《全等三角形的证明》课件

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
①要观察待证的线段或角,在哪两个可能全等 的三角形中。
②有公共边的,公共边一定是对应边, 有公共 角的,公共角一定是对应角,有对顶角,对顶角也 是对应角 总之,证明过程中能用简单方法的就不要绕弯路。
例3已知:如图,P是BD上的任意一点
AB=CB,AD=CD. 求证: PA=PC
A
P B
分C
=
=
_
_
除公共角∠A外,把还需要的两个条件及 其根据写在横线上。
(1) , (2) , (3) , (4) , (5) , (6) , (7) ,
(SAS)
A
()
()
( )E
C
()
( )B
D
()
练习1:如图,AE=AD,要使ΔABD≌ΔACE,请你增加一
个条件是
.
E A
D
B C
C
E 1 A 2
B
D
练习2:如图,已知∠1=∠2,AC=AD,增加下列件:① AB=AE,②BC=ED,③∠C=∠D,④ ∠B=∠E,其中能使
2、证明题的方法 ①要证什么 ②已有什么 ③还缺什么 ④创造条件
3、添加辅助线
用适当方法解决 三角形全等的证明
大同一中 赵燕
知识点 三角形全等的证题思路:
找夹角SAS 已知两边找直角HL
找另一边 SSS
边为角的对 找边 任一 角 AAS 已知一边 边一为角角的 找 找 找 邻夹 夹 边 边角 角 的 的 的 对A 另 另 角 AA SS一 一 AS
已知两 找 找角夹 任 边 一 A边 SAAAS
AB=CB
A
AD=CD
BD=BD
_
=
P
∴ △ABD≌△CBD(SSS)
B
D
∴∠ABD=∠CBD
_
=
在△ABP和△CBP中
C
AB=BC
∠ABP=∠CBP
BP=BP
∴ △ABP ≌ △CBP(SAS)
∴PA=PC
例4。已知:如图AB=AE,∠B=∠E,BC=ED AF⊥CD 求证:点F是CD的中点
分析:要证CF=DF可以考虑CF 、 DF所在的两个三角形全等,为此可 添加辅助线构建三角形全等 ,如何 添加辅助线呢?
ΔABC≌ΔAED的条件有( )个.
A.4
B.3 C.2 D.1
例例题2.如探图,究A:B=AC,D、E分别是
AB、AC的中点,求证:BE=CD
例题探究:
例3. 如图,在中,M在BC上,D在 AM上,AB=AC , DB=DC 。 求证:MB=MC
小结:
1、全等三角形的定义,性质, 判定方法。
已有AB=AE,∠B=∠E , BC=ED 怎样构建三角形能得到两个三角 形全等呢?连结AC,AD
添加辅助线是几何证明 中很重要的一种思路
1、证明两个三角形全等
例1 :如图,点B在AE上 ,∠CAB=∠DAB,要使 ΔABC≌ΔABD,可补充的一 个条件是 ∠∠∠CACCBDB=A=E∠A==∠CD∠.DDBBAE
C
A
B E
D
分析:现在我们已知 A→∠CAB=∠DAB S→ AB=AB(公共边) .
①用SAS,需要补充条件 AD=AC, ②用ASA,需要补充条件 ∠CBA=∠DBA, ③用AAS,需要补充条件 ∠C=∠D, ④此外,补充条件 ∠CBE=∠DBE也可以
(?)
做一做1、如图,要识别△ABC≌△ADE,
①要证明PA=PC可将其 放在ΔAPB和ΔCPB 或ΔAPD和ΔCPD考虑
D ②已有两条边对应相等 (其中一条是公共边) ③还缺一组夹角对 应相等
析:
若能使∠ABP=∠CBP 或∠ADP=∠CDP 即可。
创造条件
例3已知:P是BD上的任意一点AB=CB,AD=CD. 求证PA=PC
证明:在△ABD和△CBD中
归Baidu Nhomakorabea思考:
两个三角形全等,通常需要3个
条件,其中至少要有1组 边 对
应相等。
知识梳理:
A
AA
B
C
SSA不能
A
判定全等
BB
CC
D
B D
证明题的分析思路:
①要证什么 ②已有什么 ③还缺什么 ④创造条件
注意1、证明两个三角形全等,要结合题目的条件 和结论,选择恰当的判定方法
2、全等三角形,是证明两条线段或两个角相 等的重要方法之一,证明时
相关文档
最新文档