最新导数及其应用(二)
高考数学一轮总复习第二章函数导数及其应用2_4指数函数课件理新人教A版
![高考数学一轮总复习第二章函数导数及其应用2_4指数函数课件理新人教A版](https://img.taocdn.com/s3/m/6214f0474431b90d6c85c760.png)
a当n为奇数且n∈N*时,
±n a 当n为偶数且n∈N*时.
(2)根式的性质
①(n a)n=a(n∈N*).
a,n为奇数,
②n
an=
|a|
=a,a≥0, -a,a<0,
n为偶数.
2.有理数指数幂
(1)幂的有关概念: ①正分数指数幂:
= n am
(a>0,m,n∈N*,且n>1);
2.指数函数的图象与底数大小的比较
如图是指数函数(1)y=ax,(2)y=bx,(3)y=cx,(4)y=dx的图象,底数a,b,c,d 与1之间的大小关系为c>d>1>a>b.由此我们可得到以下规律:在y轴右(左)侧图 象越高(低),其底数越大.
3.注意事项 (1)与指数函数有关的函数图象的研究,往往利用相应指数函数的图象,通过平 移、对称、翻折变换得到其图象. (2)一些指数方程、不等式问题的求解,往往利用相应的指数型函数图象数形结合 观察两曲线动与不动及动的范围求解.
(2)若不等式 1+2x+4x·a>0 在 x∈(-∞,1]时恒成立,则实数 a 的取值范围
是
.
解析:从已知不等式中分离出实数 a,得 a>-14x+12x. 因为函数 y=14x 和 y=12x 在 R 上都是减函数,所以当 x∈(-∞,1]时,14x≥14,12 x≥12,
跟踪训练 (1)(2017·江西三校联考)化简4 16x8y4(x<0,y<0)的结果为( )
A.2x2y
B.2xy
C.4x2y
D.-2x2y
答案:D
答案:85
考点二|指数函数的图象及应用 (思维突破) 【例2】 (1)函数f(x)=2|x-1|的图象是( )
_高中数学第一章导数及其应用2
![_高中数学第一章导数及其应用2](https://img.taocdn.com/s3/m/073aa90566ec102de2bd960590c69ec3d5bbdbc6.png)
f(x)=1x
f ′(x)=-x12=-x-2
f(x)= x
f ′(x)=21 x=12x-12
f(x)=x3
f′(x)=3x2
结论:若f(x)=xα(α为有理数),则f′(x)=αxα-1.
1.y=c表示平行于x轴的直线,或与x轴重合的直线, 其斜率为0,故y=c上任一点处的导数值为____0____, 直线y=x的斜率为1,故直线y=x上任一点处的导数值 为___1_____.
[分析] 只需求出K、Q两点的横坐标即可.
[解析]
设P(x0,y0),则kl1=y′|x=x0=2
1 x0
.
∵直线l1与l2垂直,则kl2=-2 x0,
∴直线l2的方程为y-y0=-2 x0(x-x0).
∵点P(x0,y0)在曲线y= x上,∴y0= x0.
在直线l2的方程中令y=0,则- x0=-2 x0(x-x0).
2.当y=c表示路程关于时间的函数时,常数c表明路 程不变化,因此一直处于__静__止____状态,故瞬时速度 为___0_____,因此y′=____0____;
当y=x表示路程关于时间的函数时,路程的改变量等 于时间的改变量,因此物体做匀速直线运动,瞬时速 度为___1_____,故y′=____1____.
当P点不是切点时,设切点为A(x0,y0),由定义可求得切 线的斜率为k=3x20.
∵A在曲线上,∴y0=x30,∴xx300--82=3x20,
∴x30-3x20+4=0,∴(x0+1)(x0-2)2=0, ∴x0=-1或x0=2(舍去),∴y0=-1,k=3, 此时切线方程y+1=3(x+1),即3x-y+2=0. 故经过点P的曲线的切线有两条,方程为12x-y-16=0和 3x-y+2=0. [警示] 求曲线过点P的切线时,应注意检验点P是否在曲 线上,若点P在曲线上,应分P为切点和P不是切点讨论.
_高中数学第一章导数及其应用2
![_高中数学第一章导数及其应用2](https://img.taocdn.com/s3/m/df53f5dc112de2bd960590c69ec3d5bbfd0adac6.png)
[提示] ΔΔyx=x+Δx2+xΔ+2xΔx-x2+2x
=2x+Δx+xx-+2Δx
∴ lim Δx→0
2x+Δx+xx-+2Δx
=2x-x22.
Байду номын сангаас
[问题3] F(x)的导数与f(x)、g(x)的导数有何关系? [提示] F(x)的导数等于f(x)、g(x)导数和.
[问题 4] 试说明 y=cos3x-π4如何复合的. [提示] 令 u=g(x)=3x-π4,y=f(u)=cos u,
(3)y′=(2x2+3)′·(3x-2)+(2x2+3)·(3x-2)′
=4x·(3x-2)+(2x2+3)·3
=18x2-8x+9.
(4)y′=xl+n x1′-(2x)′
=1xx+x+1- 12ln
x -2xln
2
=1+x1x+-1ln2
x -2xln
2.
二. 复合函数的导数
例题 2 求下列函数的导数:
(1)y=1-12x3;
(2)y=cos x2;
(3)y=sin3x-π4; (4)y=lg(2x2+3x+1).
• [思路点拨] 解答本题可先分析复合函数的复合过 程,然后运用复合函数的求导法则求解.
解析: (1)设 y=u13,u=1-2x, 则 y′x=y′u·u′x =u13′·(1-2x)′ =-3u-4·(-2) =1-62x4. (2)设 y=cos u,u=x2, 则 y′x=y′u·u′x=(cos u)′·(x2)′ =-sin u·2x =-2x·sin x2.
(4)开始学习求复合函数的导数要一步步写清楚,熟 练后中间步骤可省略.
特别提醒:只要求会求形如f(ax+b)的复合函数的导 数.
高考一轮数学复习理科课件(人教版)第3课时 导数的应用(二)——极值与最值
![高考一轮数学复习理科课件(人教版)第3课时 导数的应用(二)——极值与最值](https://img.taocdn.com/s3/m/453b31ecd5bbfd0a78567328.png)
【解析】 f′(x)=3x2-3,令 f′(x)=0,∴x=±1. 三次函数 f(x)=0 有 3 个根⇔f(x)极大值>0 且 f(x)极小值<0,
∴x=-1 为极大值点,x=1 为极小值点. ∴ff-1=1=a-2+2<a0>0 ,∴-2<a<2.
【答案】 A
第三章 导数及其应用
第三章 导数及其应用
高考调研
高三数学(新课标版·理)
【解析】 (1)证明 f′(x)=-axx22-+21bx2+a,
令 f′(x)=0,得 ax2+2bx-a=0
①
∵Δ=4b2+4a2>0,
∴方程①有两个不相等的实根,记为 x1,x2(x1<x2), 则 f′(x)=-ax-x2+x11x2-x2,
第三章 导数及其应用
高考调研
高三数学(新课标版·理)
即(x2+x1)(x2-x1)=0. 又 x1<x2,∴x1+x2=0,从而 b=0 ∴a(x2-1)=0,得 x1=-1,x2=1, 故 a=-xx211-1=2.
第三章 导数及其应用
高考调研
高三数学(新课标版·理)
2.已知 f(x)=2x3-6x2+m(m 为常数)在[-2,2]上有最 大值 3,那么此函数在[-2,2]上的最小值是( )
第三章 导数及其应用
高考调研
A.-37 C.-5 答案 A
高三数学(新课标版·理)
B.-29 D.以上都不对
第三章 导数及其应用
第三章 导数及其应用
高考调研
高三数学(新课标版·理)
(4)由 f′(x)=0 的根左右的符号以及 f′(x)在不可导 点左右的符号来判断 f′(x)在这个根或不可导点处取极值 的情况,此步骤不可缺少,f′(x)=0 是函数有极值的必 要条件.
