结构力学——力矩分配法
结构力学-力矩分配法
•
3、转动刚度S:
• 表示杆端对转动的抵抗能力。 在数值上= 仅使杆端发生单位转动时需在杆端施加 的力矩。AB 杆A 端的转动刚度SAB与AB 杆的线刚度 i(材料的性质、横截面 的形 状和尺寸、杆长)及远端支承有关,而 与近端支承无关。当远端是不同支承时, 等截面杆的转动刚度如下:
转动刚度
在确定杆端转动刚度时:近端看位移(是否为单位位移)
远端看支承(远端支承不同,转动刚度不同)。
下列那种情况的杆端弯矩MAB=SAB
MAB
MAB
θ MAB
1
√ ① ②
1
MAB
1
③④
1
Δ
转动刚度SAB=4i是( )
A
i
B
A
i
√ √ B ①
③
A
i
B
④
A
i
4i>SAB>3i
√B ②
A
i⑤ B
i
返回
二、基本运算
AA1155kkNN↓↓↓↓44↓↓i00↓↓=kk↓↓1NN↓↓↓↓//mm↓↓↓↓ DD
MA 10
80
mAB
M=15 i=2
mAD mAC CC
MM图图((kkNN..mm))
22mm
22mm
44mm
A
C
D
AD
AC
CA
DA
3/9
2/9
- 80
15
10
-10 返回
- 65
10
- 10
三、多结点力矩分配法
⑶为了取消结点C的刚臂,放松结点C,在结点C加上 (-(MC+ M传)),如图d,为了使BCD部分只有一个角位 移,结点B再锁住,按基本运算进行力矩分配和传递。结 点C处于暂时的平衡。
结构力学下多结点力矩分配法
结构力学下多结点力矩分配法引言在结构力学中,力矩分配法是一种常见的分析方法,用于计算多结点约束下的力矩分配。
多结点力矩分配法通过将外加载荷分配给结构中的各个节点,以确定每个节点承载的力矩。
本文将介绍结构力学下的多结点力矩分配法的基本原理和计算方法。
原理多结点力矩分配法的原理基于以下假设:1.结构是一个刚体,可以忽略其变形。
2.结构中的每个节点都可以承受力矩,且力矩的分配是均匀的。
基于这些假设,我们可以将外加载荷分配给结构中的各个节点,并计算每个节点承载的力矩。
力矩的分配是根据节点间的刚性关系来确定的。
计算方法多结点力矩分配法可以通过以下步骤进行计算:1.确定结构的节点个数和节点编号。
2.根据结构的几何形状和边界条件,建立节点间的刚性关系。
3.将外加载荷均匀地分配给每个节点。
可以根据结构的几何形状和边界条件,考虑节点之间的距离和角度来确定各个节点的分配比例。
4.根据节点间的刚性关系,计算每个节点承载的力矩。
可以使用刚体平衡条件来计算力矩的分配。
5.检查计算结果的合理性。
根据结构的几何形状和边界条件,验证计算得到的力矩分配是否符合工程实际。
示例下面以一个简单的桁架结构为例,介绍多结点力矩分配法的计算方法。
假设桁架结构的节点个数为4,节点编号分别为1, 2, 3和4。
外加载荷为M,沿结构的纵向均匀分布。
根据桁架结构的几何形状和边界条件,建立节点间的刚性关系。
假设节点1和节点2之间的刚性系数为k1,节点2和节点3之间的刚性系数为k2,节点3和节点4之间的刚性系数为k3。
将外加载荷均匀地分配给每个节点。
假设节点1承载的力矩为M1,节点2承载的力矩为M2,节点3承载的力矩为M3,节点4承载的力矩为M4,可以得到以下关系:M1 + M2 + M3 + M4 = M根据节点间的刚性关系,可以得到以下关系:k1 * (M2 - M1) = 0k2 * (M3 - M2) = 0k3 * (M4 - M3) = 0通过这些关系,我们可以求解出每个节点承载的力矩。
力矩分配法公式
力矩分配法公式力矩分配法是结构力学中求解超静定结构的一种重要方法。
这玩意儿听起来好像挺高深莫测的,但其实只要咱们一步步来,也能把它搞明白。
我记得之前给学生们讲这个知识点的时候,有个叫小李的同学,那表情简直就像是被扔进了一团迷雾里,完全找不着北。
我就问他:“小李,咋啦?”他苦着脸说:“老师,这力矩分配法的公式我咋看都像外星文,根本理解不了啊!”其实啊,力矩分配法的核心就是通过逐次分配和传递不平衡力矩,来逐步逼近真实的内力解。
那力矩分配法的公式到底是啥呢?咱们来瞅瞅。
先说基本的分配系数。
分配系数μij 等于连接在节点 i 的 j 杆端的转动刚度 Sij 除以交于节点 i 的各杆端转动刚度之和∑Sik 。
这就好比一群小伙伴分糖果,每个人能分到的糖果数取决于自己手里的“筹码”(转动刚度)占总“筹码”的比例。
再看传递系数 Cij。
对于不同的杆件,传递系数是不一样的。
比如两端固定的梁,近端的传递系数是 1/2,远端是 0;一端固定一端铰支的梁,固定端的传递系数是 1/2,铰支端是 0 。
然后就是不平衡力矩的分配和传递啦。
先计算不平衡力矩 M,它等于固端弯矩之和。
