高考数学玩转压轴题专题7.2创新型问题

合集下载

复杂的三视图问题-玩转压轴题,(原卷版)

复杂的三视图问题-玩转压轴题,(原卷版)

一.方法综述三视图几乎是每年的必考内容,一般以选择题、填空题的形式出现,一是考查相关的识图,由直观图判断三视图或由三视图想象直观图,二是以三视图为载体,考查面积、体积的计算等,均属低中档题.还原几何体的基本要素是“长对齐,高平直,宽相等”.要切实弄清常见几何体(圆柱、圆锥、圆台、棱柱、棱锥、棱台、球)的三视图的特征,熟练掌握三视图的投影方向及正视图原理,才能迅速破解三视图问题,由三视图画出其直观图.对于简单几何体的组合体的三视图,首先要确定正视、侧视、俯视的方向,其次要注意组合体由哪些几何体组成,弄清它们的组成方式,特别应注意它们的交线的位置.解题时一定耐心加细心,观察准确线与线的位置关系,区分好实线和虚线的不同. 根据几何体的三视图确定直观图的方法: (1)三视图为三个三角形,对应三棱锥;(2)三视图为两个三角形,一个四边形,对应四棱锥; (3)三视图为两个三角形,一个带圆心的圆,对应圆锥; (4)三视图为一个三角形,两个四边形,对应三棱锥; (5)三视图为两个四边形,一个圆,对应圆柱.对于几何体的三视图是多边形的,可构造长方体(正方体),在长方体(正方体)中去截得几何体.二.解题策略类型一 构造正方体(长方体)求解【例1】某几何体的三视图如图所示,关于该几何体有下述四个结论:①体积可能是56;②体积可能是23;③AB 和CD 在直观图中所对应的棱所成的角为3;④在该几何体的面中,互相平行的面可能有四对;其中所有正确结论的编号是( )A .①③B .②④C .①②③D .①②③④【来源】河南省开封市2021届高三三模文科数学试题专题4.1 复杂的三视图问题【答案】D【举一反三】1.(2020·江西高三)某几何体的三视图如图所示,其中网格纸上小正方形的边长为1,则该几何体的体积为()A.9B.92C.6D.32、某三棱锥的三视图如图所示,则该三棱锥的体积为()A.16B.13C.12D.13.若一个几何体的三视图如图所示,则该几何体的体积为()A .4B .8C .12D .14类型二 旋转体与多面体组合体的三视图【例2】(2020·内蒙古高三)如图所示,是某几何体的正视图(主视图),侧视图(左视图)和俯视图,其中俯视图为等腰直角三角形,则该几何体体积为( )A .620π+B .916π+C .918π+D .2063π+【举一反三】一个四棱柱被截去一个半圆柱后剩余部分的三视图如图,则截去部分与剩余几何体的体积比为( )A .18ππ- B .318ππ-C .12ππ-D .312ππ-类型三 与三视图相关的外接与内切问题【例3】(2020·辽宁鞍山一中高三月考)已知四棱锥P ABCD -的三视图如图所示,则四棱锥P ABCD -外接球的表面积是( )A.20πB.1015πC.25πD.22π【举一反三】1.(2020·四川成都七中高考模拟)某多面体的三视图如图所示,则该几何体的体积与其外接球的体积之比为()A.618πB.69πC.63πD.13π2.如图,网格纸上小正方形的边长为2,粗实线及粗虚线画出的是某几何体的三视图,则该几何体的外接球的表面积为A .30B .41C .30D .64【来源】甘肃省兰州市第一中学2020届高三冲刺模拟考试(一)数学(文)试题 3.(2020·山西高三)某棱锥的三视图如图所示,则该棱锥的外接球的表面积为( )A .11πB .12πC .13πD .14π类型四 与三视图相关的最值问题【例4】(2020·武邑宏达学校高考模拟(理))已知在直三棱柱111ABC A B C -中,120BAC ∠=︒,12AB AC AA ===,若棱1AA 在正视图的投影面α内,且AB 与投影面α所成角为(3060)θθ︒≤≤︒.设正视图的面积为m ,侧视图的面积为n ,当θ变化时,mn 的最大值是__________.【举一反三】1.某几何体的一条棱长为7,在该几何体的正视图中,这条棱的投影是长为6的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a 和b 的线段,则a+b 的最大值为 (A )22 (B )23 (C )4 (D )252、某三棱锥的三视图如图所示,且三个三角形均为直角三角形,则xy 的最大值为( )A.32 732.B C.64 764.D3.(2020·西安市长安区第五中学高三(理))如图是一个几何体的三视图,在该几何体的各个面中,面积最小的面的面积为()A.8 B.4C.42D.43三.强化训练1.(2020·福建高三)中国古代数学名著《九章算术》中记载了公元前344年商鞅监制的一种标准量器——商鞅铜方升,某商鞅铜方升模型的三视图,如图所示(单位:寸),若 取3,则该模型的体积(单位:立方寸)为()A.11.9 B.12.6 C.13.8 D.16.22.(2020·北京人大附中高三)已知某多面体的三视图如图所示,则在该多面体的距离最大的两个面中,两个顶点距离的最大值为()A.2 B5C6D.23.(2020·北京市十一学校高三)某四棱锥的三视图如图所示,网格纸上小正方形的边长为1,则该四棱锥的体积为A.43B.4C.423D.424.(2020·湖南雅礼中学高三月考(理))一个多面体的三视图如图所示,其中正视图是正方形,侧视图是等腰三角形,则该几何体的表面积为()A.168 B.98 C.108 D.885.(2020·重庆一中高三月考(理))如图的虚线网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图.在该几何体的直观图中,直线AB与CD所成角的余弦值为()A.15B.25C5D256.(2020·江西高三)半正多面体(semiregular solid) 亦称“阿基米德多面体”,是由边数不全相同的正多边形为面的多面体,体现了数学的对称美.二十四等边体就是一种半正多面体,是由正方体切截而成的,它由八个正三角形和六个正方形为面的半正多面体.如图所示,图中网格是边长为1的正方形,粗线部分是某二十四等边体的三视图,则该几何体的体积为()A.83B.4C.163D.2037.(2020·江西高三期末(理))如图,网格纸上小正方形的边长为1,粗实线画出的是一个三棱锥的三视图,则该三棱锥的外接球的表面积是()A.B.C.D.8.(2020合肥市高三)我国古代《九章算术》将上、下两面为平行矩形的六面体称为刍童.右图是一个刍童的三视图,其中正视图及侧视图均为等腰梯形,两底的长分别为2和4,高为2,则该刍童的表面积为A. B.40 C. D.9.一个几何体的三视图如图所示,则这个几何体的体积为A. B. C. D.10.榫卯(sǔnmǎo)是两个木构件上所采用的一种凹凸结合的连接方式.凸出部分叫榫,凹进去的部分叫卯,榫和卯咬合,起到连接作用.代表建筑有北京的紫禁城、天坛祈年殿,山西悬空寺等,如图是一种榫卯构件中榫的三视图,则该榫的表面积和体积为()A. B. C. D.11.如图是某几何体的三视图,其中网格纸上小正方形的边长为1,则该几何体的表面积为()A .3682+B .3282+C .3242+D .3642+【来源】云南师范大学附属中学2021届高三高考适应性月考卷(六)理科数学试题12.(2020·安徽高三月考)一副三角板由一块有一个内角为60︒的直角三角形和一块等腰直角三角形组成,如图所示,1AB =,60A ∠=︒,90B F ∠=∠=︒,BC DE =.现将两块三角板拼接在一起,使得二面角F BC A --为直二面角,则三棱锥F ABC -的外接球表面积为( )A .4πB .3πC .2πD .π13.已知正方体1111ABCD A B C D -(如图1),点P 在侧面11CDD C 内(包括边界).若三棱锥1B ABP -的俯视图为等腰直角三角形(如图2),则此三棱锥的左视图不可能是( )A.B.C.D.【来源】北京市海淀区2021届高三二模数学试题14.如图,网格纸上小正方形的边长为1,粗线是某几何体的三视图,则该几何体的各个面中最大面积为()A.6 B22C.32D13【来源】贵州省普通高等学校招生2021届高三适应性测试(3月)数学(文)试题15.已知一个三棱锥的三视图如图所示,其中俯视图是等腰直角三角形,则该三棱锥的外接球表面积()A.3πB.23πC.43πD.12π【来源】四川省泸州市泸县第五中学2021届高三高考数学(文)一诊试题16.已知某几何体的三视图如图所示,则该几何体的体积为()A.12B.32C.1D.3317.某几何体的三视图如图所示(单位:cm),则该几何体内切球的表面积(单位:2cm)是()A .9π16B .9π4C .1π4D .9π2【来源】安徽省江淮十校2021届高三下学期4月第三次质量检测理科数学试题18.某三棱锥的三视图如图所示,已知网格纸上小正方形的边长为1,该三棱锥所有表面中,最大的面积为( )A .2B .22C .23D .42【来源】安徽省五校联盟2021届高三下学期第二次联考理科数学试题19.如图,正四棱锥P ABCD -的高为12,62AB =,E ,F 分别为PA ,PC 的中点,过点B ,E ,F 的截面交PD 于点M ,截面EBFM 将四棱锥分成上下两个部分,规定BD 为主视图方向,则几何体CDAB FME -的俯视图为( )A.B.C.D.【来源】江西省南昌市2021届高三二模数学(理)试题20.三棱柱被一平面截去一部分后,剩余部分的三视图如图所示,则该几何体的体积为()A.203B.6 C.52D162【来源】景德镇市2021届高三第三次质检数学(理)试题21.某几何体的三视图如图所示,则该几何体的体积为()A .246π-B .86π-C .246π+D .86π+【来源】河南省六市2021届高三第二次联考(二模)数学(文科)试题22.某几何体的三视图如图所示,则该几何体的体积为( )A .2B .4C .163D .22323.正三棱锥(底面为正三角形,顶点在底面的射影为底面中心的棱锥)的三视图如图所示,俯视图是正三角形,O是其中心,则正视图(等腰三角形)的腰长等于()A.5B.2 C.3D.224.某几何体的三规图如图所示. 则其外接球的表面积为()A.803πB.1369πC.5449πD.483π【来源】百师联盟2020-2021学年高三下学期开年摸底联考考理科数学试卷(全国Ⅰ卷)25.已知一个三棱锥的三视图如图所示,则该三棱锥的外接球的体积为()A.32πB.823πC.833πD.8π26.(2020·湖北高三期末(理))中国的计量单位可以追溯到4000多年前的氏族社会末期,公元前221年,秦王统一中国后,颁布同一度量衡的诏书并制发了成套的权衡和容量标准器.下图是古代的一种度量工具“斗”(无盖,不计量厚度)的三视图(其正视图和侧视图为等腰梯形),则此“斗”的体积为(单位:立方厘米)27.(2020·陕西高三(理))某几何体的三视图如图所示,若该几何体的体积为103,则棱长为a的正方体的外接球的表面积为28.(2020·深圳市高级中学高三(理))某几何体的三视图如图所示,主视图是直角三角形,侧视图是等腰三角形,俯视图是边长为3的等边三角形,若该几何体的外接球的体积为36 ,则该几何体的体积为__________.29.(2020·福建高三期末(理))农历五月初五是端午节,民间有吃粽子的习惯,粽子又称粽籺,俗称“粽子”,古称“角黍”,是端午节大家都会品尝的食品,传说这是为了纪念战国时期楚国大臣、爱国主义诗人屈原.如图,平行四边形形状的纸片是由六个边长为1的正三角形构成的,将它沿虚线折起来,可以得到如图所示粽子形状的六面体,则该六面体的体积为____;若该六面体内有一球,则该球体积的最大值为____.30.某三棱锥的正视图和俯视图如图所示,已知该三棱锥的各顶点都在球O的球面上,过该三棱锥最短的棱的中点作球O的截面,截面面积最小为______.【来源】内蒙古锡林郭勒盟全盟2021届高三第二次模拟考试数学(理科)试题31.一个直三棱柱的三视图如图所示,则该直三棱柱的体积为_______,它的外接球的表面积为________.。

难点01 创新性问题-2017年高考数学二轮核心考点总动员

难点01 创新性问题-2017年高考数学二轮核心考点总动员

2017届高考数学考点总动员【二轮精品】第二篇难点一 创新性问题【热点考法】创新性问题是高考考查的热点和难点,此类题目常常以“问题”为核心,以“探究”为途径,以“发现”为目的,以集合、函数、平面向量、数列、解析几何、立体几何等数学知识为背景,采用新定义、新运算、新性质、探索型等形式,考查考生对新概念的理解和应用新概念解决实际问题能力,考查创新意识、应用意识,考查转化与化归思想,试题难度为中档题或难题,分值为5分.【热点考向】考向一 集合的创新性问题【解决法宝】求解集合中的创新问题,主要抓两点:(1)紧扣新定义、新运算、新性质.首先分析新定义、新运算、新性质的特点,把新定义、新运算、新性质所叙述的问题的本质弄清楚,并应用到具体的解题过程之中,这是破解新定义型集合问题难点的关键所在.(2)用好集合的性质.集合的性质(概念、元素的性质、运算性质等)是破解新定义型集合问题的基础,也是突破口,在解题时要善于从试题中发现可以使用集合性质的一些因素,在关键之处用好集合的性质.例1 【北京市朝阳区2016届高三第一学期期中】已知实数数列}{n a 满足:),2,1(||12 =-=++n a a a n n n ,b a a a ==21,,记集合{|}.n M a n *=∈N(Ⅰ)若2,1==b a ,用列举法写出集合M ;(Ⅱ)若0,0<<b a ,判断数列}{n a 是否为周期数列,并说明理由; (Ⅲ)若0,0≥≥b a ,且0≠+b a ,求集合M 的元素个数的最小值.【分析】 本题重点在于理解新定义,然后就是抓住关键分析集合M 中元素的特征,从而问题就可获解。

(Ⅰ) 由11a =,22a =,21||n n n a a a ++=-,可得:31a =,41a =-,50a =,61a =,71a =,80a =,当5n ≥时,3n n a a +=,即可得出;(Ⅱ)0a <,0b <,21||n n n a a a ++=-,可得数列的前11项分别为:,,b a --,2a b --,b -,a b +,a -,2a b --, b a --,,,⋅⋅⋅,101a a =,112a a =。

名师分析高考数学创新题型思维

名师分析高考数学创新题型思维

名师分析高考数学创新题型思维新课标以来,高考数学中显现了创新题型,以第8、14、20题为主,创新题型是建立在高中数学思维体系之上的一中新数学题型。

这种题型按照思维方法能够概括为以下几点:(一)解析几何中的运动问题解析几何中的创新小题是新课标高考中显现频率最高的题型,09、1 0、11年高考数学选择填空压轴题都显现了运动问题。

即新课标高考数学思维从传统分析静态模型转变为分析动态模型。

因此考生需要把握在运动过程中关于变量与不变量的把握、善于建立运动过程中直截了当变量与间接变量的关系、以及专门值情境分析、存在问题与任意问题解题方法的总结。

在解此类创新题型时,往往需要融入生活中的专门多思想,加上题目中所给信息相融合。

在数学层面上,需要考生善于从各个角度与考虑问题,将思路打开,同时善于用数学思维去将题目情境抽象成数学模型。

(二)新距离近几年兴起的关于坐标系中新距离d=|X1-X2|+|Y1-Y2|的问题,考生需要明白得坐标系中坐标差的原理,关于对应两点构成的矩形中坐标差的关系弄清晰就行了。

近两年高考大题中均涉及到了新距离问题,但是高考所考察的内容不再新距离本身,而在于建立新的数学模型情形下,考生能否摸索出建立数学模型与数学思维的关系。

比如2021年压轴题,关于一个数列各个位做差取绝对值求和的问题,由于每个位取值情形均相同,故只需考虑一个位就行了。

在大题具体解题中笔者会详细叙述。

(三)新名词关于题目中显现了新名词新性质,考生完全能够从新性质本身动身,从数学思维角度明白得新性质所代表的数学含义。

此类创新题型就像描述一幅画一样去描述一个数学模型,然后描述的简洁透彻,让考生通过此类描述去挖掘性质。

新课标数学追求对数学思维的自然描述,即可不能给学生思维断层、非生活常规思路(北京海淀区2021届高三上学期期末考试题的解析几何大题属于专门规思路)。

比如2009年北京卷文科填空压轴题,确实是让学生直观形象的去明白得什么叫做孤立元,如此肯快就能够得到答案。

高考数学题型全归纳数列创新题的基本类型及求解策略

高考数学题型全归纳数列创新题的基本类型及求解策略

a1j 4 3( j 1) ;
第二行是首项为,公差为的等差数列:
a2j
7 5( j 1) , ……,
第行是首项为 4 3(i 1) ,公差为 2i 1 的等差数列,
因此 aij 4 3(i 1) (2i 1)( j 1) 2ij i j i(2 j 1) j ;
⑶必要性:若在该等差数阵中,则存在正整数
……
……
……
……
aij 表示位于第行第 j 列的数.
…… aij ……
…… …… ……
⑴写出 a45 的值;
⑵写出 aij 的计算公式;
⑶证明:正整数在该等差数列阵中的充要条件是
2 N 1可以分解成两个不是的正整数之积.
解:⑴ a45 49 (详见第二问一般性结论) .
⑵该等差数阵的
第一行是首项为,公差为的等差数列:
的距离即 FP1
7 1 ,最大值为右焦点到左顶点的距离即
PF21
7 1 ,故若公差 d 0 ,
则71
2
1
7 1 ( n 1)d ,∴ n
d
1≥ 21 0 d ≤
,∴
10 .同理,若公差 d
0 ,则可求得
1
≤d 0
10

评析:
本题很好地将数列与椭圆的有关性质结合在一起,形式新颖,内容深遂,有一定的难度,可
1 1 20 , 2
0 20
1 21 , 3
1 20
1 21 , 4
0
02
1
2
0 2 1 2,
5 1 20 0 21 1 22 ,进而知 7 1 20 1 21 1 22 ,写成二进制为 111 .
于 是 知 二 进 制 为 位 数 能 表 示 十 进 制 中 最 大 的 数 是 111111 化 成 十 进 制 为