202新数学复习第二章函数导数及其应用2.2函数的单调性与最值学案含解析
![202新数学复习第二章函数导数及其应用2.2函数的单调性与最值学案含解析](https://img.taocdn.com/s3/m/3e1d6720eef9aef8941ea76e58fafab069dc4401.png)
第二节函数的单调性与最值课标要求考情分析1。
理解函数的单调性、最大值、最小值及其几何意义.2.会运用基本初等函数的图象分析函数的性质。
1。
主要考查函数单调性的判定、求单调区间、比较大小、解不等式、求最值及不等式恒成立问题.2.题型以选择题、填空题为主,若与导数交汇命题则以解答题的形式出现,属中高档题.知识点一函数的单调性1.增函数、减函数的定义定义:一般地,设函数f(x)的定义域为I,如果对于定义域I 内某个区间D上的任意两个自变量x1,x2:(1)增函数:当x1〈x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是增函数;(2)减函数:当x1〈x2时,都有f(x1)〉f(x2),那么就说函数f(x)在区间D上是减函数.2.单调性、单调区间的定义若函数y=f(x)在区间D上是增函数或减函数,则称函数y =f(x)在这一区间上具有(严格的)单调性,区间D叫做y=f(x)的单调区间.注意以下结论1.对∀x1,x2∈D(x1≠x2),错误!>0⇔f(x)在D上是增函数,错误!<0⇔f(x)在D上是减函数.2.对勾函数y=x+错误!(a〉0)的增区间为(-∞,-错误!]和[错误!,+∞),减区间为[-错误!,0)和(0,错误!].3.在区间D上,两个增函数的和仍是增函数,两个减函数的和仍是减函数.4.函数f(g(x))的单调性与函数y=f(u)和u=g(x)的单调性的关系是“同增异减”.知识点二函数的最值1.思考辨析判断下列结论正误(在括号内打“√”或“×”)(1)对于函数f(x),x∈D,若对任意x1,x2∈D,且x1≠x2有(x1-x2)[f(x1)-f(x2)]〉0,则函数f(x)在区间D上是增函数.(√)(2)函数y=1x的单调递减区间是(-∞,0)∪(0,+∞).(×)(3)对于函数y=f(x),若f(1)<f(3),则f(x)为增函数.(×)(4)函数y=f(x)在[1,+∞)上是增函数,则函数的单调递增区间是[1,+∞).(×)解析:(2)此单调区间不能用并集符号连接,取x1=-1,x2=1,则f(-1)〈f(1),故应说成单调递减区间为(-∞,0)和(0,+∞).(3)应对任意的x1<x2,f(x1)〈f(x2)成立才可以.(4)若f(x)=x,f(x)在[1,+∞)上为增函数,但y=f(x)的单调递增区间是R.2.小题热身(1)下列函数中,在区间(0,+∞)内单调递减的是(A)A.y=错误!-x B.y=x2-xC.y=ln x-x D.y=e x(2)函数f(x)=-x+错误!在区间错误!上的最大值是(A)A.错误!B.-错误!C.-2 D.2(3)设定义在[-1,7]上的函数y=f(x)的图象如图所示,则函数y=f(x)的增区间为[-1,1]和[5,7].(4)函数f(x)=错误!的值域为(-∞,2).(5)函数f(x)=错误!在[2,6]上的最大值和最小值分别是4,错误!.解析:(1)对于A,y1=错误!在(0,+∞)内是减函数,y2=x在(0,+∞)内是增函数,则y=1x-x在(0,+∞)内是减函数;B,C选项中的函数在(0,+∞)上均不单调;选项D中,y=e x 在(0,+∞)上是增函数.(2)∵函数y=-x与y=错误!在x∈错误!上都是减函数,∴函数f(x)=-x+错误!在错误!上是减函数,故f(x)的最大值为f(-2)=2-错误!=错误!.(3)由图可知函数的增区间为[-1,1]和[5,7].(4)当x≥1时,f(x)=log错误!x是单调递减的,此时,函数的值域为(-∞,0];x<1时,f(x)=2x是单调递增的,此时,函数的值域为(0,2).综上,f(x)的值域是(-∞,2).(5)函数f(x)=错误!=错误!=2+错误!在[2,6]上单调递减,所以f(x)min=f(6)=错误!=错误!。
§3.3-导数的应用(二)
![§3.3-导数的应用(二)](https://img.taocdn.com/s3/m/ac592336bb68a98271fefae7.png)
●利用导数解决实际问题中的最值问题的注意事项 (1)在求 实际问题的最大(小)值时,一定要注意考虑实际问题的意义, 不符合实际问题的值应舍去. (2)在实际问题中,有时会遇 到函数在区间内只有一个点使 f′(x)=0的情形,那么不 与端点值比较,也可以知道这就是最大(小)值. (3)在解决实 际优化问题时,不仅要注意将问题中涉及的自变量的函数关 系式给予表示,还应确定函数关系式中自变量的取值范围.
A.-2
B.0
C.2
D.4
解析:f′(x)=3x2-6x,令f′(x)=0,得x=0,x=2(舍去).
比较f(-1),f(0),f(1)的大小知f(x)max=f(0)=2. 答案:C
第9页
3.已知函数f(x)= 1 x4-2x3+3m,x∈R,若f(x)+9≥0恒成立,则实数 2
m的取值范围是()
第30页
创新预测3某地政府为科技兴市,欲在如图所示的矩形ABCD 的非农业用地中规划出一个高科技工业园区(如图中阴影部 分),形状为直角梯形QPRE(线段EQ和RP为两个底边),已知 AB=2km,BC=6km,AE=BF=4km,其中AF是以A为顶点、AD为 对称轴的抛物线段.试求该高科技工业园区的最大面积. 解析:以A为原点,AB所在直线为x轴,AD 所在直线为y轴建立直角坐标系,如图,则 A(0,0),F(2,4),
第24页
规律方法:不等式f(x)≥m(或≤m)恒成立的问题可以转化为求函 数f(x)的最小(大)值问题,f(x)≥m恒成立,即m≤f(x)min,f(x)≤m恒 成立即f(x)max≤m.
第25页
创新预测2设函数f(x)= 1 x2+ex-xex. 2
(1)求f(x)的单调区间; (2)若当x∈【 -2,2】时,不等式f(x)>m恒成立,求实数m. 解析:(1)函数f(x)的定义域为(-∞,+∞), 因为f′(x)=x+ex-(ex+xex)=x(1-ex), 由f′(x)=x(1-ex)>0得x<0,由f′(x)<0得x>0, 则f(x)的单调递增区间为(-∞,0),单调递减区间为(0,+∞).
