金属材料论文
金属材料论文.doc
标题:浅谈形状记忆合金材料的发展趋势班级:车辆1001班姓名:黄仟叁高分子形状记忆合金的发展及趋势摘要:本论文主要讨论形状记忆合金相关内容,扼要地叙述了形状记忆合金的发现以及发展历史和分类, 介绍了形状记忆合金在工程中应用的现状以及发展前景。
关键词:形状记忆合金、形状记忆合金效应、应用一、引言形状记忆合金(Shape Memory Alloy ,SMA) 是指具有一定初始形状的合金在低温下经塑性形变并固定成另一种形状后,通过加热到某一临界温度以上又可恢复成初始形状的一类合金。
形状记忆合金具有的能够记住其原始形状的功能称为形状记忆效应(Shape Memory Effect ,SME) 。
研究表明, 很多合金材料都具有SME ,但只有在形状变化过程中产生较大回复应变和较大形状回复力的,才具有利用价值。
到目前为止,应用得最多的是Ni2Ti 合金和铜基合金(CuZnAl 和CuAlNi) 。
形状记忆合金作为一种特殊的新型功能材料,是集感知与驱动于一体的智能材料,因其功能独特,可以制作小巧玲珑、高度自动化、性能可靠的元器件而备受瞩目,并获得了广泛应用。
二、形状记忆合金的发展史1932年,瑞典人奥兰德在金镉合金中首次观察到"记忆"效应,即合金的形状被改变之后,一旦加热到一定的跃变温度时,它又可以魔术般地变回到原来的形状,人们把具有这种特殊功能的合金称为形状记忆合金。
1938年。
当时美国的在Cu-Zn合金小发现了马氏体的热弹件转变。
随后,前苏联对这种行为进行了研究。
1951年美国的Chang相Read在Au47·5Cd(%原子)合金中发现了行状记忆效应。
这是最早观察到金属形状记忆效应的报道。
数年后,Burkhart 在In-Ti 合金中观察到同样的现象。
然而在当时,这些现象的发现只被看作是个别材料的特殊现象而未能引起人们足够的兴趣和重视。
直至1962年,美国海军机械研究所r发现了Ni-Ti合金中的的形状记忆效应,才开创了“形状记忆”的实用阶断。
铝的应用及其发展趋势论文
铝的应用及其发展趋势论文铝是一种重要的金属材料,广泛应用于各个领域,其应用范围和发展趋势备受关注。
本文将探讨铝的应用及其发展趋势,并针对其中的一些特殊领域进行更加深入的研究。
首先,铝在建筑领域中得到了广泛应用。
由于铝具有优异的强度和轻质特性,它可以减少建筑物的自重,提高建筑物的稳定性。
同时,铝的耐腐蚀性能和可塑性使其成为一种理想的建筑材料。
铝合金窗框、外墙板、屋顶等产品都广泛应用于建筑物中。
未来,随着环境保护意识的增强,铝的应用还将得到进一步拓展,例如利用铝的可回收性来减少建筑废弃物的产生。
其次,铝在交通工具领域也具有广泛的应用。
由于铝的轻量化特性,它可以显著减少汽车、火车、飞机等交通工具的重量,提高其燃油效率和运行效率。
铝合金车身、发动机部件、制动系统等都是常见的应用领域。
未来,随着新能源汽车的崛起,铝的应用也将迎来新的发展机遇,例如利用铝在电池领域的优势来提高电动汽车的续航里程。
再次,铝在包装领域也起着重要的作用。
铝箔是一种常见的包装材料,具有优异的屏障性能,能够有效保护食品、药品等产品的质量和安全。
此外,铝罐也是一种常见的包装容器,广泛应用于饮料、食品等行业。
未来,随着包装行业对环保性能的要求越来越高,铝的应用也将得到进一步发展,例如推动可回收包装材料的使用,减少环境污染。
在特殊领域中,铝在电子领域中的应用也非常重要。
由于铝具有良好的导电性能和热传导性能,可以广泛应用于电子器件中,如电容器、散热器等。
此外,铝还可以作为太阳能电池板的基板材料,发挥其优异的导电性能。
未来,随着人们对新能源和节能环保技术的需求不断增加,铝在电子领域的应用也将迎来更广阔的发展空间。
