矩阵分析与计算(博)样题
矩阵分析试卷
2007《矩阵分析》试题(A 卷)一、 计算题 (每题10分,共40分)1. 设函数矩阵⎪⎪⎪⎭⎫⎝⎛=001t e -sint t e cost A(t)t2t 试求 )t A(t d d ; )t A(lim 0t →.2. 设矩阵⎪⎪⎭⎫ ⎝⎛=441-0A 试求 Ae . 3. 将下面矩阵作QR 分解:⎪⎪⎪⎭⎫⎝⎛110011-111.4. 求下面矩阵的若当(Jordan)标准形⎪⎪⎪⎭⎫⎝⎛1-1-2-020021。
二、证明题(每题10分,共30分)1. 设321,,ααα是三维V 线性空间V 的一组基, 试求由向量2133212321183232-ααβαααβαααβ+=++=+=. 生成的子空间),,(U 321βββ=的一个基.2. 设V 1 , V 2 是内积空间V 的两个子空间, 证明: ()⊥⊥⊥+=⋂2121V V V V .3. 设T 是线性空间V 的线性变换, V ∈α, 且)(T ,),(T ),T(,1-k 2αααα 均为不为零的向量, 而0)(T k=α, 证明)(T ,),(T ),T(,1-k 2αααα 线性无关.三、简单论述题(每题15分, 共30分)1. 试述: 将一个矩阵简化(化为对角矩阵或若当矩阵)的方法有几种? 那种方法一定可以将一个矩阵化为对角矩阵? 那些方法一定可以将一个什么样的矩阵化为对角矩阵? 此外,将一个矩阵简化的数学理论基础是什么? 实现这种矩阵简化的具体方式是怎么作的?2. 实空间的角度是如何引入的? 复空间中的角度又是怎样定义的? 试给出主要的过程.2007《矩阵分析》试题(B 卷)一、 计算题 (每题10分,共40分)5. 设函数矩阵⎪⎪⎪⎭⎝=003t 02e eA(t)t 2t-试求 t d )t A(1⎰.6. 设矩阵⎪⎪⎭⎫⎝⎛=12-10A 试求 Ae . 7. 将下面矩阵作QR 分解:⎪⎪⎪⎭⎫⎝⎛011-1-3241-1.8. 求下面矩阵的若当(Jordan)标准形⎪⎪⎪⎪⎪⎭⎫⎝⎛1213214321.二、证明题(每题10分,共30分)4. 设321,,ααα是三维V 线性空间V 的一组基, 试求由向量2133212321113423232-ααβαααβαααβ+=++=+=. 生成的子空间),,(U 321βββ=的一个基.5. 设V 1 , V 2 是内积空间V 的两个子空间, 证明: ()⊥⊥⊥⋂=+2121V V V V .6. 设T 是线性空间V 的线性变换, V ∈α, 且)(T ,),(T ),T(,1-k 2αααα 均为不为零的向量, 而0)(T k=α, 证明)(T ,),(T ),T(,1-k 2αααα 线性无关.三、简单论述题(每题15分, 共30分)3. 试述: 将一个矩阵简化(化为对角矩阵或若当矩阵)的方法有几种? 那种方法一定可以将一个矩阵化为对角矩阵? 那些方法一定可以将一个什么样的矩阵化为对角矩阵? 此外,将一个矩阵简化的数学理论基础是什么? 实现这种矩阵简化的具体方式是怎么作的?4. 实空间的角度是如何引入的? 复空间中的角度又是怎样定义的? 给出主要的过程.2008硕士研究生《矩阵分析》试题(A 卷)一、 计算题 (每题10分,共40分)9. 设函数矩阵⎪⎪⎪⎭⎝=001t e -sint A(t)t试求 t )d t A(1⎰; )t A(lim 0t →.10. 设矩阵⎪⎪⎭⎫⎝⎛=441-0A 试求 sinA . 11. 将下面矩阵作QR 分解:⎪⎪⎪⎭⎫⎝⎛11002-1-011.12. 求下面矩阵的若当(Jordan)标准形⎪⎪⎪⎭⎫⎝⎛1-1-2-010012。
矩阵分析习题及答案0 (1)
矩阵分析习题与解答1.名词解释:(1)单纯矩阵 (2)正规矩阵(举3例) (3)向量范数(4)矩阵A 的最大奇异值2.设有Hermite 矩阵A . 试证:A 是正定的充要条件,是存在可逆矩阵Q 使.H A Q Q =证明:必要性:设H A Q Q =, 则对0,n x x C ≠∈, 有(),0HHHx Ax x Q Qx Qx Qx ==>, 这里Q 可逆, 故正定.充分性:因为A 是Hermite 矩阵, 所以A 是正规矩阵, 因此存在酉矩阵U 使1,H n U AU λλ⎛⎫⎪= ⎪ ⎪⎝⎭O其中1n λλL ,,是A 的特征值; 又A 正定, 所以1L n λλ,,都大于0; 因此H A U U ⎫⎪= ⎪⎪ ⎝OO令H Q U ⎫⎪= ⎪ ⎝O则.HA Q Q =3.设矩阵x X y z ⎛⎫ ⎪= ⎪ ⎪⎝⎭, 以及222()234Y f X x y z xy yz zx ==+++++,试求: (1)()()T dtr XX dX ; (2)T dY dX .解:222T x xy xz XX yxy yz zx zyz ⎛⎫⎪= ⎪ ⎪⎝⎭, 222()T T tr XX x y z X X =++= ()()()()2(22)2T TTT tr XX d tr XX tr XX x x y y z z X dX tr XX ⎛⎫∂ ⎪∂ ⎪⎛⎫⎪∂ ⎪= ⎪ ⎪∂ ⎪⎪⎝⎭⎪∂ ⎪∂⎭=⎝= ()224223234224,223,234TT T Y x x y z dY Y y x z dX y z y x Y z x y z y x z z y x ⎛⎫∂ ⎪∂++ ⎪⎛⎫∂ ⎪ ⎪==++ ⎪ ⎪∂ ⎪ ⎪++⎝⎭∂ ⎪ ⎪∂⎝⎭=++++++4.