高光谱遥感简介

合集下载

高光谱遥感第四章

高光谱遥感第四章

资源调查
高光谱遥感能够调查土地利用、矿产 资源、森林资源等自然资源,为资源 管理和规划提供数据基础。
02
高光谱遥感技术
采集技术
采集方式
高光谱遥感通过卫星、飞机等平台搭载传感器,对地表进行宽范 围、高分辨率的成像。
采集波段
高光谱遥感能够获取数十至数百个波段的地物光谱信息,覆盖可见 光、近红外、短波红外等波段。
利用不同尺度的数据源进行融合,能 够同时获取地物的细节信息和全局信 息。
像素级融合
特征级融合
决策级融合
多尺度融合
基于像素点的融合方法,如加权融合、 主成分分析融合等,能够充分利用不 同数据源的信息。
基于分类结果的融合方法,将不同数 据源的分类结果进行组合,提高分类 精度和可靠性。
04
高光谱遥感应用案例
辐射定标和大气校正
将高光谱图像的物理量转换为反射率 或辐射亮度,消除大气和太阳辐射的 影响。
光谱复原
对由于散射和吸收造成的光谱畸变进 行校正,恢复地物真实光谱。
地理编码
将高光谱图像的像素坐标与地理坐标 对应起来,便于后续的空间分析和定 位。
数据分类
监督分类
基于已知训练样本的类别信息进行分类, 如支持向量机、随机森林等。
采集分辨率
高光谱遥感的分辨率通常达到纳米级别,能够提供更精细的地物光 谱特征。
处理技术
数据预处理
包括辐射定标、大气校正、几何校正等步骤,以消除传感器误差和 大气干扰,获取准确的地物光谱数据。
图像融合
将不同波段的高光谱图像进行融合,提高图像的空间分辨率和信息 量。
数据压缩
对高光谱数据进行压缩,降低数据存储和传输成本。
高光谱遥感技术能够提供比传统遥感更丰富、更精细的地物光谱信息,从而实现 对地物的精细分类、识别和监测。

简述高光谱遥感的特点。

简述高光谱遥感的特点。
4.高光谱遥感数据处理需要高度的专业技能和复杂的算法,因此具有一定的技术。
高光谱遥感的特点如下:
1.高光谱遥感可以获取到比普通遥感更为丰富的光谱信息,可以获取到物体在较宽波段范围内的反射和辐射信息,具有更高的空间分辨率和光谱分辨率。
2.高光谱遥感可以获取到物体的光谱特征,可以对物体进行更加精细的分类和识别。
3.高光谱遥感可以对物体的化学成分、植被生理特性、水文地理特性等进行分析和研究,具有很高的应用价值。

高光谱遥感

高光谱遥感
光谱范围 400~850nm 采样间隔 1.8nm 光谱分辨率 <5nm 瞬时视场角 1.5mrad 行象元数 376 信噪比 ~200
• 中国:MAIS、PHI、OMIS-1(10个热波段)、 中国: 个热波段)、 、 、 ( 个热波段 CMODIS(神舟III号) 、Env-DD(环境灾害小卫星) (神舟 号 (环境灾害小卫星)
三、高光谱遥感技术优势与局限性
优势 1:充分利用地物波谱信息资源 :
图 不同波谱分辨率对水铝反射光谱曲线
优势 2: 利用波形 精细光谱特征进行分类与识别地物 : 利用波形/精细光谱特征进行分类与识别地物
Al-OH
Paragonite
Muscovite
Phengite
三种类型的白云母精细光谱特征
岩石的光谱发射率特征
航空高光谱遥感飞行设计图
(2)光谱特征参数定量分析技术 )
不同水分含量的叶片的光谱反射率
RWC(%)=24.5+7.13*面积 (R2=0.845)
(3)光谱匹配技术(二值编码) )光谱匹配技术(二值编码) • 岩矿光谱分类与识别
岩石和矿物
2.15-2.31微米 粘 土 矿 2.24-2.31微米 Mg-OH 对称性>1 滑石 2.15-2.19微米 叶蜡石 2.31-2.35微米 碳 酸 盐
优势 3: 利用图 谱实现自动识别地物并制图 : 利用图-谱实现自动识别地物并制图
局限1:海量数据的传输、 局限 :海量数据的传输、处理与存储 128波段的 波段的OMIS: 采集数据速率 采集数据速率60Mb/s;400Mb/km2 波段的 ;
高光谱遥感信息的图像立方体表达形式是一种新 高光谱遥感信息的图像立方体 表达形式是一种新 型的数据存储格式, 型的数据存储格式,其正面图像是由沿飞行方向的扫 描线合沿扫描方向的像元点组成的一景优选的三波段 合成的二维空间彩色影像; 合成的二维空间彩色影像;其后面依次为各单波段的 图象叠合,其数据量为所有波段图像的总和; 图象叠合,其数据量为所有波段图像的总和;位于图 像立方体边缘的信息表达了各单波段图像最边缘各像 元的地物辐射亮度的编码值或视反射率。 元的地物辐射亮度的编码值或视反射率。