202新数学复习第二章函数导数及其应用2.2.2利用导数证明不等式学案含解析
![202新数学复习第二章函数导数及其应用2.2.2利用导数证明不等式学案含解析](https://img.taocdn.com/s3/m/69fde6fd6e1aff00bed5b9f3f90f76c660374c44.png)
第2课时利用导数证明不等式构造函数证明不等式:构造法证明不等式是指在证明与函数有关的不等式时,根据所要证明的不等式,构造与之相关的函数,利用函数单调性、极值、最值加以证明.常见的构造方法有:(1)直接构造法:证明不等式f(x)〉g(x)(f(x)<g(x))转化为证明f(x)-g(x)>0(f(x)-g(x)〈0),进而构造辅助函数h(x)=f(x)-g(x);(2)适当放缩构造法:一是根据已知条件适当放缩,二是利用常见的放缩结论,如ln x≤x-1,e x≥x+1,ln x〈x<e x(x〉0),错误!≤ln(x+1)≤x(x>-1);(3)特征分析构造法:稍作变形再构造,对原不等式同解变形,如移项、通分、取对数,把不等式转化为左、右两边是相同结构的式子的形式,根据“相同结构"构造辅助函数;(4)构造双函数:若直接构造函数求导难以判断符号,导函数零点也不易求得,因此函数单调性与极值点都不易获得,则可构造函数f(x)和g(x),利用其最值求解.方法1直接构造差函数法【例1】已知函数f(x)=1-错误!,g(x)=错误!+错误!-bx(e为自然对数的底数),若曲线y=f(x)与曲线y=g(x)的一个公共点是A(1,1),且在点A处的切线互相垂直.(1)求a,b的值;(2)求证:当x≥1时,f(x)+g(x)≥错误!.【解】(1)因为f(x)=1-ln x x,所以f′(x)=错误!,f′(1)=-1。
因为g(x)=错误!+错误!-bx,所以g′(x)=-错误!-错误!-b。
因为曲线y=f(x)与曲线y=g(x)的一个公共点是A(1,1),且在点A处的切线互相垂直,所以g(1)=1,且f′(1)·g′(1)=-1,即g(1)=1+a-b=1,g′(1)=-a-1-b=1,解得a=-1,b=-1。
(2)证明:由(1)知,g(x)=-错误!+错误!+x,则f(x)+g(x)≥2x⇔1-错误!-错误!-错误!+x≥0.令h(x)=1-错误!-错误!-错误!+x(x≥1),则h′(x)=-错误!+错误!+错误!+1=错误!+错误!+1.因为x≥1,所以h′(x)=ln xx2+错误!+1>0,所以h(x)在[1,+∞)上单调递增,所以h(x)≥h(1)=0,即1-错误!-错误!-错误!+x≥0,所以当x≥1时,f(x)+g(x)≥错误!。
122 基本初等函数的导数公式及导数的运算法则(二)PPT课件
![122 基本初等函数的导数公式及导数的运算法则(二)PPT课件](https://img.taocdn.com/s3/m/6cbc175cbed5b9f3f80f1c07.png)
第一章 导数及其应用
做一做
1.已知f(x)=xln x,则f′(x)=________.
解析:f′(x)=x′ln x+x(ln x)′=ln x+1.
答案:ln x+1
2.设y=-2exsin x,则y′=( )
A.-2excos x
B.-2ex(sin x+cos x)
C.2exsin x
典题例证技法归纳
题型探究
题型一 利用导数的运算法则求导数
例1 求下列函数的导数: (1)y=3x2+xcos x; (2)y=lg x-x12; (3)y=(x2+3)(ex+ln x); (4)y=x2+tan x;
(5)y=s in4x+ cos 4x.
4
4
栏目 导引
第一章 导数及其应用
【解】 (1)y′=6x+cos x+x(cos x)′
D.-2exsin x
解析:选B.y′=-2[(ex)′sin x+ex(sin x)′]
=-2(exsin x+excos x)
=-2ex(sin x+cos x).
栏目 导引
第一章 导数及其应用
2.复合函数的求导法则 一般地,对于两个函数 y=f(u)和 u=g(x),如果通过 变量 u,y 可以表示成 x 的函数,那么称这个函数为 函数 y=f(u)和 u=g(x)的___复__合__函__数____,记作 y= f(g(x)). 复合函数 y=f(g(x))的导数和函数 y=f(u),u=g(x)的 导数间的关系为 yx′=yu′·ux′,即 y 对 x 的导数等 于__y_对__u_的__导__数____与__u_对__x_的__∴
y′=
(x2)′+
s (
in
应用高等数学-2.2 导数的运算(2)
![应用高等数学-2.2 导数的运算(2)](https://img.taocdn.com/s3/m/7a401a496137ee06eff918db.png)
练习册第二章 练习三
1
3
(1 x2 )2
.
6. 设 y = sin(xln x), 求 y . 解 先用复合函数求导公式, 再用乘法公式
y = cos(xln x) ·(xln x) = cos(xln x) ·(x ·(ln x) + x ln x ) = (1 + ln x)cos(x ln x) .
§2-2 导数的运算(二)
dx 10( x2 1)9 2x 20x( x2 1)9 .
3、 设 f (x) = sinx2 ,求 f (x). 解 f ( x) cos x2 ( x2 )x 2 x cos x2
4、 求函数 y ln x 2 1 ( x 2)的导数. 3 x2
解 y 1 ln( x 2 1) 1 ln( x 2),
2
3
y
1 2
1 x2
1
2xΒιβλιοθήκη 3(1 x2)
x x2 1
1 3( x
2)
5.
设 y x ,求 y .
1 x2
解 先用除法的导数公式,遇到复合时,再
用复合函数求导法则.
y ( x) 1 x2 x( 1 x2 ) ( 1 x2 )2
1 x2 1 2x x
2 1 x2 1 x2
(1 x2 ) x2 1 x2 (1 x2 )
ex 2y y' y x y', 解方程得
y' e x y . x 2y
例2 设 y y(x)由 sin y xe y 0 确定 ,求 y' . 解 对方程 sin y xe y 0两边同时关于x求导,得
(sin y) (xey ) 0
即 cos y y ey xey y 0
高考数学大一轮复习 第三章 导数及其应用 2 第2讲 导数与函数的单调性课件 理
![高考数学大一轮复习 第三章 导数及其应用 2 第2讲 导数与函数的单调性课件 理](https://img.taocdn.com/s3/m/8ffbb1a4be23482fb5da4c24.png)
函数 f(x)=x-lnx 的单调递减区间为________.
解析:由 f′(x)=1-1x<0,得1x>1,即 x<1,又 x>0,所以函数 f(x) 的单调递减区间为(0,1). 答案:(0,1)
12/13/2021
第八页,共四十七页。
已知 f(x)=x3-ax 在[1,+∞)上是增函数,则实数 a 的最大 值是________. 解析:f′(x)=3x2-a≥0,即 a≤3x2, 又因为 x∈[1,+∞),所以 a≤3,即 a 的最大值是 3.
答案:3
12/13/2021
第九页,共四十七页。
不含参数函数的单调性(自主练透)
1.函数 y=4x2+1x的单调增区间为(
)
A.(0,+∞)
B.(12,+∞)
C.(-∞,-1)
D.-∞,-12
12/13/2021
第十页,共四十七页。
解析:选 B.由 y=4x2+1x,得 y′=8x-x12, 令 y′>0,即 8x-x12>0,解得 x>12, 所以函数 y=4x2+1x的单调增区间为12,+∞. 故选 B.
12/13/2021
第五页,共四十七页。
如图是函数 y=f(x)的导函数 y=f′(x)的图象,则下面判断正确 的是( )
A.在区间(-3,1)上 f(x)是增函数 B.在区间(1,3)上 f(x)是减函数 C.在区间(4,5)上 f(x)是增函数 D.在区间(3,5)上 f(x)是增函数 解析:选 C.由图象可知,当 x∈(4,5)时,f′(x)>0,故 f(x)在(4, 5)上是增函数.