接着将不平衡力矩按照分配系数分配给各杆端,得到分配弯矩。
分配弯矩再乘以传递系数传递到远端,就得到传递弯矩。
就拿一个简单的连续梁来说吧。
假设我们有一个两跨连续梁,AB跨和 BC 跨,B 节点处有一个集中力。
我们先计算各杆端的转动刚度,确定分配系数。
算出不平衡力矩后进行分配和传递,一次次地重复这个过程,直到误差在允许范围内。
在实际解题的时候,可别被那些密密麻麻的数字和符号给吓住了。
要像剥洋葱一样,一层一层地来。
就像小李同学,在我给他耐心讲解,又带着他做了几道练习题后,他终于恍然大悟,一拍脑门说:“哎呀,老师,原来也没那么难嘛!”总之,力矩分配法公式虽然看起来有点复杂,但只要我们理解了其中的原理,多做几道题练练手,就能把它拿下。
同学们,加油哦!。
结构力学——力矩分配法分解
3 . 一般最终的杆端力矩与固端力矩是同量级的,要求精确 到三位有效数字,计算中取4位计算,以保证前三位的 精确度
第三节 多结点力矩分配法
计算的指导思想由两个步骤说明:
固定状态的计算(与单点固定一样)。
即刚臂→荷载→固端力矩→约束力矩;
100k0N
EI
1 EI
2 EI
0.43 0.57 0.57 0.43
-500 -1000
M3B=1000
例题:有支座移动(已知结点线位移)E=200GPa,I = 2500cm4
绘制弯矩图。
A
B
C
D
EI
EI
=1cm
10m
10m
10m
0.429 0.571
0.571 0.429
MF
3000
3000 -1500
2 . 不相邻 点可同时 释放.
例题:用力矩分配法求图示结构弯矩图(利用传递系数的概念) 。
A
EI
10m
1 EI
10m
100k0N 2 EI 3 B 3B是悬臂梁,
转动结点3 时,
10m 1m 悬臂可自由转
0.43 0.57 0.5 0.5 1 0
动,固其转动
MF
1000 刚度为零
或A
MF
100k0N
放松状态的计算(与单点放松不同)。
力矩的分配和传递是在远端约束已知的情况下进行的, 因此,分配单元的相邻结点不应同时放松。每次只能 放松一个结点,同时相邻结点保持固定,所以,整个 放松过程是轮流放松每一个结点来逐步完成的。
第三节 多结点力矩分配法
结构力学第六章超静定结构的计算——力矩分配法
《结构力学》习题集- 33 -第六章 超静定结构的计算——力矩分配法一、本章基本内容:1、基本概念:转动刚度、分配系数、传递系数、侧移刚度;(1)力矩分配法是以位移法为基础的一种渐进解法;(2)转动刚度与杆件的线刚度和远端支承情况有关;(3)杆件远端的支承情况不同,相应的传递系数也不同;(4)分配系数的值小于等于1,并且1=∑ik μ;(5)力矩分配法只适用于计算无结点线位移的结构。
2、固端力矩、结点不平衡力矩的计算;3、用力矩分配法计算多跨梁和无侧移刚架的一般步骤:(1)计算汇交于各结点的每一杆端的分配系数并确定传递系数;(2)求出各杆件的固端弯矩;(3)求出结点不平衡力矩,将其反号乘上各杆件的分配系数得到相应的分配弯矩。
然后,再将分配弯矩乘以传递系数,求出远端的传递弯矩。
按此步骤循环计算,直到不平衡力矩小到可以忽略不计为止。
(4)将每一杆端的固端弯矩、历次的分配弯矩和传递弯矩相加,求出最后杆端弯矩。
(5)校核最后杆端弯矩,作内力图。
二、习题:(一)、判断题(不作为考试题型):1、力矩分配法中的分配系数、传递系数与外来因素(荷载、温度变化等)有关。
2、若图示各杆件线刚度i 相同,则各杆A 端的转动刚度S 分别为:4 i , 3 i , i 。
AA A3、图示结构EI =常数,用力矩分配法计算时分配系数4 A μ= 4 / 11。
1l ll第六章 力矩分配法- 34 -4、图示结构用力矩分配法计算时分配系数μAB =12/,μAD =18/。
BCA D E =1i =1i =1i =1i5、用力矩分配法计算图示结构,各杆l 相同,EI =常数。
其分配系数μBA =0.8,μBC =0.2,μBD =0。
A B CD6、在力矩分配法中反复进行力矩分配及传递,结点不平衡力矩愈来愈小,主要是因为分配系数及传递系数< 1。
7、若用力矩分配法计算图示刚架,则结点A 的不平衡力矩为 −−M Pl 316。
结构力学(I)力矩分配法
M1B M1FB
M1C M1FC
S1 B ( R ) M1FB 1B ( R1P ) S 1P
1
1
S1C ( R ) M 1FC 1C ( R1P ) S 1P
1
力矩分配法采用了与位移法相同的基本结 构,即固定刚结点,在固定状态下刚臂上产生 约束力矩,为恢复到原状态,将刚臂放松(加 反方向约束力矩),求出放松状态产生的杆端 力矩,将固定状态与放松状态的杆端力矩叠加 即得结构的实际杆端力矩.