设A 为m m ⨯Jordan 块, 即1,1A λλ⎛⎫⎪⎪= ⎪ ⎪⎝⎭OO O求矩阵指数Ate .解法一: 1111λλλλ⎛⎫⎛⎫⎛⎫⎪⎪ ⎪⎪⎪ ⎪=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭OO O OOO,记1,1H λλ⎛⎫⎛⎫⎪ ⎪⎪ ⎪Λ== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭OOO, 则 At t Ht =Λ+, 即Ht At t =-Λ 将x e 在t λ处展成Talor 级数,有()0!t nxn e e x t n λλ∞==-∑,因此有矩阵指数()00!!00001001!(1)!1000001!10000t nAtn t n nn m t e e At t n e H t n t t m e t λλλ∞=∞==-Λ=⎡⎤⎛⎫⎛⎫⎢⎥⎪⎛⎫ ⎪⎢⎥⎪-⎪ ⎪⎢⎥ ⎪⎪ ⎪=+++⎢⎥⎪ ⎪ ⎪⎢⎥⎪ ⎪ ⎪⎢⎥⎪⎝⎭ ⎪ ⎪⎝⎭⎢⎥⎝⎭⎣⎦∑∑L L L L O M L L O MO M M O M L故可得22122212!(m 2)!(m 1)!12!(m 2)!112!1m m m At tt t t t t tt e e t t t λ---⎡⎤⎢⎥--⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦L L O M O O .解法二:00t t t tAt t t t t λλλλ⎛⎫⎛⎫⎛⎫⎪⎪⎪⎪⎪ ⎪==+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭OO O O OOOO00t t t tt t t t At e ee eλλλλ⎛⎫⎛⎫⎛⎫⎪⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭==O O O O O OOO()()000!!!nn t t n t n t n n tt n e t en e t n λλλλλλλλ∞⎛⎫⎪ ⎪= ⎪∞⎪ ⎪⎝⎭=∞=⎛⎫⎪⎛⎫ ⎪⎪ ⎪⎛⎫⎪ ⎪ ⎪⎪⎝⎭ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎪ ⎪⎝⎭∑∑∑O OO O OO OO2212200212!(m 2)!(m 1)!12!(m 2)!112!1m m m tt t t t t t tt et t t ---⎛⎫⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎡⎤⎢⎥--⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦O O OL L O M O O 故可得22122212!(m 2)!(m 1)!12!(m 2)!112!1m m m At tt t t t t tt e e t t t λ---⎡⎤⎢⎥--⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦L L O M O O .5.求常系数线性微分方程组在初始条件下的解.解:常系数线性方程组可以写为,()()X t AX t =&, 其中0123A ⎡⎤=⎢⎥--⎣⎦, 12()()()x t X t x t ⎛⎫= ⎪⎝⎭. 对其两端取Laplace 变换, 得()(0)()sX s X AX s -=,所以1()()(0)X s sI A X -=-, 取Laplace 反变换, 得11()()(0)X t L sI A X --⎡⎤=-⎣⎦,由于()(0)At X t e X =, 所以11(())At e L sI A --=-.由于123s sI A s -⎡⎤-=⎢⎥+⎣⎦, ()131(s 1)(s 2)(s 1)(s 2)2(s 1)(s 2)(s 1)(s 2)s sI A s -+⎡⎤⎢⎥++++⎢⎥-=-⎢⎥⎢⎥++++⎣⎦2111s 1s 2s 1s 22221s 2s 1s 2s 1⎡⎤--⎢⎥++++=⎢⎥⎢⎥--⎢⎥++++⎣⎦2212221112s 1s 2s 1s 22221222s 2s 1s 2s 1t tt t At t tt t e ee e e L e e e e ---------⎡⎤--⎢⎥⎡⎤--++++==⎢⎥⎢⎥--⎢⎥⎣⎦--⎢⎥++++⎣⎦满足初始条件下的解为2222221232(0)122243t tt t t t At ttt t tt e e e e e e e x e ee e e e ------------⎡⎤⎡⎤---⎡⎤⋅==⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦6 任一方阵可以表示成两个对称矩阵乘积的形式。
研究生课程-《矩阵分析》试题及答案
第一套试题答案一(10分)、证明:(1)设11k x +22k x +33k x =0, ①用σ作用式①两端,有111k x λ+222k x λ+333k x λ=0 ②1λ⨯①-②,有21223133()()0k x k x λλλλ-+-= ③再用σ作用式③两端,有2122231333()()0k x k x λλλλλλ-+-= ④ ③⨯2λ-④,有313233()()0k x λλλλ--=。