关于高考数学创新题型思维方法

关于高考数学创新题型思维方法

关于高考数学创新题型思维方法关于高考数学创新题型思想方法(一)解析几何中的运动效果解析几何中的创新小题是新课标高考中出现频率最高的题型,09、10、11年高考数学选择填空压轴题都出现了运动效果。

即新课标高考数学思想从传统剖析静态模型转变为剖析静态模型。

因此考生需求掌握在运动进程中关于变量与不变量的掌握、擅长树立运动进程中直接变量与直接变量的关系、以及特殊值情境剖析、存在效果与恣意效果解题方法的总结。

在解此类创新题型时,往往需求融入生活中的很多思想,加上标题中所给信息相融合。

在数学层面上,需求考生擅长从各个角度与思索效果,将思绪翻开,同时擅长用数学思想去将标题情境笼统成数学模型。

(二)新距离近几年兴起的关于坐标系中新距离d=|X1-X2|+|Y1-Y2|的效果,考生需求懂得坐标系中坐标差的原理,关于对应两点构成的矩形中坐标差的关系弄清楚就行了。

近两年高考大题中均触及到了新距离效果,可是高考所调查的内容不再新距离自身,而在于树立新的数学模型状况下,考生能否探索出树立数学模型与数学思想的关系。

比如2021年压轴题,关于一个数列各个位做差取相对值求和的效果,由于每个位取值状况均相反,故只需思索一个位就行了。

在大题详细解题中小编会详细表达。

(三)新名词关于标题中出现了新名词新性质,考生完全可以重新性质自身动身,从数学思想角度了解新性质所代表的数学含义。

此类创新题型就像描画一幅画一样去描画一个数学模型,然后描画的繁复透彻,让考生经过此类描画去开掘性质。

新课标数学追求对数学思想的自然描画,即不会给先生思想断层、非生活惯例思绪(北京海淀区2021届高三上学期期末考试题的解析几何大题属于十分规思绪)。

比如2020年北京卷文科填空压轴题,就是让先生直观笼统的去了解什么叫做孤立元,这样肯快就可以失掉答案。

(四)知识点性质结合此类题型主要结合函数性质、图象等知识点停止出题,此类题普通只需熟习知识点网络结构与知识点思想方式就没有效果。

高考数学专题《两招玩转多面体的外接球》填选压轴题及答案

高考数学专题《两招玩转多面体的外接球》填选压轴题及答案

专题60 两招玩转多面体的外接球【方法点拨】解决多面体的外接球问题的关键是“定心”,常用方法有两种:(1)“补体法”:对于符合特殊条件的四面体补形为长方体解决,常见的有下列两种类型. 类型一:墙角模型(三条线两个垂直,补形为长方体,其体对角线的中点即球心)方法:找三条两两垂直的线段,直接用公式2222)2(c b a R ++=,即2222c b a R ++=,求出R .类型二:对棱相等模型(补形为长方体)如下图,三棱锥(即四面体)中,已知三组对棱分别相等,求外接球半径(CD AB =,BC AD =,BD AC =)第一步:画出一个长方体,标出三组互为异面直线的对棱;第二步:设出长方体的长宽高分别为c b a ,,,x BC AD ==,y CD AB ==,z BD AC ==,列方程组,图3图12⎪⎩⎪⎨⎧=+=+=+222222222z a c y c b x b a ⇒2)2(2222222z y x c b a R ++=++=, 补充:abc abc abc V BCD A 31461=⨯-=- 第三步:根据墙角模型,22222222z y x c b a R ++=++=,82222z y x R ++=,8222z y x R ++=,求出R .(2)“窜心法”:多面体的外接球心问题,可转化为其某两个侧面三角形外接圆的垂线来解决,即球心就是分别过两个侧面三角形外接圆的圆心且垂直于该平面的直线的交点(即将三角形外接圆的圆心,垂直上蹿下跳).第一步:先画出如图所示的图形,将BCD ∆画在小圆上,找出BCD ∆和BD A '∆的外心1H 和2H ;第二步:过1H 和2H 分别作平面BCD 和平面BD A '的垂线,两垂线的交点即为球心O ,连接OC OE ,;第三步:解1OEH ∆,算出1OH ,在1OCH Rt ∆中,勾股定理:22121OC CH OH =+. 说明:解法二是通法,具体解题过程中,常常涉及复杂的线面位置关系的论证、多次解三角形等,有一定的难度.【典型题示例】例1 (2021·全国)已知三棱锥P ­ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是P A ,AB 的中点,∠CEF =90°,则球O 的体积为( )A .86πB .46πC .26πD .6π图11【答案】D【解析】因为点E ,F 分别为P A ,AB 的中点,所以EF ∥PB ,因为∠CEF =90°,所以EF ⊥CE ,所以PB ⊥CE . 取AC 的中点D ,连接BD ,PD ,易证AC ⊥平面BDP ,所以PB ⊥AC ,又AC ∩CE =C ,AC ,CE ⊂平面P AC ,所以PB ⊥平面P AC , 所以PB ⊥P A ,PB ⊥PC ,因为P A =PB =PC ,△ABC 为正三角形,所以P A ⊥PC ,即P A ,PB ,PC 两两垂直,将三棱锥P ­ABC 放在正方体中如图所示.因为AB =2,所以该正方体的棱长为2,所以该正方体的体对角线长为6,所以三棱锥P ­ABC 的外接球的半径R =62,所以球O 的体积V =43πR 3=43π×(62)3=6π.故选D. 例 2 在边长为23的菱形ABCD 中,60A =︒,沿对角线BD 折起,使二面角A BD C --的大小为120°,这时点A ,B ,C ,D 在同一个球面上,则该球的表面积为____________. 【答案】28π【解析】设ABD 和BCD 的外心1O 和2O ,过1O 和2O 分别作平面ABD 和平面BCD 的垂线,两垂线的交点即为球心O (两垂线共面的证明,此处从略),连接OA 即为所求球的半径易知二面角A BD C --的平面角为AEC ∠(证明从略),故120AEC ∠=︒, 因为1O 是ABD 的外心,所以32332AE CE ==⨯=,11O E =,12O A = 在1Rt O OE ,11O E =,160OEO ∠=︒,所以13OO =, 在1Rt AOO ,2222211327OA OO O A =+=+= ∴四面体的外接球的表面积为2428R ππ=.CBD AE O 2O 1O例3 在三棱锥ABC P -中,5==BC PA ,17==AC PB ,10==AB PC ,则该三棱锥外接球的表面积为_________;外接球体积为_________. 【答案】3261326ππ,【解析】由题意,该三棱锥的对棱相等,可知该三棱锥可置于一个长方体中,记该长方体的棱长为c b a ,,,所以⎪⎩⎪⎨⎧=+=+=+251710222222c b c a b a ,即431===c b a ,,,所以22622591=++=r ,由此可得,326133426432ππππ====r V r S ,.例4 已知三棱锥P -ABC 的所有顶点都在球O 的球面上,△ABC 满足AB =22,∠ACB =90°,P A 为球O 的直径且P A =4,则点P 到底面ABC 的距离为( ) A. 2B.2 2C. 3D.23【答案】 B【解析】 取AB 的中点O 1,连接OO 1, 如图,在△ABC 中,AB =22,∠ACB =90°,所以△ABC 所在小圆圆O 1是以AB 为直径的圆, 所以O 1A =2,且OO 1⊥AO 1, 又球O 的直径P A =4,所以OA =2,所以OO 1=OA 2-O 1A 2=2,且OO 1⊥底面ABC , 所以点P 到平面ABC 的距离为2OO 1=2 2.【巩固训练】1.在三棱锥D ABC -中,平面ACD ⊥平面ABC ,AB ⊥AC ,且AC =CD =DA =3,AB =3,则三棱锥A BCD -的外接球的表面积为( ). A .15π4B .15πC .3π2D . 6π2.如下图,在四棱锥P ABCD -中,已知PA ⊥底面,,ABCD AB BC AD CD ⊥⊥,且120,2BAD PA AB AD ∠=︒===,则该四棱锥外接球的表面积为( )A .8πB .20πC .205πD . 205π33.三棱锥ABC P -中,平面⊥PAC 平面ABC ,△PAC 和△ABC 均为边长为2的正三角形,则三棱锥ABC P -外接球的半径为 .4.如图所示三棱锥,其中则该三棱锥外接球的表面积为 .2,则该正面体外接球的体积5.正四面体的各条棱长都为为 .6. 在三棱锥P ABC -中,PAB ∆是边长为3的等边三角形,AC BC =,90ACB ∠=︒,二面角P AB C --的大小为120︒,则三棱锥P ABC -外接球的表面积为 .7. 已知在四棱锥S -ABCD 中,SD ⊥底面ABCD ,且底面ABCD 是等腰梯形,BC //AD ,若SD =AD =8,BC =6,AB =CD =2,则四棱锥S -ABCD 的体积为 ;它的外接球的半径为 .(第一空2分,第二空3分)8.在三棱锥BCD A -中,,4,3,2======BD AC BC AD CD AB 则三棱锥BCD A -外接球的表面积为 .9.(多选题)在正六棱锥P ABCDEF -中,已知底面边长为1,侧棱长为2,则 A .AB PD ⊥ B .共有4条棱所在的直线与AB 是异面直线A BCD -5,6,7,AB CD AC BD AD BC ======CDCD .该正六棱锥的外接球的表面积为163π【答案或提示】1. 【答案】B甲乙 丙【解析】∵AB ⊥AC ∴△ABC 外接圆的圆心为BC 中点,∴A BCD -外接球的球心在过BC 中点且垂直于△ABC 所在平面的直线上如上图(乙)中,设BC 中点为O 1,球心为O ,同理,设△ADC 外接圆的圆心为O 2 则OO 2= O 1E =32, 在△OO 2D 中,O 2D =3,所以OD 2= O 1E 2+ O 2D 2=154所以三棱锥A BCD -的外接球的表面积为15π. 2. 【答案】B【解析】四边形ABCD 的外接圆的直径4AC =,故四棱锥外接球的球心在过AC 的中点且垂直于平面ABCD 的直线上,又因为P A 、两点在球面上,故其球心在过PA 中点且垂直于PA 的垂面上, 所以球心即为PC 中点(PAC 的外接圆即为大圆), 故PC 20π. 3. 【解析一】3460sin 22221===r r ,3221==r r ,312=H O , 35343121222=+=+=r H O R ,315=R .【解析二】312=H O ,311=H O ,1=AH , 352121222=++==O O H O AH AO R ,315=R . 4.【答案】55π【解析】同例2,设补形为长方体,三个长度为三对面的对角线长,设长宽高分别为c b a ,,,110493625)(2222=++=++c b a ,55222=++c b a ,5542=R ,π55=S .5. 【解析】这是对棱相等的特殊情况放入长方体中,32=R ,23=R ,ππ2383334=⋅=V . 6.【答案】13π【解析】取AB 的中点M ,连接PM 、CM , 因为PAB ∆是等边三角形,所以PM AB ⊥,又因AC BC =,所以CM AB ⊥,所以PMC ∠即为二面角P AB C --的平面角,即120PMC ∠=︒, 因为PAB ∆是等边三角形,所以PAB ∆的外接圆圆心即为三角形的重心1O ,过1O 作1l ⊥平面PAB ,而M 为ABC ∆的外接圆圆心,过M 作2l ⊥平面ABC , 所以1l 与2l 的交点即为三棱锥P ABC -外接球的球心O , 作平面PMC 截面图,则PM =,113O M ==,13O P == 而9030PMO PMC ∠=∠-︒=︒,则111tan302OO O M =⋅︒=,所以r OP == 所以三棱锥P ABC -外接球的表面积为2413r ππ=.7.【答案】563【提示】球心O 在SD 的中垂面上,所以O 到底面的距离d =4,设底面ABCD 的圆心为H ,半径为r ,1=,解得5r =,所以外接球的半径为R = 8.【答案】π229【解析】如“方法点拨类型二”图,设补形为长方体,三个长度为三对面的对角线长, 设长宽高分别为c b a ,,,则922=+b a ,422=+c b ,1622=+a c∴291649)(2222=++=++c b a ,291649)(2222=++=++c b a ,229222=++c b a ,22942=R ,π229=S . 9.【答案】BCD【解析】设底面中心为O ,PO ⊥平面ABCDEF ,PO AB ∴⊥.若PD AB ⊥,则AB ⊥平面POD ,则AB OD ⊥,即AB AD ⊥矛盾,A 错.AB 与,,,PC PD PE PF 异面,B 对.对于C ,可用几何法.设四棱锥内切球球心为1O ,1O ∴一定在PO上,图中OM =PMPO =AB 中点M ,连接,PM OM ,过1O 作1O H PM ⊥于点H ,1O H ∴⊥平面PABPM1只需11O HO O r ==,由122PO H PMO ⇒=△∽△⇒内切球球半径r =C 正确.设内切圆半径为r ,取AB 中点Q ,2PA PB ==,12BQ =,2PQ ∴==,Δ11224PAB S ∴=⋅⋅=,S ∴侧16112S =⨯⨯⨯=底Rt POQ △中,PO ===1132322r⎛∴⋅=+⋅ ⎝⎭,4r -∴=. 设外接球半径为R,则22)1R R-+=,R ∴=, 21643S πR π==,D 对,选BCD.。

高考数学常考压轴题:创新型函数

高考数学常考压轴题:创新型函数

高考数学常考压轴题:创新型函数1500字创新型函数是高考数学中经常考察的一种题型,它要求考生通过对已知函数的变换和组合来构造出一个新的函数。

这类题目有时候会涉及到一些复杂的变量关系和数学概念,考察考生对于函数性质的理解和灵活应用能力。

在解答创新型函数的题目时,需要考生熟练掌握基本的函数知识和运算规则,并能够将这些知识用于实际问题的求解。

下面我将通过一道典型的高考创新型函数题来进行讲解。

【题目】已知函数f(x) 表示实数集上的一个奇函数,且满足f(x) - f(1) = (x-1)(x+3),则 f(x) 的表达式为 ______。

(本题满分 14 分)【解析】首先,我们需要明确题目的给定条件:函数 f(x) 是一个奇函数,且满足 f(x) - f(1) = (x-1)(x+3)。

根据题目中给定的条件,我们可以得到以下等式:f(x) = f(1) + (x-1)(x+3)根据题目的要求,我们需要求出 f(x) 的表达式。

为了实现这一目标,我们需要先确定f(1) 的值。

由于 f(x) 是一个奇函数,根据奇偶函数的性质,我们可以得到:f(-x) = -f(x)将 x 替换为 -1,我们可以得到:f(-1) = -f(1)将 x 替换为 1,我们可以得到:f(1) = -f(-1)由题意可知,f(1) - f(-1) = (1-1)(1+3) = 0,所以 f(1) = f(-1) = 0。

将 f(1) 的值代入 f(x) 的表达式中,我们可以得到:f(x) = 0 + (x-1)(x+3)= (x-1)(x+3)所以,f(x) 的表达式为 (x-1)(x+3)。

接下来,我们可以对这个表达式进行进一步的分析。

由于(x-1)(x+3) 是一个二次函数,我们可以求出它的图像和性质。

首先,我们可以得到 x = 1 和 x = -3 是这个函数的两个零点,它们是函数的两个根。

也就是说,f(x) = 0 当且仅当 x = 1 或 x = -3。

2024届高考数学复习创新题型专项(立体几何)练习(附答案)

2024届高考数学复习创新题型专项(立体几何)练习(附答案)

