究。

文献数据挖掘方法文献数据挖掘方法主要包括文本挖掘、图像挖掘、音频挖掘和视频挖掘等几类。

其中,文本挖掘是目前应用最广泛的一种方法。

文本挖掘是指从文本数据中发掘有价值的信息,包括文本分类、文本聚类、信息抽取、情感分析等多种技术。

其中,文本分类是指将文本数据按照一定的规则划分到不同的类别中,如新闻分类、邮件分类等。

文本聚类是指将文本数据按照一定的相似性聚集到一起,形成相似的类别。

信息抽取是指从文本数据中提取一些有用的信息,如关键词、实体、关系等。

情感分析是指从文本数据中挖掘出情感色彩,如正向情感、负向情感等。

图像挖掘是指从图像数据中发掘有价值的信息,包括特征提取、图像分类、目标检测、图像检索等多种技术。

其中,特征提取是指从图像中提取出一些有意义的特征,如颜色、纹理、边缘等。

图像分类是指将图像数据按照一定的规则划分到不同的类别中,如人脸识别、动物分类等。

目标检测是指从图像数据中检测出目标,如人、车等。

图像检索是指在图像库中检索出与查询相符合的图像。

音频挖掘是指从音频数据中发掘有价值的信息,包括音频分类、音频聚类、音频识别等多种技术。

其中,音频分类是指将音频数据按照一定的规则划分到不同的类别中,如音乐分类、语音分类等。

音频聚类是指将音频数据按照一定的相似性聚集到一起,形成相似的类别。

音频识别是指从音频数据中识别出一些有用的信息,如语音识别、音频检索等。

视频挖掘是指从视频数据中发掘有价值的信息,包括特征提取、视频分类、目标检测、动作识别等多种技术。

其中,特征提取是指从视频中提取出一些有意义的特征,如颜色、形状、运动等。

metric 数据类型

metric 数据类型

metric 数据类型【实用版】目录1.Metric 数据类型的概念2.Metric 数据类型的应用领域3.Metric 数据类型的主要特点4.Metric 数据类型的实例正文【1.Metric 数据类型的概念】Metric 数据类型,又称为度量数据类型,是一种用于描述数据规模、度量或统计数据的数据类型。

在计算机科学和数据处理领域,Metric 数据类型广泛应用于各种数据分析、数据挖掘和机器学习算法中,以支持对数据的度量和比较。

【2.Metric 数据类型的应用领域】Metric 数据类型在多个应用领域发挥着重要作用,包括:- 数据库管理:在数据库管理系统中,Metric 数据类型可以用于度量存储空间的使用情况、查询性能、事务处理速度等关键指标。

- 数据挖掘:在数据挖掘领域,Metric 数据类型可用于度量数据集中的特征重要性、分类准确率、聚类效果等。

- 机器学习:在机器学习中,Metric 数据类型可以用于衡量模型的训练效果、泛化能力等,如准确率、召回率、F1 值等。

- 网络监控:在网络监控领域,Metric 数据类型可以用于度量网络带宽、延迟、丢包率等性能指标。

【3.Metric 数据类型的主要特点】Metric 数据类型具有以下主要特点:- 数值型:Metric 数据类型通常表示为数值,可以是整数、浮点数或布尔值,用于度量数据的大小、程度等。

- 可比较性:Metric 数据类型具有可比较性,可以对数据进行排序、筛选、聚合等操作,以满足不同场景的需求。

- 标准化:为了消除不同度量单位之间的影响,Metric 数据类型通常需要进行标准化处理,以便于在不同度量之间进行比较。

【4.Metric 数据类型的实例】以下是一些常见的 Metric 数据类型的实例:- 计算平均值:假设有一个数值型数据集,我们可以计算其平均值,用于度量数据集的集中趋势。

- 计算方差:方差是一种用于度量数据分散程度的 Metric 数据类型,可以衡量数据集中各个数值与平均值之间的差异。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