高光谱遥感

高光谱遥感
高光谱遥感应用
概念: 具有比较高的光谱分辨 率,通常能达到10-2λ数量级,
高光谱遥感具有波段多的特 点,光谱通道数多达数十甚 至数百个以上,而且各通道 间往往是连续的,因此高光 谱遥感通常也被称为成像光 谱遥感(Imaging Spectrometry)。
基本概念
遥感成像技术的发展一直伴随着两方面的进步:一是通
④定量化的连续光谱曲线数据为地物光谱机理模型引入图像分类提
供了条件。 劣势:
①对数据冗余处理不当,反而会影响分类精度;
②对定量化要求高,数据前处理复杂; ③波段多,波段间的相关性大,对训练样本数量要求高;
④使用统计学分类模型对光谱特征选择要求很高。
四、高光谱图像分类与目标识别
面向高光谱图像特点的分类算法:
高光谱图像目标识别:
①从数字信号到辐射值的转换,这个过程要求在辐射和光谱上有
高精度的定标;
②剔除大气效应:从辐射值到地面视反射率; ③纠正光照几何因素和地形影响:视反射率到地面反射率; ④光谱特征选择、特征提取、数据空间转换等; ⑤从光谱数据库中提取所要识别的目标标准光谱;或者从图像中 提取光谱端元、识别和确认所找出的端元光谱; ⑥光谱匹配和识别,采用全波形匹配或者特征参量光谱匹配;也 可以采用混合光谱分解的方法,分解每一像元光谱,得出每像元 中各端元组分的相对含量。
谱特征空间,但它包括了该对象的主要特征光谱,并在一个 含有多种目标对象的组合中,该子集能够最大限度地区别于 其它地物。
光谱特征选择:光谱特征位置搜索 光谱相关性分析 光谱距离统计
三、高光谱图像光谱分析技术 (光谱特征位置搜索)
包络线去除(Continuum Removal ):光谱曲线的包络线从 直观上看,相当于光谱曲线的“外壳”。

高光谱遥感分解课件

高光谱遥感分解课件

端元提取的效果直接影响到后续的混合 像元分解和谱间关系分析的精度和可靠 性,因此是高光谱遥感分解中的关键步
骤。
混合像元分解方法
混合像元分解的方法包括基于物理模型的方法和基于 统计模型的方法等。这些方法通过建立地物光谱与像 元光谱之间的数学模型,利用优化算法对模型参数进 行求解,从而得到每个像元的纯组分和丰度信息。
高光谱遥感分解方法
端元提取方法
端元提取是高光谱遥感分解的基础,目 的是从高光谱数据中提取出纯净的地物 光谱,为后续的混合像元分解和谱间关
系分析提供基础。
端元提取的方法包括基于统计的方法、 基于空间的方法和基于变换的方法等。 这些方法通过不同的原理和算法,从高 光谱数据中提取出尽可能纯净的地物光
谱。
矿物与地质应用
总结词
高光谱遥感在矿物与地质应用中具有重要作用,可以用于矿产资源调查、地质构造分析 等。
详细描述
高光谱遥感能够通过分析地物的光谱特征差异,识别不同类型的矿物和地质构造。在矿 产资源调查中,高光谱遥感可以用于发现潜在的矿床和评估矿产资源的分布情况。同时 ,在地质构造分析中,高光谱遥感可以通过分析地物的光谱特征差异,揭示地质构造的
高光谱遥感分解课件
ቤተ መጻሕፍቲ ባይዱ
目录
CONTENTS
• 高光谱遥感概述 • 高光谱遥感技术原理 • 高光谱遥感分解方法 • 高光谱遥感应用实例 • 高光谱遥感技术展望
01
CHAPTER
高光谱遥感概述
高光谱遥感的定义
高光谱遥感是一种利用光谱信息对地球表面进行观测和监测 的技术。它通过卫星或飞机搭载的高光谱成像仪获取地物辐 射的连续光谱信息,进而分析地物的成分、结构和动态变化 。
高光谱遥感技术的挑战与问题