12/13/2021
第二十页,共四十七页。
③ 当 0<a<1 时 , 令 f′(x) = 0 , 解 得 x =
第一讲 导数偏导数及其应用(2)
![第一讲 导数偏导数及其应用(2)](https://img.taocdn.com/s3/m/8f460fc36137ee06eff9184b.png)
第一讲 导数、偏导数及其应用(第二次作业)二、求多元函数的偏导数1.具体函数的偏导数 30.(1)设z =,则 z zxyx y∂∂+∂∂= . (2)设1(,)sin ln 1xy xf x y e x y -+=++,则(1,0)x f '= . (3)设(,)arctan1x xyf x y xy+=-,则(1,2)x f '= . (4)设u =,则222222u u ux y z ∂∂∂++∂∂∂= . (5)设223d x y t xz e t --=⎰,则2zx y∂∂∂= . 31.设222,(,)(0,0),(,)0,(,)(0,0).x y x y f x y x y x y ⎧+≠⎪=+⎨⎪=⎩则(0,0)y f '= ( ).(A)4 (B) 2 (C)1 (D) 0 【答】B2.抽象函数的偏导数 32.设 x z xy f y ⎛⎫=+⎪⎝⎭,其中()f u 为可导函数,求 z zx y x y ∂∂+∂∂. 33.设 22(23,)z f x y x y =-+,其中(,)f u v 具有二阶连续偏导数,求 2zx y∂∂∂.34.设 (,)y z f x xy x g x ⎛⎫=+ ⎪⎝⎭,其中f 具有二阶连续偏导数,g 具有二阶导数,求 2z x y ∂∂∂.35.设函数()f u 具有二阶连续导数,(sin )xz f e y =满足方程 22222x z ze z x y∂∂+=∂∂,求()f u . 36.设变换2u x y v x ay=-⎧⎨=+⎩可将方程2222260z z zx x y y ∂∂∂+-=∂∂∂∂简化为20z u v ∂=∂∂,求常数a . 3.一个方程确定的隐函数的(偏)导数 37.设x y z z ϕ⎛⎫= ⎪⎝⎭,其中()u ϕ为可导函数,求 z z xy x y ∂∂+∂∂. 38.设(),0f cx az cy bz --=,求 z zab x y∂∂+∂∂. 39.设()y y x =由方程1yy xe -=确定,求202d d x yx =的值.[92-3]【答】22e .40.证明由方程,0z z F x y y x ⎛⎫++= ⎪⎝⎭所确定的函数(,)z z x y =满足z z x y z xy x y ∂∂+=-∂∂.41.设(,)z z x y =是由zz e xy +=确定的二元函数,求2(1,1)zx y∂∂∂.4.由方程组确定的隐函数的(偏)导数42.设(,),(,)z f x y x y z ϕ==,其中,f ϕ都是可微函数,求d d y x. 43.设(,),(,)u u x y v v x y ==是由方程组sin ,cos uux e u v y e u v⎧=+⎪⎨=-⎪⎩确定的函数,求,u v x x ∂∂∂∂. 【答】sin cos ,(sin cos )1[(sin cos )1]uu uu v v v e x e v v x u e v v ∂∂-==∂-+∂-+. 5.函数的全微分44.当2,1x y ==时,函数22ln(1)z x y =++的全微分d z = . 【答】21d d 33x y + 45.由方程xyz +=所确定的函数(,)z z x y =在点(1,0,1)-处的全微分d z = .【答】d x y46.设函数(,)f x y 在点00(,)x y 处的两个偏导数都存在,则( ).(A )函数(,)f x y 在点00(,)x y 处连续 (B )函数(,)f x y 在点00(,)x y 处可微 (C )一元函数0(,)f x y 在点0x 处可导 (D )以上答案都不对 【答】C47.函数(,)f x y 在点00(,)x y 处的两个偏导数都存在是函数(,)f x y 在点00(,)x y 处连续的( ). (A )充分条件 (B )必要条件(C )充分必要条件 (D )既非充分也非必要的条件 【答】D48.函数(,)f x y 在点00(,)x y 处的两个偏导数都存在是函数(,)f x y 在点00(,)x y 处可微的( ). (A )充分条件 (B )必要条件(C )充分必要条件 (D )既非充分也非必要的条件 【答】B49.设函数22220(,)0,0x y f x y x y +≠=+=⎩,则(,)f x y 在点(0,0)处( ).(A)偏导数不存在 (B)偏导数存在但不可微 (C)可微但偏导数不连续 (D)偏导数连续 【答】B50.设函数222222()0,(,)0,0x y x y f x y x y ⎧++≠⎪=⎨⎪+=⎩,则(,)f x y 在点(0,0)处( ).(A ),f f x y ∂∂∂∂不存在 (B ),f fx y∂∂∂∂连续 (C )可微 (D )不连续 【答】C6、方向导数与梯度51.已知u 是曲线2226,0x y z x y z ⎧++=⎨-+=⎩在点(1,2,1)处的切线向量,且它与与oz 轴正向夹角为锐角,求函数(,,)f x y z =在点(1,1,0)-处沿方向向量u 的方向导数fu∂∂. 【答】01(1,1,0)(1,1,0)2D f f -=∇-=-u u. 52.设u 为抛物线24y x =在点(1,2)处与x 轴正方向夹角为锐角的单位切向量,则函数ln()z x y =+在点(1,2)处沿u 方向的方向导数为 .【答】353.已知u 是空间曲线Γ:22,,4x t y t z t t ===- 在点(1,1,3)P -处的切线向量,且它与Oz 轴正向夹角为锐角,求函数2(,,)f x y z x y z =+在点P 处沿方向向量u 的方向导数f u∂∂. 【答】{}012,3,1,233322f f u ∂⎧⎫==---=⎨⎬∂⎩⎭grad u ,. 54.求函数22(,)f x y x y =-在点P 处沿曲线22221x y a b +=在该点的外法线方向的方向导数. 【答】00fgrad f n∂==∂n . 55.函数()222ln u x y z =++在点(1,1,1)处的最大方向导数是 .三、一元函数导数的应用 1. 求曲线的切线与法线56.(1)求曲线3y x =在点(1,1)处的切线与法线的方程.(2)过点(2,0)作曲线3y x =的切线,求此切线方程.57.已知曲线2y ax =(a 为常数)与ln y x =在点x b =处有公共切线,求,a b 的值.58.求极坐标方程(1cos )a ρθ=+的图形对应3πθ=处的切线方程.59.若曲线2y x ax b =++和321y xy =-+在点(1,1)-处相切,其中,a b 是常数,则( ). (A ) 0,2a b ==- (B )1,3a b ==- (C ) 3,1a b =-= (D )1,1a b =-=- 60.设)(x f 为可导函数,它在0=x 的某邻域内满足)(3)1(2)1(x o x x f x f +=--+,其中)(x o 是当0→x 时比x 高阶的无穷小量,则曲线)(x f y =在点())1(,1f 处的切线方程为( ).(A)2+=x y (B)1+=x y (C)1-=x y (D)2-=x y61.设函数n x x f )(ln )(=的图形在点)1,(e 处的切线与x 轴的交点坐标为)0,(n a ,试求)(lim n n a f ∞→.2. 一元函数的单调性与极值62.讨论函数1233()(1)(2)f x x x =--的单调区间与极值.63.设2()()lim1()x a f x f a x a →-=--,则在点x a =处( ). (A ) ()f x 的导数存在,且()0f a '≠ (B )()f x 取得极大值(C ) ()f x 取得极小值 (D )()f x 的导数不存在64.已知常数0a >,问方程xe ax =有几个实数根?3. 一元函数图形的凹凸性65.求曲线x y xe -=的凹凸区间与拐点. 66.用导数知识画出函数1(6)xy x e =+的图形.67.如果()()f x f x -=,且在(0,)+∞内,()0,()0f x f x '''>>,则在(,0)-∞内,( ). (A )()0,()0f x f x '''>> (B ) ()0,()0f x f x '''>< (C )()0,()0f x f x '''<> (D )()0,()0f x f x '''<<68.设函数()f x 在(,)a b 内连续,其导函数的图形如右,记p 为函数()f x 的极值点个数,q 为()f x 图形的拐点个数,则( ).(A )4,1p q == (B )4,2p q == (C ) 3,2p q == (D )2,3p q == 69.设()t ϕ是正值连续函数,()||()d a af x x t t t ϕ-=-⎰,(0)a x a a -≤≤>,证明函数()f x 在区间[,]a a -上的图形是向上凹的.70.先将函数)1ln()(2x x x f +=展开成带佩亚诺余项的7阶麦克劳林公式,再求)0()7(f ,并问点(0,0)是否为该函数图形的拐点?4. 