英文翻译系别专业班级学生姓名学号指导教师Data Types Generalization for Data Mining AlgorithmsAbstractWith the increasing of database applications, mining interesting information from huge databases becomes of most concern and a variety of mining algorithms have been proposed in recent years. As we know, the data processed in data mining may be obtained from many sources in which different data types may be used. However, no algorithm can be applied to all applications due to the difficulty for fitting data types of the algorithm, so the selection of an appropriate mining algorithm is based on not only the goal of application, but also the data fittability. Therefore, to transform the non-fitting data type into target one is also an important work in data mining, but the work is often tedious or complex since a lot of data types exist in real world. Merging the similar data types of a given selected mining algorithm into a generalized data type seems to be a good approach to reduce the transformation complexity. In this work, the data types fittability problem for six kinds of widely used data mining techniques is discussed and a data type generalization process including merging and transforming phases is proposed. In the merging phase, the original data types of data sources to be mined are first merged into the generalized ones. The transforming phase is then used to convert the generalized data types into the target ones for the selected mining algorithm. Using the data type generalization process, the user can select appropriate mining algorithm just for the goal of application without considering the data types.1. IntroductionIn recent years, the amount of various data grows rapidly Widely available, low-cost computer technology now makes it possible to both collect historical data and also institute on-line analysis for newly arriving data. Automated data generation and gathering leads to tremendous amounts of data stored in databases Although we are filled with data, but we lack for knowledge. Data mining is the automated discovery of non-trivial, previously unknown, and potentially useful knowledge embedded in databases. Different kinds of data mining methods and algorithms havebeen proposed,each of which has its own advantages and suitable application domains. However, it is difficult for users to choose an appropriate one by themselves.to choose an appropriate one by themselves. This is because the data provided can not be directly used for data mining algorithms. Since most data mining algorithms can only be applied to some specific data types, the types of data stored in databases restricts the choice of data mining methods. If certain kinds of knowledge need to be obtained using some data mining algorithms, data types transformation should be done first and this is what we called“the data types fittability problem”for data mining. For the time being, there is no tool that can help users to do this kind of data types transformation. In this paper, we will survey and analyze the data types fittability problem for data mining algorithms, and then we propose a“data types generalization process”to solve the data types fittability problem for the attributes in relational databases.The “data types generalization process” i ncluding merging and transforming phases is a procedure to transform the data types of atttributes contained in relations (tables). In the merging phase, the original data types of data sources to be mined are first merged into the generalized ones. The transforming phase is then used to convert the generalized data types into the target ones for the selected mining algorithm. Using the data type generalization process, the user can select appropriate mining algorithm just for the goal of application without considering the data types.2. Related workAs mentioned above, because many data mining algorithms can only be applied to the data types with restricted range, users possibly need to do data types transformation before the selected algorithm has been executed. In this paper, we propose a general concept called “data types generalization process“ which provide a procedure for doing this kind of data types transformation. Data types generalization can be seen as a pre-processing of data mining. Of course, other pre-processing such as data selection, data cleaning, dimension (attribute) reduction, missing data handling may also need to be performed before running the selected data mining algorithm.In summary, the whole process of data mining is the so-called KDD (knowledge discovery in databases), as shown in Figure 1.Figure 1: The KDD process and the role of data types generalization.There is a major difference between the data types generalization process and other data mining pre-processes. Other pre-processes (like missing value handling) are all independent of the selected data mining method. That is, they can be done without knowing what data mining algorithm will be used. But it is clear that data types generalization process depends on the desired mining method. The target of doing data transformation using data types generalization is to make the specified data set suitable for the mining algorithm. Therefore, if we want to achieve this goal, we must survey both the data types in databases and their relations with various data mining methods. The flow of solving a data mining problem with doing data transformation is illustrated in Figure 2.Figure 2: Solving data mining problems with data transformation data types transformationSome researchers proposed how to generalize the data contained in attributes using "attribute-oriented induction" which allows the generalization of data, offers two major advantages for the mining of large databases. First, it allows the raw data to be handled at higher conceptual levels. Generalization is performed with the use of "attribute concept hierarchies", where the leaves of a given attribute's concept hierarchy corre- spond to the attribute's values in the data (referred to as primitive level data ). Generalization of the training data is achieved by replacing primitive level data by higher level concepts.In fact, data generalization using attribute concept hierarchies is a kind of data type transformation which reduces the number of distinct values contained in attributes. We first