一. 基本概念
远端支撑 固定 铰支 滑动 转动刚度S 4i 3i i 传递系数C 1/2 0 -1
1
1
1
可避免解联立方程 不需要求出角位移 计算程式简单机械
哈工大 土木工程学院
4i
1 / 31
2i
3i
哈工大 土木工程学院
i
2 / 31
讨论 1 点在M作用下各杆端的弯矩 1M m1 0
列表法
练习:用力矩分配法求图示结构弯矩图
B
EI
A
EI
C
40 kN
10m
10m
q 10 kN/m
M F 100
分 配 传 递
0.571 0.429 100 0 57.1 42.9 42.9 42 .9
0 0
A
4m
EI
BБайду номын сангаас
4m
EI
C
6m
28.6
M 128.6
128 .6
0
42.9
M
哈工大 土木工程学院
ql 2 /12
A
F F M BC M CB 0
结构力学——力矩分配法
结构力学——力矩分配法结构力学是研究物体在外力作用下的变形和破坏行为的学科。
其中,力矩分配法是一种求解结构梁的内力和变形的常用方法之一、本文将介绍力矩分配法的基本理论和应用。
首先,对于结构力学的研究,我们需要了解一些基本概念。
力矩是由力的作用点与旋转轴之间的距离和力的大小决定的。
在结构力学中,我们通常考虑作用在梁上的力和力矩。
梁是一种常见的结构元件,可以将其看作是在两个固定点之间作用的力的集合。
在力矩分配法中,我们将梁分割成若干个小段,然后逐段计算每个小段的内力和变形。
假设有一根长度为L,截面形状均匀的梁,并且在两个固定点之间施加了一系列分布力。
我们可以将梁分割成n个小段,每个小段的长度为Δx=L/n。
接下来,我们需要计算每个小段的内力和变形。
首先,我们可以根据材料力学的基本原理得出梁的拉伸、压缩和弯曲的力学方程。
然后,我们可以根据小段的切线方向和切线上的任意一点来推导出该小段的内力和弯曲方程。
最后,我们将内力分量在小段两端的力矩分配系数和位置矩分配系数进行合成,从而得出该小段的内力和弯曲方程。
在力矩分配法中,一个重要的概念是力矩分配系数。
力矩分配系数是一个无量纲的参数,用来表示力和力矩在小段两端分配的比例。
在计算力矩分配系数时,我们可以根据梁的几何形状和分布力的位置,利用力矩的基本原理进行推导。
力矩分配系数是力矩分配法的核心,它可以帮助我们计算出每个小段的内力和变形。
在实际应用中,力矩分配法通常用于求解多跨梁的内力和变形。
我们可以将多跨梁分割成若干个小段,并根据力矩分配法计算出每个小段的内力和变形。
然后,我们可以将各个小段的内力和变形进行叠加,得出整个多跨梁的内力和变形。
需要注意的是,力矩分配法具有一定的局限性。
首先,它只适用于存在弯曲变形的梁,对于其他类型的结构,如框架和板,需要采用其他的分析方法。
其次,力矩分配法仅适用于分布力作用在梁的直线部分上,对于弯曲部分或非均匀分布力的情况,需要采用其他的方法进行分析。
结构力学——力矩分配法分解课件
THANK YOU
复杂结构的力矩分配法分析
总结词
需要对复杂结构进行精细的力矩分配
详细描述
对于复杂结构,如桥梁、高层建筑等,力矩分配法需要更加精细的分析。这需要对结构的各种参数进 行详细的计算和调整,包括转动刚度、分配系数、传递系数等。通过合理的简化模型和精细的计算, 可以获得结构的整体性能和局部细节,满足工程设计的需要。
应用范围
适用于具有刚性转动 部分的连续梁和框架
适用于具有弹性支撑 的连续梁和框架
适用于具有弹性转动 部分的连续梁和框架
适用条件
结构体系为连续梁或框架 结构具有刚性转动部分,且转动部分在分配力矩后不会出现弹性变形
结构具有弹性支撑,且弹性支撑在分配力矩后不会出现弹性变形
计算复杂度与精度要求
力矩分配法的计算复杂度取决于梁和框 架的自由度数量,自由度越多,计算越
。
误差传递
由于传递系数和分配系数的近似 计算,可能会引入一定的误差,
影响分析结果的准确性。
计算复杂度
对于大型复杂结构,力矩分配法 的计算量可能会变得很大,需要
借助计算机辅助分析。
改进与发展方向
01
02
03
04
数值优化
通过改进算法和优化计算方法 ,提高力矩分配法的计算效率
和精度。
考虑非线性因素