常用的卫星遥感测绘技术介绍

常用的卫星遥感测绘技术介绍

常用的卫星遥感测绘技术介绍随着科技的不断进步,卫星遥感技术在测绘领域的应用逐渐增多。

卫星遥感是利用卫星携带的传感器获取地表信息并进行分析的一种技术。

它具有快速、全面和高精度等优势,已被广泛应用于地质环境、农业发展、城市规划等领域。

本文将介绍几种常用的卫星遥感测绘技术。

一、多光谱遥感技术多光谱遥感技术是利用卫星传感器对地球表面反射和辐射的不同波长进行感应和记录。

其基本原理是不同物质对不同波长的光有不同的反射或吸收特性。

通过对多个波段的光谱信息进行比较分析,可以获得地表上各种特征的信息。

例如,可以利用多光谱遥感技术观测和分析植被覆盖、植被类型、水体分布等。

二、高光谱遥感技术高光谱遥感技术是多光谱遥感技术的进一步延伸和发展。

它采集的光谱波段多于多光谱遥感技术,可以提供更加详细的地表信息。

高光谱遥感技术在地质矿产探测、环境监测等方面有广泛的应用。

例如,通过高光谱遥感技术可以探测地下矿藏的分布、确定地表的土壤类型等。

三、合成孔径雷达(SAR)技术合成孔径雷达技术是利用合成孔径雷达系统获取地表物体的微弱散射信号,并通过信号处理算法重建出高分辨率的雷达图像。

该技术具有对天气和光照条件不敏感、全天候性能好等优势。

合成孔径雷达技术在海洋监测、地质滑坡监测等领域得到了广泛应用。

例如,可以利用合成孔径雷达技术实现对油污的监测和溢油事故的应急处置。

四、红外遥感技术红外遥感技术是利用地物的红外辐射特性获取地表信息的一种遥感技术。

该技术可以实现对地表温度分布、空气质量、火灾监测等进行测量。

例如,在城市规划和环境监测中,可以利用红外遥感技术对城市热岛效应进行研究和监测,以促进城市可持续发展。

五、全球导航卫星系统(GNSS)全球导航卫星系统是利用卫星信号实现全球定位和导航的一种技术。

它通过使用卫星的精确时钟信息和距离测量技术,可以确定接收机的位置和速度。

全球定位系统有助于测绘和准确定位,广泛应用于交通导航、航空航天和地理信息系统等领域。

高光谱遥感的概念

高光谱遥感的概念

定量反演与模型模拟技术
定量反演
利用高光谱数据反演地物参数, 如叶绿素含量、地表温度等。
模型模拟
建立地物光谱模型,模拟地物光 谱特征,用于预测和模拟。
参数优化
对反演和模拟的参数进行优化, 提高结果的准确性和可靠性。
04
高光谱遥感的应用案例
农业应用案例
作物分类与识别
土壤质量评估
高光谱遥感能够通过分析不同作物反射 的光谱特征,实现对农作物的精细分类 和识别,有助于精准农业的实施。
图像融合
将多源遥感数据融合,提 高信息量和分辨率。
图像增强
通过对比度拉伸、色彩映 射等手段,改善图像的可 视化效果。
特征提取与分类技术
特征提取
从高光谱数据中提取地物 光谱特征,如光谱曲线、 谱带宽度等。
分类识别
利用提取的特征进行地物 分类,识别不同类型地物。
精度评估
对分类结果进行精度评估, 提高分类准确率。
高光谱遥感的概念

CONTENCT

• 引言 • 高光谱遥感的原理 • 高光谱遥感的关键技术 • 高光谱遥感的应用案例 • 高光谱遥感的未来发展
01
引言
什么是高光谱遥感
高光谱遥感是一种利用光谱信息对地球表面进行观测和监测的技 术。它通过卫星、飞机或其他遥感平台搭载的高光谱传感器,获 取地表反射、发射和散射的光谱数据,从而实现对地物的精细识 别和分类。
高光谱遥感的数据获取方式
采集方式
通过卫星或飞机搭载高光谱传 感器进行数据采集。
数据处理
对采集的高光谱数据进行预处 理、特征提取和分类识别等操 作。
应用领域
农业、环境监测、城市规划、 地质勘察等领域。
03