由于123,,λλλ互不相等,30x ≠,因此30k =,将其代入④,有20k =,利用①,有10k =。
故1x ,2x ,3x 是线性无关的。
(2)用反证法。
假设1x +2x +3x 是σ的属于特征值λ的特征向量,于是有123123()()x x x x x x σλ++=++即112223123()x x x x x x λλλλ++=++112223()()()0x x x λλλλλλ-+-+-=由于1x ,2x ,3x 线性无关,因此123λλλλ===,这与123,,λλλ互不相等矛盾。
所以,1x +2x +3x 不是σ的特征向量。
二(10分)、解:2312321232()()1;()(2);()(2)()1;()(2);()(2)1()(2)(2)A D D D d d d A λλλλλλλλλλλλλλλλλλλλ==-=-==-=-⎛⎫⎪- ⎪ ⎪-⎝⎭的行列式因子分别为,不变因子分别为,于是的Smith 标准形为.三(10分)、解:11121634E A λλλλ+⎛⎫ ⎪-= ⎪ ⎪---⎝⎭210001000(1)λλ⎛⎫ ⎪≅- ⎪ ⎪-⎝⎭A λλ2矩阵的初等因子为: -1, (-1),100:011001J ⎛⎫⎪= ⎪ ⎪⎝⎭故约当标准形为。
四(12分)、解:令()()()1120,E A λλλλ-=-++=得特征值123112λλλ==-=-,,,解齐次方程组()0,E A x -=()2;Tii α=1得基础解系解齐次方程组()0,E A x --=()101;Tα=-2得基础解系解齐次方程组()20,E A x --=()1;T ii α=-3得基础解系αααααα123123由于,,已两两正交,将,,单位化得()()()11121011623T T Tp i i p p i i --123=,=,= ()1,(2)1.3H U p p p U AU ⎛⎫⎪==- ⎪ ⎪⎝⎭123令分,则五(10分)、解:(){}11(1),01,()TAx o i N A span ξξ===解齐次方程组得基础解系,,;又(){}{}()232323010,,,,100,,00H H R A span o span A o i ξξξξξξ⎛⎫⎪===-= ⎪ ⎪-⎝⎭这里,; 显然(),0,iji j ξξ=≠当时;()().HN A R A ⊥故有()()()()()()()()()333(2)dim dim dim 3dim ,Q H H H H N A R A C N A R A N A R A C N A R A C ++=+==+=是的子空间且故。
考博必备 研究生矩阵理论课后答案矩阵分析所有习题
①: , A
*
( A )
*
T
( A ) A
* *
*
, ;
( k , ) k A k ( , );
习题3-30
#3-30:若ACnn,则A可唯一地写为 A=B+C,其中BHnn,CSHnn.
证:存在性 取 B=(1/2)(A+A*),C=(1/2)(A-A*), 则显然B,C分别是Hermite矩阵和反Hermite矩阵, 并且满足A=B+C. 唯一性 若 A=B+C,其中BHnn,CSHnn,则 A*=(B+C)*=B*+C*=B-C. 于是 B=(1/2)(A+A*),C=(1/2)(A-A*). 证毕 注:令T=-iC,则T*=iC*=i(-C)=T,即THnn.由此推 出:A可唯一地写为A=B+iT,其中B,THnn.
习题3-14
#3-14:若AHmn,A2=E,则存在UUnn使得 U*AU=diag(Er,-En-r).
证:存在UUnn使得 A=Udiag(1,…,n)U*, (*) 其中1,…,n是A的特征值的任意排列. ∵ A2=E=Udiag(1,…,1)U* 和 A2=Udiag(1,…,n)U*Udiag(1,…,n)U* =Udiag(12,…,n2)U* ∴ i2=1,即i=1,i=1,…,n,. 取1,…,n的排列使特征值1(设共有r个)全排在 前面,则(*)式即给出所需答案.
习题3-20 试证:两个半正定矩阵之和是半正 定;半正定矩阵与正定矩阵之和是正定矩阵
08级-北航博士-矩阵论试题与答案
一(15分)计算 (1) 已知A 可逆,求10d Ate t ⎰(用矩阵A 或其逆矩阵表示); (2)设1234(,,,)Ta a a a =α是给定的常向量,42)(⨯=ij x X 是矩阵变量,求Td()d X αX ;(3)设3阶方阵A 的特征多项式为2(6)I A λλλ-=-,且A 可对角化,求kk A A ⎪⎪⎭⎫⎝⎛∞→)(lim ρ。
二(15分)设微分方程组d d (0)xAx t x x ⎧=⎪⎪⎨⎪⎪=⎩,508316203A ⎛⎫ ⎪= ⎪ ⎪--⎝⎭,0111x ⎛⎫ ⎪= ⎪ ⎪⎝⎭(1)求A 的最小多项式)(λA m ; (3)求Ate ; (3)求该方程组的解。
三(15分)对下面矛盾方程组b Ax =312312111x x x x x x =⎧⎪++=⎨⎪+=⎩ (1)求A 的满秩分解FG A =; (2)由满秩分解计算+A ;(3)求该方程组的最小2-范数最小二乘解LS x 。
四(10分)设1113A ⎫=⎪⎭求矩阵A 的QR 分解(要求R 的对角元全为正数,方法不限)。