将非线性因素纳入力矩分配法 中,以适应更广泛的结构类型
在力矩分配法中,将结构中的结点分为两类:基本结点和附属结点。基本结点是承 受力矩的结点,附属结点则是传递力矩的结点。
力矩分配法的原理是将所有结点的力矩自由度进行分配,通过调整传递系数来使各 结点的力矩平衡,从而求解出各个结点的位移。
刚度系数与传递系数
刚度系数是指单位力矩作用下结 点的位移,它反映了结点的刚度
7 力矩分配法 结构力学
第7章 力矩分配法
Moment Distribution Method
工程技术学院土木教研室
主要内容:
§9-1
力矩分配法的基本概念 点线位移刚架
§9-2 力矩分配法计算连续梁和无结
§9-3 超静定结构超静定结构小结
§9-1 力矩分配法的基本概念
一、转动刚度:
(3)计算分配弯矩 A 和传递弯矩
3m
40KN B EI 3m
16KN/m C EI 3m
1.分配系数 2.固端弯矩 -30 3.分配弯矩 传递弯矩 -2.4
' M BA 0.4 ( 12) 4.8 KNm
0.4 0.6 30 -18 -4.8 -7.2
0
0
' M BC 0.6 ( 12) 7.2 KNm
1 j
S1 j
S
(1)
M1 j 1 j M
ij
S ij
S
(i )
ij
S ij
S
(i )
M ij ij M
各杆的分配弯矩 Mij 各杆在i端的分配系数之和等于1。 校核分配系数的计算是否正确?
ij 1
(i )
三、传递系数:
• 传递系数:远端弯矩与近端(转动端)弯矩的 比值称为近端向远端的传递系数,简称传递系 数。用Cij表示。 • 传递弯矩:远端弯矩
(1) (1)
M1 j
S1 j
S14 M S
(1)
S
(1)
M
M1 j
S1 j
S
(1 )
M
各杆在1端的弯矩与该杆在1端的转 动刚度成正比。 下标 j 为汇交于1点的各杆之远端, j= 2、 3、 4、 5 各杆在1端的弯矩等于外力矩乘上 一个相应的系数 1j--分配系数。 下标 i 为近端、j 为汇交于 i 点的 各杆之远端。
结构力学 课件 力矩分配法
SAB
1
2 传递系数C
传递系数: 一单跨超静定梁的一端(A端)单位转角时,发生于远 端(B端)的弯矩与近端(A端)的弯矩之比。
如: 当远端(B端)固定,C AB
M
BA
SAB
1 2 S AB
MBA
A B
图(a)
1
C 当远端(B端)铰支 , AB
M
SAB
A
B
BA
0
SAB
A
1
图(b)
S AB
(1)设想在结点B增加一个附加刚臂,得到位 移法基本结构。阻止其转动如图(g)所示。 查表容易得到各单跨超静定梁的杆 端弯矩。则附加刚臂的约束力矩由 结点B的平衡条件得
M
B
Fp
A
q
B C
图(f)
MB
A
Fp
B
q
C
图(g)
M
F BA
M
F BC
MB MBAF -MB
A B C
附加刚臂的约束力矩MB 是原结构 上所没有的,它反映了基本结构汇 交于B结点的各杆B端弯矩所不能平 衡的差额。我们称之为B结点的不 平衡力矩。
MBCF
图(h)
(2)原结构在结点B本来没有转动约束,即不存在不平衡力矩MB ,因 此,为了与实际情况相符,必须消除人为引入的附加刚臂,即使MB 0,这就相当于在 MB的基础上再施加上一个(- MB )如图(h)所示。
此时梁将产生新的杆端弯矩M´BA 、 M´BC (分配弯矩),在远端将产生新 的杆端弯矩M´AB 、 M´CB 、(传递弯 矩)。 (3)原结构在荷载的作用下的实际杆端弯 矩应为图(g) 和图(h)两种情况的叠加。 下面举例说明力矩分配法的解题过 程。
结构力学 力矩分配法
最后杆端弯矩的计算,是将同一杆 端(表中同一杆端下的列)下的固 端弯矩、分配弯矩及传递弯矩相叠 加得出。
例10-2-2 用力矩分配法计算图示刚架, 并作弯矩图。
q= 20kN /m B C E
A 6m (a)
D 6m
解:1)计算分配系数:设EI/6=1
结点B单元:SBA=4 SBC=8 BA 1 3 BC 2 3
M A3
3 63 21kN m 9
C M 3A 0
3)叠加计算各杆最后弯矩
F M A1 M A1 M A1 28 6 34 kN m
F M A2 M A2 M A2 14 0 14 kN m