2024届高考数学复习创新题型专项(立体几何)练习一、单选题1.(2022ꞏ全国ꞏ高三专题练习)笛卡尔是世界著名的数学家,他因将几何坐标体系公式化而被认为是解析几何之父.据说在他生病卧床时,还在反复思考一个问题:通过什么样的方法,才能把“点”和“数”联系起来呢?突然,他看见屋顶角上有一只蜘蛛正在拉丝织网,受其启发建立了笛卡尔坐标系的雏形.在如图所示的空间直角坐标系中,单位正方体顶点A 关于x 轴对称的点的坐标是( )A .()1,1,1--B .()1,1,1C .()1,1,1-D .()1,1,1---2.(2022春ꞏ辽宁大连ꞏ高一统考期末)民间娱乐健身工具陀螺起源于我国,最早出土的石制陀螺是在山西夏县发现的新石器时代遗址.如图所示的是一个陀螺的立体结构图.已知底面圆的直径16cm AB =,圆柱体的高8cm BC =,圆锥体的高6cm CD =,则这个陀螺的表面积是( )A .2192πcmB .2208πcmC .2272πcmD .2336πcm3.(2022秋ꞏ安徽ꞏ高二合肥市第八中学校联考期中)《九章算术》是我国东汉初年编订的一部数学经典著作,其在卷第五《商功》中描述的几何体“阳马”实为“底面为矩形,一侧棱垂直于底面的四棱锥”.如图,在“阳马”A OBCD -中,E 为ACD 的重心,若AB a =,AC b = ,AD c = ,则BE = ( )A .1122a b c -++ B .1133a b c -++ C .2233a b c ++ D .1133a b c -+- 4.(2022秋ꞏ河南商丘ꞏ高三校联考阶段练习)榫卯是一种中国传统建筑、家具及其他器械的主要结构方式,是在两个构件上采用凹凸部位相结合的一种连接方式.凸出的部分叫做榫(或叫榫头),凹进部分叫卯(或叫榫眼、榫槽).现要在一个木头部件制作一个榫眼,最终完成一个直角转弯结构的部件,那么制作成的榫眼的俯视图可以是( )A .B .C .D .5.(2021秋ꞏ江西宜春ꞏ高二上高二中校考阶段练习)张衡是中国东汉时期伟大的天文学家、数学家,他曾经得出圆周率的平方除以十六等于八分之五.已知三棱锥A BCD -的每个顶点都在球O 的球面上,AB ⊥底面BCD ,BC CD ⊥,且2AB CD ==,1BC =,利用张衡的结论可得球O 的表面积为( )A .30B .2C .D .6.(2021春ꞏ陕西榆林ꞏ高三校考阶段练习)“天圆地方”观反映了中国古代科学对宇宙的认识,后来发展成为中国传统文化的重要思想.中国古人将琮、璧、圭、璋、璜、琥六种玉制礼器谓之“六瑞”,玉琮内圆外方,表示天和地,中间的穿孔表示天地之间的沟通,可以说是中国古代世界观很好的象征物.下面是一玉琮图及其三视图,设规格如图所示(单位:cm ),则三视图中A ,B 两点在实物中对应的两点在实物玉璧上的最小距离约为( )(3π≈ 1.4≈)A .8.4B .9.8C .10.4D .11.27.(2022ꞏ全国ꞏ高一专题练习)《九章算术》中有这样的图形:今有圆锥,下周三丈五尺,高五丈一尺(1丈10=尺);若该圆锥的母线长x 尺,则x =( )A B C D 8.(2021秋ꞏ吉林四平ꞏ高三四平市第一高级中学校考阶段练习)“阿基米德多面体”也称为半正多面体,半正多面体是由两种或多种正多边形面组成,而又不属于正多面体的凸多面体.如图,某广场的一张石凳就是一个阿基米德多面体,它是由正方体截去八个一样的四面体得到的.若被截正方体的棱长为40cm ,则该阿基米德多面体的表面积为( )A .(24800cm +B .(24800cm +C .(23600cm +D .(23600cm + 9.(2022秋ꞏ宁夏吴忠ꞏ高二青铜峡市高级中学校考开学考试)牟合方盖是由我国古代数学家刘徽首先发现并采用的一种用于计算球体体积的方法,该方法不直接给出球体的体积,而是先计算牟合方盖的体积.刘徽通过计算,“牟合方盖”的体积与球的体积关系为4V V π=牟球,并且推理出了“牟合方盖”的八分之一的体积计算公式,即38V r V =-牟方盖差,从而计算出343V r π=球.如果记所有棱长都为r 的正四棱锥的体积为V ,则:V V =方差盖( )A B .1 C D .10.(2022秋ꞏ湖北襄阳ꞏ高二襄阳市第一中学校考阶段练习)《九章算术》中的“商功”篇主要讲述了以立体几何为主的各种形体体积的计算,其中堑堵是指底面为直角三角形的直棱柱.如图,在堑堵111ABC A B C -中,,M N 分别是111,AC BB 的中点,G 是MN 的中点,若1AG xAB y AA z AC =++ ,则x y z ++=( )A .32B .23 C .1 D .3411.(2022秋ꞏ江西抚州ꞏ高二临川一中校考期中)如图,何尊是我国西周早期的青铜礼器,其造型浑厚,工艺精美,尊内底铸铭文中的“宅兹中国”为“中国”一词最早的文字记载,何尊还是第一个出现“德”字的器物,证明了周王朝以德治国的理念,何尊的形状可近似看作是圆台和圆柱的组合体,组合体的高约为40cm ,上口直径约为28cm ,经测量可知圆台的高约为16cm ,圆柱的底面直径约为18cm ,则该组合体的体积约为( )(其中π的值取3)A .11280cm 3B .12380cm 3C .12680cm 3D .12280cm 312.(2022秋ꞏ安徽ꞏ高三校联考开学考试)《几何原本》是古希腊数学家欧几里得的一部不朽之作, 其第11卷中将轴截面为等腰直角三角形的圆锥称为“直角圆锥”.若一个直角圆锥的侧面积为,则该圆锥的体积为( )AB .3πC .D .13.(2022秋ꞏ青海西宁ꞏ高三统考期中)我国历史文化悠久,“爰”铜方彝是商代后期的一件文物,其盖似四阿式屋顶,盖为子口,器为母口,器口成长方形,平沿,器身自口部向下略内收,平底、长方形足、器内底中部及盖内均铸一“爰”字.通高24cm ,口长13.5cm ,口宽12cm ,底长12.5cm ,底宽10.5cm.现估算其体积,上部分可以看作四棱锥,高约8cm ,下部分看作台体,则其体积约为( )11.5≈,12.7≈)A .37460.8cmB .3871.3cmC .31735.3cmD .32774.9cm14.(2022秋ꞏ湖北ꞏ高二校联考期中)在中国古代数学著作《九章算术》中记载了一种称为“曲池”的几何体,该几何体的上、下底面平行,且均为扇环形(扇环是指圆环被扇形截得的部分).现有一个如图所示的曲池,它的高为4,1AA ,1BB ,1CC ,1DD 均与曲池的底面垂直,底面扇环对应的两个圆的半径分别为2和4,对应的圆心角为90°,则图中异面直线1AB 与1CD 所成角的余弦值为( )A .45B .35C .23 D .3415.(2023ꞏ江西抚州ꞏ高三金溪一中校考开学考试)中国某些地方举行婚礼时要在吉利方位放一张桌子,桌子上放一个装满粮食的升斗,斗面用红纸糊住,斗内再插一杆秤、一把尺子,寓意为粮食满园、称心如意、十全十美.下图为一种婚庆升斗的规格,把该升斗看作一个正四棱台,忽略其壁厚,则该升斗的容积约为( )39.6,1L 1000cm ≈=,参考公式:(13V S S h 下上棱台=+⋅)A .1.5LB .2.4LC .5.0LD .7.1L16.(2022春ꞏ湖南长沙ꞏ高二湖南师大附中校考阶段练习)波利亚在其论著中多次提到“你能用不同的方法推导出结果吗?”,“试着换一个角度探索下去……”.这都属于“算两次”的原理.另外,更广义上讲,“算两次”也是对同一个问题,用两种及其以上的方法解答出来,即对同一个问题解两次,得到相同的结果,体现殊途同归,一题多解.试解决下面的问题:四面体ABCD 中,AB=CD=6,其余的棱长均为5,则与该四面体各个表面都相切的内切球的表面积为( )A .7925πB .7320πC .6316πD .4π17.(2022秋ꞏ黑龙江齐齐哈尔ꞏ高二齐齐哈尔市第八中学校校考开学考试)灯笼起源于中国的西汉时期,两千多年来,每逢春节人们便会挂起象征美好团圆意义的红灯笼,营造一种喜庆的氛围.如图1,某球形灯笼的轮廓由三部分组成,上下两部分是两个相同的圆柱的侧面,中间是球面的一部分(除去两个球冠).如图2,球冠是由球面被一个平面截得的,垂直于截面的直径被截得的部分叫做球冠的高,若球冠所在球的半径为R ,球冠的高为h ,则球冠的面积2S Rh π=.已知该灯笼的高为46cm ,圆柱的高为3cm ,圆柱的底面圆直径为30cm ,则围成该灯笼所需布料的面积为( )A .22090cm πB .22180cm πC .22340cm πD .22430cm π18.(2022秋ꞏ湖北武汉ꞏ高二武汉市第十一中学校考阶段练习)端午佳节,人们有包粽子和吃粽子的习俗,粽子主要分为南北两大派系,地方细分特色鲜明,且形状各异,裹蒸粽是广东肇庆地区最为出名的粽子,是用当地特有的冬叶、水草包裹糯米、绿豆、猪肉、咸蛋黄等蒸制而成的金字塔形的粽子,现将裹蒸粽看作一个正四面体,其内部的咸蛋黄看作一个球体,那么,当咸蛋黄的体积为43π时,该裹蒸粽的高的最小值为( ) A .4 B .6 C .8 D .1019.(2023ꞏ全国ꞏ高三专题练习)鲁班锁(也称孔明锁、难人木、六子联方)起源于古代中国建筑的榫卯结构.如图1,这是一种常见的鲁班锁玩具,图2是该鲁班锁玩具的直观图,每条棱的长均为2,则该鲁班锁的表面积为( )A .(86++B .(68+C .(86+D .(68+ 20.(2022秋ꞏ江苏连云港ꞏ高三校考阶段练习)刍(chú)甍(méng )是中国古代算数中的一种几何体,其结构特征是:底面为长方形,上棱和底面平行,且长度不等于底面平行的棱长的五面体,是一个对称的楔形体.已知一个刍甍底边长为6,底边宽为4,上棱长为2,高为2,则它的表面积是( )A .B .24+C .24+D .24+二、多选题21.(2021秋ꞏ重庆沙坪坝ꞏ高二重庆市天星桥中学校考阶段练习)三星堆遗址,位于四川省广汉市,距今约三千到五千年.2021年2月4日,在三星堆遗址祭祀坑区4号坑发现了玉琮.玉琮是一种内圆外方的筒型玉器,是一种古人用于祭祀的礼器.假定某玉琮中间内空,形状对称,如图所示,圆筒内径长2cm ,外径长3cm ,筒高4cm ,中部为棱长是3cm 的正方体的一部分,圆筒的外侧面内切于正方体的侧面,则( )A .该玉琮的体积为3π184+(3cm )B .该玉琮的体积为7π274-(3cm ) C .该玉琮的表面积为54π+(2cm ) D .该玉琮的表面积为549π+(2cm )22.(2022ꞏ全国ꞏ高三专题练习)“端午节”为中国国家法定节假日之一,已被列入世界非物质文化遗产名录,吃粽子便是端午节食俗之一.全国各地的粽子包法各有不同.如图,粽子可包成棱长为6cm 的正四面体状的三角粽,也可做成底面半径为3cm 2,高为6cm (不含外壳)的圆柱状竹筒粽.现有两碗馅料,若一个碗的容积等于半径为6cm 的半球的体积,则( ) 4.44≈)A .这两碗馅料最多可包三角粽35个B .这两碗馅料最多可包三角粽36个C .这两碗馅料最多可包竹筒粽21个D .这两碗馅料最多可包竹筒粽20个23.(2022ꞏ全国ꞏ高三专题练习)攒尖是我国古代建筑中屋顶的一种结构形式,通常有圆形攒尖、三角攒尖、四角攒尖、八角攒尖,多见于亭阁式建筑、园林建筑下面以四角攒尖为例,如图,它的屋顶部分的轮廓可近似看作一个正四棱锥,已知此正四棱锥的侧面与底面所成的二面角为30︒米,则该正四棱锥的( )A .底面边长为6米BC .侧面积为D .体积为立方米 24.(2022秋ꞏ湖北襄阳ꞏ高二校考阶段练习)在《九章算术》中,四个面都是直角三角形的三棱锥被称为“鳖臑”.在鳖臑-P ABC 中,PA ⊥底面ABC ,则( )A . 0AB AC ⋅= 可能成立B . 0BC AC ⋅= 可能成立 C . 0PA BC ⋅= 一定成立D . 0BC AB ⋅= 可能成立25.(2022春ꞏ广东广州ꞏ高一广州科学城中学校考期中)唐朝著名的凤鸟花卉纹浮雕银杯如图1所示,它的盛酒部分可以近似地看作是半球与圆柱的组合体(如图2),当这种酒杯内壁的表面积(假设内壁表面光滑,表面积为S 平方厘米,半球的半径为R 厘米)固定时,若要使得酒杯的容积不大于半球体积的2倍,则R 的取值可能为( )A B C D 26.(2022ꞏ海南ꞏ统考模拟预测)素描是使用单一色彩表现明暗变化的一种绘画方法,素描水平反映了绘画者的空间造型能力.“十字贯穿体”是学习素描时常用的几何体实物模型,如图是某同学绘制“十字贯穿体”的素描作品.“十字贯穿体”是由两个完全相同的正四棱柱“垂直贯穿”构成的多面体,其中一个四棱柱的每一条侧棱分别垂直于另一个四棱柱的每一条侧棱,两个四棱柱分别有两条相对的侧棱交于两点,另外两条相对的侧棱交于一点(该点为所在棱的中点).若该同学绘制的“十字贯穿体”由两个底面边长为2,高为6的正四棱柱构成,则( )A .一个正四棱柱的某个侧面与另一个正四棱柱的两个侧面的交线互相垂直B .该“十字贯穿体”的表面积是112-C .该“十字贯穿体”的体积是483-D .一只蚂蚁从该“十字贯穿体”的顶点A 出发,沿表面到达顶点B 的最短路线长为43+27.(2022ꞏ全国ꞏ高三专题练习)祖暅(公元5—6世纪,祖冲之之子),是我国齐梁时代的数学家,他提出了一条原理:“幂势既同,则积不容异.”这句话的意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体的体积相等.如图将底面直径皆为2b ,高皆为a 的椭半球体和已被挖去了圆锥体的圆柱体放置于同一平面β上,用平行于平面β且与β距离为d 的平面截两个几何体得到S 圆及S 环两截面,可以证明S S =环圆总成立,若椭半球的短轴6AB =,长半轴5CD =,则下列结论正确的是( )A .椭半球体的体积为30πB .椭半球体的体积为15πC .如果4C F FD =,以F 为球心的球在该椭半球内,那么当球F 体积最大时,该椭半球体挖去球F 后,体积为863π D .如果4C F F D = ,以F 为球心的球在该半球内,那么当球F 体积最大时,该椭半球体挖去球F 后,体积为29π三、填空题28.(2022秋ꞏ上海浦东新ꞏ高二上海市建平中学校考阶段练习)我国古代数学名著《九章算术》中,定义了三个特别重要而基本的多面体,它们是:(1)“堑堵”:两个底面为直角三角形的直棱柱;(2)“阳马”:底面为长方形,且有一棱与底面垂直的棱锥;(3)“鳖臑(biēnào )”:每个面都为直角三角形的四面体.魏晋时期的大数学家刘徽进一步研究发现:任何一个“堑堵”都可以分割成一个“阳马”和一个“鳖臑”且“阳马”和“鳖臑”的体积比为定值.则此定值为______.29.(2022秋ꞏ上海浦东新ꞏ高三上海市建平中学校考阶段练习)我国古代将四个面都是直角三角形的四面体称作鳖臑,如图,在鳖臑S ABC -中,SC ⊥平面ABC ,ABC 是等腰直角三角形,且AB SC =,则异面直线BC 与SA 所成角的正切值为______.(写出一个值即可,否则有两个答案)30.(2022春ꞏ浙江宁波ꞏ高二校考学业考试)宁波老外滩天主教堂位于宁波市新江桥北堍, 建于清同治十一年(公元 1872 年). 光绪二十五 (1899年) 增建钟楼, 整座建筑由教堂、钟楼、偏屋组成, 造型具有典型罗马哥特式风格. 其顶端部分可以近似看成由一个正四棱锥和一个正方体组成的几何体, 且正四棱锥的侧棱长为10m , 其底面边长与正方体的棱长均为6m , 则顶端部分的体积为__________.31.(2022ꞏ全国ꞏ高三专题练习)蹴鞠,2006年5月20日,已作为非物质文化遗产经国务院批准列入第一批国家非物质文化遗产名录.蹴有用脚蹴、踢、蹋的含义,鞠最早系外包皮革、内实米糠的球,因而蹴鞠就是指古人以脚蹴、蹋、踢皮球的活动,类似今日的足球.已知某鞠(球)的表面上有四个点(不共面)、、、,2,A B C DAB CD AC BD BC AD======__________.32.(2022春ꞏ福建泉州ꞏ高一泉州五中校考期中)“牟合方盖”(图①)是由我国古代数学家刘徽创造的,其构成是由一个正方体从纵横两侧面作内切圆柱(圆柱的上下底面为正方体的上下底面,圆柱的侧面与正方体侧面相切)的公共部分组成的(图②),假设正方体的棱长为2,则其中一个内切圆柱的表面积为___________;该正方体的内切球也是“牟合方盖”的内切球,所以用任一平行于正方体底面的平面去截“牟合方盖”,截面均为正方形,根据祖暅原理(夹在两个平行平面间的两个几何体,被平行于这两个平行平面的任何平面所截,如果截得两个截面的面积总相等,那么这两个几何体的体积相等)可得“牟合方盖”的体积为____________.33.(2023ꞏ全国ꞏ高三专题练习)佩香囊是端午节传统习俗之一.香囊内通常填充一些中草药,有清香、驱虫、开窍的.因地方习俗的差异,香囊常用丝布做成各种不同的形状,形形色色,玲珑夺目.图1的平行四边形ABCD由六个边长为1的正三角形构成.将它沿虚线折起来,可得图2所示的六面体形状的香囊.那么在图2这个六面体中内切球半径为__________,体积为__________.34.(2022ꞏ高二单元测试)《九章算术》第五卷中涉及一种几何体——羡除,它下广六尺,上广一丈,深三尺,末广八尺,无深,袤七尺.该羡除是一个多面体ABCDFE ,如图,四边形ABCD ,ABEF 均为等腰梯形,AB CD EF ∥∥,平面ABCD ⊥平面ABEF ,梯形ABCD ,ABEF 的高分别为3,7,且6AB =,10CD =,8EF =,则AD BF ⋅= ______,DE = ______.35.(2021秋ꞏ四川广安ꞏ高二四川省武胜烈面中学校校考开学考试)《九章算术》中记载:将底面为直角三角形的直三棱柱称为堑堵,将一堑堵沿其一顶点与相对的棱剖开,得到一个阳马(底面是长方形,且有一条侧棱与底面垂直的四棱锥)和一个鳖臑(四个面均为直角三角形的四面体)在如图所示的堑堵111ABC A B C -中,12BB BC AB ===且有鳖臑11C ABB -和鳖臑1C ABC -,现将鳖臑1C ABC -的一个面1ABC 沿1BC 翻折180︒,使A 点翻折到E 点,求形成的新三棱锥11C AB E -的外接球的表面积是_________.36.(2022ꞏ全国ꞏ高三专题练习)正多面体也称柏拉图立体,被誉为最有规律的立体结构,是所有面都只由一种正多边形构成的多面体(各面都是全等的正多边形).数学家已经证明世界上只存在五种柏拉图立体,即正四面体、正六面体、正八面体、正十二面体、正二十面体.已知一个正八面体ABCDEF 的棱长都是2(如图),P ,Q 分别为棱AB ,AD 的中点,则CP FQ ⋅= ________.37.(2022秋ꞏ辽宁ꞏ高二辽宁实验中学校考期中)阿波罗尼斯(约公元前262-190年)证明过这样一个命题:平面内到两定点距离之比为常数(0k >且1)k ≠的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.在棱长为6的正方体1111ABCD A B C D -中,点M 是BC 的中点,点P 是正方体表面11DCC D 上一动点(包括边界),且满足APD MPC ∠=∠,则三棱锥D PBC -体积的最大值为______.38.(2022ꞏ全国ꞏ高三专题练习)祖暅原理:“幂势既同,则积不容异”.即:夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等.有一个球形瓷碗,它可以看成半球的一部分,若瓷碗的直径为8,高为2,利用祖暅原理可求得该球形瓷碗的体积为______.四、解答题39.(2022ꞏ全国ꞏ高三专题练习)自古以来,斗笠是一个防晒遮雨的用具,是家喻户晓的生活必需品之一,主要用竹篾和一种叫做棕榈叶染白后编织而成,已列入世界非物质文化遗产名录.现测量如图中一顶斗笠,得到图中圆锥PO 模型,经测量底面圆O 的直径48cm AB =,母线30cm AP =,若点C 在 AB 上,且π6CAB ∠=,D 为AC 的中点.证明:BC ∥平面POD ;40.(2022秋ꞏ贵州遵义ꞏ高三统考阶段练习)故宫太和殿是中国形制最高的宫殿,其建筑采用了重檐庑殿顶的屋顶样式,庑殿顶是“四出水”的五脊四坡式,由一条正脊和四条垂脊组成,因此又称五脊殿.由于屋顶有四面斜坡,故又称四阿顶.如图,某几何体ABCDEF 有五个面,其形状与四阿顶相类似.已知底面ABCD 为矩形,228AB AD EF ===,EF ∥底面ABCD ,且EA ED FB FC ===,M ,N 分别为AD ,BC 的中点.(1)证明:EF AB ∥,且BC ⊥平面EFNM .(2)若EM 与底面ABCD 所成的角为π4,过点E 作EH MN ⊥,垂足为H ,过H 作平面ABFE 的垂线,写出作法,并求H 到平面ABFE 的距离.41.(2022秋ꞏ上海浦东新ꞏ高二上海师大附中校考期中)《九章算术ꞏ商功》:“斜解立方,得两堑堵.斜解堑堵,其一为阳马,一为鳖臑.阳马居二,鳖臑居一,不易之率也.合两鳖臑三而一,验之以棊,其形露矣.”刘徽注:“此术臑者,背节也,或曰半阳马,其形有似鳖肘,故以名云.中破阳马,得两鳖臑,鳖臑之起数,数同而实据半,故云六而一即得.”如图,在鳖臑ABCD 中,侧棱AB ⊥底面BCD ;(1)若BC CD ⊥,ADB θ∠=1,2BDC θ∠=,3ADC θ∠=,求证:123cos cos cos θθθ⋅=;(2)若1AB =,2BC =,1CD =,试求异面直线AC 与BD 所成角的余弦.(3)若BD CD ⊥,2AB BD CD ===,点P 在棱AC 上运动.试求PBD △面积的最小值.42.(2022秋ꞏ北京ꞏ高二北京一七一中校考期中)“曼哈顿几何”也叫“出租车几何”,是在19世纪由赫尔曼ꞏ闵可夫斯基提出来的.如图是抽象的城市路网,其中线段AB 是欧式空间中定义的两点最短距离,但在城市路网中,我们只能走有路的地方,不能“穿墙”而过,所以在“曼哈顿几何”中,这两点最短距离用(),d A B 表示,又称“曼哈顿距离”,即(),d A B AC CB =+,因此“曼哈顿两点间距离公式”:若()11,A x y ,()22,B x y ,则()2121,d A B x x y y =-+-(1)①点()A 3,5,()2,1B -,求(),d A B 的值.②求圆心在原点,半径为1的“曼哈顿单位圆”方程.(2)已知点()10B ,,直线220x y -+=,求B 点到直线的“曼哈顿距离”最小值; (3)设三维空间4个点为(),,i i i i A x y z =,1,2,3,4i =,且i x ,i y ,{}0,1i z ∈.设其中所有两点“曼哈顿距离”的平均值即d ,求d 最大值,并列举最值成立时的一组坐标.参考答案一、单选题1.(2022ꞏ全国ꞏ高三专题练习)笛卡尔是世界著名的数学家,他因将几何坐标体系公式化而被认为是解析几何之父.据说在他生病卧床时,还在反复思考一个问题:通过什么样的方法,才能把“点”和“数”联系起来呢?突然,他看见屋顶角上有一只蜘蛛正在拉丝织网,受其启发建立了笛卡尔坐标系的雏形.在如图所示的空间直角坐标系中,单位正方体顶点A 关于x 轴对称的点的坐标是( )A .()1,1,1--B .()1,1,1C .()1,1,1-D .()1,1,1---【答案】B 【详细分析】由图写出点A 的坐标,然后再利用关于x 轴对称的点的性质写出对称点的坐标.【答案详解】由图可知,点(1,1,1)A --,所以点A 关于x 轴对称的点的坐标为(1,1,1).故选:B.2.(2022春ꞏ辽宁大连ꞏ高一统考期末)民间娱乐健身工具陀螺起源于我国,最早出土的石制陀螺是在山西夏县发现的新石器时代遗址.如图所示的是一个陀螺的立体结构图.已知底面圆的直径16cm AB =,圆柱体的高8cm BC =,圆锥体的高6cm CD =,则这个陀螺的表面积是( )A .2192πcmB .2208πcmC .2272πcmD .2336πcm【答案】C 【详细分析】结合组合体表面积的计算方法计算出正确答案.【答案详解】圆柱、圆锥的底面半径为8cm ,10cm =,所以陀螺的表面积是22π82π88π810272πcm ⨯+⨯⨯+⨯⨯=.故选:C3.(2022秋ꞏ安徽ꞏ高二合肥市第八中学校联考期中)《九章算术》是我国东汉初年编订的一部数学经典著作,其在卷第五《商功》中描述的几何体“阳马”实为“底面为矩形,一侧棱垂直于底面的四棱锥”.如图,在“阳马”A OBCD -中,E 为ACD 的重心,若AB a =,AC b = ,AD c = ,则BE = ( )A .1122a b c -++ B .1133a b c -++ C .2233a b c ++ D .1133a b c -+- 【答案】B【详细分析】连接AE 并延长交CD 于点F ,则F 为CD 的中点,利用向量的加减运算得答案【答案详解】连接AE 并延长交CD 于点F ,因为E 为ACD 的重心,则F 为CD 的中点,且23AE AF = ()2211133233BE AE AB AF AB AC AD AB AC AD AB ∴=-=-=⨯+-=+- 1133a b c =-++ . 故选:B .4.(2022秋ꞏ河南商丘ꞏ高三校联考阶段练习)榫卯是一种中国传统建筑、家具及其他器械的主要结构方式,是在两个构件上采用凹凸部位相结合的一种连接方式.凸出的部分叫做榫(或叫榫头),凹进部分叫卯(或叫榫眼、榫槽).现要在一个木头部件制作一个榫眼,最终完成一个直角转弯结构的部件,那么制作成的榫眼的俯视图可以是()A.B.C.D.【答案】B【详细分析】利用排除法结合俯视图的定义和已知条件详细分析判断.【答案详解】法一:榫眼的形状和榫头一致,故榫眼的俯视图的轮廓线为虚线且从结果图可知榫眼应为通透的,排除AD;又C选项的结构左下方部分缺了一块,这与榫眼的结构不符,符合条件的只有B.法二:因榫眼的制作部件为长方体,所以,C,D不正确;又榫眼应为通透的,所以A不正确,所以符合条件的只有B.故选B.5.(2021秋ꞏ江西宜春ꞏ高二上高二中校考阶段练习)张衡是中国东汉时期伟大的天文学家、数学家,他曾经得出圆周率的平方除以十六等于八分之五.已知三棱锥A BCD -的每个顶点都在球O 的球面上,AB ⊥底面BCD ,BC CD ⊥,且2AB CD ==,1BC =,利用张衡的结论可得球O 的表面积为( )A .30B .2C .D .【答案】D【详细分析】由BC CD ⊥,AB ⊥底面BCD ,将三棱锥A BCD -放在长方体中,求出外接球的半径以及圆周率的值,再由球的表面积公式即可求解.【答案详解】如图所示:因为BC CD ⊥,AB ⊥底面BCD ,1BC =,2AB CD ==,所以将三棱锥A BCD -放在长、宽、高分别为2,1,2的长方体中,三棱锥A BCD -的外接球即为该长方体的外接球,外接球的直径3AD ===,利用张衡的结论可得2π5168=,则π=所以球O 的表面积为234π9π2⎛⎫== ⎪⎝⎭故选:D.6.(2021春ꞏ陕西榆林ꞏ高三校考阶段练习)“天圆地方”观反映了中国古代科学对宇宙的认识,后来发展成为中国传统文化的重要思想.中国古人将琮、璧、圭、璋、璜、琥六种玉制礼器谓之“六瑞”,玉琮内圆外方,表示天和地,中间的穿孔表示天地之间的沟通,可以说是中国古代世界观很好的象征物.下面是一玉琮图及。