高光谱遥感分解课件

高光谱遥感分解课件

案例一:高光谱遥感在农业监测中的应用
总结词
种植结构优化
详细描述
高光谱遥感技术能够识别不同种类的 农作物,通过监测农作物的分布和生 长状况,可以优化种植结构,提高土 地利用效率和农业生产效益。
案例二:高光谱遥感在环境监测中的应用
总结词
污染物监测
详细描述
高光谱遥感技术能够监测大气、水体和土壤中的污染物,如二氧化硫、氮氧化物、重金 属等。通过对污染物的光谱特征进行分析,可以实时监测污染物的排放和扩散情况,为
05 实际应用案例分析
案例一:高光谱遥感在农业监测中的应用
总结词:精准监测
详细描述:高光谱遥感技术能够获取地表覆盖物的光谱信息,通过分析这些光谱 信息,可以精确地监测农作物的生长状况、病虫害情况以及土壤质量等,为农业 生产提供科学依据。
案例一:高光谱遥感在农业监测中的应用
总结词:产量预测
详细描述:利用高光谱遥感技术,可以预测农作物的产量。通过对农作物生长过程中的光谱信息进行监测和分析,可以建立 产量预测模型,提高预测的准确性和可靠性。
进行分类。
非监督分类
02
对未知类别的样本进行聚类分析,将相似的像素归为同一类。
目标识别
03
利用提取的特征和分类结果,对目标进行识别和定位。
04 高光谱遥感技术发展与展望
高光谱遥感技术的发展趋势
技术创新
随着传感器技术的不断进步,高光谱遥感器的空间分辨率 和光谱分辨率将得到进一步提升,能够获取更丰富、更精 准的地物信息。
详细描述
高光谱遥感技术能够识别不同类型的矿产资源,通过对地 表的光谱信息进行监测和分析,可以确定矿产资源的分布 和储量,为矿产资源勘探提供有力支持。
总结词

高光谱遥感

高光谱遥感

高光谱遥感器
OMIS系统部分参数 128波段 波段 波长 光谱分辩率 64(64,32,16) 0.4-1.1um 10nm 16(8,1) 1.1-2.0um 60nm 32(32,1) 2.0-2.5um 15nm 8(8,1) 3.0-5.0um 250nm 8(8,1) 8.0-12.5um 500nm IFOV 3.0,1.5mrad FOV > 70 degree
VNIR: 32 波段 (0.44~1.08um) 光谱分辨率: 20nm SWIR: 32 波段 (1.5~2.45um) 光谱分辨率: 25nm TIR: 7 波段 (8.0~11.6) 光谱分辨率: 0.45um IFOV: 3.0mrad FOV: 90 degree scanning : 10-20(line/second) digitizer: 12bit
高光谱遥感的基本概念
高光谱遥感起源于20世纪70年代初的多光谱遥 感,它将成像技术与光谱技术结合在一起,在对目标 的空间特征成像的同时,对每个空间像元经过色散 形成几十乃至几百个窄波段以进行连续的光谱覆 盖,这样形成的遥感数据可以用“图像立方体”来形 象的描述.同传统遥感技术相比,由于其所获取的图 像包含了丰富的空间,辐射和光谱三重信息。
2 5.0 表 1.1,国际上部分成像光谱仪一览表(陈述彭等,1997) 500-980 32 2 0.0-71.0
遥感器 PLI-PMI CASI SFSI AIS-1 AIS-2 AVIRIS (20km) ASAS 改进 ASAS GERIS
光谱范围 (nm) 403-805 430-870 1200-2400 900-2100 1200-2400 800-1600 1200-2400 400-2450 455-873 400-1060 400-100 1000-2000 2000-2500

