龙格-库塔法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
龙格-库塔法
格-库塔法(Runge-Kutta)数值分析中,龙格-库塔法(Runge-Kutta)是用于模拟常微分方程的解的重要的一类隐式或显式迭代法。这些技术由数学家卡尔·龙格和马丁·威尔海姆·库塔于1900年左右发明。
经典四阶龙格库塔法
龙格库塔法的家族中的一个成员如此常用,以至于经常被称为“RK4”或者就是“龙格库塔法”。
令初值问题表述如下。
则,对于该问题的RK4由如下方程给出:
其中
这样,下一个值(y n+1)由现在的值(y n)加上时间间隔(h)和一个估算的斜率的乘积决定。该斜率是以下斜率的加权平均:
∙k1是时间段开始时的斜率;
∙k2是时间段中点的斜率,通过欧拉法采用斜率k1来决定y在点t n + h/2的值;
∙k3也是中点的斜率,但是这次采用斜率k2决定y值;
∙k4是时间段终点的斜率,其y值用k3决定。
当四个斜率取平均时,中点的斜率有更大的权值:
RK4法是四阶方法,也就是说每步的误差是h5阶,而总积累误差为h4阶。
注意上述公式对于标量或者向量函数(y可以是向量)都适用。
显式龙格库塔法
显示龙格-库塔法是上述RK4法的一个推广。它由下式给出
其中
(注意:上述方程在不同著述中由不同但却等价的定义)。
要给定一个特定的方法,必须提供整数s (阶段数),以及系数 a ij (对于1 ≤ j < i ≤s), b i (对于i = 1, 2, ..., s)和c i (对于i = 2, 3, ..., s)。这些数据通常排列在一个助记工具中,称为龙格库塔表:
0 c2 a21 c3 a31 a32c s a s1 a s2a s,s − 1 b1 b2b s − 1 b s
龙格库塔法是自洽的,如果
如果要求方法有精度p则还有相应的条件,也就是要求舍入误差为O(h p+1)时的条件。这些可以从舍入误差本身的定义中导出。例如,一个2阶精度的2段方法要求b1 + b2 = 1, b2c2 = 1/2, 以及b2a21 = 1/2。
欢迎您的下载,
资料仅供参考!
致力为企业和个人提供合同协议,策划案计划书,学习资料等
等
打造全网一站式需求