第19讲 高考中的创新题型(可编辑PPT)

第19讲 高考中的创新题型(可编辑PPT)
6 5 .故选C. 且最小值为 12
考点聚焦
栏目索引
方法归纳 本例具有一定的综合性,主要考查辅助角公式、函数图象的平移
高考导航
变换及三角函数的奇偶性,而新运算(a1,a2)⊗(a3,a4)=a1a4-a2a3的功 能就是间接给出函数f(x)的解析式.
考点聚焦
栏目索引
高考导航
定义一种运算“※”,对于任意n∈N*均满足以下运算性质:①2※
总纲目录
栏目索引
总纲目录
题型一 设置“新运算”
高考导航
题型二
题型三
设置“新定义”
设置“新考查方向”
考点聚焦

“新运算”是指在现有的运算法则和运算律的基础上定义 的一种新的运算,是一种特别设计的计算形式,它使用一些特殊的
运算符号,如“*”“⊗”“※”等,这些符号与四则运算中的加
2 017=1;②(2n+2)※2 017=(2n)※2 017+3,则2 018※2 017= . 答案 解析 3 025 设an=(2n)※2 017,则由运算性质①知a1=1,由运算性质②知
an+1=an+3,即an+1-an=3. 于是,数列{an}是等差数列,且首项为1,公差为3. 故2 018※2 017=(2×1 009)※2 017=a1 009=1+1 008×3=3 025.
1
1 1 ,0 1, x x 1 1 1 0, 1, 足“倒负”变换;对于函数③,因为f 即f = = x x x 1 x , 1, x
考点聚焦
栏目索引
1 x , x 1, 1 0, x 1, =-f(x),故满足“倒负”变换.高考导航 所以f 综上可知,选C. x x,0 x 1,

2021高考备考:高考数学创新题型思维方法分析

2021高考备考:高考数学创新题型思维方法分析

2021高考数学备考创新题型思维方法分析【优易课高考团队整理】(一)解析几何中的运动问题解析几何中的创新小题是新课标高考中出现频率最高的题型,09、10、11年高考数学选择填空压轴题都出现了运动问题。

即新课标高考数学思维从传统分析静态模型转变为分析动态模型。

因此考生需要掌握在运动过程中对于变量与不变量的把握、善于建立运动过程中直接变量与间接变量的关系、以及特殊值情境分析、存在问题与任意问题解题方法的总结。

在解此类创新题型时,往往需要融入生活中的很多思想,加上题目中所给信息相融合。

在数学层面上,需要考生善于从各个角度与考虑问题,将思路打开,同时善于用数学思维去将题目情境抽象成数学模型。

(二)新距离近几年兴起的关于坐标系中新距离d=|X1-X2|+|Y1-Y2|的问题,考生需要懂得坐标系中坐标差的原理,对于对应两点构成的矩形中坐标差的关系弄清楚就行了。

近两年高考大题中均涉及到了新距离问题,可是高考所考察的内容不再新距离本身,而在于建立新的数学模型情况下,考生能否摸索出建立数学模型与数学思维的关系。

比如2011年压轴题,对于一个数列各个位做差取绝对值求和的问题,由于每个位取值情况均相同,故只需考虑一个位就行了。

在大题具体解题中笔者会详细叙述。

(三)新名词对于题目中出现了新名词新性质,考生完全可以从新性质本身出发,从数学思维角度理解新性质所代表的数学含义。

此类创新题型就像描述一幅画一样去描述一个数学模型,然后描述的简洁透彻,让考生通过此类描述去挖掘性质。

新课标数学追求对数学思维的自然描述,即不会给学生思维断层、非生活常规思路(北京海淀区2012届高三上学期期末考试题的解析几何大题属于非常规思路)。

比如2009年北京卷文科填空压轴题,就是让学生直观形象的去理解什么叫做孤立元,这样肯快就可以得到答案。

(四)知识点性质结合此类题型主要结合函数性质、图象等知识点进行出题,此类题一般只要熟悉知识点网络结构与知识点思维方式就没有问题。

专题7-2 创新型问题 玩转压轴题-玩转压轴题突破140分之高三数学选填题高端 含解析 精品

专题7-2 创新型问题 玩转压轴题-玩转压轴题突破140分之高三数学选填题高端 含解析 精品

一.方法综述对于创新型问题,包括:(Ⅰ)将实际问题抽象为数学问题,此类问题往往含有文字语言、符号语言、图表语言,要明确题中已知量与未知量的数学关系,要理解生疏的情境、名词、概念,将实际问题数学化,将现实问题转化为数学问题,构建数学模型,运用恰当的数学方法解模(如借助不等式、导数等工具加以解决)。

(Ⅱ)创新性问题①以新概念、新定义给出的信息迁移型创新题,运用“老知识”解决新问题是关键. ②以新运算给出的发散型创新题,检验运算能力、数据处理能力.③以命题的推广给出的类比、归纳型创新题,要注意观察特征、寻找规律,充分运用特殊与一般的辩证关系进行求解.二.解题策略 类型一 实际应用问题【例1】【北京市石景山区2018届第一学期期末】小明在如图1所示的跑道上匀速跑步,他从点A 出发,沿箭头方向经过点B 跑到点C ,共用时30s ,他的教练选择了一个固定的位置观察小明跑步的过程,设小明跑步的时间为()t s ,他与教练间的距离为()y m ,表示y 与t 的函数关系的图象大致如图2所示,则这个固定位置可能是图1中的( )A . 点MB . 点NC . 点PD . 点Q 【答案】D【指点迷津】解答应用性问题要先审清题意,然后将文字语言转化为数学符号语言,最后建立恰当的数学模型求解.其中,函数、数列、不等式、概率统计是较为常见的模型.【举一反三】【辽宁省沈阳市郊联体2017-2018上学期期末】2016年1月14日,国防科工局宣布,嫦娥四号任务已经通过了探月工程重大专项领导小组审议通过,正式开始实施,如图所示,假设“嫦娥四号”卫星将沿地月转移轨道飞向月球后,在月球附近一点P 变轨进入月球球F 为一个焦点的椭圆轨道I 绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个焦点的椭圆轨道II 绕月飞行,若用12c 和22c 分别表示椭圆轨道I 和II 的焦距,用12a 和22a 分别表示椭圆轨道I 和II 的长轴长,给出下列式子: ①1122a c a c -=- ②1122a c a c +=+ ③1212c a a c > ④1212c c a a < 其中正确的式子的序号是( )A . ②③ B. ①④ C. ①③ D. ②④ 【答案】B类型二 创新性问题【例2】设D 是函数y =f (x )定义域内的一个区间,若存在x 0∈D ,使得f (x 0)=-x 0,则称x 0是f (x )的一个“次不动点”,也称f (x )在区间D 上存在“次不动点”.若函数f (x )=ax 2-3x -a +52在区间[1,4]上存在“次不动点”,则实数a 的取值范围是( )A .(-∞,0]B.⎝ ⎛⎭⎪⎫0,12C.⎝ ⎛⎦⎥⎤-∞,12D.⎣⎢⎡⎭⎪⎫12,+∞【答案】C【解析】由题意,方程ax 2-3x -a +52=-x 在区间[1,4]上有解,显然x ≠1,所以方程ax 2-3x -a +52=-x 在区间(1,4]上有解,即求函数a =2x -52x 2-1在区间(1,4]上的值域,令t =4x -5,则t ∈(-1,11],a =8tt +10t +9,当t ∈(-1,0]时,a ≤0;当t ∈(0,11]时,0<a =8t +9t+10≤82t ×9t+10=12,当且仅当t =3时取等号. 综上,实数a 的取值范围是⎝⎛⎦⎥⎤-∞,12. 【指点迷津】高中数学创新试题呈现的形式是多样化的,但是考查的知识和能力并没有太大的变化,解决创新性问题应注意三点:认真审题,确定目标;深刻理解题意;开阔思路,发散思维,运用观察、比较、类比、猜想等进行合理推理,以便为逻辑思维定向.方向确定后,又需借助逻辑思维,进行严格推理论证,这两种推理的灵活运用,两种思维成分的交织融合,便是处理这类问题的基本思想方法和解题策略. 【例3】定义:如果一个列从第二项起,每一项与它的前一项的差都等于同一个常,那么这个列叫作等差列,这个常叫作等差列的公差.已知向量列{a n }是以a 1=(1,3)为首项,公差为d =(1,0)的等差向量列,若向量a n 与非零向量b n =(x n ,x n +1)(n ∈N *)垂直,则x 10x 1=________.【答案】-4 480243【解析】易知a n =(1,3)+(n -1,0)=(n,3),因为向量a n 与非零向量b n =(x n ,x n +1)(n ∈N *)垂直, 所以x n +1x n =-n 3,所以x 10x 1=x 2x 1·x 3x 2·x 4x 3·x 5x 4·x 6x 5·x 7x 6·x 8x 7·x 9x 8·x 10x 9=⎝ ⎛⎭⎪⎫-13×⎝ ⎛⎭⎪⎫-23×⎝ ⎛⎭⎪⎫-33×⎝ ⎛⎭⎪⎫-43×⎝ ⎛⎭⎪⎫-53×⎝ ⎛⎭⎪⎫-63×⎝ ⎛⎭⎪⎫-73×⎝ ⎛⎭⎪⎫-83×⎝ ⎛⎭⎪⎫-93=-4 480243.【指点迷津】“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解。