五(10分) 设(0,,2)TnA R n αβαβ=≠∈≥ (1)证明A 的最小多项式是2()tr()m A λλλ=-;(2)求A 的Jordan 形(需要讨论)。
六(10分)设m n r A R ⨯∈,(1)证明rank()n I A A n r +-=-;(2)0Ax =的通解是(),n n x I A A y y R +=-∀∈。
七(10分)证明矩阵2121212311122222224333333644421(1)(1)n n n n n n n n n n ---⎛⎫ ⎪⎪ ⎪ ⎪⎪= ⎪ ⎪⎪ ⎪ ⎪ ⎪+++⎝⎭A (1)能与对角矩阵相似;(2)特征值全为实数。
八(15分) 设A 是可逆矩阵,11,B A Aαβ-=-=(这里矩阵范数都是算子范数), 如果βα<,证明(1)B 是可逆矩阵;(2)11B αβ-≤-;(3)11()B A βααβ---≤-。
矩阵计算习题及答案
1、选择题1)下列变量中 A 是合法的。
A. Char_1,i,jB.x*y,a.1C. X\y, a1234D. end, 1bcd2)下列 C 是合法的常量。
A. 3e10B. 1e500C. -1.85e-56D. 10-23)x=uint8(1.2e10),则x所占的字节是 D 个。
A. 1B. 2C. 4D. 84)已知x=0:10,则x有 B 个元素。
A. 9B. 10C. 11D. 125)产生对角线元素全为1其余为0的2×3矩阵的命令是 C 。
A. Ones(2,3)B. Ones(3,2)C. Eye(2,3)D. Eye(3,2)6)a=123456789⎛⎫⎪⎪⎪⎝⎭,则a(:,end)是指 C 。
A.所有元素B. 第一行元素C. 第三列元素D. 第三行元素7)a=123456789⎛⎫⎪⎪⎪⎝⎭,则运行a(:,1)=[] 命令后 C 。
A.a变成行向量B. a数组成2行2列C. a数组成3行2列D. a数组没有元素8)a=123456789⎛⎫⎪⎪⎪⎝⎭,则运行命令mean(a)是 B 。
A. 计算a的平均值B. 计算a每列的平均值9)已知x是一个向量,计算ln(x)的命令是 B 。
A. ln(x)B. log(x)C. Ln(x)D. lg10(x)10)当a=2.4时,使用取整函数得到3,则该函数名是 C 。
A.fixB. roundC. ceilD. floor11)已知a=0:4,b=1:5,下面的运算表达式出错的是 D 。
A. a+bB. a./bC. a'*bD. a*b12)已知a=4,b=‘4’,下面说法错误的是 C 。
A. 变量a比变量b占用的空间大B. 变量a、b可以进行加减乘除运算C. 变量a、b数据类型相同D. 变量b可以用eval计算13)已知s=‘显示“hello”’,则s 元素的个数是 A 。
A. 12B. 9C. 7D. 1814)运行字符串函数strncmp('s1','s2',2),则结果为 B 。
矩阵练习题及答案
矩阵练习题及答案矩阵是线性代数中的一个重要概念,也是在数学、物理、计算机科学等领域中广泛应用的工具。
通过解矩阵练习题,可以帮助我们加深对矩阵运算和性质的理解。
下面给出一些矩阵练习题及其答案,供大家参考。
1. 问题描述:已知矩阵 A = [4 2],求 A 的转置矩阵 A^T。
解答:矩阵的转置就是将矩阵的行和列互换得到的新矩阵。
因此,A 的转置矩阵为 A^T = [4; 2]。
2. 问题描述:已知矩阵 B = [1 -2; 3 4],求 B 的逆矩阵 B^-1。
解答:对于一个可逆矩阵 B,其逆矩阵 B^-1 满足 B * B^-1 = I,其中 I 是单位矩阵。
通过矩阵的求逆公式,可以得到 B 的逆矩阵 B^-1 = [4/11 2/11; -3/11 1/11]。
3. 问题描述:已知矩阵 C = [2 1; -3 2],求 C 的特征值和特征向量。
解答:矩阵的特征值和特征向量是矩阵在线性变换下的重要性质。
特征值λ 是方程 |C - λI| = 0 的根,其中 I 是单位矩阵。
解方程可得特征值λ1 = 1 和λ2 = 3。
特征向量 v1 对应于特征值λ1,满足矩阵C * v1 = λ1 *v1,解方程可得 v1 = [1; -1]。
特征向量 v2 对应于特征值λ2,满足矩阵C * v2 = λ2 * v2,解方程可得 v2 = [1; 3]。
4. 问题描述:已知矩阵 D = [1 2 -1; 3 2 4],求 D 的行列式和秩。
解答:矩阵的行列式表示线性变换后单位面积或单位体积的变化率。
计算 D 的行列式可得 det(D) = 1 * (2*4 - 4*(-1)) - 2 * (3*4 - 1*(-1)) + (-1) * (3*2 - 1*2) = 10。
矩阵的秩表示矩阵中独立的行或列的最大个数。
对矩阵 D 进行行变换得到矩阵的行最简形式为 [1 0 6; 0 1 -3],因此 D 的秩为 2。
矩阵习题带答案
矩阵习题带答案矩阵习题带答案矩阵是线性代数中的重要概念,广泛应用于各个领域。
掌握矩阵的运算和性质对于学习线性代数和解决实际问题都具有重要意义。
在这篇文章中,我们将提供一些矩阵习题,并附上详细的解答,帮助读者更好地理解和掌握矩阵的相关知识。
1. 习题一已知矩阵A = [1 2 3; 4 5 6; 7 8 9],求矩阵A的转置矩阵AT。
解答:矩阵A的转置矩阵AT即将A的行变为列,列变为行。