《高光谱遥感的发展》课件

《高光谱遥感的发展》课件

高光谱遥感技术的发展趋势
提高数据获取能力
未来将进一步提高高光谱传感器的性 能,提高数据获取的精度和稳定性。
加强数据处理能力
未来将进一步发展人工智能、机器学 习等技术,提高数据处理的速度和精 度。
拓展应用领域
未来将进一步拓展高光谱遥感技术的 应用领域,如城市规划、资源调查、 灾害监测等。
加强技术交流与合作
从分割后的图像中提取地物的光谱特征,包括光谱曲线、谱带宽度 、谱带深度等。
地物分类与识别
利用提取的光谱特征,对地物进行分类和识别,常用的方法包括监 督分类、非监督分类和支持向量机等。
03
高光谱遥感技术发展现状
高光谱遥感传感器的发展
高光谱成像技术进步
随着技术的不断进步,高光谱成像传 感器在空间分辨率、光谱分辨率和辐 射分辨率等方面取得了显著提升,为 地物精细识别提供了有力支持。
新型传感器研发
科研人员正致力于开发新型的高光谱 传感器,如多角度高光谱传感器和热 红外高光谱传感器,以拓宽遥感的应 用领域。
高光谱数据处理技术的发展
数据处理算法优化
针对高光谱数据的处理,算法不断优 化以提高数据处理速度和准确性,例 如支持向量机、神经网络等机器学习 方法在高光谱分类和识别中的广泛应 用。
3
城市规划与管理
在城市规划与管理方面,高光谱遥感为城市发展 提供了丰富的空间和环境信息,有助于实现精细 化管理和可持续发展。
04
高光谱遥感技术面临的挑战与展 望
高光谱遥感技术面临的挑战
数据获取难度大
数据处理复杂度高
高光谱遥感技术需要获取大量的高光谱数 据,但受到传感器性能、天气条件等多种 因素的影响,数据获取难度较大。
资源调查与利用

高光谱遥感理论基础课件

高光谱遥感理论基础课件

CHAPTER
02
高光谱遥感的基本原理
电磁波与光谱辐射基础
电磁波的波长和频率
电磁波的波长范围从极长波到极短波,包括无线电波、微波、红外线、可见光 、紫外线、X射线和伽马射线等。不同波长的电磁波具有不同的特性和应用。
光谱辐射与光谱响应
物体对不同波长的电磁波具有不同的吸收、反射和透射特性,这种特性决定了 物体在光谱上的表现。光谱响应是指传感器在不同波长上的测量能力。
详细描述
高光谱遥感能够通过分析地物光谱特征,监 测植被的生长状况、种类分布以及生态系统 的健康状况。同时,高光谱遥感还能用于水 质监测,如水体污染物的分布和扩散情况。 此外,土壤状况的监测也是高光谱遥感的重 要应用之一,如土壤肥力、盐碱化程度等。
城市规划与建设管理
总结词
高光谱遥感在城市规划与建设管理中发挥着重要作用,能够提供丰富的地表信息,为城 市规划和建设提供科学依据。
详细描述
在环境监测方面,高光谱遥感可以用于检测大气污染 、水体污染和土壤污染等环境问题;在城市规划方面 ,高光谱遥感可以用于城市绿化、城市交通和城市空 间布局等方面的监测和规划;在资源调查方面,高光 谱遥感可以用于土地利用、矿产资源和水资源的调查 和评估;在农业管理方面,高光谱遥感可以用于农作 物生长监测、病虫害预警和产量预测等方面。
详细描述
高光谱遥感技术通过获取地物在不同光谱波段的反射或发射信息,能够识别和区分不同类型的地物,并揭示其内 在的光谱特征。由于其高光谱分辨率的特点,高光谱遥感能够提供更丰富的地表信息,为地物识别、环境监测、 资源调查等领域提供了强有力的支持。
高光谱遥感技术的发展历程
总结词
高光谱遥感技术自20世纪80年代诞生以来,经历了初期探索、技术发展和成熟应用三个阶段,目前 已经成为遥感领域的重要分支。

一、高光谱遥感简介

一、高光谱遥感简介

1.2 电磁波与物质的相互作用
(4)大气窗口
不同的电磁波段通过大气后衰减的程度不一样,有些波段的电磁辐射通过大气后衰 减很小,透光率很高,通常称为“大气窗口”。
27
1.2 电磁波与物质的相互作用
(4)大气窗口
(1)0.30~1.15μm大气窗口(全部可见光波段、部分紫外波段和部分近红外波 段) :反映地物对太阳光的反射,白天成像;
晶体场效应
[TiF6]2-为八面体配合物,电子构型1s22s22p63s23p6, 该离子的5个空3d 轨道为简并轨道。
由于d轨道的取向,F-离子很靠近dx2-y2和dz2轨道(eg轨道), eg轨道直 接指向F-配体;而dxy, dxz 和 dyz轨道(t2g轨道)指向F-配体之间。
eg 轨道比t2g轨道具有较高的能量。
(2)1.30~2.50μm大气窗口(近红外波段):主要用于地质遥感 ; (3)3.50~5.00μm大气窗口(中红外波段):用来探测高温目标,如森林火
灾、火山、核爆炸等 ; (4)8~14μm大气窗口(热红外波段):探测常温下地物热辐射能量、发射
率、温度; (5)1.00mm~1m微波窗口(毫米波、厘米波和分米波):能穿透云层、植被和
44
1.3 典型地物的光谱特性
色心
透明晶体中的点缺陷或其复合物捕获电子或空穴而形成的一类缺陷,和相应的 一组能级,这些允许能级之间的间距与可见光谱中的光子相当,当相应的光子 在缺陷处被吸收时,晶体好像被染了颜色一样。这种缺陷就是色心,常见于碱 卤化合物和多种金属氧化物。
• F心: M+X-晶体中负离子X的子晶格空位,捕获一个电子构成F心。该电子不 稳定,可由类1S态激发到类2s态、类2p态---F吸收线 LiCl, NaCl, KCl, RbCl, CsCl,如CaF2中的F离子丢失而被一个电子取代时, 就会造成红绿吸收,而呈现紫色,从而形成色心。