函数的最大值与最小值71.用输油管把离岸12公里的一座油井和沿岸往下20公里处的炼油厂连接起来(如图5.1.8),如果水下输油管的铺设成本为每公里50万元,陆地输油管的铺设成本为每公里30万元.问应如何铺设水下和陆地输油管,使总的连接费用最小?【答】最小的连接成本为1080万元,最优的连接方案为:从炼油厂沿岸在陆地上铺设11公里到D 点,然后在水下铺设15公里的管道AD . 72.某种疾病的传播模型为()1tPf t ce -=+,其中P 是总人口数,c 是固定常数,)(t f 是到t 时刻感染该病的总人数,求(1)该种疾病的传播速率;(2)当传播速率最大时,感染该病的总人数.第68题图73.三角形由0,230,3=-==y x y x y 围成,在三角形内作矩形ABCD ,其一边AD 与x 轴重合,另两顶点B 、C 分别在x y x y 230,3-==上,求此长方形面积的最大值.5. 用洛必达法则及泰勒公式求不定型极限74.设()f x 在0x 处二阶可导,求极限00020()2()()lim h f x h f x f x h h →+-+-.75.计算下列极限 (1)30sin limx x x x →- (2)0x → (3)2011lim tan x x x x →⎛⎫- ⎪⎝⎭(4)()21lim 1tan 2x xx π→- (5)0lim xx x+→ (6)()12lim 2xxx x →∞+(7)2112lim sin cos x x x x x →∞⎛⎫+ ⎪⎝⎭ (8)sin lim sin x x x x x →∞-+ (9)x x dt e x xt x sin lim 002-⎰--→76.计算极限 2230cos limln(1)x x x ex x -→-+.77.设()f x 在点0x =的某邻域内可导,且320sin 3()lim 0x x f x xx →⎛⎫+= ⎪⎝⎭,求(1)(0),(0),(0)f f f ''';(2)2203()lim 0x f x x x →⎛⎫+=⎪⎝⎭.78.设 20ln(1)()lim 2x x ax b x →+-+=,则( ).(A ) 51,2a b ==- (B )0,2a b ==-(C ) 50,2a b ==- (D )0,2a b ==-【答】(A )6. 变化率与相关变化率79.一容器的侧面和底面分别由曲线段)21(12≤≤-=x x y 和直线段)10(0≤≤=x y 绕y 轴旋转而成(坐标单位长度为1米),若以每分钟1立方米的速度向容器内注水,求当水面高度达到容器深度一半时,水平面上升的速度. 【答】π52(米/分) 80.现有甲乙两条正在航行的船只,甲船向正南航行,乙船向正东直线航行.开始时甲船恰在乙船正北 40 km 处,后来在某一时刻测得甲船向南航行了 20 km ,此时速度为 15 km/h ;乙船向东航行了15 km ,此时速度为 25 km/h .问这时两船是在分离还是在接近 ,速度是多少 ? 【答】 它们正以3 km/h 的速度彼此远离 .四、多元函数偏导数的应用1. 空间曲线的切线和法平面81.空间曲线23,2,1x t y t t z t ==-=-在对应于1t =的点处的切线方程是 .【答】11103x y z-+== 82.设函数(,)f x y 在点00(,)x y 处的两个偏导数都存在,则下列结论正确的是( ).(A )函数(,)f x y 在点00(,)x y 处可微 (B )函数(,)f x y 在点00(,)x y 处连续 (C )曲线0(,),z f x y x x =⎧⎨=⎩在点0000(,,(,))x y f x y 的切线方向向量为00{0,1,(,)}x f x y '(D )曲线0(,),z f x y y y =⎧⎨=⎩在点0000(,,(,))x y f x y 的切线方向向量为00{1,0,(,)}x f x y '【答】D83.证明:圆柱螺旋线Γ:cos ,sin ,x a t y a t z bt ===在任意一点处的切线都与某定直线交成相等的夹角.【证明】曲线Γ上任意一点的切向量为:{(),(),()}{sin ,cos ,}x t y t z t a t a t b '''==-T .因为cos γ=为常数,所以T 与k 交成相等的夹角,即圆柱螺旋线上任意一点处的切线都与z 轴交成相等的夹角.84.曲线23,,x t y t z t ===的所有切线中,与平面24x y z ++=平行的切线( ). (A)只有1条 (B)只有2条 (C)至少有3条 (D)不存在 【答】B2. 曲面的切平面和法线85.求曲面22823z x y =--在点(1,1,3)-处的切平面方程与法线方程. 【答】46130x y z -+-=.113461x y z -+-==--. 86.已知曲面222z x y z =++上点P 处的切平面与平面220x y z -+=平行,求点P 的坐标以及曲面在该点的切平面方程. 【答】 12202x y z -++= 以及 52202x y z -+-=. 87.曲面 222x y z +=在点(1,1,1)-处的法线方程为 . 【答】111111x y z -+-==-- 88.曲面2221z x y =++在点(1,1,4)M -处的切平面方程为 . 【答】4220x y z ---= 3. 多元函数的极值与条件极值89.求函数3322(,)33f x y x y x y =+--的极值.【答】(0,0)0f =为函数的极大值;(2,2)8f =-为函数的极小值.90.设4422(,)2,(1,1)f x y x y x xy y A =+---和(1,1)B --是函数的驻点,则( ). (A)A 是极大点,B 是极小点 (B)A 及B 都是极大点 (C)A 是极小点,B 是极大点 (D)A 及B 都是极小点 【答】D91.某工厂生产甲、乙两种产品,其销售价格分别为每台12万元与每台18万元,总成本C 是两种产品产量x 和y (单位:台)的函数22(,)224C x y x xy y =+++(单位:万元),问:当两种产品的产量各为多少台时,可获最大利润?最大利润是多少?【答】生产甲产品2台,乙产品4台时,利润最大,对应的最大利润为44万元.92.在已给的椭球面2222221x y z a b c++=内的所有内接长方体(各边平行于坐标轴)中,求其体积之最大者.【答】(,,)x y z =时,V . 93.平面0x y z ++=交圆柱面221x y +=成一个椭圆,求这个椭圆上离原点最近和最远的点.【答】1。
【人教A版数学选修2-2】导数及其应用1-3-2
![【人教A版数学选修2-2】导数及其应用1-3-2](https://img.taocdn.com/s3/m/68388d60453610661ed9f46c.png)
系列丛书
当 x 变化时,f′(x)与 f(x)的变化情况如下表:
x
(0,e) e (e,+∞)
f′(x)
+
0
-
f(x)
1 e
因此,x=e 是函数的极大值点,极大值为 f(e)=1e,没有极
小值.
函数的草图如图所示:
RJA·数学·选修2-2
进入导航
第一章 1.3 1.3.2 第21页
系列丛书
求函数的极值必须严格按照求函数极值的方法步骤进行,其 重点是列表考查导数为零的点的左右两侧的导数值是否是异号 的,若异号,则是极值;否则,不是极值.另外,在求函数的极 值前,一定要首先研究函数的定义域,在定义域的前提下研究极 值.
RJA·数学·选修2-2
进入导航
第一章 1.3 1.3.2 第25页
系列丛书
类型二
已知函数的极值求参数的值
【例 2】 已知 f(x)=ax3+bx2+cx(a≠0)在 x=±1 处取得极 值,且 f(1)=-1.
(1)试求常数 a,b,c 的值; (2)试判断 x=±1 是函数的极大值点还是极小值点,并说明 理由.
0,右
侧 f′(x) <
0.
(3)结论: 点 b 叫做函数 y=f(x)的极大值点, f(b) 叫
做函数 y=f(x)的极大值.
3.极值的定义 (1) 极大值 与 极小值 统称为极值.
(2)极值反映了函数在某一点附近的函数值的大小情况 ,刻
画的是函数的 局部性质.
RJA·数学·选修2-2
进入导航
第一章 1.3 1.3.2
进入导航
第一章 1.3 1.3.2 第19页
系列丛书
∴当 x=0 时,y 有极小值且 y 极小值=0. 函数的草图如图所示:
高中数学 导数及其应用课件 新人教B选修22
![高中数学 导数及其应用课件 新人教B选修22](https://img.taocdn.com/s3/m/f0f15b7bc281e53a5902ff02.png)
变式训练2 (2009·北京文,18)设函数
f(x)=x3-3ax+b(a≠0).
(1)若曲线y=f(x)在点(2,f(2))处与直线y=8相
切,求a,b的值;
(2)求函数f(x)的单调区间与极值点.
解 (1)f′(x)=3x2-3a.
因为曲线y=f(x)在点(2,f(2))处与直线y=8相
切,
所以
②[u(x)v(x)]′=u′(x)v(x)+u(x)v′(x).
③
u( x)
v(x)
u(x)v(x) u(x)v(x)
v( x)2
(v(x)
0).