因此,矩阵A的转置矩阵为:AT = [1 4 7; 2 5 8; 3 6 9]2. 习题二已知矩阵B = [2 4; 1 3],求矩阵B的逆矩阵B-1。
解答:对于一个二阶矩阵B,如果其行列式不为零,即|B| ≠ 0,那么矩阵B存在逆矩阵B-1,且B-1 = (1/|B|) * [d -b; -c a],其中a、b、c、d分别为矩阵B的元素。
计算矩阵B的行列式:|B| = ad - bc = (2*3) - (4*1) = 6 - 4 = 2因此,矩阵B的逆矩阵为:B-1 = (1/2) * [3 -4; -1 2]3. 习题三已知矩阵C = [1 2 3; 4 5 6],求矩阵C的秩rank(C)。
解答:矩阵的秩是指矩阵中非零行的最大个数,也可以理解为矩阵的行向量或列向量的最大线性无关组的向量个数。
对于矩阵C,我们可以通过高斯消元法将其化为行简化阶梯形矩阵:[1 2 3; 0 -3 -6]可以看出,矩阵C中非零行的最大个数为1,因此矩阵C的秩为1。
4. 习题四已知矩阵D = [2 1; -1 3],求矩阵D的特征值和特征向量。
解答:对于一个n阶矩阵D,如果存在一个非零向量X,使得D*X = λ*X,其中λ为常数,则称λ为矩阵D的特征值,X为对应的特征向量。
首先,我们需要求解矩阵D的特征值,即求解方程|D - λI| = 0,其中I为n阶单位矩阵。
计算矩阵D - λI:[D - λI] = [2-λ 1; -1 3-λ]设置行列式等于零,得到特征值的方程式:(2-λ)(3-λ) - (1)(-1) = 0λ^2 - 5λ + 7 = 0解特征值的方程,得到两个特征值:λ1 = (5 + √(-11))/2λ2 = (5 - √(-11))/2由于特征值的计算涉及到虚数,这里不再继续计算特征向量。
武汉科技大学《矩阵分析》2011博士入学考试试题
密封线内不要写题
二O一一年招收博士研究生入学考试试题
考试科目及代码:矩阵分析(3309)
可使用的常用工具:计算器
答题内容写在答题纸上,写在试卷或草稿纸上一律无效考பைடு நூலகம்后试题随答题纸交回。
考试时间3小时,总分值100分。
注意:以下试题中: 表示 的转置, 表示 的共轭转置阵, 表示 的对角元素的和, 表示单位阵,如果 与 可以交换,称 为正规阵。
八、(18分)证明题
1. 、 为 阶正规阵,求证 与 相似的充分必要条件是: 、 的特征多项式相同。
2. 为 维线性空间 上的线性变换,求证 可逆的充分必要条件是 的值域为 。
一、填空(共4小题16分)
1.线性空间 的正交补为。
2.已知 为正交阵,则 。
3. 为二阶方阵, 的特征值为2、 ,则 的特征多项式为。
4. , 的Frobenius范数 。
二、单项选择题(共4小题16分)
1.已知 阶方阵 与对角阵相似,则 的最小多项式不可能为
A) ;B) ;C) ;D) 。
2. , 为线性空间 的子空间,则当时,
为直和。
A) ;
B) ;
C) ;
D) 。
3. 为 阶实方阵,必为正定阵。
A) ;
B) ;
C) ;
D) 。
4. 是 维欧式空间, 为 上的正交变换,
则
A) 在任意一组基下的矩阵都为正交阵;
B) 的特征值全为1;
C) 把任意三角形都变成与之全等的三角形;
D) 在任意一组基下的矩阵的行列式都为1。
三、(10分)
, = ,
1.验证 为 的线性子空间。
2.求 的维数和一组基。
矩阵分析试卷05(答案)
命题人:吴明芬__审批人:__________ 试卷分类(A 卷或B 卷)_______五邑大学 试卷课程:_矩阵分析_专业:_电子、交通、机械研究生 学号:_________ 学期:05 至06 学年度第_一_学期 姓名:________ 得分:____ _一.设三阶方阵⎪⎪⎪⎭⎫ ⎝⎛213010001,}|{33BA AB R B W =∈=⨯,求W 的维数与基。
(8分)解:W 的维数是5,一组基为,030000010,00300000121⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-=B B⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-=113000000,010010000,001001000543B B B四.设方程组如下 (8分)⎪⎩⎪⎨⎧=++-=-+=-+1202211321321321x x x x x x x x x 用系数矩阵的LU 分解求解方程组,要写出矩阵L ,U 。
2,2,3,200110111,132011001,623211111111111202211111123===⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛----⇒⎪⎪⎪⎭⎫ ⎝⎛---x x x U L 五.证明对任意的n n ⨯矩阵n n ij a A ⨯=)(,若定义∑∑===n i nj ijaA 11||||||,则|| ∙||是一种矩阵范数,但不是算子范数(从属于向量范数的矩阵范数)。