【高考数学二轮复习压轴题微专题】第10讲 归纳类比、探索创新-原卷版

【高考数学二轮复习压轴题微专题】第10讲 归纳类比、探索创新-原卷版

第十讲归纳类比、探索创新新颖性问题是指问题的面目、形式新颖,命题的立意、背景深远的数学问题,这类题以“问题”为核心,以“探究”为途径,以“发现”为目的,一般难度不会太大,而且与高中数学体系内的知识有千丝万缕的联系,是训练和考查学生思维能力、分析问题和解决问题能力、体现数学核心素养的好题型.近年来的高考数学试题与原名牌大学自主招生考试卷中,出现了较多的新定义题、新知识背景题、新题型结构题,无论是试题形式的设计、考试内容的选择、考查思维的深度、问题情景的创设等,都给人耳目一新之感,由于新颖性问题对所有学生而言都是有陌生感的问题,具有公平的特点,并有一定的选拔功能,因而成为高考命题的一个关注点课程标准指出:“对新颖的信息、情境和设问,选择有效的方法和手段收集信息,综合与灵活地运用所学的数学知识、思想和方法,进行独立思考、探究和研究,才是解决问题的思路,才是创造性地解决问题.”新颖性问题对于每个学生而言,难就难在“新”上,面对此类题,首先要搞清新意体现在什么地方,要善于迅速提取有用信息,善于挖掘创新试题的内涵与本质,采用化新为旧的分析,合理迁移、运用已学的知识加以解决,一般从以下两个方面进行深入思考.(1)若新颖性问题的新意体现在结构上,如新定义的概念题、运算题.若设问方式呈现开放式、探究式,题设条件采用图形符号或者表格等形式给出,则应精准把握住问题的新结构的内涵,并与已学过的相近知识进行类比,设法实施转化,使新问题变为一个老问题(2)若新颖性问题的新意体现在问题的立意上,则应从数学思想和方法的角度着手考虑.若有了数学思想和方法的引领,问题就可以识别,思路也会明晰,再难的新颖性也可迅速破解.近年来,数学教育界正在大力倡导培养学生的核心素养,其核心是创造性思维的能力,指的是发明或发现一种新方式用以处理某种事物或某个数学问题的思维过程,创造性思维活动大致分为准备、潜伏、顿悟、试证4个阶段.具体地说,一般要经历如下5个过程:①提出问题:②启发思维:③创造想象;④理想实验;⑤检验假设.总之,创造性思维是一个多层次、多水平、多因子的动态心理系统在迎考冲刺阶段的攻坚战中,精神因素不可忽视,拥有良好的心态才能临场不慌,才能避免低级运算错误,增强解题过程的严密性、完整性、准确性、规范性,才能读题到位、细心审题、思维活跃、开启创造性思维之门,才能迅速找到解题途径,才能确保运算准确、推理步骤环环相扣,才能在各类考试中取得高分.通常我们讲得比较多的是解题方法和策略,实际上还应当有认知策略和心理调适策略,在学习数学时始终要有一步一步深化下去的热情.典型例题【例1】已知函数,且的图像经过,数列为等差数列.(1)求的值和数列的通项公式; (2)当为奇数时,设,是否存在自然数和,使不等式恒成立?若存在,求出;若不存在,说明理由.【分析】本例是判断存在型问题,第问,首先以代入待,再依次用代入,寻求规律求的值和数列的通项公式.第问,在求得的基础上以代入,运用错位相减法求得,进一步研究其单调性求得的取值范围.【解析】(1)据题意,,即,令则,令,则.为等差数列,,(2)为奇数时,,,,.()()23*0123n n f x a a x a x a x a x n N =+++++∈()y f x =()21,n{}()*N na n ∈0a {}n a n ()()()12g x f x f x ⎡⎤=--⎣⎦m M 12m g M ⎛⎫<< ⎪⎝⎭M m -()11x =201231n n a a a a a a n -++++++=1,2,3n =0a {}n a ()2()()()12g x f x f x ⎡⎤=--⎣⎦12x =12g ⎛⎫⎪⎝⎭12g ⎛⎫⎪⎝⎭()21f n =201231n n a a a a a a n -++++++=1,n =()2010122011,2,43a a a a a a a a +=++==-+=3n =()22012330123,3945a a a a a a a a +++==-++=-={}n a 32122,321d a a a a d ∴=-==-=-=()()*0011221N n a a n n n ==+-⋅=-∈()2311231n nn n f x a x a x a x a x a x --=+++++()2311231n nn n f x a x a x a x a x a x ---=-+-++-()()()3213212n n n n g x f x f x a x a x a x a x --⎡⎤=--=++++⎣⎦()()3521111111592521222222n ng n n -⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⋅+⋅+⋅++-+- ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭()()3572111111115925214222222n n g n n +⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⋅+⋅+⋅++-+- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭两式相减得故,令,则.即,故单调递减.又也为单调递减,为的增函数,当时,,而也为单调递减,为的增函数,当时,,存在自然数和使不等式恒成立,此时 【例2】对于定义在上的函数,若存在正常数,使得是以为周期的函数,则称为余弦周期函数,且称为其余弦周期.已知是以为余弦周期的余弦周期函数,其值域为,且在上单调递增.(1)验证是以为周期的余弦周期函数;(2)设,证明:对任意,存在,使得; (3)证明:”为方程在上的解”的充要条件是为方程在上的解".【分析】分析本例是以数学新概念、新定义给出的创新题.解题的关键是准确理解新概念、新定义,然后用已学过的“老知识”加以解决.第(1)问可以直接验证;第(2)问,通过构造新函数及零点存在定理进行论证;第(3)问,分充分性与必要性进行证明,本例考查抽象()357231111111142142222222nn g n +⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⋅+++++--⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦()1322111241142112214n n n -+⎡⎤⎛⎫⎛⎫⎢⎥- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎛⎫⎣⎦=+⨯-- ⎪⎝⎭-()1212111212322n n n -+⎡⎤⎛⎫⎛⎫=+---⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦11413121299232n n g n ⎛⎫⎛⎫⎛⎫=--⋅⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2132nn c n ⎛⎫=⋅⋅ ⎪⎝⎭()111132nn n c c n +⎛⎫-=⋅- ⎪⎝⎭*1,0,n n n N c c +∈∴-1n n c c +n c 13192n⎛⎫⋅ ⎪⎝⎭12g ⎛⎫∴ ⎪⎝⎭n 1n =1122g ⎛⎫= ⎪⎝⎭13192n⎛⎫- ⎪⎝⎭12g ⎛⎫∴ ⎪⎝⎭n 1n =1122g ⎛⎫= ⎪⎝⎭0m =2M =12m g M ⎛⎫<<⎪⎝⎭2.M m -=R ()g x T ()cos g x T ()g x T ()f x T R ()f x R ()sin3h x x π=+6πa b <()(),c f a f b ⎡⎤∈⎣⎦[]0,x a b ∈()0f x c =0u ()cos 1f x =[]0,T 0u T ω+()cos 1f x =[],2T T概括能力和推理论证能力等数学核心素养与创新意识.【证明】 (1)于是故是以为周期的余弦周期函数.(2)设在上单调递增,当时,又,即若或,则显然存在或使得; 若且,则, 又在上单调递增,存在使得,即.综上所述,存在使得.(3)必要性:若为方程在上的解,则,且是以为余弦周期的余弦周期函数, 是方程在上的解.充分性:若为方䅣在上的解,则,,且.是以为余弦周期的余弦周期函数, 是方程在上的解.综上,“为方程在上的解”的充要条件是“为方程在上的解".【例3】如图所示,已知曲线,曲线:是平面上一点,若存在过点的直线与共有公共点,则称为型点”()()6sin .66sin 6sin333x x xh x x h x x x ππππ+=+∴+=++=++()()cosh 6cos 6sin cos sin cos 33x x x h x ππππ⎛⎫⎛⎫+=++=+= ⎪ ⎪⎝⎭⎝⎭()h x 6π()()(),x f x c f x ϕ=-R ∴[],x a b ∈()()().f a f x f b ()()()()(),,00c f a f b f a c f x c f b c ⎡⎤∈∴---⎣⎦()()()00.a x b ϕϕϕ()0a ϕ=()0b ϕ=0x a =0x b =()0f x c =()0a ϕ≠()0b ϕ≠()()0a b ϕϕ<<()x ϕ[],a b ∴()0,x a b ∈()00x ϕ=()0f x c =[]0,x a b ∈()0f x c =0u ()cos 1f x =[]0,T []00,u T ∈()0cos 1f u =()f x T ()()00cos cos 1.f u T f u ∴+==[]0,2u T T T ∴+∈()cos 1f x =[],2T T 0u T +()cos 1f x =[],2T T 0[u T T +∈2]T ()0cos 1f u T +=()f x T ()()00cos cos 1.f u f u T ∴=+=[]00,u T ∴∈()cos 1f x =[]0,T 0u u ()cos 1f x =[]0,T 0u T +()cos 1f x =[],2T T 126-221:12x C y -=2C 1,y x P =+P 12,C C P 412C C -(1)在正确证明的左焦点是型点”时,要使用一条过该焦点的直线,试写出一条这样的直线方程(不要求验证);(2)设直线与有公共点,求证:,进而证明原点不是型点"; (3)求证:圆内的点都不是型点” 【分析】分析学习新的数学知识的能力是指通过阅读,理解以前没有学过的新的数学知识,如新的概念、定理、公式、法则和方法,并能运用它们做进一步的运算和推理,解决有关问题的能力.本例从直线与曲线的位置关系中有公共点的情况给出了“C1一C2型点”的新定义,然后应用于曲线与曲线的位置关系的判断.“吃透新定义,用好旧知识”是解答此类问题的关键.善于归纳类比,才能实现新与旧的沟通,这是解答此类问题的关键.第(2)和第(3)问当然还是通过方程的思想方法,运用不等式的知识及分类讨论给出证明,这是用旧方法解决新问题的范例【解析】(1)的左焦点为,过的直线交于点,与交于点,故的左焦点为型点”,即直线可以为(2)直线与有交点,则,若方程组有解,则必须;直线与有交点,则,若方程组有解,则必须. 故直线至多与曲线和中的一条有交点,又显然,直线与无交点,即1C “12C C -y kx =2C 1k >“12C C -2212x y +=412C C -221:12x C y -=2:||||1C y x =+1C ()F F x =1C ⎛ ⎝⎭2C )()1±1C 12C C -x =y kx =2C ,(||1)||1||||1,y kx k x y x =⎧⇒-=⎨=+⎩1k >y kx =1C ()222212222y kx k x x y =⎧⇒-=⎨-=⎩212k <y k π=1C 2C 0x =1C原点不是型点".(3)显然过圆内一点的直线若与曲线有交点,则斜率必存在;根据对称性,不妨设直线斜率存在且与曲线交于点.则.直线与圆内部有交点,, 化简得①若直线与曲线有交点,则化简得②由①②两式得. 但此时,因为,即①式不成立; 当时,①式也不成立. 综上,直线若与圆内有交点,则不可能同时与曲线和有交点, 即圆内的点都不是型点”.12C C -2212x y +=l 1C l 2C ()(),10t t t +()()():110l y t k x t kx y t kt -+=-⇒-++-=l 2212x y +=2<()221(1)1.2t tk k +-<+l 1C ()222221,121(1)10.21,2y kx kt t k x k t kt x t kt x y =-++⎧⎪⎛⎫⇒-++-++-+=⎨ ⎪-=⎝⎭⎪⎩2222211,Δ4(1)4(1)10,22k k t kt k t kt ⎛⎫⎡⎤≠=+---+-+ ⎪⎣⎦⎝⎭当时22(1)2 1.t kt k +--()22221121(1)122k t kt k k -+-<+⇒<()()2210,[11]1,112t t k k +-+<212k =l 2212x y +=1C 2C 2212x y +=12C C -强化训练1.已知集合是满足下列性质的函数的全体;存在非零常数,对任意,有成立.(1)函数是否属于集合?说明理由;(2)设函数的图像与的图像有公共点,证明:(3) 若函数,求实数的取值范围.M ()f x T x ∈R ()()f x T Tf x +=()f x x =M ()(0,1)x f x a a a =>≠y x =();x f x a M =∈()sin f x kx M =∈k2.在平面直角坐标系中,对于直线和点,记.若,则称点被直线分隔.若曲线与直线没有公共点,且曲线上存在点被直线分隔,则称直线为曲线的一条分隔线. (1)求证:点被直线分隔;(2)若直线是曲线的分隔线,求实数的取值范围;(3)动点到点的距离与到轴的距离之积为1,设点的轨迹为曲线求证:通过原点的直线中,有且仅有一条直线是的分隔线.xOy :0l ax by c ++=()()111222,,,P x y P x y ()()1122ax by c ax by c η=++++0η<12,P P l C l C 12,P P l l C ()()1,2,1,0A B -10x y +-=y kx =2241x y -=k M ()0,2Q y M .E E。