(3)复合函数求导
复合函数y=f(g(x))的导数和y=f(u),u=g(x)的导数 之间的关系为yx′=f′(u)g′(x). 4.函数的性质与导数
导数及其应用
1.导数的概念
lim (1)
f (x0 )
x0
f (x0 x) f (x0 ) . x
(2) f
(x)
lim
x0
f
(x
x) x
f
(x) .
(3)f′(x0)与f′(x)的关系.
2.导数的几何意义
(1)函数y=f(x)在x=x0处的导数f′(x0)就是曲线y=f(x) 在点(x0,f(x0))处的切线的斜率.即k=f′(x0).
一、导数几何意义的应用 例1 (2008·海南理,21)设函数 f (x) ax 1
xb
(a,b∈Z),曲线y=f(x)在点(2,f(2))处的 切线方程为y=3. (1)求f(x)的解析式; (2)证明:函数y=f(x)的图象是一个中心对称 图形,并求其对称中心; (3)证明:曲线y=f(x)上任一点的切线与直线x=1 和直线y=x所围三角形的面积为定值,并求出此定 值.
邓正华高数基础02第二讲 导数及其应用
![邓正华高数基础02第二讲 导数及其应用](https://img.taocdn.com/s3/m/c930e5f77f1922791688e85f.png)
简单.
例
1.设,则 .
【100!】
2.设恒成立,则 .
【】
3.设在有定义,,且,有,求.
【】
解,
,
,又, 故. 问题8 如何求函数的阶导数? 答 求阶导数的方法有 ⑴归纳法 依次求出,等,观察其规律,写出; ⑵分解法 将函数分解为某些简单函数之和; ⑶用莱布尼茨公式求乘积的阶导数; ⑷用泰勒公式求. 例 1.设,求.【】 2.设,求.【】 问题9 如何判别函数的单调性?
11.讨论曲线与的交点个数. 解 【零点个数问题,讨论方程根的个数】 令, 令,, 当时,,递减,只有惟一零点, 故只有惟一驻点,在,上单调, 又,,, 当,即时,方程无实根,当,即时,方程有惟一实根,当,即时, 方程有两个实根. 故当时,两条曲线无交点,当时,两条曲线有一个交点,当时,两 条曲线有两个交点. 12.在区间内,方程有几个实根? 证 【零点个数问题】 令,此函数为偶函数且时,故只要讨论在内有几个实根. 时,,
答 根据函数单调性判别法知,函数单调区间的分界点是其导函数
的零点(称为函数的驻点)或者导数不存在的点.
判别函数单调性的步骤是:
⑴求出函数的驻点和不可导点;
⑵用这些点将函数的定义域分成若干小区间;
⑶确定各小区间上导数的符号(列表);
⑷判别函数在各小区间上的单调性. 例 1.证明在上单调增加. 2.设在上二次可导且,,证明在上单调减少. 问题10 如何求函数的极值?
⑴若在上连续,则求出函数在驻点,不可导点、端点处的函数值,
其中最大(小)的为最大(小)值.
⑵若在区间内可导且只有惟一极值,则极小值就是最小值,极大值
就是最大值.
注 实际问题根据题意判别. 例 1.在抛物线上的第一象限部分求一点,过点作切线,使该切线与坐
人教A版高中数学选择性必修第二册习题课导数及其应用课件
![人教A版高中数学选择性必修第二册习题课导数及其应用课件](https://img.taocdn.com/s3/m/6e6a39b5370cba1aa8114431b90d6c85ec3a882d.png)
[集训冲关]
1.函数f(x)=1+3x-x3
()
A.有极小值,无极大值
B.无极小值,有极大值
C.无极小值,无极大值
D.有极小值,有极大值
解析:f′(x)=-3x2+3,由f′(x)=0,得x=±1.当x∈(-1,1)时,f′(x)>0, ∴f(x)的单调递增区间为(-1,1);同理,f(x)的单调递减区间为(-∞,-1)和 (1,+∞),∴当x=-1时,函数有极小值-1,当x=1时,函数有极大值3, 故选D.
递减.
(2)证明:f(x)-g(x)=x2ex-1-x3=x2(ex-1-x). 设h(x)=ex-1-x,h′(x)=ex-1-1, 由h′(x)=0得x=1, 则当x<1时,h′(x)<0,即函数h(x)在(-∞,1)上单调递减; 当x>1时,h′(x)>0,即函数h(x)在(1,+∞)上单调递增. 因此,当x=1时,h(x)取最小值h(1)=0. 即对任意实数x都有h(x)≥0,又x2≥0, 所以f(x)-g(x)≥0, 故对任意实数x,恒有f(x)≥g(x).
[集训冲关]
1.函数 f(x)=2x2-ln x 的单调递增区间是
A.0,12
B.-12,0和12,+∞
C.12,+∞
D.-∞,-12和0,12
()
解析:由题意得 f′(x)=4x-1x=4x2x-1,且 x>0,由 f′(x)>0,即 4x2-1>0, 解得 x>12.故选 C.
答案:C
2.已知函数 f(x)=-12x2+2x-aex. (1)若 a=1,求 f(x)在 x=1 处的切线方程;
令 g′(x)=0,解得 x=3,列表如下:
故函数 g(x)在 x=3 处取得极小值,亦即最小值, 即 g(x)min=-e13,∴a≤-e13, 故实数 a 的取值范围是-∞,-e13.
第4章+第2讲+导数的概念及运算2024高考数学一轮复习+PPT(新教材)
![第4章+第2讲+导数的概念及运算2024高考数学一轮复习+PPT(新教材)](https://img.taocdn.com/s3/m/4212083d0a1c59eef8c75fbfc77da26925c596cf.png)
=(x2)′ex+x2(ex)′=2xex+x2ex=(2x+x2)ex,错误;对于 C,(xcosx)′=cosx
-xsinx,错误;对于 D,x-1x′=1-1x′=1+x12,错误.故选 A.
解析 答案
x-3 (2)(2021·贵阳模拟)已知 f(x)的导函数为 f′(x),f(x)= ex +2f′(1)·x, 则 f′(1)=________. 答案 -3e 解析 ∵f(x)=x-ex 3+2f′(1)·x,∴f′(x)=4-ex x+2f′(1),∴f′(1)=3e+ 2f′(1),解得 f′(1)=-3e.
解析 由导函数图象可知两函数的图象在x0处的切线斜率相等,故选D.
解析 答案
4. (2021·长沙检测)如图所示,y=f(x)是可导函数,直线 l:y=kx+3 是 曲线 y=f(x)在 x=1 处的切线,令 h(x)=fxx,h′(x)是 h(x)的导函数,则 h′(1) 的值是( )
A.2
B.1
解
导数的运算方法 (1)连乘积形式:先展开化为多项式的形式,再求导. (2)分式形式:观察函数的结构特征,先化为整式函数或较为简单的分 式函数,再求导. (3)对数形式:先化为和、差的形式,再求导. (4)根式形式:先化为分数指数幂的形式,再求导. (5)三角形式:先利用三角函数公式转化为和或差的形式,再求导. (6)复合函数:确定复合关系,由外向内逐层求导.