总的来说,铝作为一种重要的金属材料,其应用范围广泛,并且在各个领域都具有良好的发展前景。
未来,随着科技的进步和人们对环保和可持续发展的重视,铝的应用还将得到进一步拓展和提升。
为了更好地应对需求的变化和市场的挑战,相关产业应该加强研发和创新,不断提高铝材料的质量和性能,推动铝的应用与发展。
钢铁材料论文
钢铁材料论文引言钢铁是一种重要的金属材料,广泛应用于建筑、制造业、交通运输等领域。
其优良的机械性能和良好的可塑性使其成为首选材料之一。
本文旨在探讨钢铁材料的特性、制造工艺和应用领域,以及未来的发展趋势。
钢铁特性机械性能钢铁具有优良的机械性能,包括强度、韧性和硬度等。
其高强度使其能够承受大的荷载,广泛应用于高层建筑和桥梁等工程项目中。
韧性使其具有较好的抗震性能和抗疲劳能力。
而硬度则使其能够抵抗磨损和变形。
可塑性钢铁具有较好的可塑性,可以通过热加工和冷加工等工艺得到各种形状的产品。
例如,使用铸造工艺可以生产出复杂形状的零件,而冷轧工艺则可以得到细致的薄板材料。
钢铁的可塑性使其能够满足不同行业对材料形状和尺寸的需求。
耐腐蚀性通过合金化和镀层等方法,钢铁可以提高其耐腐蚀性能。
例如,不锈钢是一种具有抗腐蚀性能的特殊钢铁,广泛应用于化工和食品加工等领域。
钢铁的耐腐蚀性使其能够在恶劣的环境中长期使用。
钢铁制造工艺炼铁炼铁是从铁矿石中提取铁的核心工艺。
它包括矿石的矿石炼制、熔融和铸造等步骤。
在矿石炼制过程中,铁矿石经过碳还原反应得到铁和炉渣。
随后,通过熔融和铸造,铁水被浇铸成不同形状的铁坯。
钢铁冶炼钢铁冶炼是通过炼铁和炉外精炼来提高钢铁的纯度和性能。
炼铁过程中,控制炉料的成分和温度可以调整钢铁的成分和质量。
炉外精炼则通过加入合金元素和进行真空处理等方法来进一步改善钢铁的性能。
钢铁加工钢铁加工是将铸造或锻造的钢铁材料通过切削、冲压、焊接等工艺进行成型和加工。
切削工艺包括铣削、车削和钻削等,可以得到具有精确尺寸和表面质量的零件。
冲压工艺可以通过模具对薄板进行冲压,制作出各种形状的零件和外壳。
焊接工艺可以将多个钢铁零件连接在一起,形成更复杂的结构。
钢铁应用领域建筑业钢铁在建筑业中广泛应用于高层建筑、桥梁和地下工程等。
其高强度和韧性使其能够承受大的荷载和抗震性能,保证了建筑物的结构安全。
此外,钢铁还可以用于建筑的外墙、屋顶和门窗等部件。
关于材料成型的论文4篇
关于材料成型的论文精选4篇关于材料成型的论文篇一浅谈新型金属材料成型加工技术【摘要】随着现代科学技术的发展以及新型金属材料的应用,新型金属材料成型加工技术也得到了相应的发展。
在本文中,笔者将基于金属材料成型加工的实际工作经验,在对新型金属材料固有特性与加工特性深入分析的基础上,对当前的七种成型加工技术进行综合探究,以期促进新型金属材料成型加工技术的发展。
【关键词】新型金属材料;成型加工;加工技术;技术创新当前,新型的金属复合材料已经得到了广泛的应用,复合型材料虽然成本与技术要求都较高,但其所具有的材料特性相较于普通的金属材料具有更高的性能优势,成为工程建设的重要材料。
除此之外,更多的零部件制作采用新型金属材料,也催生了很多先进的成型加工技术。
那么在新时代背景下,究竟如何才能进一步存进新型金属材料成型加工技术的发展与完善,是当前的材料工程师应该重点关注的问题。
1 关于新型金属材料的综述1.1 新型金属材料的固有特性新型金属材料的种类繁多,都涵盖在合金的范畴之内,金属材料的固有特性包括以下几点:新型金属材料具有更好的延展性;新型金属的化学性较为活泼;新型金属具有特有的光泽与色彩等。
当前应用广泛的新型金属材料包括形状记忆合金、高温合金、贮氢合金以及非晶态合金等。