压轴题型08 数学文化与创新型问题(解析版)-2023年高考数学压轴题专项训练

压轴题型08 数学文化与创新型问题(解析版)-2023年高考数学压轴题专项训练

压轴题08数学文化与创新型问题《普通高中数学课程标准(2017年版2020年修订)》第10页中写道“数学文化是指数学的思想、精神、语言、方法、观点,以及它们的形成和发展;还包括数学在人类生活、科学技术、社会发展中的贡献和意义,以及与数学相关的人文活动.”由此可见,数学文化试题在高考中会长期存在数学文化高考试题常常是以数学文化为背景命制的与核心考点相关联的题目,把数学史、数学美、数学语言、数学思维、数学学科核心索养及数学思想方法结合起来,能有效考查考生在新情境中对数学文化的鉴赏能力、对数学知识的阅读理解能力、对数学方法的迁移能力,因此备受命题者的青睐近三年的数学文化高考试题有以下特征1)从题型来看,多为选择题与填空题(选择题最多);2)从知识点的分布来看,多涉及统计与概率、立体几何、数列、函数与方程、不等式;3)从题目的背景来看,包括数学史、世界名题、浓厚的时代气息等○热○点○题○型1数学史为背景的数学文化题○热○点○题○型2来源于生活的数学文化创新题一、单选题1.围棋起源于中国,据先秦典籍《世本》记载:“尧造围棋,丹朱善之”,至今已有四千多年历史围棋不仅能抒发意境、陶冶情操、修身养性、生慧增智,而且还与天象易理、兵法策路、治国安邦等相关联,蕴含着中华文化的丰富内涵.在某次国际围棋比赛最后,中国队有两名选手a,b,日本队有一名选手c,韩国队有一名选手d,规定a与c对阵,b与d对阵,两场比赛的胜者争夺冠军,根据以往战绩,四位选手之间相互获胜的概率如下:ab c d a 获胜概率/0.50.60.8b 获胜概率0.5/0.50.6c 获胜概率0.40.5/0.4d 获胜概率0.20.40.6/则最终中国队获得冠军的概率为()A .0.24B .0.328C .0.672D .0.76【答案】C【分析】中国队获得冠军共分为三种情况:①a 与c 对阵a 赢,b 与d 对阵b 赢,a 与b 对阵无论谁赢中国队都是冠军;②a 与c 对阵a 赢,b 与d 对阵d 赢,a 与d 对阵a 赢;③a 与c 对阵c 赢,b 与d 对阵b 赢,c 与b 对阵b 赢;然后根据独立事件的概率计算公式及互斥事件的概率计算公式即可得到答案.【详解】中国队获得冠军共分为三种情况:a 与c 对阵a 赢,b 与d 对阵b 赢,a 与b 对阵无论谁赢中国队都是冠军,设这种情况为事件1A ,则根据独立事件的概率计算公式可得1()0.60.610.36=创=P A ;a 与c 对阵a 赢,b 与d 对阵d 赢,a 与d 对阵a 赢,设这种情况为事件2A ,则根据独立事件的概率计算公式可得2()0.60.40.80.192=创=P A ;a 与c 对阵c 赢,b 与d 对阵b 赢,c 与b 对阵b 赢,设这种情况为事件3A ,则根据独立事件的概率计算公式可得3()0.40.60.50.12=创=P A ;设中国队获得冠军为事件A ,则由互斥事件的概率计算公式可得:123123()()()()()0.360.1920.120.672P A P A A A P A P A P A =⋃⋃=++=++=.故选:C2.“阿基米德多面体”也称为半正多面体,是由边数不全相同的正多边形围成的多面体,它体现了数学的对称美.如图是以一正方体的各条棱的中点为顶点的多面体,这是一个有八个面为正三角形,六个面为正方形的“阿基米德多面体”.若该多面体的棱长为1,则经过该多面体的各个顶点的球的表面积为()A .8πB .4πC .3πD .2π【答案】B【分析】将该多面体补形为正方体,得到经过该多面体的各个顶点的球为正方体ABCD EFGH -的棱切球,求出该正方体的边长,求出棱切球的半径,得到表面积.【详解】将该多面体补形为正方体,则由1OR =,,AO AR AO AR =⊥,所以由勾股定理得:22AO AR ==,所以正方体的边长为2222´=,所以经过该多面体的各个顶点的球为正方体ABCD EFGH -的棱切球,所以棱切球的直径为该正方体的面对角线,长度为222⨯=,故过该多面体的各个顶点的球的半径为1,球的表面积为24π14π⨯=.故选:B3.足球被誉为“世界第一运动”,它是全球体育界最具影响力的单项体育运动,足球的表面可看成是由正二十面体用平面截角的方法形成的.即用如图1所示的正二十面体,从每个顶点的棱边的13处将其顶角截去,截去12个顶角后剩下的如图2所示的结构就是足球的表面结构.已知正二十面体是由20个边长为3的正三角形围成的封闭几何体,则如图2所示的几何体中所有棱的边数为().A .60B .90C .105D .120【答案】B【分析】计算原来正二十面体共有多少条棱,再计算出截去12个顶角后每个面会多出3条棱,从而计算共多出多少条棱数,即可求得答案.【详解】由题意可知原来正二十面体的每一条棱都会保留13,正二十面体每个面3条棱,每条棱属于两个面,则原来共有320=302⨯条棱,此外每个面会产生3条新棱,共产生32060⨯=条新棱,∴共有306090+=条棱,故选:B .4.如图甲(左),圣 于一体,极具对称之美.为了估算索菲亚教堂的高度,在索菲亚教堂的正东方向找到一座建筑物AB ,高约为40m ,如图乙(右),在它们之间的地面上的点M (,,B M D 三点共线)处测得楼顶A 、教堂顶C 的仰角分别是45︒和60︒,在楼顶A 处测得塔顶C 的仰角为15︒,则估算索菲亚教堂的高度CD 约为()A .50B .55C .60D .70【答案】C【分析】在Rt ABM ,由边角关系得出2AM AB =,再由正弦定理计算出ACM △中的3CM AB =,最后根据直角三角形DCM 算出CD 即可.【详解】由题意知:60CAM ∠=︒,75AMC ∠=︒,所以45ACM ∠=︒,库水位为海拔1485m .时,相应水面的面积为21400km .;水位为海拔1575m .时,相应水面的面积为21800km .,将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔1485m .上升到1575m .2.65≈)()A .931.010m ⨯B .931.210m ⨯C .931.410m ⨯D .931.610m ⨯故选:C .6.在北京冬奥会上,国家速滑馆“冰丝带”使用高效环保的二氧化碳跨临界直冷制冰技术,为实现绿色冬奥作出了贡献.如图描述了一定条件下二氧化碳所处的状态与T 和lg P 的关系,其中T 表示温度,单位是K ;P 表示压强,单位是bar .下列结论中正确的是()A .当220T =,1026P =时,二氧化碳处于液态B .当270T =,128P =时,二氧化碳处于气态C .当300T =,9987P =时,二氧化碳处于超临界状态D .当360T =,729P =时,二氧化碳处于超临界状态【答案】D【分析】根据T 与lg P 的关系图可得正确的选项.【详解】当220T =,1026P =时,lg 3P >,此时二氧化碳处于固态,故A 错误.当270T =,128P =时,2lg 3P <<,此时二氧化碳处于液态,故B 错误.当300T =,9987P =时,lg P 与4非常接近,故此时二氧化碳处于固态,对应的是非超临界状态,故C 错误.当360T =,729P =时,因2lg 3P <<,故此时二氧化碳处于超临界状态,故D 正确.故选:D7.北斗三号全球卫星导航系统是我国航天事业的重要成果.在卫星导航系统中,地球静止同步卫星的轨道位于地球赤道所在平面,轨道高度为36000km (轨道高度是指卫星到地球表面的距离).将地球看作是一个球心为O ,半径r 为6400km 的球,其上点A 的纬度是指OA 与赤道平面所成角的度数.地球表面上能直接观测到一颗地球静止同步轨道卫星点的纬度最大值为α,记卫星信号覆盖地球表面的表面积为22(1cos )S r πα=-(单位:2km ),则S 占地球表面积的百分比约为()A .26%B .34%C .42%D .50%【答案】C【分析】由题意结合所给的表面积公式和球的表面积公式整理计算即可求得最终结果.【详解】由题意可得,S 占地球表面积的百分比约为:226400164003600002(1.cos )1cos 44242%22r r πααπ---+==≈=.故选:C.8.嫦娥二号卫星在完成探月任务后,继续进行深空探测,成为我国第一颗环绕太阳飞行的人造行星,为研究嫦娥二号绕日周期与地球绕日周期的比值,用到数列{}n b :1111b α=+,212111b αα=++,31231111b ααα=+++,…,依此类推,其中(1,2,)k k α*∈=N .则()A .15b b <B .38b b <C .62b b <D .47b b <47b b<故D正确.9.为测量两塔塔尖之间的距离,某数学建模活动小组构建了如图所示的几何模型.若MA⊥平面ABC,NB⊥平面ABC,60mAC=,BC=,3tan4MCA∠=,14cos15NCB∠=,150MCN∠=︒,则塔尖MN之间的距离为()A.B.C.150m D.二、多选题10.某地举办数学建模大赛,本次大赛的冠军奖杯由一个铜球和一个托盘组成,如图①,已知球的表面积为16π,托盘由边长为8的等边三角形铜片沿各边中点的连线垂直向上折叠面成,如图②,则下列结论正确的是()A .直线AD 与平面DEF 所成的角为π3B .经过三个顶点A ,B ,C 的球的截面圆的面积为8π3C .异面直线AD 与CF 所成角的余弦值为58D .球上的点到底面DEF 的最大距离为6323+【答案】AC【分析】根据直线与平面所成角的定义,确定所求解的角判断A ;求出ABC 外接圆的面积判断B ;作出异面直线所成的角,并求出这个角判断C ;求出球心到平面DEF 的距离判断D.【详解】根据图形的形成可知,,,A B C 三点在底面DEF 上的投影分别是DEF 三边中点,,M N P ,如图所示,对于A ,AM ⊥面DEF ,∴ADE ∠就是直线AD 与平面DEF 所成的角,ADE 是等边三角形,π3ADE ∴∠=,A 正确;对于B ,ABC 与MNP △全等且所在平面平行,截面圆就是ABC 的外接圆与MNP △的外接圆相同,由题意知MNP △的边长为2,其外接圆半径为323233r =⨯=,圆的面积24ππ3S r ==,B 错误;则OH ⊥面ABC ,又CH ⊂22232233OH ⎛⎫∴=-= ⎪ ⎪⎝⎭∴球上的点到底面DEF 的最大距离为故选:AC.三、填空题11.手工课可以提高学生的动手能力、反应能力、创造力,使学生在德、智、体、美、劳各方面得到全面发展,某小学生在一次手工课上制作了一座漂亮的房子模型,它可近似地看成是一个直三棱柱和一个长方体的组合图形,其直观图如图所示,11A F B F ==124AB AA AD ===,P ,Q ,M ,N 分别是棱AB ,1C E ,1BB ,1A F 的中点,则异面直线PQ 与MN 所成角的余弦值是______.21521515【分析】以D为原点建立空间直角坐标系,求出,PQ MN ,利用向量关系即可求出.【详解】如图,以D 为原点建立空间直角坐标系,因为1122A F B F ==,124AB AA AD ===,所以可得()()()()2,2,0,0,3,5,2,4,2,,2,1,5P Q M N ,所以()()2,1,5,0,3,3PQ MN =-=- ,所以12215cos ,153032PQ MN PQ MN PQ MN⋅<>===⨯⋅ ,所以异面直线PQ 与MN 所成角的余弦值是21515.故答案为:21515.12.发现问题是数学建模的第一步,对我们中学生来说养成发现问题并将问题记录下来的习惯相当重要.相传2500多年前,古希腊数学家毕达哥拉斯有一次在朋友家作客时,发现朋友家用砖铺成的地面的图案(如图)反映了直角三角形三边的某种数量关系,他将自己的发现记录下来,经过后续研究发现了勾股定理.请你也来仔细观察,观察图中的多边形面积,然后用文字写出你的一个关于多边形面积的发现:________(提示:答案可以是疑问句,也可以陈述句,答案不唯一).【答案】分别以等腰直角三角形两直角边为边长的两个正方形的面积之和等于以斜边为边长的正方形的面积.(答案不唯一)【分析】根据题意可以得出分别以等腰直角三角形两直角边为边长的两个正方形的面积之和等于以斜边为边长的正方形的面积,证明即可.【详解】解:分别以等腰直角三角形两直角边为边长的两个正方形的面积之和等于以斜边为边长的正方形的面积.如图,ABC 为等腰直角三角形,BC 为斜边,则有222BC AB AC =+,以边AB 为边长的正方形的面积21S AB =,以边AC 为边长的正方形的面积22S AC =,以边BC 为边长的正方形的面积23S BC =,所以312S S S =+,故答案为:分别以等腰直角三角形两直角边为边长的两个正方形的面积之和等于以斜边为边长的正方形的面积.(答案不唯一)13.如图,某校学生在开展数学建模活动时,用一块边长为12dm 的正方形铝板制作一个无底面的正n 棱锥(侧面为等腰三角形,底面为正n 边形)道具,他们以正方形的儿何中心为田心,6dm 为半径画圆,仿照我国古代数学家刘徽的割圆术裁剪出m 份,再从中取n 份,并以O 为正()3n n ≥棱锥的顶点,且O 落在底面的射影为正n 边形的几何中心11122,O AO A nπ∠=,侧面等腰三角形的顶角为12AOA ∠α=,当112cos 2cos 1AO A ∠α=-时,设正棱锥的体积为3dm V ,则V n的最大值为___________.14.某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折,规格为20dm 12dm ⨯的长方形纸,对折1次共可以得到10dm 12dm ⨯,20dm 6dm ⨯两种规格的图形,它们的面积之和21240dm S =,对折2次共可以得到5dm 12dm ⨯,10dm 6dm ⨯,20dm 3dm ⨯三种规格的图形,它们的面积之和22180dm S =,以此类推,则对折4次共可以得到不同规格图形的种数为______;如果对折n 次,那么1nk k S ==∑______2dm .同学朝山沿直线行进,在前后相距a 米两处分别观测山顶的仰角α和β(βα>),多次测量相关数据取平均值后代入数学模型求解山高,这个社团利用到的数学模型h =___________;多次测量取平均值是中学物理测量中常用的减小误差的方法之一,对物理量进行n 次测量,其误差n ε近似满足20,n N n ε⎛⎫~ ⎪⎝⎭,为使误差n ε在(0.5,0.5)-的概率不小于0.9973,至少要测量___________次.参考数据:若占()2,N ξμσ ,则(3,3)0.9973P μσξμσ-<+=.。