M A3 21 9 12 kN m
F M A M Ai i 1 n
(10-1-4)
例10-1-1
q=2kN/m,FP1=10kN,FP2=8kN
试用力矩分配法计算,并作刚架弯矩图。
FP 1 =10kN
FP 2 =8kN 1 A
(a)
6m
6m
FP1 = 10kN
F P2= 8kN 1 A
60kN m 1 14kN m A
例10-2-1
用力矩分配法计算图(a)所示连续梁, 并作弯矩图。
E I
2 2 m m
6 m
4 m
解:1)计算分配系数:令EI=1 B结点分配 单元:
S BA EI 4 1 4
S BC
EI 2 4 6 3
S
Bi
5 3
BA
3 5
BC
2 5
C结点分配单元:
S CB 2 3 8 17
EI 3 S CD 3 4 4 9 CD 17
第6章力矩分配法
第6章 力矩分配法§6 – 1 基本概念力矩分配法适用于无结点线位移的刚架和连续梁结构,是位移法求解问题的一种特殊情况,有线位移结构不能直接利用力矩分配法求解。
6-1-1 名词解释(1)转动刚度AB S :表示抵抗转动的能力,其值等于转动端产生单位转角所需施加的力矩,单跨梁转动刚度如图6-1。
静定结构(或静定部分)的转动刚度为零,即对转动无抵抗能力。
图6-2所示结构有一个转角位移未知数,各杆的转动刚度为:443DA DA DC DC S i i S i ====3i 30DB DB DF S i iS ===(2)分配系数Di μ:某一杆端的分配系数等于,该杆端转动刚度在同一结点各个杆端转动刚度中所占的比例值。
图6-2结构的分配系数为:0.4DADADA DB DC DFS S S S S μ==+++ 0.3DBDB DA DB DC DFS S S S S μ==+++图6-2无侧移刚架结构)b ()c ((a )3AB S i =4AB S =AB S =(d)图6-1等截面单跨梁转动刚度mm0.3DCDC DA DB DC DFS S S S S μ==+++2 结构力学典型例题解析0DFDF DA DB DC DFS S S S S μ==+++(3)弯矩符号规定:力矩分配法在计算过程中不需要画弯矩图,只是以数值形式进行计算,因此,需要事先对力矩和弯矩符号进行规定,具体规定如下:固端弯矩:顺时针为正。
结点外力偶:顺时针为正。
F i j M (4)固端弯矩:将转动结点固定变成位移法的基本体系,外荷载在基本体系上产生的杆端弯矩。
如图6-2结构的固端弯矩为:F F F F F F 0DA DA DB BD CD FD M M M M M M ======F 2145kN m 8DC M ql −==−⋅ F 30kN m DF M =−⋅u D M (5)不平衡力矩:不平衡力矩为转动结点所连杆端的固端弯矩之和,其值等于刚臂反力矩。
结构力学(第四章)-力矩分配法
C M CB = 0
0 0
配 传 递
最终杆端弯矩: 最终杆端弯矩 M AB = 100 28.6 = 128.6 q = 12kN / m 42.9 M BA = 100 57.1 = 42.9 M BC = 0 42.9 = 42.9 128 .6 M CB = 0
C d M AB = CM BA = 0.5 × ( 57.1) = 28.6 C d M CB = CM BC = 0 × ( 42.9) = 0
传递弯矩
与远端支承 情况有关
固定状态: 固定状态 F M AB = ql 2 / 12 = 100kN .m F M BA = 100kN .m F F M BC = M CB = 0 放松状态: 放松状态 d u M BA = BA ( M B ) = 57.1 d u M BC = BC ( M B ) = 42.9
1
ql / 8
2
12
2
100 0 -57.1 -42.9 -6.1 3.5 2.6
0 0 0
28.6
100
-28.6 -57.1 -42.9
21.4 6.1 -9.2 -12.2 -6.1 1.8 6.1 1.8 3.5 2.6
分 配 传 递
0
M 0
A
0
q = 12 kN / m
40.3
2
B
… … ...