provide a typical description of the data types fittability problem and a data types generalization process to define and solve the data types transformation problem for attributes. Hence, data generalization using concept hierarchies is included in the process for performing specified data types transformation.Another related work is that some researchers surveyed about how to transform data in to numerical values. Almost all data-driven algorithms utilize numeric inputs. From a computer processing point of view, handling computations with numbers is easier and more efficient. Therefore, if the input values are non-numeric(e.g., text strings), they should be intelligently converted to meaningful numerical values in many cases. Numerical values can be seen as a data type and transforming data into numerical values is a kind of data types transformation.The strategies are included in the data types generalization process for performing data types transformation.3. Analysis of the data types fittability problemIn recent years, due to the explosion of information and the rapid growth of database applications, data mining techniques become more and more important. For this reason, different kinds of data mining methods or algorithms have been proposed. However, it is difficult for users to choose a suitable one by themselves without priorknowledge about data mining. Actually, the kind of data mining methods should be applied depends on both the characteristic of the data to be mined and the kind of knowledge to be found through the data mining process. Hence, the types of data stored in databases play an important role during the data mining process and restrict the data mining methods can be chosen by users. It is true that all kinds of data mining methods can only be applied to particular databases suitable for each kind and this is what we called "the data types fittability problem" for data mining. To solve this problem, we need to investigate the relationships between the characteristics of the data to be mined and various kinds of data mining techniques. With the relation- ships, we can clearly analyze the data types fittability problem and further know whether the data types transformation can be performed or not. Hence, analyzing this kind of relationships is a preparation work for our data types generalization process, which explains why the data types generalization process can solve the data fittability problem. We now illustrate the analysis as follows.3.1 Four kinds of data forms for data miningData mining techniques ususally can be applied to four kinds of data forms: texual, temporal, transactional and relational forms. Different kinds of data forms are used to store different kinds of data types. We describe each kind of data forms in the following:(1) Textual data forms : Textual data forms are used to represent texts or documents. Basically, this kind of data forms can be seen as a set of characters with huge amount.(2)Temporal data forms : Time-series data is stored in temporal data forms. Data that varies with time (such as historical data) can be stored in the form of numerical time-series.(3)Transactional data forms : For example, the past transactions of a market can be stored in transactional data forms. Each transaction records a list of items bought in that transaction.(4) Relational data forms : Relational data forms are the most widely used dataforms and can store diffierent kinds of data. The basic units of relational data forms are relations(tab1es). Relations are composed of attributes, and each of which can be different data type.3.2 Six kinds of data mining techniquesData mining techniques are usually classified based on the characteristics of the data to be mined and the knowledge users try to find out, which can be divided into six kinds of techniques according to the researches of former experts. We simply list the knowledge to be found and the most suitable data types to bemined for each kind of data mining techniques in the following:(1) Multilevel data generalization, summarization, and characterization :Knowledge to be found: The purpose of this kind of technique is to observe the data stored in databases with a higher view. The higher views are used to represent rules that can explain certain concepts, and thus facilitate human to realize. The most suitable data types: It is applied to relational databases (relational data forms) by gathering statistics for the data stored in attributes, which can provide higher views.(2) Mining association rules :Knowledge to be found: The purpose of mining association rules is to find out the associations between items from a huge amount of transactions. For example, try to realize the behavior of customers’purchase. The most suitable data types: It is usually applied to transactional data forms. But it is also suitable for data stored in relational data forms if we deal with the data in advance such as “group by transaction”.(3) Data classification:Knowledge to be found: The basic purpose is to find out the classification principle from a pre-classified data set (training data). This principle can be used to classify the newly coming data. ID tree, version space, case-based reasoning, and neural network are all popular classification methods. The most suitable data types: It is applied to relational databases and a tuple represents a sample. One attribute is seen as a target attribute for classification (output) and other attributes are seen as datapattern (inputs).(4) Clustering analysis:Knowledge to be found: According to the similarities among patterns, the more similar patterns are grouped into a cluster. There is not a pre-defined class for each pattern. K-means clus- tering is a common clustering method. The most suitable data types: It is the same as classification; each tuple in the relational database represents a data pattern.(5) Pattern-based similarity search:Knowledge to be found: The purpose of this technique is to search the pattern in databases similar to the pattern in hand. It can be divided into two kinds: text similarity search and time-series similarity search. The most suitable data types: Textual data forms are suitable for text similarity search and temporal data forms are suitable for time-series similarity search.