(10分) 证明:由定义显然知(1)00||||,0||||=⇔=≥A A A ; (2)||||||||||A k kA =(3)设n ij n ij b B a A )(,){== 则||||||||)|||(|||||||11111111B A b a b a b a B A n i n i n j n i nj ij ij n j ij ij n i n j ij ij +=+=+≤+=+∑∑∑∑∑∑∑∑========(4)设 n ij n ij b B a A )(,){== 则))|||)(|(()||||(||||||1111111111∑∑∑∑∑∑∑∑∑∑==========≤≤=n i n i n j n k nk kj ik n j kj ik n k n i n j kj ik n k b a b a b a AB∑∑∑∑=====≤n i n k nj kj n k ik B A b a 1111|||||)|)(||(所以||。
2015A矩阵分析与计算试卷解答及评分标准1
Ab ( A A I ) y bT ( A AA A ) H y yT ( A AA A )b
2 2
2
2
Ab ( A A I ) y Ab x0 2 , 且等号当且仅当 (A A+I)y=0
2 2 2
2
2
2
2
时才成立。
(15 分)
1 1 1 0 1/ 2 1/ 2 (5 分) ; 解:(1) A 1 1 0 1 1/ 2 3 / 2 2 0 1 0 1 1 0 1 (分解不唯一,也可以是 A 1 1 0 2 1 3 ) 2 1
A1
A 1 b 1 A b 1 1
3 0.07 0.001 0.0785 1 0.07 3
d At e dt
(12 分)
0 1 0 八、(15 分)已知 A 0 0 1 , 1 3 3
(6 分)
原方程组等价于 LUx Pb [5 3 3.5]T b1 。 解 Ly=b1,得 y=[5, 4/3, 1/2]’,…(8 分); 再解 Ux=y, 得 x=[1 1/2 1]’…….(10 分). 四、 (11 分) (1)设矩阵 A 按模最大的特征值唯一,请写出近似其按模最大特征
1 0 1 值及其相应特征向量的算法。 (2) 利用该算法计算 A 1 4 0 按模最大特征值 1 1 8
及特征向量的近似值:设初始向量 v0=[1 1 1]T,迭代 3 次,保留 4 位小数。 解: (1)假设按模最大特征值1,相应按模最大分量为 1 的规范特征向量为1, 则以下迭代算公式给出了计算1 及1 的近似值的方法: (i)令 k=0,任取适维非零向量 v0:其按模最大分量(记作 max(v0))为 1; (ii) uk 1 Av k , (iii) k:=k+1, mk : max( uk ), vk : uk / mk , 并返回(ii) 。 则当 k时,mk1, 且 vk1。 (5 分) (2)利用以上公式,对所给初始 v0 迭代三次所得结果依次为 u1=[2 5 10]'; m1=10; v1=[0.2000 0.5000 1.0000]'; u2=[1.20 2.20 8.70]; m2=8.7000; v2=[0.1379 0.2529 1.0000]'; u3=[1.1379 1.1494 8.3908]; m3=8.3908; v3=[0.1356 0.1370 1.0000]'; 三次迭代所得按模最大特征值及相应特征向量分别为 maxm3=8.3908, 1 v3=[0.1356 0.1370 1.0000]' ( 11 分)
矩阵分析参考答案
矩阵分析参考答案矩阵分析参考答案矩阵分析是线性代数中的一个重要分支,它研究的是矩阵的性质和运算。
在实际应用中,矩阵分析被广泛应用于各个领域,如物理学、工程学、计算机科学等。
本文将从矩阵分析的基本概念、性质和运算等方面,为读者提供一份参考答案。
首先,我们来介绍一些矩阵分析的基本概念。
矩阵是由数个数构成的矩形阵列,通常用大写字母表示。
矩阵的行数和列数分别称为矩阵的阶数。
例如,一个3行2列的矩阵可以表示为:A = [a11 a12a21 a22a31 a32]其中,a11、a12等表示矩阵中的元素。
矩阵的元素可以是实数、复数或其他数值类型。
矩阵的性质包括可逆性、对称性、正定性等。
一个矩阵如果存在逆矩阵,即乘以其逆矩阵后得到单位矩阵,那么该矩阵就是可逆的。
对称矩阵是指矩阵的转置等于其本身,即A = A^T。
正定矩阵是指矩阵的所有特征值都大于零。
接下来,我们来介绍一些矩阵的运算。
矩阵的加法和减法是按照对应元素相加和相减的规则进行的。
例如,对于两个相同阶数的矩阵A和B,它们的加法可以表示为C = A + B,其中C的元素为A和B对应元素的和。
矩阵的乘法是按照矩阵乘法的规则进行的。
例如,对于一个m行n列的矩阵A和一个n行p列的矩阵B,它们的乘法可以表示为C = AB,其中C为一个m行p列的矩阵,C的元素为A的行向量与B的列向量的内积。
除了基本的矩阵运算外,矩阵还有一些特殊的运算。
矩阵的转置是指将矩阵的行和列互换,即A的转置为A^T。
矩阵的迹是指矩阵主对角线上的元素之和,用Tr(A)表示。
矩阵的行列式是一个标量,用det(A)表示,它可以用来判断一个矩阵是否可逆。
矩阵的特征值和特征向量是矩阵分析中的重要概念。
对于一个n阶矩阵A,如果存在一个非零向量x和一个标量λ,使得Ax = λx,那么λ就是A的特征值,x就是对应于特征值λ的特征向量。
特征值和特征向量可以用来描述矩阵的性质和变换。
最后,我们来讨论一些矩阵分析的应用。
矩阵分析与计算试题
六、(10 分)求矩阵 A
0
2
1
-
1
的满秩分解。
1 0 2 1
20 5 0 . 8
七、(10 分)
已知矩阵 A
4
10
1
,