1.2 新型金属材料的加工特性1.2.1 焊接性焊接性是金属成型加工的基础特性之一,所指是金属材料通过焊接来完成二次成型并满足设计要求。
新型金属材料的焊接性良好,在焊接时可以保证没有气孔、没有裂缝等。
新型金属材料具有好的焊接性通常收缩小、导热性能好。
1.2.2 锻压性锻压性对于金属的成型加工的关键因素,金属具有的锻压性能够使金属在锻压的过程中承受塑性变形,并有效缓解冲压。
除此之外,金属的锻压性还会受到加工条件的影响。
1.2.3 铸造性金属所具有的铸造性包括收缩性、流动性、偏析以及裂纹敏感性等具有相关性,由于新型金属材料均为合金,因此其中含有的高熔点元素会金属的流动性降低,给材料成型加工增加了一定的难度。
金属材料毕业论文
金属材料毕业论文金属材料的研究已经有着很长的历史,并且它在工业生产中扮演着重要的角色。
近年来,随着新材料技术和高科技产业的发展,金属材料在世界各个领域的应用越来越广泛。
作为一位金属材料专业的毕业生,我在近几年所学习和研究的金属材料方面,深刻认识到了金属材料在现代工业生产中的地位和作用。
在此,本文将就金属材料的种类、制备方法和应用进行介绍和探讨。
一、金属材料的种类金属材料是一种广泛的材料类型,按其结构划分可分为晶体和非晶体金属;按其组成划分可分为铁基金属、有色金属和合金三大类。
其中,铁基金属包括铁、钢、铸铁、钢铁等;有色金属包括铜、铝、镁、锌、铅等;合金则是由两个或两个以上的金属或非金属混合而成的金属材料,常见的有不锈钢、花纹板、航空材料等。
二、金属材料的制备方法一般来说,金属材料的制备方法可以按其材料特性分为两大类,即铸造法和变形加工法。
下面简要介绍一下两种方法。
1、铸造法铸造法是指将金属熔化后注入到模具里,所得金属坯料就是铸造件。
铸造法是金属材料制备中比较基本的方法,其优点是生产率高、多样性大且在制备大型件方面具有独特的优势。
但它也有缺点,比如制品的纯净度较低、力学性能较差等。
2、变形加工法变形加工法是指对已经得到的金属坯料进行改变其形状、大小、厚度等特性的方法,包括锻造、轧制、拉伸、冲压和剪切等工艺。
变形加工法具有许多优点,例如制品的密度高、结构致密、力学性能好、化学稳定等。
出于不同目的,变形加工法也可以被分为热变形加工和冷变形加工两种。
三、金属材料的应用金属材料的应用范围非常广泛,几乎涵盖了现代工业的所有领域。
下面列举一些常见的金属材料应用。
1、金属制造业:金属制造业是指经过铸造、质量控制和加工工艺处理的金属制品。
例如,汽车、电子产品、航空航天工业、建筑业等等,实际上都离不开金属材料的应用。
2、能源:金属材料在能源工业中也发挥着重要的作用。
例如,石油、天然气、煤炭等都需要金属设备进行运输和加工。
金属材料的论文
金属材料的论文
金属材料是工程领域中最常用的材料之一,其在制造业中扮演着重要的角色。
金属材料的研究不仅涉及到材料的物理性能和化学性质,还包括了材料的加工工艺、应用领域等方面。
本文将从金属材料的分类、性能及应用等方面展开论述。
首先,金属材料根据其成分和结构可以分为铁基金属材料和非铁基金属材料两
大类。
铁基金属材料主要包括铁、钢和铸铁等,而非铁基金属材料则包括铝、镁、铜、镍、钛等。
每一类金属材料都有其独特的物理性能和化学性质,适用于不同的工程领域。
其次,金属材料具有优良的导热性、导电性和机械性能。
其中,铝合金具有较
高的强度和耐腐蚀性,因此在航空航天、汽车制造等领域得到广泛应用;而钢材具有较高的硬度和韧性,适用于建筑结构、机械制造等领域。
除此之外,金属材料还具有良好的可塑性和可焊性,能够满足复杂零部件的加工需求。
另外,金属材料在现代工业中有着广泛的应用。
例如,铝合金被广泛应用于航