(6) Discovery and analysis of time series or trends:Knowledge to be found: According to the previous change of data values at different times, the trend of time-series can be found and used to predict the possible change of the future. Predicting the stock prices is a good example. The most suitable data types : It is often applied to temporal data forms.Figure 3 illustrates the relationships between the data to be mined and the six kinds of data mining techniques. The links between the six kinds of data mining techniques and the four kinds of data forms imply that the data forms are most suitable for those mining techniques.Figure 3: The relationships between data forms to be mined and the six kinds of data miningtechniques3.3 Analysis of the data types fittability problem for data miningWe can now further analyze the data types fittability problem using Figure 3. The data types fittability problem can be described with two aspects:(1)Data types fittability between different kinds of data formsIt is obvious that the data types stored in the four kinds of data forms are all different. Figure 3 points out that there are most suitable data forms to be mined for each kind of data mining techniques and hence the data types fittablity problem occurs. For example, transactional data forms are most suitable for mining association rules. But it does not mean that the technique of mining association rules can only be applied to transactional data forms. The transactions of a supermarket can also be stored in a relation. If one wants to mine association rules through the relation, he/she can first deal with the data using some SQL operations such as “group by transaction”. After that the relation will be transaction like and can be used for mining association rules. Therefore, we can say that a mining technique can be applied to different kinds of data forms if the data to be mined can be transformed into the form that is most suitable for the mining technique. For another example, we can apply classification algorithms to textual data forms if each text in database can be transformed into the form of some attributes (features). Doing this kind of transformation depends on the knowledge users attempt to find out. In this paper, this kind of transformation isbeyond our discussion and seen as a future work of our data types generalization process. We assume that users try to apply data mining techniques to the most suitable data forms here.(2) Data types fittability for each kind of data formsWe now analyze the data types for each of the four kinds of data forms. We can divide them into two kinds based on their characteristics of data:(a) Textual, temporal and transactional data forms:For these three kinds of data forms, there is no need to find ways to transform the data types of them. This is because the data stored in each of these data forms can be seen as an indivisible data type. We can say that texts, time-series, transactions are complex data types and data mining methods for mining them are specially for these data types. Since there are data mining tech- niques can be applied to these data types as well, we don‟t have to deal w ith these data forms.(b) Relational data forms:The difference between relational data forms and the above three kinds of data forms is that relational data forms consist of attributes. Each attribute indicates a real-world feature and hence can be different data type. There are many kinds of data mining algorithms can be applied to RDB and not all of them are suitable for various data types of attributes. Therefore, the relationships between the data types of attributes and the mining techniques need to be realized. With the relationships, one can know whether he/she needs to transform an attribute‟s data type or not. After that, the data types of those attributes required to be transformed are transformed using some transformation strategies. The whole process for doing this is our data types generalization process. With this process, we can solve the data types fittability problem for the attributes of RDB.4. The data types generalization processThe “data types generalization” process w e proposed is a general process to solve the data fittability problem for the atr- ributes of RDB using some data transformation strategies. The goal of doing data transformation is to transform thedata types of original data stored in databases into the form to which the desired data mining algorithm can be applied. Actually, it seems not necessary to transform over all data types in relational databases because most data mining algorithms can be handled in a subset of data types in RDB. Our idea is first to merge the data types which have similar characteristics into a generalized data type, and then to transform the resulting generalized data types second. With the above idea, our data types generalization process is composed of two phases: merging phase and transforming phase. The merging phase maps the original data types of attributes to the corresponding generalized data types. The transforming phase then transforms the data types of the attributes required to be changed. Now we briefly illustrate a flow of the data types generalization process in Figure 4.Figure 4: A flow of the data types generalization process. The mapping result table stores themapping between attributes and generalized data types.4.1 The first phase: merging phaseThe first phase of data types generalization process is to merge the data types with similar characteristics into a generalized data type. Merging the data types is based on what kind of mining approaches can be applied to them. In other words, the data types belonged to same generalized data types are suitable for same data mining algorithms. To achieve the process in merging phase, we must survey the data types in relational databases and their relationships with respect to various data mining algorithms.As mentioned in Section 3.1, relational databases are the most widely useddatabases and are composed of tables (relations). Hence, in our process, table is the basic unit for performing data mining methods such as classification and clustering. A table has two parts, a heading and a body. The body is a set of tuples, each of which corresponds to a data sample in real world. The heading is a set of attributes, each