的值,即ΔΔyx有极限,则称 y=f(x)在 x=x0 处可导,并把这个确定的值叫做 y
=f(x)在 x=x0 处的导数(也称为瞬时变化率),记作 f′(x0)或 y′|x=x0,即
f′(x0)= lim Δx→0
ΔΔyx=Δlixm→0
fx0+Δx-fx0
2020届人教A版_导数及其应用_单元测试(2)
![2020届人教A版_导数及其应用_单元测试(2)](https://img.taocdn.com/s3/m/2b67d64af242336c1eb95e8d.png)
导数及其应用学校:___________姓名:___________班级:___________考号:___________一、单选题 1.函数的单调递增区间是( )A .B .C .D .【答案】C【解析】本题考查导数的运算和导数的应用:利用导数求单调区间.不等式的解法. 函数()3ln f x x x =+的定义域为(0,);+∞()ln 1f x x '=+,由不等式()ln 10f x x '=+> 解得1;x e >则函数()3ln f x x x =+的单调递增区间是1(,).e+∞故选C2.已知函数()3232f x x x mx m =-+--,若存在唯一的正整数0x ,使得()00f x >,则m 的取值范围为( )A .()0,1B .1,13⎡⎫⎪⎢⎣⎭ C .2,13⎡⎫⎪⎢⎣⎭ D .2,3⎡⎫+∞⎪⎢⎣⎭【答案】C【解析】由题意设()()()323,2g x x x h x m x -+=+,则()()2'3632g x x x x x =-+=--,()g x ∴在()(),0,2,-∞+∞递减,在()0,2上递增,且()()()32030,22324g g g ===-+⋅=,在一个坐标系中画出两个函数图象如图:存在唯一的正整数0x ,使得()00f x >,即()()00g x h x >∴由图得02x =,则()()()(){22 11m g h g h >>≤,即0{44 133m mm>>-+≤,解得21,3m m ≤<∴的取值范围是2,13⎡⎫⎪⎢⎣⎭,故选C.【方法点睛】本题主要考查函数的图象与性质、导数的应用及不等式的整数解、数形结合思想的应用,属于难题.数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法,是中学数学四种重要的数学思想之一,尤其在解决选择题、填空题是发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是运用这种方法的关键是正确作出函数图象以及熟练掌握函数图象的几种变换,充分利用数形结合的思想方法能够使问题化难为简,并迎刃而解.3.已知函数()f x 在R 上满足f(x)=2f(4-x)-2x 2+5x ,则曲线()y f x =在点(2,f(2) ) 处的切线方程是( )A .y=-xB .y x =C .y=-x +4D .y=-2x+2 【答案】A【解析】因为解:∵f(x )=2f (4-x )-2x 2+5x , ∴f(4-x )=2f (x )-(4-x )2+5(4-x ) ∴f(2-x )=2f (x )-x 2+8x+4-5x将f (4-x )代入f (x )=2f (4-x )-2x 2+5x得f (x ),y=f (x )在(2,f (2))处的切线斜率为y′=-1. ∴函数y=f (x )在(2,f (2))处的切线方程为.y=-x 答案A4.已知函数f (x )=x 33+12ax 2+2bx +c 的两个极值分别为f (x 1), f (x 2),若x 1, x 2分别在区间(0,1)与(1,2)内,则b −2a 的取值范围是( )A .(2,7)B .(−4,−2)C .(−5,−2)D .(−∞,2)∪(7,+∞) 【答案】A 【解析】 【分析】先根据导函数的两个根的分布建立a 、b 的约束条件,然后利用线性规划的方法求出目标函数的取值范围即可. 【详解】 ∵函数f (x )=x 33+12ax 2+2bx +c∴f′(x)=x2+ax+2b=0的两个根为x1,x2,∵x1,x2分别在区间(0,1)与(1,2)内∴{f′(0)>0f′(2)>0 f′(1)<0⇒{b>0a+b+2>0 a+2b+1<0做出可行域如图所示,令z=b−2a,平移直线b=2a+z.经过点A(-1,0)时,z最小为:2;经过点B(-3,1)时,z最大为:7∴b−2a∈(2,7),故选:A.【点睛】本题考查的是线性规划问题,解决线性规划问题的实质是把代数问题几何化,即数形结合思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意让其斜率与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大值或最小值会在可行域的端点或边界上取得.5.已知某生产厂家的年利润y(单位:万元)与年产量x(单位:万件)的函数关系式为y=−13x3+81x−286,则该生产厂家获取的最大年利润为()A.300万元B.252万元C.200万元D.128万元【答案】C【解析】【分析】求得函数的导数,得到函数的单调性,进而求解函数的最大值,即可得到答案.【详解】由题意,函数y=−13x3+81x−286,所以y′=−x2+81,当0<x<9时,y′>0,函数f(x)为单调递增函数;当x>9时,y′<0,函数f(x)为单调递减函数,所以当x=9时,y有最大值,此时最大值为200万元,故选C.本题主要考查了利用导数研究函数的单调性与最值问题,其中解答中熟记函数的导数在函数中的应用,准确判定函数的单调性是解答的关键,着重考查了推理与计算能力,属于基础题.6.函数f (x )=(x +1)(x 2-x +1)的导数是 ( ) A .x 2-x +1B .(x +1)(2x -1)C .3x 2D .3x 2+1【答案】C 【解析】7.定义在[a,3]上的函数f(x)=e x −1e x−2x (a >0)满足,f(a +1)⩽f (2a 2),则实数a 的取值集合是( ) A .(0,√62] B .(1,√62) C .[2√33,√62] D .[1,√62] 【答案】D 【解析】 【分析】对函数求导得到函数的单调性,将不等式转化为a +1≤2a 2≤3结合a >0,解得a 的范围. 【详解】函数f(x)=e x −1e x −2x (a >0),对函数求导得到f ′(x )=e x +e −x −2≥2√e x ⋅e −x −2=0故函数在所给区间上是单调递增的,f(a +1)⩽f (2a 2)等价于a +1≤2a 2≤3 结合a >0,解得1≤a ≤√62故答案为:D. 【点睛】这个题目考查了导数在研究函数单调性中的应用,通过研究函数单调性将函数值的大小转化为自变量的大小关系,进而得到结果.8.已知f ′(x )是函数f (x )的导函数,且对任意的实数x 都有f ′(x )=e x (2x −2)+f (x )(e 是自然对数的底数),f (0)=1,若方程f (x )=k 有三个不同的实数根,则实数k 的取值范围是( )A .(−∞,0]B .(0,4e ) C .(4e ,+∞) D .[e,+∞)【解析】分析:因为f′(x )=e x (2x −2)+f (x ),所以f′(x )e x −(e x )′f (x )e 2x=2x −2,从而有[f (x )e x]′=2x −2,也就是f (x )=e x (x 2−2x +c ),结合f (0)=1得到c =1,从而利用导数研究y =f (x )的图像后利用直线y =k 与其有两个不同的交点即可得到k 的取值范围. 详解:因为f′(x )=e x (2x −2)+f (x ),所以f′(x )e x −(e x )′f (x )e 2x=2x −2,也就是[f (x )e x]′=2x −2,从而f (x )=e x (x 2−2x +c ),又f (0)=1,故c =1.f′(x )=e x (x 2−1), 当x ∈(−∞,−1)时,f′(x )>0,f (x )为增函数; 当x ∈(−1,1)时,f′(x )<0,f (x )为减函数; 当x ∈(1,+∞)时,f′(x )>0,f (x )为增函数,所以当f (1)<k <f (−1)即0<k <4e 时,直线y =k 与y =f (x )的图像有三个不同的交点,即方程f (x )=k 有三个不同的解.故选B .点睛:当函数及其导数满足等式关系时,我们需要根据关系式的形式构建新函数,使得它的导数就是前述的关系式.另外,方程的零点的个数的讨论可以转化为定函数的图像与水平动直线的位置关系讨论.9.已知曲线f(x)=lnx+x 2a 在点(1,f (1))处的切线的倾斜角为3π4,则a 的值为( ) A .1 B .﹣4 C .﹣12 D .﹣1【答案】D 【解析】分析:求导f′(x)=1x +2x a,利用函数f (x )在x=1处的倾斜角为3π4得f′(1)=﹣1,由此可求a 的值. 详解: 函数f(x)=lnx +x 2a(x >0)的导数f′(x)=1x +2x a,∵函数f (x )在x=1处的倾斜角为3π4∴f′(1)=﹣1, ∴1+2a =﹣1,∴a=﹣1. 故选:D .点睛:求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点P(x 0,y 0)及斜率,其求法为:设P(x 0,y 0)是曲线y =f(x)上的一点,则以P 的切点的切线方程为:y −y 0=f′(x 0)(x −x 0).若曲线y =f(x)在点P(x 0,f(x 0))的切线平行于y 轴(即导数不存在)时,由切线定义知,切线方程为x =x 0.10.已知偶函数()f x 满足()()44f x f x +=-,且当(]0,4x ∈时, ()()ln 2x f x x=,关于x 的不等式()()20fx af x +>在[]200,200-上有且只有200个整数解,则实数a 的取值范围是( )A .1ln6,ln23⎛⎤- ⎥⎝⎦B .1ln2,ln63⎛⎫-- ⎪⎝⎭ C .1ln2,ln63⎛⎤-- ⎥⎝⎦ D .1ln6,ln23⎛⎫- ⎪⎝⎭【答案】C【解析】因为偶函数()f x 满足()()44f x f x +=-,所以()()()888f x f x f x T =-=-⇒= ,因为关于x 的不等式()()20fx af x +>在[]200,200-上有且只有200个整数解,所以关于x 的不等式()()20fx af x +>在0,4()上有且只有2个整数解,因为()21ln2e 02x f x x x -==⇒=' ,所以()f x 在e 0,2⎛⎫⎪⎝⎭上单调递增,且()2,e f x ⎛⎫∈-∞ ⎪⎝⎭,在e ,42⎛⎫ ⎪⎝⎭ 上单调递减,且()3ln22,4e f x ⎛⎫∈ ⎪⎝⎭,因此()0f x >,只需()f x a >-在0,4()上有且只有2个整数解,因为()()ln61ln233f f =>= ,所以ln3ln3ln2ln266a a >-≥⇒-<≤-,选C. 