高考数学复习压抽题专项突破—创新型问题

高考数学复习压抽题专项突破—创新型问题

高考数学复习压抽题专项突破—创新型问题【方法综述】创新型问题主要包括:(Ⅰ)将实际问题抽象为数学问题,此类问题往往含有文字语言、符号语言、图表语言,要明确题中已知量与未知量的数学关系,要理解生疏的情境、名词、概念,将实际问题数学化,将现实问题转化为数学问题,构建数学模型,运用恰当的数学方法解模(如借助不等式、导数等工具加以解决).(Ⅱ)创新性问题①以新概念、新定义给出的信息迁移型创新题,运用“老知识”解决新问题是关键.②以新运算给出的发散型创新题,检验运算能力、数据处理能力.③以命题的推广给出的类比、归纳型创新题,要注意观察特征、寻找规律,充分运用特殊与一般的辩证关系进行求解.【解题策略】类型一实际应用问题【例1】(2020·湖南长郡中学高考模拟(理))“军事五项”是衡量军队战斗力的一种标志,从1950年开始,国际军体理事会每年组织一届军事五项世界锦标赛.“军事五项”的五个项目分别为200米标准步枪射击、500米障碍赛跑、50米实用游泳、投弹、8公里越野跑.已知甲、乙、丙共三人参加“军事五项”.规定每一项运动队的前三名得分都分别为a、b、c(a>b>c 且a、b、c∈N*),选手最终得分为各项得分之和.已知甲最终得22分,乙和丙最终各得9分,且乙的投弹比赛获得了第一名,则50米实用游泳比赛的第三名是A.甲B.乙C.丙D.乙和丙都有可能【答案】B【解析】【分析】首先根据题中所给的条件,求得三个名次对应的分数,,a b c 的值,从而得到甲乙丙三人各自的得分,从而得到相应的名次,从而求得结果.【详解】根据题中所给的五人的得分,可知5()40a b c ++=,所以有8a b c ++=,又因为a b c >>,且,,a b c N *∈,所以,,a b c 的值为5,2,1或4,3,1,又因为乙投弹获得了第一名,且得分为9分,所以4,3,1不合题意,所以得到乙的成绩为投弹第一,剩下的都是第三名,因为甲得分22分,所以甲投弹第二,其余四项都是第一,所以丙投弹第三,剩下四项都是第二,从而得到50米实用游泳比赛的第三名是乙,故选B.【例2】某环保监督组织为了监控和保护洞庭湖候鸟繁殖区域,需测量繁殖区域内某湿地A 、B 两地间的距离(如图),环保监督组织测绘员在(同一平面内)同一直线上的三个测量点D 、C 、E ,从D 点测得67.5ADC ∠= ,从点C 测得45ACD ∠= ,75BCE ∠= ,从点E 测得60BEC ∠= ,并测得DC =CE =,测得A 、B 两点的距离为___________千米.【来源】数学-2021年高考考前20天终极冲刺攻略(二)(新高考地区专用)【学科网名师堂】(5月22日)【答案】3【解析】在ACD △中,45ACD ∠= ,67.5ADC ∠= ,CD =,67.5CAD ∴∠=,则AC CD ==,在BCE 中,60BEC ∠= ,75BCE ∠=,CE =45CBE ∠=o ,由正弦定理得sin 45sin 60CE BC=,可得3sin 602sin 4522CE BC ==,在ABC中,AC =BC =,18060ACB ACD BCE ∠=-∠-∠= ,由余弦定理得2222cos609AB AC BC AC BC =+-⋅= ,因此,3AB =(千米).故答案为:3.点睛:解三角形应用题的一般步骤:(1)阅读理解题意,弄清问题的实际背景,明确已知与未知,理清量与量之间的关系.(2)根据题意画出示意图,将实际问题抽象成解三角形问题的模型.(3)根据题意选择正弦定理或余弦定理求解.(4)将三角形问题还原为实际问题,注意实际问题中的有关单位问题、近似计算的要求等.【举一反三】1.2016年1月14日,国防科工局宣布,嫦娥四号任务已经通过了探月工程重大专项领导小组审议通过,正式开始实施,如图所示,假设“嫦娥四号”卫星将沿地月转移轨道飞向月球后,在月球附近一点P 变轨进入月球球F 为一个焦点的椭圆轨道I 绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个焦点的椭圆轨道II 绕月飞行,若用12c 和22c 分别表示椭圆轨道I 和II 的焦距,用12a 和22a 分别表示椭圆轨道I 和II 的长轴长,给出下列式子:①1122a c a c -=-②1122a c a c +=+③1212c a a c >④1212c c a a <其中正确的式子的序号是()A.②③B.①④C.①③D.②④【答案】B2.(2020北京市西城区一模)团体购买公园门票,票价如下表:购票人数1~5051~100100以上门票价格13元/人11元/人9元/人现某单位要组织其市场部和生产部的员工游览该公园,这两个部门人数分别为a和b,若按部门作为团体,选择两个不同的时间分别购票游览公园,则共需支付门票费为1290元;若两个部门合在一起作为一个团体,同一时间购票游览公园,则需支付门票费为990元,那么这两个部门的人数____;____.【答案】7040【解析】∵990不能被13整除,∴两个部门人数之和:a+b≥51,(1)若51≤a+b≤100,则11(a+b)=990得:a+b=90,①由共需支付门票费为1290元可知,11a+13b=1290②解①②得:b=150,a=﹣60,不符合题意.(2)若a+b≥100,则9(a+b)=990,得a+b=110③由共需支付门票费为1290元可知,1≤a ≤50,51≤b ≤100,得11a +13b =1290④,解③④得:a =70人,b =40人,故答案为:70,40.【指点迷津】解答应用性问题要先审清题意,然后将文字语言转化为数学符号语言,最后建立恰当的数学模型求解.其中,函数、数列、不等式、概率统计是较为常见的模型.类型二创新性问题【例3】(2020·广东高考模拟(理))设是直角坐标平面上的任意点集,定义.若,则称点集“关于运算*对称”.给定点集,,,其中“关于运算*对称”的点集个数为A .B .C .D .【答案】B【解析】试题分析:将(1,1)y x --带入221x y +=,化简得1x y +=,显然不行,故集合A 不满足关于运算*对称,将(1,1)y x --带入1y x =-,即111x y -=--,整理得1x y +=,显然不行,故集合B 不满足关于运算*对称,将(1,1)y x --带入11x y -+=,即1111y x --+-=,化简得11x y -+=,故集合C 满足关于运算*对称,故只有一个集合满足关于运算*对称,故选B.【例4】对于向量(1,2,...,)i PA i n =,把能够使得12...n PA PA PA +++ 取到最小值的点P 称为(1,2,...,)i A i n =的“平衡点”.如图,矩形ABCD 的两条对角线相交于点O ,延长BC 至E ,使得BC CE =,联结AE ,分别交BD CD 、于,F G 两点.下列的结论中,正确的是()A .A C 、的“平衡点”为O .B .DC E 、、的“平衡点”为DE 、的中点.C .AFG E 、、、的“平衡点”存在且唯一.D .A B E D 、、、的“平衡点”必为F 【答案】D【解析】对A ,A 、C 的“平衡点”为线段上的任意一点,故A 错误;对B ,D 、C 、E 的“平衡点”为三角形内部对3条边的张角均为120︒的点,故B 错误;对C ,A 、F 、G 、E 的“平衡点”是线段FG 上的任意一点,故C 错误;对D ,因为矩形ABCD 的两条对角线相交于点O ,延长BC 至E ,使得BC CE =,联结AE ,分别交BD 、CD 于F 、G 两点,所以A 、B 、E 、D 的“平衡点”必为F ,故D 正确.故选:D .【举一反三】1.对任一实数序列()123,,,A a a a = ,定义序列()213243,,,A a a a a a a ∆=--- ,它的第n 项为1n n a a +-.假定序列()A ∆∆的所有项都为1,且1820170a a ==,则2021a =()A .1000B .2000C .2003D .4006【来源】湖南省常德市第一中学2021届高三下学期第五次月考数学试题【答案】D【解析】依题意知A ∆是公差为1的等差数列,设其首项为a ,通项为n b ,则()111n b a n n a =+-⨯=+-,于是()()()()()()1111111111221122n n n k k k k k n a n a n n a a a a a b a a n a --+==⎡⎤-++---⎣⎦=+-=+=+=+-+∑∑由于1820170a a ==,即111713602016201510080a a a a ++=⎧⎨++⨯=⎩,解得11016,17136a a =-=.故()202120192020171362020101640062a ⨯=+⨯-+=.故选:D2.(2020兰州高三联考)若数列满足:对任意的且,总存在,使得,则称数列是“数列”.现有以下四个数列:①;②;③;④.其中是“数列”的有()A .个B.个C .个D.个【答案】C 【解析】令,则,所以数列是“数列”;令,则,,,所以,所以数列不是“数列”;令,则,,,所以,所以数列不是“数列”;令,则,所以数列是“数列”.综上,“数列”的个数为.本题选择C 选项.3.(2020·河南高考模拟)在实数集R 中定义一种运算“”,对于任意给定的为唯一确定的实数,且具有性质:(1)对任意;(2)对任意;(3)对任意.关于函数的性质,有如下说法:①函数的最小值为3;②函数为奇函数;③函数的单调递增区间为.其中所有正确说法的个数为()A.3B.2C.1D.0【答案】C【解析】试题分析:在(3)中,令,可得,则,易知函数是非奇非偶函数,故②错;又范围不确定,不能直接用基本不等式求最值.故①错.又,由可得函数单调递增区间为,故③对.故本题答案选C.考点:1.函数的奇偶性;2.函数的单调性与导数间的关系.【思路点晴】本题是新定义题型.主要考查函数的奇偶性,函数的单调性.基本不等式.此种类型题目的关键在于对新定义的理解.如本题中运算.利用新定义将运算转化为常规运算.转化后就看对基本不等式的理解,利用基本不等式求最值时,一定要求各项必须为正数.本题中无此范围,故最值不能直接求,可利用函数的单调性讨论解决.【强化训练】一、选择题1.对于n ,*k ∈N ,若正整数组()12,,,k F a a a 满足12k a a a ≤≤≤,12k a a a n +++= ,则称F 为n 的一个拆,设F 中全为奇数,偶数时拆的个数分别为()S n ,()T n ,则()A .存在2021n ≥,使得()0S n =B .不存在2021n ≥,使得()0T n =C .存在2021n ≥,使得()()S n T n =D .不存在2021n ≥,使得()()S n T n <【来源】浙江省宁波市宁海中学2021届高三下学期3月高考适应性考试数学试题【答案】D【解析】对于任意的2021n ≥,至少存在一个全为1的拆分,故A 错误;当n 为奇数时,()0T n =,故B 错误;当n 为偶数时,()12,,,k a a a 是每个数均为偶数的分拆,则它至少对应了()1,1,,1 和()121,1,,1,1,,1k a a a --- 的均为奇数的拆,当2n =时,偶数拆为()2,奇数拆为()1,1,()()221S T ==;当4n =时,偶数拆为()2,2,()4,奇数拆为()1,1,1,1,()1,3;故当6n ≥时,对于偶数的拆,除了各项不全为1的奇数拆分外,至少多出一项各项均为1的拆,故()()S n T n >,故C 错误,D 正确.故选:D2.(2020·武邑宏达学校高考模拟(理))定义:如果函数在上存在满足,,则称函数是上的“中值函数”.已知函数是上的“中值函数”,则实数的取值范围是()A .B .C .D .【答案】B【解析】,由题意在上有两个不等实根,方程即为,令,则,解得.故选B.3.(2020·福建高考模拟)定义为个正数的“均倒数”.若已知数列的前项的“均倒数”为,又,则=()A.B.C.D.【答案】C【解析】试题分析:设数列{}的前n项和为,则由题意可得,∴,,∴,∴.4.(2020北京市四中高考调研卷)若函数在其图象上存在不同的两点,其坐标满足条件:的最大值为0,则称为“柯西函数”,则下列函数:①;②;③;④.其中为“柯西函数”的个数为()A.1B.2C.3D.4【答案】B【解析】由柯西不等式得对任意的实数都有≤0,当且仅当时取等,此时即A,O,B三点共线,结合“柯西函数”定义可知,f(x)是柯西函数f(x)的图像上存在两点A与B,使得A,O,B三点共线过原点直线与f(x)有两个交点.①,画出f(x)在x>0时,图像若f(x)与直线y=kx有两个交点,则必有k≥2,此时,,所以(x>0),此时仅有一个交点,所以不是柯西函数;②,曲线过原点的切线为,又(e,1)不是f(x)图像上的点,故f(x)图像上不存在两点A,B与O共线,所以函数不是;③;④.显然都是柯西函数.故选:B5.(2020·永安市第一中学高考模拟)在正整数数列中,由1开始依次按如下规则,将某些整数染成红色.先染1;再染3个偶数2,4,6;再染6后面最邻近的5个连续奇数7,9,11,13,15;再染15后面最邻近的7个连续偶数16,18,20,22,24,26,28;再染此后最邻近的9个连续奇数29,31,…,45;按此规则一直染下去,得到一红色子数列:1,2,4,6,7,9,11,13,15,16,……,则在这个红色子数列中,由1开始的第2019个数是()A .3972B .3974C .3991D .3993【答案】D 【解析】【分析】根据题意知,每次涂成红色的数字成等差数列,并且第n 次染色时所染的最后一个数是n(2n-1),可以求出2019个数是在第45次染色的倒数第7个数,因此可求得结果.【详解】第1此染色的数为1=11⨯,共染色1个,第2次染色的最后一个数为6=23⨯,共染色3个,第3次染色的最后一个数为15=35⨯,共染色5个,第4次染色的最后一个数为28=47⨯,共染色7个,第5次染色的最后一个数为45=59⨯,共染色9个,…∴第n 次染色的最后一个数为n 2n 1⨯-(),共染色2n-1个,经过n 次染色后被染色的数共有1+3+5+…+(2n-1)=n 2个,而201945456=⨯-,∴第2019个数是在第45次染色时被染色的,第45次染色的最后一个数为4589⨯,且相邻两个数相差2,∴2019=458912⨯-=3993.故选D .6.(2020·福建高考模拟(理))如图,方格蜘蛛网是由一族正方形环绕而成的图形.每个正方形的四个顶点都在其外接正方形的四边上,且分边长为3:4.现用13米长的铁丝材料制作一个方格蜘蛛网,若最外边的正方形边长为1米,由外到内顺序制作,则完整的正方形的个数最多为(参考数据:7lg0.155≈)A .6个B .7个C .8个D .9个【答案】B 【解析】【分析】根据条件可得由外到内的正方形的边长依次构成等比数列,再根据等比数列求和公式得这些正方形的周长,列不等式,解得结果.【详解】记由外到内的第n 个正方形的边长为n a ,则1255414,...4()77nn a a a =⨯=⨯=⨯,,.1251()57...414(1())5717nn n a a a -+++=⨯=⨯--.令1251()57...414(1())135717nn n a a a -+++=⨯=⨯-≤-,解得117.6677lg 5n ≤+≈,故可制作完整的正方形的个数最多为7个.应选B.7.(2020·四川成都七中高考模拟(理))如果{}n a 不是等差数列,但若k N *∃∈,使得212k k k a a a +++=,那么称{}n a 为“局部等差”数列.已知数列{}n x 的项数为4,记事件A :集合{}{}1234,,,1,2,3,4,5x x x x ⊆,事件B :{}n x 为“局部等差”数列,则条件概率()|P B A =()A .415B .730C .15D .16【答案】C【解析】【分析】分别求出事件A 与事件B 的基本事件的个数,用()|P B A =()AB P P A ()计算结果.【详解】由题意知,事件A 共有4454C A =120个基本事件,事件B :“局部等差”数列共有以下24个基本事件,(1)其中含1,2,3的局部等差的分别为1,2,3,5和5,1,2,3和4,1,2,3共3个,含3,2,1的局部等差数列的同理也有3个,共6个.含3,4,5的和含5,4,3的与上述(1)相同,也有6个.含2,3,4的有5,2,3,4和2,3,4,1共2个,含4,3,2的同理也有2个.含1,3,5的有1,3,5,2和2,1,3,5和4,1,3,5和1,3,5,4共4个,含5,3,1的也有上述4个,共24个,()24|120P B A ∴==15.故选C.8.(2020北京市清华大学附属中学一模)正方形的边长为1,点在边上,点在边上,.动点从出发沿直线向运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角,当点第一次碰到时,与正方形的边碰撞的次数为()A .4B .3C .8D .6【答案】D 【解析】根据已知中的点E ,F 的位置,可知入射角的正切值为,第一次碰撞点为F ,在反射的过程中,直线是平行的,利用平行关系及三角形的相似可得第二次碰撞点为G ,G 在DA 上,且DG ,第三次碰撞点为H ,H 在DC 上,且DH ,第四次碰撞点为M ,M 在CB 上,且CM ,第五次碰撞点为N ,N 在DA 上,且AN ,第六次回到E 点,AE .故需要碰撞6次即可.故选:D .9.几何中常用表示L 的测度,当L 为曲线、平面图形和空间几何体时,L 分别对应其长度、面积和体积.在ABC 中,3AB =,4BC =,5AC =,P 为ABC 内部一动点(含边界),在空间中,到点P 的距离为1的点的轨迹为L ,则L 等于()A .612π+B .2263π+C .20123π+D .22123π+【来源】专题4.3立体几何的动态问题-玩转压轴题,进军满分之2021高考数学选择题填空题【答案】D【解析】空间中,到点P 的距离为1的点的轨迹所构成的空间几何体在垂直于平面ABC 的角度看,如下图所示:其中:BCDF ,ACEI 和ABGH 区域内的几何体为底面半径为1的半圆柱;CDE ,BFG ,AHI 区域内的几何体为被两平面所截得的部分球体,球心分别为,,C B A ;ABC 区域内的几何体是高为2的直三棱柱.四边形BCDF 和ACEI 为矩形,2DCB ECA π∴∠=∠=,2DCE ACB ACB πππ∴∠=--∠=-∠,同理可得:FBG ABC π∠=-∠,HAI CAB π∠=-∠,()332DCE FBG HAI ACB ABC CAB ππππ∴∠+∠+∠=-∠+∠+∠=-=,∴CDE ,BFG ,AHI 区域内的几何体合成一个完整的,半径为1的球,则CDE ,BFG ,AHI 区域内的几何体的体积之和3144133V ππ=⨯=;又BCDF ,ACEI 和ABGH 区域内的几何体的体积之和()221134562V ππ=⨯⨯++=;ABC 区域内的直三棱柱体积31342122V =⨯⨯⨯=,4226121233L πππ∴=++=+.故选:D.10.如图,水平桌面上放置一个棱长为4的正方体水槽,水面高度恰为正方体棱长的一半,在该正方体侧面11CDD C 上有一个小孔E ,E 点到CD 的距离为3,若该正方体水槽绕CD 倾斜(CD 始终在桌面上),则当水恰好流出时,侧面11CDD C 与桌面所成角的正切值为()A B .12C D .2【来源】热点08立体几何-2021年高考数学【热点�重点�难点】专练(山东专用)【答案】D【解析】由题意知,水的体积为44232⨯⨯=,如图所示,设正方体水槽绕CD 倾斜后,水面分别与棱1111,,,,AA BB CC DD 交于,,,,M N P Q由题意知3PC =,水的体积为32BCPN S CD ⋅=322BN PC BC CD +∴⋅⋅=,即344322BN +⨯⨯=,1BN ∴=在平面11BCC B 内,过点1C 作1//C H NP 交1BB 于H ,则四边形1NPC H 是平行四边形,且11NH PC ==又侧面11CDD C 与桌面所成的角即侧面11CDD C 与水面MNPQ 所成的角,即侧面11CDD C 与平面11HC D 所成的角,其平面角为111HC C B HC ∠=∠,在直角三角形11B HC 中,111114tan 22B C B HC B H ===.故选:D.二、填空题11.(2020安徽省宣城市二调)数列的前项和为,定义的“优值”为,现已知的“优值”,则_________.【答案】【解析】解:由=2n ,得a 1+2a 2+…+2n ﹣1a n =n •2n ,①n ≥2时,a 1+2a 2+…+2n ﹣2a n ﹣1=(n ﹣1)•2n ﹣1,②①﹣②得2n ﹣1a n =n •2n ﹣(n ﹣1)•2n ﹣1=(n +1)•2n ﹣1,即a n =n +1,对n =1时,a 1=2也成立,所以.12.(2020·广西高考模拟(理))如图所示,一个圆柱形乒乓球筒,高为20厘米,底面半径为2厘米.球筒的上底和下底分别粘有一个乒乓球,乒乓球与球筒底面及侧面均相切(球筒和乒乓球厚度忽略不计).一个平面与两乒乓球均相切,且此平面截球筒边缘所得的图形为一个椭圆,则该椭圆的离心率为【答案】154【解析】对圆柱沿底面直径进行纵切,如图所示:切点为,A A ',与圆柱面相交于,C C ',此时可知CC '即为椭圆的长轴2a ,在直角三角形ABO ∆中,2022212,8,sin 284AB AB BO AOB OB -⨯===∴∠===,又因为sin rAOB OC ∠=,所以28sin a OC AOB ===∠,由平面与圆柱所截可知椭圆短轴即为圆柱底面直径的长,即24b =,则求得c ==4c e a ∴==,故选A.点睛:本题主要考查圆锥曲线与三角函数交汇处的综合应用,属于难题.此题的难点是如何求出长半轴a 的值,需要先利用切线性质求出AOB ∠,再利用相似求出OC 长,即为a ,短轴长为底面半径,故b 比较容易求出,根据椭圆中的关系式222a b c =+,得出c 值,进而求出离心率.13.(2020山东省淄博实验中学一诊)定义:若函数的定义域为,且存在非零常数,对任意,恒成立,则称为线周期函数,为的线周期若为线周期函数,则的值为______.【答案】1【解析】若为线周期函数则满足对任意,恒成立即,即则本题正确结果:14.(2020四川省成都市二诊)在平面直角坐标系中,定义两点,间的折线距离为,已知点,,,则的最小值为___.【答案】【解析】d(O,C)=|x|+|y|=1,首先证明:,两边平方得到变形为,由重要不等式,显然此不等式成立,故根据不等式的性质得到:.故答案为:.15.如图,有一矩形钢板ABCD缺损了一角(如图所示),边缘线OM上每一点到点D的距离都等于它到边AB的距离.工人师傅要将缺损的一角切割下来使剩余部分成一个五边形,若AB=1m,AD=0.5m,则五边形ABCEF的面积最大值为____m2.【答案】【解析】以O为坐标原点,AD所在直线为轴建立平面直角坐标系,设边缘线OM上一点,则,设EF与边缘线OM的切点为,因为,所以,故EF所在直线方程为,因此,其中,从而因为当时,,当时,,即当时取最小值,从而五边形ABCEF的面积取最大值.16.(2020北京师范大学附属实验中学)分形几何学是一门以不规则几何形态为研究对象的几何学.分形的外表结构极为复杂,但其内部却是有规律可寻的.一个数学意义上分形的生成是基于一个不断迭代的方程式,即一种基于递归的反馈系统.下面我们用分形的方法来得到一系列图形,如图1,线段的长度为a,在线段上取两个点,,使得,以为一边在线段的上方做一个正六边形,然后去掉线段,得到图2中的图形;对图2中的最上方的线段作相同的操作,得到图3中的图形;依此类推,我们就得到了以下一系列图形:记第个图形(图1为第1个图形)中的所有线段长的和为,现给出有关数列的四个命题:①数列是等比数列;②数列是递增数列;③存在最小的正数,使得对任意的正整数,都有;④存在最大的正数,使得对任意的正整数,都有.其中真命题的序号是________________(请写出所有真命题的序号).【答案】②④【解析】由题意,得图1中线段为,即;图2中正六边形边长为,则;图3中的最小正六边形边长为,则;图4中的最小正六边形边长为,则;由此类推,,所以为递增数列,但不是等比数列,即①错误,②正确;因为,即存在最大的正数,使得对任意的正整数,都有,即④正确;③错误,综上可知正确的由②④.17.(2020河南省十所名校联考)若函数的图象存在经过原点的对称轴,则称为“旋转对称函数”,下列函数中是“旋转对称函数”的有_________.(填写所有正确结论的序号)①;②;③.【答案】①②【解析】对于①中,的反函数为:,所以函数关于直线对称,故①是“旋转对称函数”.对于②,,所以函数是偶函数,它关于轴对称,故②是“旋转对称函数”.对于③,,当时,,则函数的图像只可能关于直线对称,又,当时,,这与函数的图像关于直线对称矛盾,故③不是“旋转对称函数”.18.(2020·四川高考模拟)如图,在棱长为1的正方体1111ABCD A B C D -中,动点P 在其表面上运动,且PA x =,把点的轨迹长度()L f x =称为“喇叭花”函数,给出下列结论:①13216f π⎛⎫= ⎪⎝⎭;②()312f π=;③32f π=;④21333f ⎛⎫= ⎪ ⎪⎝⎭其中正确的结论是:__________.(填上你认为所有正确的结论序号)【答案】②③④【解析】1()2f 由如图三段相同的四分之一个圆心为A 半径为12的圆弧长组成,因此13π()24f =(1)f 由如图三段相同的四分之一个圆心为A 半径为1的圆弧长组成,因此3π(1)2f =f 由如图三段相同的四分之一个圆心分别为1,,B D A 半径为1的圆弧长组成,因此13π32π142f =⨯⨯⨯=21(3f 由如图三段相同弧长组成,圆心角为π6,因此21π3π()3363f =⨯=,因此选②③④19.(2020·辽宁高考模拟(理))大雁塔作为现存最早、规模最大的唐代四方楼阁式砖塔,是凝聚了中国古代劳动人民智慧结晶的标志性建筑.如图所示,已知∠ABE =α,∠ADE =β,垂直放置的标杆BC 的高度h =4米,大雁塔高度H =64米.某数学兴趣小组准备用数学知识探究大雁塔的高度与α,β的关系.该小组测得α,β的若干数据并分析测得的数据后,发现适当调整标杆到大雁塔的距离d ,使α与β的差较大时,可以提高测量精确度,求α﹣β最大时,标杆到大雁塔的距离d 为_____米.【答案】【解析】由题意得46415BD d BD BD d =∴=+,因此6460tan tan 4tan()646064601tan tan 1d d d d d d αβαβαβ---===≤⨯++⋅+,当且仅当d =时取等号,因此当d =时,tan()αβ-取最大值,即αβ-取最大,即标杆到大雁塔的距离d为【点睛】在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.20.(2020·山东省淄博实验中学高考模拟(理))定义在封闭的平面区域D 内任意两点的距离的最大值称为平面区域D 的“直径”.已知锐角三角形的三个顶点,,A B C 在半径为1的圆上,且3BAC π∠=,分别以ABC ∆各边为直径向外作三个半圆,这三个半圆和ABC ∆构成平面区域D ,则平面区域D 的“直径”的最大值是__________.【答案】2【解析】设三个半圆圆心分别为G,F ,E ,半径分别为123r r r ,,,M,P,N 分别为半圆上的动点,则PM≤12r r ++GF=12r r ++AC 2=123a b c r r r 2++++=,当且仅当M,G,F,P 共线时取等;同理:PN ≤123r r r ,++MN≤123r r r ++,又ABC 外接圆半径为1,πBAC 3∠=,所以BC 2πsin 3=,∴BC=a=2sin π3=3,由余弦定理()2222b c b c bc 3,b c 33bc 3,2+⎛⎫+-=+-=≤ ⎪⎝⎭即解b+c≤23,当且仅当b=c=3取等;故123a b c 33r r r 22++++=≤21.(2020·首都师范大学附属中学高考模拟(理))定义:对于数列{}n x ,如果存在常数p ,使对任意正整数n ,总有1()()0n n x p x p +--<成立,那么我们称数列{}n x 为“p ﹣摆动数列”.①若21n a n =-,(10)n n b q q =-<<,*n N ∈,则数列{}n a _____“p ﹣摆动数列”,{}n b _____“p﹣摆动数列”(回答是或不是);②已知“p ﹣摆动数列”{}n c 满足111n n c c +=+,11c =.则常数p 的值为_____.【答案】不是是512【解析】①由21n a n =-知道{}n a 是递增数列,故不存在满足定义的p又因为(10)n n b q q =-<<可知n b 正负数值交替出现,故0p =时满足定义②因为数列{}n c 是“p ﹣摆动数列”,故1n =时有()()210x p x p --<可求得:112p <<又因为使对任意正整数n ,总有()()10n n c p c p +--<成立,即有()()210n n c p c p ++--<成立则()()20n n c p c p +-->所以1c p >,3c p >,…,21n c p->同理2c p <,4c p <,…,2n c p <所以221n n c p c -<<,即212111n n c c --<+,解得21512n c ->,即512p -≤同理2211n n c c +>,解得212n c <,即12p -≥综上,512p -=本题正确结果:不是;是;512。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题7.2 创新型问题一.方法综述对于创新型问题,包括:(Ⅰ)将实际问题抽象为数学问题,此类问题往往含有文字语言、符号语言、图表语言,要明确题中已知量与未知量的数学关系,要理解生疏的情境、名词、概念,将实际问题数学化,将现实问题转化为数学问题,构建数学模型,运用恰当的数学方法解模(如借助不等式、导数等工具加以解决)。