of which indicates an independent and meaningful data feature. In addition, different attributes can be different data types. So it is suitable for us to analyze data types in attributes instead of analyzing the data types in RDB. According to former researches ,we can generalize the data types contained in attributes into two generalized data types based on the characteristics of various mining methods applied to RDB :(1) Discrete data type: Basically, the values contained in an attribute of discrete data type is composed of a predefined finite data set ,and the distance of any two values in the data set can not be directly computed. Typically, the enumerated data type (user-defined) or the character data type belongs to this kind. Moreover, the data in the data set can be enumerated or multi-dimensional enumerated. An enumerate data set implies the possible values of this attribute are bounded in a data set and can be listed one by one. Boolean type is the simplest example of this condition; the possible values are true and false. On the other hand, a multi-dimensional enumerated data set implies the possible values of an attribute are usually numerous and can not easily be listed one by one. Moreover, this kind of data has a fixed format and thus can be divided into several parts. Each part can be seen as an enumerated discrete data set and it is the reason why we call this kind of data “multi-dimensional enumerated”. For example, assume an attribute…s name is “address”. The number of possible values of an address is numerous, and an address may have a fixed format (such as floor, number, road, city, etc.). According to the format, an address can be divided into several parts and the valuesin each part can be enumerated. When dealing with multi-dimensional enumerated data types, it is needed to make use of their formats. Discrete data type is usually user-defined type or character type, so it can be easily realized by human.(2) Continuous data type: Numeric data types (e.g., int,long int ,float ,double ,etc.)are continuous data type. Compared with discrete data type, each value in this type has a relation or order with other values and we can exactly know the distance or similarity between any two of these values. For example, if an attribute is the grade of a course for a student(assume the range of grade is (0-100), then this attribute is continuous data type. We can exactly know the distance of any two students‟ grades by subtracting the lower one from the higher one. In addition, continuous data type is not as easily as discrete data type for human to realize.Discrete data type is suitable for some supervised learning methods (i.e. classification methods, such as version space and ID tree), but can not directly used for unsupervised methods (i.e. clustering). It is because most clustering algorithms(i.e. k-means clustering) need to compute the distances or similarities between samples which can not be known from the original values of discrete data types.Continuous data type is suitable for clustering methods. We can do clustering on a table that consists of continuous type attributes. This kind of data type is also suitable for some classification methods (such as neural network). We summarize the comparison of these two data types in the Table 1.Table 1 : A comparison for discrete and continuous data woeSome other data types in RDB are not discussed here, like texts or multimedia objects which are beyond our discussion. Our focus is how to transform these two kinds of data in order to apply the desired data mining algorithm.4.2 The second phase: transforming phaseAs mentioned above, the data types of an attribute can be divided into two types. Now, consider the distinct values of an attribute of discrete data type. For most data mining methods, it is difficult to deal with an attribute with numerous distinct values such as the multi-dimensional enumerated discrete data type. Hence, reducing the number of distinct values in a discrete type attribute is another way to transfer the data type. In other words, we now have three kinds of generalized data type: discrete data with numerous distinct values, discrete data with a few distinct values, and continuous data type. Our target is to find ways in order to transform each of these three data types. The strategies are shown in Figure 5.Figure 5: The strategies for transforming over three kinds ofgeneralized data types.After finishing the merging phase, we have to find ways to transform over these generalized data types in the second phase: transforming phase. Domain knowledge often have to be involved in the data transforming phase, so it is difficult to do the transforming phase fully automatically. However, it is still useful to know the possible data transformation strategies. Therefore, we can have a good interaction with the domain experts by asking them to provide the knowledge required when doing data trans- formation. Furthermore, users can decide the depth of the transforming phase going on according to the available knowledge using different transformationstrategies. This is the point we are concerned when developing a tool for data mining. We now illustrate four transformation strategies for transforming over theses three generalized data types in the following:(1) Reducing the distinct values of discrete data type(2) Discrete data type to continuous data type(3) Multi-dimensional enumerated data type to continuous data type(4) Continuous data type to discrete data type5. Concluding remarksIn this paper, we first mentioned the fact that none of data mining algorithms can be applied to all kinds of data types. We then defined the “data types fittability problem” for data mining. After that, we surveyed the relationships between four kinds of data forms and the six kinds of widely used data mining tech- niques ,and then gave an analysis of the data types fittablity problem. Our data types generalization process has also been described in detail and various kinds of transformation strategies are listed. In conclusion, we proposed a data types generalization process which can help users to select a suitable data mining algorithm for their data sets to solve the data types fittablity problem for attributes in RDB.数据类型泛化用于数据挖掘算法摘要随着数据库应用的不断增加,,在从庞大的数据库挖掘有趣的信息备受关注。

相关文档
最新文档