小学四年级数学逻辑思维训练题目
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学生排队,士兵列队,横着排叫做行,竖着排叫做列.如果行数与列数都相等,则正好排成一个正方形,这种图形就叫方队,也叫做方阵(亦叫乘方问题)。
方阵的基本特点是:
①方阵不论在哪一层,每边上的人(或物)数量都相同.每向里一层,每边上的人数就少2。
②每边人(或物)数和四周人(或物)数的关系:
四周人(或物)数=[每边人(或物)数-1]×4;
每边人(或物)数=四周人(或物)数÷4+1。
③中实方阵总人(或物)数=每边人(或物)数×每边人(或物)数。
'
例1:有一条公路长900米,在公路的一侧从头到尾每隔10米栽一根电线杆,可栽多少根电线杆分析:要以两棵电线杆之间的距离作为分段标准.公路全长可分成若干段.由于公路的两端都要求栽杆,所以电线杆的根数比分成的段数多1。
解:以10米为一段,公路全长可以分成
900÷10=90(段)共需电线杆根数:90+1=91(根)
练习与作业
1.四年级同学参加广播体操比赛,要排列成每行11人,共11行的方阵。这个方阵里有多少同学
2.用棋子排成一个6×6的正方形,共需用棋子多少枚
3.有1764棵树苗,准备在一块正方形的苗圃(实心方阵)里栽培。这个正方形苗圃的每边要栽多少棵树苗
4.【
5.576人排成一个实心方阵,这个方阵每边多少人
6.棋子若干只,恰好可以排成每边6只的正方形,棋子的总数是多少棋子最外层有多少
7.在大楼的正方形平顶四周装彩灯,四个角都装一盏,每边装25盏,四周共装彩灯多少盏
巧求周长培优专项训练
我们已经会计算长方形和正方形的周长了,但对于一些不是长方形、正方形而是多边形的图形,怎样求它的周长呢可以把求多边形的周长转化为求长方形和正方形的周长。
例1:如图13—1所示,求这个多边形的周长是多少厘米
练习与作业
1.【
2.下图的周长与长__厘米,宽__厘米的长方形周长相同,所以它的周长为__厘米(单位:厘米)。
3.下图的周长可以看成一个长由__个1厘米的小线段组成,宽由__个1厘米的小线段成的长方形的周长,所以它的周长是___厘米。
4.求下列各图形的周长(单位:厘米)。
①周长为__厘米。
~
逻辑推理初步培优专项训练
在有些问题中,条件和结论中不出现任何数和数字,也不出现任何图形,因而,它既不是一个算术问题,也不是一个几何问题。
也有这样的题目,表面看来是一个算术或几何问题,但在解决它们的过程中却很少用到算术或几何知识。
所有这些问题的解决,需要我们深入地理解条件和结论,分析关键所在,找到突破口,由此入手,进行有根有据的推理,做出正确的判断,最终找到问题的答案。这类问题我们称它为逻辑推理。
例 1.一桩谋杀案中,两个嫌疑犯甲和乙。另有四个证人正在受到讯问。第一个证人说:“我只知道甲是无罪的。”第二个证人说:“我只知道乙是无罪的。”第三个证人说:“前面两个证词中至少有一个是真的。”第四个证人说:“我可以肯定第三个证人的证词是假的。”通过调查研究,已证实第四个证人说了实话,请你分析一下,凶手是谁
分析与解:题目中条件较多,且四个人的证词有真有假,在这种情况下,要善于抓住关键,由此入手进行有根有据的逐步推理。本题的关键是:第四个人说了实话。
因为第四个人说了实话,所以第三个人的证词是伪证,也就是说“前两个证词中至少有一个是真的”是句假话。由此可以断定,第一个和第二个证人都说了假话。从而判断出甲和乙都是凶手。
练习与作业
1.:
2.有甲、乙两同学,其中一个人有奇数根铅笔,一个人有偶数根铅笔。如果再给甲原有的铅笔数,再给乙原有铅笔数的2倍,他们俩共有铅笔数为偶数。那么,甲同学原有铅笔数是__。
3.有甲、乙、丙、丁、戊五位同学,其中丙同学比丁同学高,比戊同学矮;丁同学比乙同学高;戊同学比甲同学矮。则最高的同学是__,最矮的同学是__。
4.#
5.有四种树的照片,它们是桃树、杏树、李树、梨树,生物老师将照片从1到4编了号,让同学们区分四种树,每人说出两个,学生回答如下;第一个学生:2号是桃树,3号是李树;第二个学生:1号
是梨树,2号是杏树;第三个学生:2号是桃树,4号是梨树;第四个学生:4号是梨树d号是李树。老师发现这四个同学都只说对了一半,那么,1号是__,2号是__,3号是__,4号是__。
例.果品店把2千克酥糖,3千克水果糖,5千克奶糖混合成什锦糖.已知酥糖每千克元,水果糖每千克元,奶糖每千克元.问:什锦糖每千克多少元
分析:要求混合后的什锦糖每千克的价钱,必须知道混合后的总钱数和与总钱数相对应的总千克数。
解:①什锦糖的总价:×2+×3+×5=(元)
②什锦糖的总千克数:2+3+5=10(千克)
~
③什锦糖的单价:÷10=(元)
答:混合后的什锦糖每千克元。
我们把上述这种平均数问题叫做“加权平均数”.例3中的元叫做元、元、元的加权平均数.2千克、3千克、5千克这三个数很重要,对什锦糖的单价产生不同影响,有权衡轻重的作用,所以这样的数叫做“权数”。
练习与作业
1.A、B、C三人储蓄,A储了1240元,B比A少储70元,C比B多储50元。求A、B、C三人平均储蓄额。
2.甲、乙二数的平均数是72,丙是18。甲、乙、丙三个数的平均数是多少
"
3.甲、乙的平均数是30,乙、丙的平均数是34,甲、丙的平均数是32。求甲、乙、而三个数的平均数。
4.有A、B、C三个数,A与B的平均数是97,B与C的平均数为132,A与C的平均数为125。问:这三个数的平均数是多少
5.:
6.小刚参加我学考试,前两次的平均分数是85分,后三次的平均分数是90分。小刚前后几次考试的平均分数是多少