(Ⅱ)创新性问题①以新概念、新定义给出的信息迁移型创新题,运用“老知识”解决新问题是关键. ②以新运算给出的发散型创新题,检验运算能力、数据处理能力.③以命题的推广给出的类比、归纳型创新题,要注意观察特征、寻找规律,充分运用特殊与一般的辩证关系进行求解.二.解题策略 类型一 实际应用问题【例1】【北京市石景山区2018届第一学期期末】小明在如图1所示的跑道上匀速跑步,他从点A 出发,沿箭头方向经过点B 跑到点C ,共用时30s ,他的教练选择了一个固定的位置观察小明跑步的过程,设小明跑步的时间为()t s ,他与教练间的距离为()y m ,表示y 与t 的函数关系的图象大致如图2所示,则这个固定位置可能是图1中的( )A . 点MB . 点NC . 点PD . 点Q 【答案】D【指点迷津】解答应用性问题要先审清题意,然后将文字语言转化为数学符号语言,最后建立恰当的数学模型求解.其中,函数、数列、不等式、概率统计是较为常见的模型.【举一反三】【辽宁省沈阳市郊联体2017-2018上学期期末】2016年1月14日,国防科工局宣布,嫦娥四号任务已经通过了探月工程重大专项领导小组审议通过,正式开始实施,如图所示,假设“嫦娥四号”卫星将沿地月转移轨道飞向月球后,在月球附近一点P 变轨进入月球球F 为一个焦点的椭圆轨道I 绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个焦点的椭圆轨道II 绕月飞行,若用12c 和22c 分别表示椭圆轨道I 和II 的焦距,用12a 和22a 分别表示椭圆轨道I 和II 的长轴长,给出下列式子: ①1122a c a c -=- ②1122a c a c +=+ ③1212c a a c > ④1212c c a a < 其中正确的式子的序号是( )A . ②③ B. ①④ C. ①③ D. ②④ 【答案】B类型二 创新性问题【例2】设D 是函数y =f (x )定义域内的一个区间,若存在x 0∈D ,使得f (x 0)=-x 0,则称x 0是f (x )的一个“次不动点”,也称f (x )在区间D 上存在“次不动点”.若函数f (x )=ax 2-3x -a +52在区间[1,4]上存在“次不动点”,则实数a 的取值范围是( )A .(-∞,0] B.⎝ ⎛⎭⎪⎫0,12C.⎝⎛⎦⎥⎤-∞,12 D.⎣⎢⎡⎭⎪⎫12,+∞【答案】C【解析】由题意,方程ax 2-3x -a +52=-x 在区间[1,4]上有解,显然x ≠1,所以方程ax 2-3x -a +52=-x 在区间(1,4]上有解,即求函数a =2x -52x 2-1在区间(1,4]上的值域,令t =4x -5,则t ∈(-1,11],a =8tt 2+10t +9,当t ∈(-1,0]时,a ≤0;当t ∈(0,11]时,0<a =8t +9t+10≤82t ×9t+10=12,当且仅当t =3时取等号. 综上,实数a 的取值范围是⎝⎛⎦⎥⎤-∞,12. 【指点迷津】高中数学创新试题呈现的形式是多样化的,但是考查的知识和能力并没有太大的变化,解决创新性问题应注意三点:认真审题,确定目标;深刻理解题意;开阔思路,发散思维,运用观察、比较、类比、猜想等进行合理推理,以便为逻辑思维定向.方向确定后,又需借助逻辑思维,进行严格推理论证,这两种推理的灵活运用,两种思维成分的交织融合,便是处理这类问题的基本思想方法和解题策略. 【例3】定义:如果一个列从第二项起,每一项与它的前一项的差都等于同一个常,那么这个列叫作等差列,这个常叫作等差列的公差.已知向量列{a n }是以a 1=(1,3)为首项,公差为d =(1,0)的等差向量列,若向量a n 与非零向量b n =(x n ,x n +1)(n ∈N *)垂直,则x 10x 1=________. 【答案】-4 480243【解析】易知a n =(1,3)+(n -1,0)=(n,3),因为向量a n 与非零向量b n =(x n ,x n +1)(n ∈N *)垂直, 所以x n +1x n =-n 3,所以x 10x 1=x 2x 1·x 3x 2·x 4x 3·x 5x 4·x 6x 5·x 7x 6·x 8x 7·x 9x 8·x 10x 9=⎝ ⎛⎭⎪⎫-13×⎝ ⎛⎭⎪⎫-23×⎝ ⎛⎭⎪⎫-33×⎝ ⎛⎭⎪⎫-43×⎝ ⎛⎭⎪⎫-53×⎝ ⎛⎭⎪⎫-63×⎝ ⎛⎭⎪⎫-73×⎝ ⎛⎭⎪⎫-83×⎝ ⎛⎭⎪⎫-93=-4 480243.【指点迷津】“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解。

对于此题中的新概念,对阅读理解能力有一定的要求。

但是,透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝。

【举一反三】【2017·青岛一模】如果对定义在R 上的函数f (x ),对任意两个不相等的实数x 1,x 2,都有x 1f (x 1)+x 2f (x 2)>x 1f (x 2)+x 2f (x 1),则称函数f (x )为“H 函数”.给出下列函数:①y =x 2;②y =e x+1;③y =2x -sin x ;④f (x )=⎩⎪⎨⎪⎧ln|x |,x ≠0,0,x =0.以上函数是“H 函数”的所有序号为________. 【答案】②③④显然,函数f (x )为偶函数,而偶函数在y 轴两侧的单调性相反,故不合题意. 综上,②③为“H 函数”.3.如图,在平面斜坐标系xOy 中,∠xOy =θ,平面上任意一点P 关于斜坐标系的斜坐标这样定义:若OP ―→=xe 1+ye 2(其中e 1,e 2分别是x 轴,y 轴正方向上的单位向量),则点P 的斜坐标为(x ,y ),向量OP ―→的斜坐标为 (x ,y ).给出以下结论:①若θ=60°,P (2,-1),则|OP ―→|=3;②若P (x 1,y 1),Q (x 2,y 2),则OP ―→+OQ ―→=(x 1+x 2,y 1+y 2); ③若OP ―→=(x 1,y 1),OQ ―→=(x 2,y 2),则OP ―→·OQ ―→=x 1x 2+y 1y 2;④若θ=60°,以O 为圆心、1为半径的圆的斜坐标方程为x 2+y 2+xy -1=0. 其中所有正确结论的序号是________. 【答案】①②④三.强化训练1.【北京市朝阳区2018届第一学期期末】伟大的数学家高斯说过:几何学唯美的直观能够帮助我们了解大自然界的基本问题.一位同学受到启发,借助以下两个相同的矩形图形,按以下步骤给出了不等式:()()()22222ac bd a b c d +≤++的一种“图形证明”.证明思路:(1)左图中白色区域面积等于右图中白色区域面积;(2)左图中阴影区域的面积为ac bd +,右图中,设BAD θ∠=,右图阴影区域的面积可表示为_________(用含,,,a b c d , θ的式子表示);(3)由图中阴影面积相等,即可导出不等式()()()22222ac bd a bcd +≤++. 当且仅当,,,a b c d 满足条件__________________时,等号成立.【答案】 2222sin a b c d θ+⋅+⋅ ad bc =2.若直角坐标平面内不同两点P ,Q 满足条件:①P ,Q 都在函数y =f (x )的图象上;②P ,Q 关于原点对称,则称(P ,Q )是函数y =f (x )的一个“伙伴点组”(点组(P ,Q )与(Q ,P )可看成同一个“伙伴点组”).已知函数f (x )=()21,0{ 1,0k x x x x +<+≥有两个“伙伴点组”,则实数k 的取值范围是______________.【答案】()2++∞【解析】设点()(),0m n m >是函数()y f x =的一个“伙伴点组”中的一个点,则其关于原点的对称点(),m n --必在该函数图象上,故()21{1n m n k m =+-=-+,消去n ,整理得210m km k -++=.若函数()f x 有两个“伙伴点组”,则该方程有两个不等的正实数根,得()2410{0 10k k k k ∆=-+>>+>,解得2k >+实数k的取值范围是()2++∞,故答案为()2++∞.3.【湖北省襄阳市2018届1月调研统测】若函数()y f x =对定义域D 内的每一个x 1,都存在唯一的x 2∈D,使得()()121f x f x ⋅=成立,则称f (x)为“自倒函数”.给出下列命题: ①()sin 22f x x x ππ⎫⎡⎤=∈-⎪⎢⎥⎣⎦⎭,是自倒函数;②自倒函数f (x)可以是奇函数; ③自倒函数f (x)的值域可以是R ;④若()()y f x y g x ==,都是自倒函数,且定义域相同,则()()y f x g x =⋅也是自倒函数. 则以上命题正确的是_______(写出所有正确命题的序号). 【答案】①②4.已知函数f (x )=a log 2|x |+1(a ≠0),定义函数()()(),0{ ,0f x x F x f x x >=-<给出下列命题:①F (x )=|f (x )|; ②函数F (x )是奇函数;③当a >0时,若x 1x 2<0,x 1+x 2>0,则F (x 1)+F (x 2)>0成立; ④当a <0时,函数y =F (x 2-2x -3)存在最大值,不存在最小值. 其中所有正确命题的序号是________. 【答案】②③【解析】 ①因为()()()11,2{,02a af x x f x f x x --≥=-<<,而()()(),0{,0f x x F x f x x >=-<,这两个函数的定义域不同,不是同一函数,即()()F x f x =不成立,①错误; ②当0x >时, ()()2log 1,0F x f x a x x ==+-<,()()][()22log 1log 1F x f x a x a x F x ⎡⎤-=--=--+=-+=⎣⎦;当0x <时, ()()2log 1,0F x f x a x x ⎡⎤=-=-+->⎣⎦,()()()22log 1log 1F x f x a x a x F x -=-=-+=+=-,所以函数()F x 是奇函数,②正确;③当0a >时, ()()2log 1Fx f xa x ==+在()0,+∞上是单调增函数.若12120,0x x x x +,不妨设120x x >->,所以()()120F x F x >->,又因为函数()F x 是奇函数, ()()22F x F x -=-,所以()()120F x F x +->,③正确;④函数()()()()()()22222log 231,,13,23{log 231,1,3a x x x y F x x a x x x --+∈-∞-⋃+∞=--=--++-∈-,当()(),13,x ∈-∞-⋃+∞时,因为0a <,所以()223y F x x =--既没有最大值,也没有最小值.5.如图所示,放置的边长为1的正方形PABC 沿x 轴滚动,点B 恰好经过原点.设顶点P (x ,y )的轨迹方程是y =f (x ),则对函数y =f (x )有下列判断: ①若-2≤x ≤2,则函数y =f (x )是偶函数; ②对任意的x ∈R,都有f (x +2)=f (x -2); ③函数y =f (x )在区间[2,3]上单调递减; ④函数y =f (x )在区间[4,6]上是减函数.其中判断正确的序号是________.(写出所有正确结论的序号)【答案】①②④∴函数的周期是4,因此最终构成的图象如下:①根据图象的对称性可知函数y =f (x )是偶函数, ∴①正确;②由图象可知函数的周期是4,∴②正确;③由图象可判断函数y =f (x )在区间[2,3]上单调递增,∴③错误; ④由图象可判断函数y =f (x )在区间[4,6]上是减函数,∴④正确. 故答案为①②④.6.【河北省定州中学2017-2018上学期第二次月考】设函数()f x 的定义域为D ,若函数()y f x =满足下列两个条件,则称()y f x =在定义域D 上是闭函数.①()y f x =在D 上是单调函数;②存在区间[],a b D ⊆,使()f x 在[],a b 上值域为[],a b .如果函数()21f x x k =++为闭函数,则k 的取值范围是_______. 【答案】11,2⎛⎤-- ⎥⎝⎦故答案为11,2⎛⎤-- ⎥⎝⎦7.【湖南省长郡中学2018届高三月考】设函数()f x 的定义域为D ,如果x D ∀∈, y D ∃∈,使()()2f x f y C +=(C 为常数)成立,则称函数()f x 在D 上的均值为C .给出下列四个函数:①2y x =;②2xy =;③ln y x =;④2sin 1y x =+.则其中满足在其定义域上均值为2的函数是__________. 【答案】③8.【北京丰台二中2018届上学期期中考试】对于{}12100,,,E a a a =的子集{}12,,,k i i i X a a a =,定义X的“特征数列”为1x ,2x ,,100x ,其中121k i i i x x x ====,其余项均为0.例如:子集{}23,a a 的“特征数列”为0, 1, 1, 0, 0,, 0.(1)子集{}135,,a a a 的“特征数列”的前3项和等于__________. (2)若E 的子集P 的“特征数列”1p , 2p , , 100p 满足11p =, 11i i p p ++=, 199i ≤≤; E的子集Q 的“特征数列”1q , 2q , , 100q 满足11q =, 121j j j q q q ++++=, 198i ≤≤,则P Q⋂的元素个数为__________. 【答案】 2 17【解析】(1)据“特征数列”的定义可知子集{}135,,a a a 的“特征数列”为1, 0, 1, 0, 1, 0, , 0,故其前三项和为2.9.【2016·开封联考】如图所示,由曲线y =x 2,直线x =a ,x =a +1(a >0)及x 轴围成的曲边梯形的面积介于相应小矩形与大矩形的面积之间,即()12221a a a x dx a +<<+⎰.运用类比推理,若对∀n ∈N *, 111111122121A n n n n n n +++<<++++++-恒成立,则实数A =________.【答案】ln2 【解析】令12111111,,,121221n A A A n n n n n n <<<<<<+++-, 依据类比推理可得A 1=11n n x +⎰d x =ln(n +1)-ln n ,A 2=211n n x ++⎰d x =ln(n +2)-ln(n +1),…,A n =2211nn x -⎰d x =ln(2n )-ln(2n -1),所以A =A 1+A 2+…+A n =ln(n +1)-ln n +ln(n +2)-ln(n +1)+…+ln(2n )-ln(2n -1)=ln(2n )-ln n =ln 2.10.在某种金属材料的耐高温实验中,温度随着时间变化的情况由微机记录后显示的图象如图3­2­5所示.现给出下列说法:图3­2­5①前5min 温度增加的速度越来越快;②前5min 温度增加的速度越来越慢;③5min 以后温度保持匀速增加;④5min 以后温度保持不变.其中正确的说法是________.(填序号)【答案】②④【解析】由图像可知前5min 中温度增加,但是增加速度越来越慢,所以②对,①错。

相关文档
最新文档