用盖尔圆分离特征值
A
。
1 2 10 i
1 3 2 八、(12 分)用 Householder 变换求矩阵 A 2 - 2 3 的 QR 分解。
2 2 2
九、(10 分) 已知 Cnn 中的两种范数 a 与 b ,对于 A Cnn ,证明:
A
A
a
AH
b 是 Cnn 中的矩阵范数。
3 1 -1
十、(10 分) 计算矩阵 A 1 2 -1 的 Jordan 标准型。 21 0
矩阵分析与计算试题(备用题)
(2018-2019 学年第二学期硕士研究生期末考试)
一、(8 分) 设 T 是数域 C 上的线性空间,已知线性变换 T 在 V3 的基 x1, x2 , x3 下的
3 1 0
矩阵为 A - 4
-1
0,计算线性变换T Nhomakorabea的特征值和特征向量。
4 - 8 - 2
二、(8 分) 设 R 22 A aij 22 aij R (数域 R 上的二阶实方阵按照通常矩
Ak 的收敛性,其中 A k
2
k
k 1
0
3 4 1
k k
k
1
,
1 0 0
1
五、(12 分)
已知 A
0
1
0
,
bt
0
。 计算
1 - 2 2
et
1 eAt 。
上海交通大学《矩阵分析》试卷及答案
上海交通大学《矩阵分析》试卷(A)一、单项选择题(每题3分,共15分)AAABC1. 设F 是数域,(,)m nHom F F σ∈,则A.dim(Im )dim(ker )m σσ+=B.dim(Im )dim(ker )n σσ+=C.dim(Im )dim(ker )m σσ⊥⊥+=D.dim(Im )dim(ker )n σσ⊥+=2. 设M 是n 阶实数矩阵,若M 的n 个盖尔圆彼此分离,则M A. 可以对角化 B. 不能对角化 C. 幂收敛 D. 幂发散3. 设2222221212134400033t t t tt t Attt tte e e te e e ee e e e ⎛⎫-+-+ ⎪= ⎪ ⎪-+⎝⎭,则A =A.214020031⎛⎫⎪ ⎪ ⎪⎝⎭B. 114010061⎛⎫ ⎪⎪ ⎪⎝⎭C. 224020031⎛⎫ ⎪ ⎪ ⎪⎝⎭D.204020061⎛⎫⎪ ⎪ ⎪⎝⎭4. 设1()(1)kkk A f A k ∞==-∑收敛,则A 可以取为 A. 0091⎛⎫⎪--⎝⎭ B.0091⎛⎫ ⎪-⎝⎭ C. 1011⎛⎫ ⎪-⎝⎭ D. 1021⎛⎫⎪⎝⎭5. 设3阶矩阵A 满足242(4)(3)A E A E O --=, 且其最小多项式m (x )满足条件2(1)(2)(3)1,m m m a a =+为某实数,则A 可以相似于A. 200130002M ⎛⎫ ⎪= ⎪ ⎪-⎝⎭B. 20012092M ⎛⎫⎪= ⎪ ⎪⎝⎭C. 2001202M ⎛⎫-⎪=- ⎪ ⎪-⎝⎭D. 200030013M -⎛⎫ ⎪= ⎪ ⎪⎝⎭二、填空题(每题3分,共15分)6. 设5阶复数矩阵A 的最小多项式为22()(1)(2)f λλλλ=-+,则*dim ()N A =[ 1 ];dim ()R A ⊥= [ 1 ].(其中*A 表示共轭转置)7. 设220A A -=,则cos2A = [ E +2(cos1-1)A ]。
《矩阵分析》考试题1 2010解答 (1)
D 0 ,这里 0 0
D diag d1 , d2 ,
, dr ,且 d1 d2
dr 0 。 di i 1, 2,
, r 称为 A 的奇异值,而
D 0 H (P84) A P Q 称为矩阵 A 的奇异值分解式。 0 0
2
0 0 3、 ( 1) 2
1
4、下列命题不正确的是 。 (A)有相同特征多项式的两个矩阵一定相似; (B)有相同不变因子的两个矩阵一定相似; (C)有相同初级因子的两个矩阵一定相似; (D)有相同行列式因子的两个矩阵一定相似。 【分析】A。由 C 或 D 都能得到 B,而不变因子唯一确定矩阵的约当形。若矩阵的约当形相同, 则矩阵相似。A 的反例是显然的: M1
3
1
3
,
d1 1, d2 1 1 , d3 1 1
2
2
,
则
Smith
标 准
型 为
1
1 1
。 2 2 1 1
4、 lim A 0 的充要条件是: 其特征值的模的最大值(谱半径) A 1 。换言之, A 的所
3
0 1 1 2 0 0 1 2 阵 P 0 2 1 , 约 当 标 准 形 J 0 1 1 ( 或 取 P3 0 , 则 P2 4 , 此 时 1 1 0 0 0 1 1 2 0 2 P 0 4 1 2 1 ) 。都有 P 1 AP J 。 0 1
2
1 1, 1 1 , 1 1
2
x,1 1 x 0 x 1dx 1 x 1 , 2 , 1 2 x 2 2 2 1 2 12 1,1 1 1 dx
第二章-矩阵(历年真题+答案)
A (a1 , a2 , a3 ) ,若矩阵 B (a1 a2 ,2a2 , a3 ) ,则 B
A.0 B. a
C. 2a D. 3a
【解析】答案:C 【选择】 【201604】 【2 分】4.若向量 a1 , a2 ,, as 可由向量组 1 , 2 , , t 线性表出,则
【计算】 【201610】 【9 分】
A11 【解析】 A A12 A13
*
A21 A22 A23
A31 A32 ;A11=0, A12=0, A13=-1, A21=0, A22=-1, A23=-2, A31= A33
-1, A32=2, A33=-1.