A
M
d BA
B
u MB
B
u MB
C
u d d M B + M BA + M BC = 0 1 u ( M B ) B = S BA + S BC
B
结构力学 力矩分配法
同时:各杆远端产生传递弯矩:
M A B
1 2
M
B A
MCB 0
(三)(b)图+(c)图=(a)图,即:
M BA
M
g BA
M B A
M AB
M
g AB
M A B
M BC M B C
MCB 0
归纳:
②①② ①放固放 固松 定松定节 节节节点 点点点, ,,,分 各分各配 杆配杆弯 端弯端矩 有矩有, 固,固传 端传端弯递弯递弯 矩弯矩矩 ,矩,。 有。有节节点点不不平平衡衡力力矩矩。。
第8章 力矩分配法
8.1 力矩分配法的基本概念
属于位移法类型的渐近解法。 一、力矩分配法依据
1. 理论基础:位移法 2. 解题方法:渐进法 3. 适用范围:连续梁、无结点线位移的刚架 4. 计算对象:杆端弯矩,正负号规定与位移法相同 二、力矩分配法的三个基本概念
(一)转动刚度 转动刚度表示杆端对转动的抵抗能力。数值上
M
M AB
S AB S
M
D
A θA
B
A
M AC
S AC S
M
分配弯矩
A
C
θA
M
S
A
M AD
S AD S
M
A
令
μAj
S Aj S
(
j
B,C, D)
A
(a)
M AB SAB θA 4 iAB θA
M AC S AC θA iAC θA
M AD S AD θA 3iAD θA
例: 试绘制连续梁的弯矩图。
力矩分配法步骤
力矩分配法步骤一、力矩分配法概述力矩分配法是一种常用的结构力学计算方法,通过将外力作用于结构的力矩分配到各个构件上,进而求解结构的内力和变形。
本文将介绍力矩分配法的基本步骤,以帮助读者理解并运用该方法。
二、确定支座反力在应用力矩分配法之前,首先需要确定结构的支座反力。
通过平衡条件和约束条件,可以求解出支座反力的大小和方向。
三、选择适当的截面根据结构的几何形状和材料力学性质,选择适当的截面进行内力计算。
一般情况下,选择在结构中能够产生最大弯矩或剪力的截面进行计算。
四、计算截面的惯性矩根据所选截面的几何形状,计算出截面的惯性矩。
惯性矩是描述截面抗弯刚度大小的物理量,计算时需要考虑截面形状和材料的分布。
五、计算截面的受力矩根据外力作用点与截面的相对位置关系,计算出截面上的受力矩。
受力矩的计算需要考虑外力的大小和方向,以及结构的几何形状。
六、应用力矩分配公式根据力矩分配法的基本原理,将截面上的受力矩按比例分配到各个构件上。
分配的比例通常根据截面的惯性矩和构件的刚度来确定。
七、计算构件的内力根据分配到各个构件上的受力矩和构件的刚度,计算出各个构件的内力。
一般情况下,根据受力矩的大小和方向可以确定构件的弯矩和剪力。
八、计算构件的变形根据构件的内力和材料的力学性质,计算出构件的变形。
变形的计算可以采用弹性力学的基本理论,考虑构件的材料性质和几何约束条件。
九、检验计算结果对于复杂的结构系统,需要对计算结果进行检验。
可以通过平衡条件、力的平行四边形法则和位移相容性等原理来检验计算结果的准确性。
十、总结力矩分配法是一种常用的结构分析方法,可以用于求解结构的内力和变形。
通过确定支座反力、选择适当的截面、计算截面的惯性矩、计算截面的受力矩、应用力矩分配公式、计算构件的内力、计算构件的变形和检验计算结果等步骤,可以较为准确地分析结构的力学性能。
但需要注意,在应用力矩分配法时要考虑结构的实际情况和假设条件,以得到合理的计算结果。
第10章 力矩分配法
前面介绍的力法和位移法,是分析超静定结构的两种基本方法。
两种方法都要建立方程并解联立方程解联立方程直接解法渐近解法结构力学中的渐近法有两种应用方式。
•先从力学上建立方程组,然后从数学上对方程组采用渐近解法。
•不建立方程组,直接考虑结构的受力状态,从开始时的近似状态,逐步调整,最后收敛于真实状态。
力矩分配法属于位移法类型的渐近解法。
力矩分配法适用于连续梁和无结点线位移的刚架。
一、力矩分配法中使用的的几个名词(1) 转动刚度转动刚度表示杆端对转动的抵抗能力。
杆端的转动刚度以S表示,它在数值上等于使杆端产生单位转角时在转动端需要施加的力矩。
第一节力矩分配法的基本概念l EI A B 1l EI S AB /4=lEI S AB /3=A B 1A B 1lEI S AB /=A B 0=AB S (a)(b)(c)(d)远端固定,S =4i 远端简支,S =3i 远端滑动,S =i 远端自由,S =0(10-1)(10-2)(10-3)(10-4)图10-1给出了等截面杆件在A 端的转动刚度S AB 的数值。
1)在S AB 中,A 点是施力端,B 点称为远端。
当远端为不同支承地情况时,S AB 的数值也不同。
2)S AB 是指施力端A 在没有线位移的条件下的转动刚度。