点睛:对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等. 11.函数()y f x =的导函数()y f x ='的大致图象如下图所示,则函数()y f x =的图象可能是( )A.B.C.D.【答案】B【解析】由题意函数y=f(x)的导函数的大致图象如图所示可得,导函数的符号为负,正,负,正;对应函数的单调性为:减函数,增函数,减函数,增函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导数及其应用(二)导数及其应用(二)【知识回顾】1、函数的单调性一般地,函数«Skip Record If...»=«Skip Record If...»在某个区间(a,b)内,若«Skip Record If...»>0,那么函数«Skip Record If...»=«Skip Record If...»在这个区间内_________;若«Skip Record If...»<0,那么函数«Skip Record If...»=«Skip Record If...»在这个区间内_________;2、极值判别法当函数«Skip Record If...»在点«Skip Record If...»及两侧有定义时,极值判断法是:如果在«Skip Record If...»附近的左侧«Skip Record If...»>0,右侧«Skip Record If...»<0,那么«Skip Record If...»是_____值;如果在«Skip Record If...»附近的左侧«Skip Record If...»<0,右侧«Skip Record If...»>0,那么«Skip Record If...»是_____值。
3、求可导函数极值的步骤:①求导数«Skip Record If...»;②求导数«Skip Record If...»=0的根;③列表,用根判断«Skip Record If...»在方程根左右的值的符号,确定«Skip Record If...»在这个根处取极大值还是取极小值。
4、函数的最大值与最小值«Skip Record If...»在[«Skip Record If...»]上求最大值与最小值的步骤:先求 «Skip Record If...»在(«Skip Record If...»)内的极值;再将«Skip Record If...»的各极值与____,_____比较,其中最大的一个是最大值,最小的一个是最小值。
5.定积分的概念与计算(1)定义表达式:«Skip Record If...»(2)定积分几何意义:①«Skip Record If...»表示y=f(x)与____轴,直线x=____直线x=____所围成曲边梯形的面积②«Skip Record If...»表示y=f(x)与x轴,x=a,x=b所围成曲边梯形的面积的相反数(3)定积分的性质①_____________________②___________________③_________________(4)微积分基本定理(牛顿--莱布尼兹公式)_____________________________________;2.定积分的基本应用:(1)利用定积分计算平面图形的面积;(2)利用平面图形的面积计算定积分.【提能演练】第Ⅰ卷(选择题共40分)一、选择题(本大题共8/小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是最符合题目要求的.)1、下列函数在点«Skip Record If...»处没有切线的是( )A.«Skip Record If...»B.«Skip Record If...»C.«Skip Record If...»D.«Skip Record If...»2、函数«Skip Record If...»的的单调递增区间是 ( )A.«Skip Record If...»B.«Skip Record If...»C.«Skip Record If...»D.«Skip Record If...»和«Skip Record If...»3、若函数«Skip Record If...»是定义在R上的可导函数,则«Skip Record If...»是«Skip Record If...»为函数«Skip Record If...»的极值点的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4、下列各式中值为1的是 ( )A.«Skip Record If...»B.«Skip Record If...»C.«Skip Record If...»D.«Skip Record If...»5、若函数«Skip Record If...»的图象的顶点在第四象限,则函数«Skip Record If...»的图象是( )6、曲线«Skip Record If...»在点«Skip Record If...»处的切线方程为«Skip Record If...»,则«Skip Record If...»的值分别为 ( )A.«Skip Record If...»B.«Skip Record If...»C.«Skip Record If...»D.«Skip Record If...»7、设函数«Skip Record If...»在«Skip Record If...»上的导函数为«Skip Record If...»,«Skip Record If...»在«Skip Record If...»上的导函数为«Skip Record If...»,若在«Skip Record If...»上,«Skip Record If...»恒成立,则称函数函数«Skip Record If...»在«Skip Record If...»上为“凸函数”.已知当«Skip Record If...»时,«Skip Record If...»在«Skip Record If...»上是“凸函数”.则«Skip Record If...»在«Skip Record If...»上 ( ) A.既有极大值,也有极小值 B.既有极大值,也有最小值C.有极大值,没有极小值D.没有极大值,也没有极小值8、如图,曲线«Skip Record If...»上任一点«SkipRecord If...»的切线«Skip Record If...»交«Skip RecordIf...»轴于«Skip Record If...»,过«Skip Record If...»作«Skip Record If...»垂直于«Skip Record If...»轴于«SkipRecord If...»,若«Skip Record If...»的面积为«Skip Record If...»,则«Skip Record If...»与«Skip Record If...»的关系满足 ( )A.«Skip Record If...»B.«Skip Record If...»C.«Skip Record If...»D.«Skip Record If...»第Ⅱ卷(非选择题共90分)二、填空题(本大题共6小题,每小题5分,共30分.把答案填在题中的横线上.)9、已知函数«Skip Record If...»的图象上一点(1,2)及邻近一点«Skip Record If...»,则«Skip Record If...»等于______10、函数x e)(-=的单调递增区间是_____________f)3(xx11、曲线«Skip Record If...»和«Skip Record If...»在它们交点处的两条切线与«Skip Record If...»轴所围成的三角形面积是 .12、已知函数«Skip Record If...»在x=2处取得极值9,则«Skip Record If...»13.«Skip Record If...»_________14、已知函数«Skip Record If...»的图象如图所示,它与直线«Skip Record If...»在原点处相切,区域(图中阴影部分)的面积为«Skip Record If...»,则«为 .三、解答题(本大题共6小题,共80分,解答应写出必要的文字说明、证明过程及演算步骤.)15、(12分)求由曲线«Skip Record If...»及«Skip Record If...»围成的平面图形面积.16、(12分)已知函数«Skip Record If...»的图象关于原点成中心对称. (1)求«Skip Record If...»的值; (2)求«Skip Record If...»的单调区间及极值.17、(14分)某厂生产产品x 件的总成本32()120075c x x =+(万元),已知产品单价P(万元)与产品件数x 满足:2k P x=,生产100件这样的产品单价为50万元. (1)设产量为«Skip Record If...»件时,总利润为«Skip Record If...»(万元),求«Skip Record If...»的解析式;(2)产量«Skip Record If...»定为多少件时总利润«Skip Record If...»(万元)最大?并求最大值(精确到1万元).18、(14分)设函数329()62f x x x x a =-+-. (1)对于任意实数x ,()f x m '≥恒成立,求m 的最大值;(2)若方程()0f x =有且仅有一个实根,求a 的取值范围.19、(14分)已知函数1()ln(1),01x f x ax x x-=++≥+,其中0a > (1)若()f x 在x =1处取得极值,求a 的值; (2)求()f x 的单调区间;(3)若()f x 的最小值为1,求a 的取值范围。