AC CB , 其 中
【解析】
(提示:A3=CB(C-1C)B(C-1C)BC-1=CBEBEBC-1=CB3C-1;计算的 B3=B) 【计算】 【201604】 【9 分】18.设 A 为 3 阶矩阵,将 A 的第 1 列与第 2 列互换得到矩阵
B ,再将 B 的第 2 列加到第 3 列得到单位矩阵 E ,求矩阵 A . 【解析】
0 0 1 0 0 1 A* 1 -1 所以 A 0 1 2 , A 1 0, 所以 A 存在且 A = 0 1 -2 。 A 1 2 1 1 -2 1
*
【计算】 【201610】 【9 分】 18.设 A 为三阶矩阵,将 A 第一行的 2 倍加到第 3 行得到矩阵 B,再将 B 第 2 列 与第 3 列互换得到单位矩阵 E,求矩阵 A. 【解析】 :由题设可知,存在初等矩阵
1 1 1 【计算】 【201410】 【9 分】18.设矩阵 A 1 1 0 ,且矩阵 X 满足 AX E A3 X , 0 1 1
矩阵分析习题附答案
一、空题(每小题5分,共30分)1、若矩阵A =0110101002103202211010352234⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦的满秩分解为A =BC ,则 B =⎡⎢⎢⎢⎢⎣⎤⎥⎥⎥⎥⎦,C =⎡⎢⎢⎢⎣⎤⎥⎥⎥⎦。
解:由初等行变换A =0110101002103202211010352234⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦→01101011300112200011010000⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎣⎦→1310100222133001022200011010000000⎡⎤--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎣⎦, 知:B =110021221352⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦,C =13101002221330010222110001⎡⎤⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥-⎢⎥⎢⎥⎣⎦。
2、矩阵A =101010403-⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦的最小多项式为()ϕλ= 。
解:由于[]()()()21011011000100100140300314001I A λλλλλλλλλλ⎡⎤+---⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=-→-→-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--++⎣⎦-⎣⎦⎢⎥⎣⎦ 知A 的初等因子为(λ—1),(λ—1)2,故A 的最小多项式为()ϕλ=(λ—1)2。
3、设1010221202A ⎡⎤=⎢⎥⎣⎦,则N (A )的一个标准正交基为。
解:由于1213531235452101020222212020x x x x x Ax x x x x x x x ⎡⎤⎢⎥⎢⎥++⎡⎤⎡⎤⎡⎤⎢⎥===⎢⎥⎢⎥⎢⎥+++⎢⎥⎣⎦⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦等价于 135252020x x x x x ++⎡⎤⎡⎤=⎢⎥⎢⎥-⎣⎦⎣⎦,而其解空间的一个基为 α1=(-1,0,1,0,0)T ,α2=(0,0,0,1,0)T ,α3=(-2,2,0,0,1)T对其作标准正交化即得其一个标准正交基为(0,0,0)T ,(0,0,0,1,0)T ,(0,T 4、设12121121,;,2013e e e e ⎡⎤⎡⎤⎡⎤⎡⎤''====⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦为2R 的两个基,T 为2R 的线性变换,且1213(),()21T e T e ⎡⎤⎡⎤''==⎢⎥⎢⎥⎣⎦⎣⎦, 则T 在基12,e e 下的矩阵为A =⎡⎤⎢⎥⎣⎦。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计算题
一.(1) 设() =A ,①求A 的Jordan 标准形J 。
可参照 P 16例1.3进行求解。
②求矩阵函数At e 、A sin 。
可参照P 127例6.5进行求解。
(2) 设λ矩阵() =)(λA ,求)(λA 的Smith 标准形和不变因子。
可参照 P 10例1.1进行求解。
二.已知函数矩阵At sin 或At e ,求矩阵A .类似题如P 131例6.8。
三.设(), =A (1) 求1A ,2A ,∞A ;
(2) 若给以扰动X X A A
R A ,001.022
33,并设使≤δ∈δ⨯分别为方程组AX =b
与(A +δA )X =b 的唯一解,试估计22X X
X -的范围,这里0,3≠∈b R b 。
用
P 59定理2.18,类似题如P 60例2.21。
四.(1)运用盖尔圆定理隔离矩阵() =A 的特征值。
可参照P 92例
4.3。
(2)写出规范化的幂迭代法公式(P 93(4.3)),并求矩阵() =A 的按模最大的特征值及特征向量(计算4步)。
类似题如P 94例4.4或课件上的例4.4。
五.已知()() ==b A ,,
(1)用满秩分解法求A的Penrose
Moore-广义逆+A。
(2)用广义逆矩阵方法判断线性方程组b
AX=是否有解。
(3)求线性方程组b
AX=的极小范数解或极小范数最小二乘解。
可参照P110例5.4、P117定理5.12及P155例8.1。
六.(1)用列主元法计算线性方程组b
AX=的解。
类似题如P145例7.2;
(2)用Doolittle分解法计算线性方程组b
AX=的解。
类似题如P64例3.1及P147例7.3。
七.写出解线性方程组b
AX=的Jacobi和Gauss-Seidel迭代格式,并讨论其收敛性。
可参照P164例9.1、9.2及P167例9.3。
八.写出共轭梯度法公式(P
),用共轭梯度法计算线性方程组
174
AX=的解。
类似题如P174例9.5。
b
九.用Givens变换化向量x与
e共线。
类似题如P73例3.5。
1
证明题
一.(1)、P25定理1.13的证明。
(2)、P31推论1.13的证明。
二.(1)、P43定理2.2的证明。
(2)、P55定理2.15的证明。
三.(1)、P67定理3.3的证明。
(2)、P72定理3.6的证明。
四.(1)、P106定理5.4的证明。
(2)、P172定理9.12的证明。