高光谱遥感技术科普知识

高光谱遥感技术科普知识

高光谱遥感技术科普知识一、高光谱遥感技术是啥呢?嘿,宝子们!今天咱们来唠唠高光谱遥感技术这个超酷的东西。

你可以把它想象成一个超级厉害的千里眼,不过这个千里眼可不像神话里的那么简单哦。

高光谱遥感技术啊,就是能在好多好多不同的光谱波段上对地球表面进行观测的技术。

比如说,我们人眼能看到的光只是一小部分,像彩虹那七种颜色啥的,但这个技术能看到更多很多我们看不到的光波段呢。

它就像一个超级侦探,在太空或者飞机上,用它那独特的能力来探测地球表面的各种东西。

无论是大片大片的森林、广袤的海洋,还是我们生活的城市,它都能看得一清二楚。

比如说,它能知道森林里哪棵树生病了,因为生病的树可能在某些光谱波段下会有不一样的表现。

对于海洋呢,它能发现哪里有很多鱼群,哪里的海水被污染了之类的。

在城市里,它还能看看哪里的建筑是不是存在安全隐患之类的。

二、高光谱遥感技术的原理这高光谱遥感技术的原理啊,说起来其实也挺有趣的。

它主要是利用了物体对不同波长的光的反射、吸收或者发射的特性不同。

就好比不同的人穿不同颜色的衣服,在阳光下看起来就不一样。

地球表面的各种物体,像土壤啊、植被啊、水啊,它们就像穿着不同颜色衣服的人。

高光谱遥感仪器能捕捉到这些物体在不同光谱波段下的特征,然后把这些信息收集起来,经过一系列复杂的处理,就可以得到关于这些物体的各种信息啦。

举个例子吧,绿色的植被在可见光的绿色波段反射比较强,但是在红外波段就有独特的吸收和反射特性。

高光谱遥感技术就是利用这些特性的差异来区分不同类型的植被,是大树还是小草,是健康的植物还是被害虫侵蚀的植物,都能分得出来哦。

三、高光谱遥感技术的应用1. 在农业方面这个技术可帮了农民伯伯大忙了。

它可以用来监测农作物的生长情况。

比如说,什么时候该浇水了,什么时候该施肥了,它都能给点提示。

因为农作物在不同的生长阶段对光的吸收和反射情况是不一样的。

如果农作物缺水了,在某些光谱波段下就会有特殊的表现,高光谱遥感技术就能发现这个变化,然后告诉农民伯伯。

高光谱遥感

高光谱遥感

EO-1
Landsat-7
1
mi
n
29 min
Terra
表 Hyperion主要技术参数
中国的环境与减灾1号卫星高光谱成像仪
• 高光谱遥感信息成像机理
➢ 高光谱遥感器接收到入瞳辐射后通过探测器产生电信号,在经过增益和模数转 换(A/D)产生遥感影像数值(DN)。遥感器的空间响应、光谱响应和辐射响应决 定了输出图像的信息特征。进入传感器的辐射量通过光学系统后,由分光器件分成 不同的光谱段后到达探测器焦平面转换为测量值。该测量值的大小直接与探测器的 光谱响应率相关,从而又与光学系统的透过率和探测器的光谱灵敏度相关联。
三、高光谱遥感器的发展
❖ 70年代末,美国加州理工学院喷气推进实验室(JPL)
学者提出。
❖ 1983年,世界上第一台成像光谱仪问世,AIS-1
(Airborne Imaging Spectrometer)问世,64波段。
❖ 1987年,航空可见光/红外成像光谱仪AVIRIS,224波段 ❖ 2000年第一台星载高分辨率成像光谱仪 HYPERION升空。 ❖ 1991年,中国第一台航空成像光谱仪(MAIS)运行
➢ 第一代成像光谱仪称航空成像光谱仪AIS(Airborne
Imaging Spectrometer),64个通道,光谱覆盖范围从990nm-2400nm, 光谱分辨率9.3nm。
➢ 第二代成像光谱仪称航空可见光、近红外成像光谱仪
AVIRIS(Airborne Visible/Infrared Imaging Spectrometer),224个通道, 光谱范围410nm-2450nm,光谱分辨率10nm。
❖多光谱遥感(Multirspectral Remote Sensing),光谱分 辨率为波长 的1/10数量级范围(几十个至几百个nm);

