材料测试方法的发展

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

材料测试方法的发展

摘要:本文主要介绍了现代材料测试方法的相关课程,并具体介绍了光学显微分析、 X射线衍射技术、电子显微分析、热分析、红外光谱分析等的发展历史及研究进程。最后,关于材料测试方法的发展趋势做了一点点自己的看法。

关键词:材料测试方法、电子透镜、热分析、红外光谱

1、课程相关

随着科学技术的迅猛发展与市场经济的激烈竞争,材料科学也在不断地往前发展。随着材料研究的不断的深入,众多新型材料如功能材料、梯度功能材料、纳米材料等被研制出来。科技工作者对材料的研究也已经由过去的实验、实验方法逐步地摸索、试制性能合格的材料,向按一定的指标性能来设计材料。材料向着新、高、精、尖的发展,对材料的性能和产品的质量提出了越来越高的要求,促使材料工作者去探求材料组成、结构、生产工艺和性能之间的关系,为原材料选择、工艺改进、材料改性以及研制预定性能的新材料等提供理论依据。材料性能和产品质量与材料的组成和结构是密切相关的,人们要改进材料的性能、提高产品的质量,必须要了解材料内部的组成和结构,“现代材料测试方法”就是为研究材料内部的物相组成和结构而设置的一门专业技术基础课。

众所周知,材料的性能主要决定于其化学成分、矿物组成、宏观结构以及微观结构。其中物相组成,尤其是结晶矿物相组成和微观结构特征是在化学成分确定后对物质的性质起着关键性的作用。因为物相组成及显微结构是无机材料生产过程和生产工艺条件的直接记录,每个生产环节发生的变化均在物相组成及显微结构上有所体现。而材料制品的物相组成和显微结构特征,又直接影响甚至决定着制品的性能、质量、应用性状和效果。改变无机材料的化学组成、生产工艺过程和条件,就能获得具有不同物相组成和显微结构的制品,制品的技术性能,使用性能也就不同。为了获得具有新技术需要的使用性能的新型材料,可以通过物相组成和显微结构的设计,选用合适的原料及工艺配方,采用特定的生产过程及工艺条件,通过试验和研究而获得需要的产品。

而材料的物相组成和显微结构的获得必须通过一定的测试方法和手段。所以,我们研究、研制新材料,要使材料产品的性能指标、产品质量达到我们的设计目标、要求,对一些新研制材料的性能指标、安全性等方面的检测,所有这些

都与现代测试技术分不开。因此,每一个从事材料科学研究的科技工作者,每一个材料的生产者都必须掌握和了解一定的材料测试方法方面的知识,这就是我们开设此课程的目的。而且对现代材料测试方法的深入细致的研究,必将有助于推动材料的进一步的发展。

课程主要内容为:光学显微分析、 X射线衍射技术、电子显微分析、热分析、红外光谱分析

2、材料分析测试方法发展历史及成就

2.1 X射线的发现

1895年11月5日,德国物理学家伦琴在研究阴极射线时,发现了X射线。1912年,德国物理学家劳厄等人发现了X射线在胆矾晶体中的衍射现象,一方面确认了X射线是一种电磁波,另一方面又为X射线研究晶体材料开辟了道路。同年,英国物理学家布拉格父子首次利用X射线衍射方法测定了NaCl晶体的结构,开创了X射线晶体结构分析的历史。X射线在近代科学和工艺上的应用主要有以下三个方面:1.X射线透视技术。2.X射线光谱技术。3.X射线衍射技术。利用X射线通过晶体时会发生衍射效应这一特性来确定结晶物质的物相的方法,称为X射线物相分析法。

目前,X射线物相分析法作为鉴别物相的一种有效的手段,已在地质、建材、土壤、冶金、石油、化工、高分子物质、药物、纺织、食品等许多领域中得到了广泛的应用。

2.1 电子透镜的发展

1924年L. De和Broglie发现运动电子具有波粒二象性。1926年Busch发现在轴对称的电磁场中运动的电子有会聚现象。二者结合导致研制电子显微镜的伟大设想。1931年,第一台电镜在德国柏林诞生。至1934年电镜的分辨率可达50nm,1939年德国西门子公司第一台电镜投放市场,分辨率优于10nm。1935年克诺尔(Knoll)提出扫描电镜的工作原理,1938年阿登纳(Ardenne)制造了第一台扫描电镜。60年代后,电镜开始向高电压、高分辨率发展,100~200kV

的电镜逐渐普及,1960年,法国研制了第一台1MV的电镜,1970年又研制出3MV 的电镜。70年代后,电镜的点分辨率达0.23nm ,晶格(线)分辨率达0.1 nm。同时扫描电镜有了较大的发展,普及程度逐渐超过了透射电镜。

近一、二十年,出现了联合透射、扫描,并带有分析附件的分析电镜。电镜

控制的计算机化和制样设备的日趋完善,使电镜成为一种既观察图象又测结构,既有显微图象又有各种谱线分析的多功能综合性分析仪器。80年代后,又研制出了扫描隧道电镜和原子力显微镜等新型的显微镜。

我国自1958年试制成功第一台电镜以来,电镜的设计、制造和应用曾有相当规模的发展。主要产地有北京和上海。但因某些方面的原因,国产电镜逐渐被进口电镜取代。

2.3 电子衍射的使用与发展

早在1927年,戴维森(Davisson)和革末(Germer)就已用电子衍射实验证实了电子的波动性,但电子衍射的发展速度远远落后于X射线衍射。直到50年代,才随着电子显微镜的发展,把成像和衍射有机地联系起来后,为物相分析和晶体结构分析研究开拓了新的途径。许多材料和粘土矿物中的晶粒只有几十微米大小,有时甚至小到几百纳米,不能用X射线进行单个晶体的衍射,但却可以用电子显微镜在放大几万倍的情况下,用选区电子衍射和微束电子衍射来确定其物相或研究这些微晶的晶体结构。另一方面,薄膜器件和薄晶体透射电子显微术的发展显著地扩大了电子衍射的研究和范围,并促进了衍射理论的进一步发展。

电子衍射几何学与X射线衍射完全一样,都遵循劳厄方程或布喇格方程所规定的衍射条件和几何关系。

电子衍射与X射线衍射的主要区别在于电子波的波长短受物质的散射强(原子对电子的散射能力比X射线高一万倍)。电子波长短,决定了电子衍射的几何特点,它使单晶的电子衍射谱和晶体倒易点阵的二维截面完全相似,从而使晶体几何关系的研究变得简单多了。散射强,决定了电子衍射的光学特点:第一,衍射束强度有时几乎与透射束相当;第二,由于散射强度高,导致电子穿透能力有限,因而比较适用于研究微晶、表面和薄膜晶体。

2.4 热分析技术

热分析法是所有在高温过程中测量物质热性能技术的总称。它是在程序控制温度下,测量物质的物理性质与温度的关系。这里“程序控制温度”是指线性升温、线性降温、恒温等;“物质”可指试样本身,也可指试样的反应产物;“物理性质”可指物质的质量、温度、热量、尺寸、机械特征、声学特征、光学特征、电学特征及磁学特征的任何一种。

差热分析、差示扫描量热分析、热重分析和机械热分析是热分析的四大支柱,用于研究物质的物理现象,如晶形转变、融化、升华、吸附等和化学现象,如脱

相关文档
最新文档