在图10–1中,A 端画成铰支座,其目的是为了强调A 端只能转动、不能移动这个特点。
如果把A 端改成辊轴支座,则S AB 的数值不变。
也可以把A 端看作可转动(但不能移动)的刚结点。
这时S AB 就代表当刚结点产生单位转角时在杆端A 引起的杆端弯矩。
关于S AB 应当注意下列几点:3)式(10–1)到(10–3)可由位移法中的杆端弯矩公式导出。
式中lEI i(2) 分配系数图7–2a 所示为三杆AB 、AC 和AD 在刚结点A 连结在一起。
为了便于说明问题,设B 端为固定端,C 端为定向支座,D 端为铰支座。
设有力偶荷载M加于结点A ,使结点A产生转角 A ,然后达到平衡。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三节
多结点力矩分配法
经过一轮固定与放松,变形曲线与实际变形曲线已比较 接近,但还不是实际的变形,因为刚臂上还残存约束力矩,需 要再次进行一轮固定、放松过程。由于每次放松都是将一个约 束力矩分解(因为 <1,C <1),所以几个轮回约束力矩就会 小到可以忽略了。通过逐渐逼近的方式直接求出杆端力矩。 1 . 变形逐渐趋于真实变形;刚臂反力逐渐趋于零。 2 . 释放顺序是任意的,但通常先释放不平衡力矩较大的分 配单元(这样收敛快) 3 . 一般最终的杆端力矩与固端力矩是同量级的,要求精确 到三位有效数字,计算中取4位计算,以保证前三位的 精确度
M
11ql2/32
M
所得结果是 近似解吗?
练习:用力矩分配法求图示结构弯矩图。
40 kN
M 10 kN m
A
4m
EI
B
4m
2 EI
C
RBP 40 10 50 kN m
注1、力偶不引起固端弯矩
6m
M
分 配 传 递
F
注2、杆端最终弯矩
M MF M MC
2、力矩分配法的正负号规定 力矩分配法的理论基础是位移法,故力矩分配法中对杆 端转角、杆端弯矩、固端弯矩的正负号规定与位移法相 同,即都假设对杆端顺时针旋转为正号。作用于结点的 外力偶荷载、作用于附加刚臂的约束反力矩,也假定为 对结点或附加刚臂顺时针旋转为正号。
3、力矩分配法的三要素
(用力矩分配法计算连续梁和无侧移刚架,需要先
⑵
第三节
⑶
多结点力矩分配法
为了取消结点2 的刚臂,放松结点2 ,在结点2 加上 新的负不平衡力矩,为了只在2 点产生一个角位移, 结点1 再锁住,按基本运算进行力矩分配和传递。结 点2 处于暂时的平衡。 传递弯矩的到来,又打破了1 点的平衡,1 点又有了 新的约束力矩M传,重复⑵、⑶两步,经多次循环后各 结点的约束力矩都趋于零,恢复到了原结构的受力状 态和变形状态。一般2~3个循环就可获得足够的精度。 叠加:最后杆端弯矩: M = M F +∑M 分配+∑M 传递
第七章 渐近法——力矩分配法
学习内容
转动刚度、分配系数、传递系数的概念及确定。 力矩分配法的概念,用力矩分配法计算连续梁和 无侧移刚架。 无剪力分配法的概念及计算。 超静定结构影响线及超静定结构的内力包络图。 利用对称性简化力矩分配法计算。
学习目的和要求
目的:力矩分配法是计算连续梁和无侧移刚架的一种 实用计算方法。它不需要建立和求解基本方程,直接得到 杆端弯矩。运算简单,方法机械,便于掌握。 要求:熟练掌握力矩分配法的基本概念与连续梁和无 侧移刚架的计算。掌握无剪力分配法的计算,了解用力矩 分配法计算有侧移刚架。
1
杆端
B B1
A A1
1 1A 1B 1C 1/2 3/8 1/8
C C1
MF
分配 传递
S1 A 4i
S1C i
1 A
1B
4i 1/ 2 4i 3i i 3i 3/8 4i 3i i
M
1C
i 1/ 8 4i 3i i
q
B
ql2/8
结点
二、力矩分配法的概念 1、力矩分配法:主要用于连续梁和无结点线位移(侧移) 刚架的计算,其特点是不需要建立和求解联立方程组, 而在其计算简图上直接进行计算或列表计算,就能直接 求得个杆端弯矩。 理论基础:位移法 力矩分配法 计算对象:杆端弯矩 计算方法:逐次逼近的方法 使用范围:连续梁和无结点线位移的刚架
解决三个问题:) (1)计算单跨超静定梁的固端弯矩 固端弯矩:常用的三种基本结构的单跨超静定梁, 在支座移动和几种常见的荷载作用下的杆端弯矩,可用力 法计算或在计算表中查得。 (2)计算结点各杆端的弯矩分配系数μ
(3)计算杆件由近端向远端传递的弯矩传递系数C
4、相关参数的概念
(1)转动刚度S:表示杆端对转动的抵抗能力,在
1 ql2/4
2ql
ql2/4
ql2/64
C
杆端
B B1
A A1
1 1A 1B 1C 1/2 3/8 1/8
C C1
A 3ql2/64
MF
分配 传递
0 0 0
1/4 -1/4 -1/8
3 32
11 32
0
3 64
3 64
0
3 16
1 16
9 64
1 64
3 64
3 64
B
1
ql2/16
A
C
21.2
2 . 不相邻 点可同时 释放.