高光谱遥感数据BRDF校正与森林参数提取

高光谱遥感数据BRDF校正与森林参数提取

《高光谱遥感数据brdf校正与森林参数提取》2023-10-27•高光谱遥感技术简介•高光谱遥感数据BRDF校正•森林参数提取方法目录•高光谱遥感数据BRDF校正与森林参数提取的关系•高光谱遥感数据BRDF校正与森林参数提取的发展趋势与挑战目录01高光谱遥感技术简介高光谱遥感技术是指利用高光谱传感器获取目标物体反射或辐射的电磁波信息,并通过分析这些信息来识别和测量目标物体特征的技术。

高光谱传感器可以在很窄的波段内获取大量连续的光谱信息,这使得高光谱遥感技术在探测地表覆盖类型、植被生长状况、水体污染程度等方面具有显著优势。

高光谱遥感技术具有高分辨率、高灵敏度、高光谱维度的特点。

高分辨率使得高光谱遥感技术可以获取更精细的空间信息,高灵敏度可以增强对目标物体的探测能力,高光谱维度则可以提供更丰富的光谱信息。

高光谱遥感技术在多个领域都有广泛的应用,如环境保护、城市规划、农业监测、地质勘查等。

在环境保护方面,高光谱遥感技术可用于监测空气质量、水体污染、土壤污染等;在城市规划方面,高光谱遥感技术可用于调查城市绿地、测量建筑物高度等;在农业监测方面,高光谱遥感技术可用于监测作物长势、估算作物产量等;在地质勘查方面,高光谱遥感技术可用于识别地质构造、探测矿产资源等。

高光谱遥感技术应用领域02高光谱遥感数据BRDF校正BRDF定义及原理BRDF定义BRDF(Bidirectional Reflectance Distribution Function)是指物体在单位入射角和单位出射角的反射辐射通量密度与入射角和出射角之间的函数关系。

它描述了物体在某个方向上的反射性质随入射角和出射角的变化情况。

BRDF原理BRDF原理是基于物理的光学反射定律和能量守恒定律。

它反映了物体在某个方向上的反射辐射通量密度与入射角和出射角之间的关系。

BRDF值受到物体表面材质、粗糙度、颜色等因素的影响。

基于模型的方法基于物理模型的方法通常需要先建立BRDF模型,然后将模型参数应用于实际高光谱遥感数据进行校正。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

灰度影像解译
SPOT 5 号全色波段图像
精选课件
5
彩色成像技术及多波段成像技术
多波段影像解译
SPOT 5 号多波段合成图像
精选课件
6
高光谱遥感——Hyperspectral Remote Sensing
光学遥感技术的发展:全色(黑白)--彩色摄影- -多光谱扫描成像--高光谱遥感
高光谱分辨率遥感(Hyperspectral Remote Sensing):用很窄(0.01波长)而连续的光谱通道 对地物持续遥感成像的技术。在可见光到短波红外波 段其光谱分辨率高达纳米(nm)数量级,通常具有波段 多的特点,光谱通道数多达数十甚至数百个以上,而 且各光谱通道间往往是连续的,因此高光谱遥感又通 常被称为成像光谱(Imaging Spectrometry)遥感。
精选课件
27
PHI– The Push broom
Hyperspectrl Imagers
Electronics Console
POS System
Spectral coverage:
VIS to NIR (450-850nm) spectral region
Spectral bands: 244
精选课件
3
遥感——remote sensing
遥感(Remote Sensing):通过电磁波与地物的相 互作用,以波谱和空间两维成像方式来探测地物 特性的技术。
电磁波与物质相互作用的类型 请大家列举遥感常用 有哪些?在进行被动遥感时, 的波段 电磁波要与多少种物质 进行作用?
精选课件
4
全色摄影相片
请同学们回顾下面的基本概念:地物光谱反射率,谈 谈影响地物光谱反射率的因素 地物的光谱反射率:是物体的反射辐射通量与入射辐 射通量之比 方向性 谱特性 时间性 空间
精选课件
13
光谱测量仪器——野外光谱仪
光谱辐射仪(Spectrometer/Spectroradiometers )
能够在电磁波紫外到近红外(300-2500nm)的 太阳反射波谱段内获取地物点状的连续光谱辐射 量曲线。
Spectral resolution: <5nm
Spectral sampling interval: 1.9nmHyperspace.Sensor
Pixels per line: 376
System
Digitization: 12 bits
Sensor weight: 9kg
Onboard Layout of PHI
气纠正模型与算法,依此实现成像光谱信息的图 像-光谱转换; 3 光谱编码,尤其指光谱吸收位置、深度、对称性 等光谱特征参数的算法; 4 基于光谱数据库的地物光谱匹配识别算法; 5 混合光谱分解模型; 6 基于光谱模型的地表生物物理化学过程与参数的 识别和反演算法
精选课件
12
光谱测量仪器——野外光谱仪
精选课件
26
MODIS
➢主要技术指标 轨道:705km,太阳同步,近极地轨道 辐射灵敏度:12b 波段范围:36个波段、0.4~14.4µm 空间分辨率: 2个波段为250m 5个波段为500m 29个波段为1000m 带宽:2330km,1~2天全球覆盖
MODIS(Moderate Resolution Imaging Spectroradiometer)
IFOV值大意味着辐射分辨率越高。
因为当传感器接受地面反射能量时,探测器上聚焦的 总能量更大;由于这种高信号使得传感器对地面辐射 率的测量更加敏感,其结果是辐射分辨率更高或者说 是区分微小的能量的能力方面有所提高
传感器的设计IFOV应该在空间分辨率与辐射分辨率 中折中
精选课件
24
精选课件
25
14
精选课件
15
精选课件
16
精选课件
17
地物数据的测量
1)准备工作:光谱仪、计算机充电、安装镜头,连 线,打开电源以及软件
2)测量过程:镜头对准白板,进行OPT优化镜头 对准目标,进行地物光谱反射率采集
3)整理工作
精选课件
18
精选课件
19
精选课件
20
光谱测量仪器——成像光谱仪
成像光谱仪:与地面光谱辐射计相比,成像光谱仪 不是在“点”上的光谱测量,而是在连续空间上进 行光谱测量,因此它是光谱成像的;与传统多光谱 遥感相比,其光谱通道不是离散而是连续的,因此 从它的每个像元均能提取一条平滑而完整的光谱曲 线。
高光谱遥感简介
精选课件
1
课程安排
课程性质:选修课 课程时间:12周~15周 课时:32学时 16上课学时 16上机学时 课程要求:理论联系实际 积极主动 考查方法:课程作业一份
精选课件
2
遥感基本概念回顾 高光谱遥感技术的概念以及特点 高光谱遥感数据处理关键技术 高光谱传感器介绍 光谱库介绍
精选课件
28
Nagano
Minamimaki
Image Cube of 80-bands PHI HRS Image
精选课件
29
农业应用(精准农业):农作物的
识别和品种划分
PHI在日本
精选课件
7
精选课件
8
高光谱遥感的特点
波段特点: 波段多、波段宽度窄、波段连续
数据量特点: 数据量大、信息冗余增加
精选课件
9
图谱合一的特点
影像立方体
光谱反射曲线
精选课件
10
图谱合一
水稻: 99-15
五七农场, 常州
水稻: 武香5021
水稻: 99-15
精选课件
11
高光谱数据处理关键技术
1 高光谱图像信息的显示,如图像立方体的生成; 2 光谱重建,即成像光谱数据的定标、定量化和大
光谱反射率(Reflectance)的获得:
利用分光光度计(地面光谱仪/外光谱仪)可以分别测 量目标地物与标准白板的光谱辐射能量,其比值就是地物 的光谱反射率。
标准白板通常使用聚四氟乙烯(PFTE)为材料,它在 400-2500 nm区间的反射率为100% 。其它还有硫酸钡 或氧化镁。
精选课件
第一种 线阵列探测器掸扫式扫描方式 第二种 面阵列探测器推扫式扫描方式
精选课件
21
精选课件
22
精选课件
23
影像分辨率主要决定于瞬时视场(IFOV,instantaneous field of view)角和成像高度。瞬时视场角越小、飞机 航高越低,地面分辨单元越小,分辨率就越高。
IFOV值小意味空间分辨率越高 。
相关文档
最新文档