547 417130
76
208
MC
M
….
M
1095 1095
423 423 2118 2118
….
….
….
例题:用力矩分配法求图示结构弯矩图(利用传递系数的概念) 。
A
1000 kN
MF
B 3B是悬臂梁, 1 EI 2 EI EI 转动结点3 时, 10 m 10 m 10 m 1 m 悬臂可自由转 动,固其转动 0.43 0.57 0.5 0.5 1 0 1000 刚度为零
数值上等于杆端产生单位转角时所需要施加的力矩。
SAB =4 i 1 A SAB =3 i 1 A B
EI l
B
SAB = i
1 A B
SAB =0
1 A B
远端固定,SAB = 4i;远端铰支,SAB = 3i
远端滑动,SAB = i;远端自由,SAB = 0
说明:在SAB中,A端是施力端,也称为近端,B端称为远端 杆端转动刚度不仅与杆件的线刚度i有关,而且与远端 的支承情况有关。
M
注3、由于内力只与各杆相 对刚度有关,故可用 相对值计算(EI 可取 任意值)
练习:用力矩分配法求图示结构弯矩图(利用传递系数的概念) 。
10 kN
A
EI
B
EI
C
6m
8m
60kN.m
M
30kN.m
例题:用力矩分配法求图示结构弯矩图(利用传递系数的概念) 。
100
A
M 100 kN m
EI
Mf M
0.513 0.487
781 1020 123 116
0.762 0.238 0.363 0.637
2880 58 972 1941606 623
1 . 为避免小 数运算,可 先将固端弯 矩扩大100倍; 对结果再缩 小100倍。
11.0 312
160 152
4.2
1094
MAC
' MA A MAD
远端固定
C Aj
1 2
远端滑动
C Aj 1 远端铰支 M
AB
C Aj 0
在等截面杆件中,弯矩传递系数C随远端的支承情况 而不同。三种基本等截面直杆的传递系数如下:
例题:用力矩分配法求图示结构弯矩图。
固定状态:
M
F AB
q 12kN/m
M
F BA
1 2 ql 100 kN m 12
⑷
(5)
例题:用力矩分配法求图示结构弯矩图。
8 kN/m A EI=1 6m 26 24 B EI=1 C 6m 80 kN EI=1 D 3m 3m
MF M & MC 36
2.2
0.1 26.3
M
0.5 0.5 -24 19 24 -9 36 4.5 4.5 -0.6 0.3 0.3 -19.2 19.2
ql 2 /12 RBP 100 kN m
R BP
B
C
' RB P RBP
A
M BC 0 42.9 42.9 MCB 0
A
B
C
A
EI
B
EI
C
10 m
10 m
M F 100
分 配 传 递
0.571 0.429 100 0 57.1 42.9
0.5 0.5 41 -24 60 -18 -18 120 2.2 -1.1 -1.1 0.1 M -40.8 40.9
-60 -9 70 -0.6
-69.6
例题:用力矩分配法求图示结构弯矩图。
q 10kN/m
2 .5 m
3 .5 m
1020
2 .0 m
333 333
EI=const
4 .8 m
远端弯矩与近端弯矩的比值称为弯矩传递系数。
C Aj M jA M Aj
C 待分配力矩 ' Z1 M A A Z1 Z1
D
M BA 2iAB A
M BA 1 C AB M AB 2
M CA 0
M CA C AC 0 M AC
M DA i AD Z1
B
M DA C AD 1 M AD
第三节
多结点力矩分配法
计算的指导思想由两个步骤说明:
固定状态的计算(与单点固定一样)。
即刚臂→荷载→固端力矩→约束力矩; 放松状态的计算(与单点放松不同)。 力矩的分配和传递是在远端约束已知的情况下进行的, 因此,分配单元的相邻结点不应同时放松。每次只能 放松一个结点,同时相邻结点保持固定,所以,整个 放松过程是轮流放松每一个结点来逐步完成的。
15
B
0 .7 0 .3 50 0 35 15
EI
C
6m
8m
M F 100
分 配 传 递
M
0
0 15 15
15 15
M 100