空航天领域,用于制造飞机机身、发动机零部件等;而不锈钢则被用于制造化工设备、厨具等。
此外,金属材料还在建筑领域、电子领域、医疗领域等有着重要的应用价值。
总之,金属材料作为工程材料的重要组成部分,其研究和应用对于推动制造业
的发展具有重要意义。
随着科技的不断进步,金属材料的性能和加工工艺也在不断提升,为各个领域的工程应用提供了更多可能性。
希望本文能够对金属材料的研究和应用提供一定的参考价值,推动金属材料领域的进一步发展。
铝合金的相关论文
第一章绪论1.1镁合金的性质.特点及应用镁合金是在镁的基础上融入了其他的元素而形成的合金。
它的特点是强度不低,密度不大,散热性好,能抗震,能够承受的冲击力要比铝合金大,抗腐蚀等。
镁是最轻的一种金属,其比重只有铁的四分之一,铝的三分之二。
在所有的实用金属中,其是最轻的,并且强度高,刚性强。
镁合金在合金进行散热的过程中占有很大的优势,比如散热器分别是一块镁合金和一块铝合金,体积相同,形状相同,这表明镁合金所制作出来的散热片的根部其空气温度和顶部的空气温度相比效果要差些,意味着镁合金的散热性要强于铝合金的散热性,所以在空气的扩散对流中,通过对散热器来加速起内部空气的对流,从而提升其散热效率。
所以,在温度一定的情况下,镁合金的散热速度比铝合金的要快一倍。
镁合金这个行业在中国制造的行业中,得到了升级过程中的优惠。
镁合金是资金和材料都很密集的行业,较低的价格和稳定的态势,技术研发等的进步,铸造业的集中性和密集性使得镁合金的发展迅猛,其后市发展的态势很好。
1.1.1镁的基本性质在地壳中,镁的含量最高,分布最广。
其中白云石、花菱镁矿、光卤石等都是极具工业价值的矿物。
并且,海水也是镁资源的发源地之一。
在工业上通过电解熔融氧化镁的让其还原得到金属镁的方法称为熔盐电解法;而在电炉中通过硅铁等来还原金属镁的方法叫做硅热还原法。
物理性质:质地柔软,熔点不高,呈银白色。
镁是一种金属,柔软而具有光泽。
1.1.2 镁合金的特点镁合金主要应用在工程上,质量很轻,镁和镁合金的密度相对来说较小,只有铝的2/3,锌的1/4,铁的1/4。
这些年以来环保要求日益增高,使得汽车行业不得不减少自身的重量,减少排放温室气体,因此镁合金成为了最佳的材料。
镁合金自身的特点,再加上它铸造功能强,具有很好的切割性,尺寸又比较稳定,抗震减压的功能好,所以成为了航空航天和汽车工业上的第一代替品。
并且镁合金的抗冲击性强,具有强烈的抗电磁波干扰,散热功能好,所以如果电子通讯行业3G产品要发展成为短小轻薄的产品的话,镁合金是必选的材料。
金属材料论文
金属材料论文金属材料是一种重要的结构材料,在工程领域中具有广泛的应用。
随着科学技术的不断进步和发展,人们对金属材料的研究也越来越深入,涉及到材料的组成、结构、性能以及应用等诸多方面。
首先,金属材料的组成是研究的重点之一。
金属材料通常是由金属元素经过熔炼、合金化等工艺制备而成。
不同的金属元素在材料中的含量和比例,直接影响材料的性能。
例如,铁和碳的合金化可以获得钢材,铝和铜的合金化可以获得铝杂铜。
通过研究金属材料的组成,可以探索材料的结构特征和性能表现。
其次,金属材料的结构是研究的又一关键点。
金属材料的晶格结构和晶粒尺寸对材料的性能具有重要影响。
晶格结构可以通过X射线衍射等方法进行表征,晶粒尺寸可以通过电子显微镜观察得到。
研究金属材料的结构,可以了解材料的内部构造和组织形态,为进一步研究材料的性能提供基础。
再次,金属材料的性能是研究的核心内容。
金属材料具有优异的机械性能,如强度、硬度、韧性等。
此外,金属材料还具有良好的导电性、导热性和耐腐蚀性等特点。
研究金属材料的性能,不仅可以进行性能评估和比较,还可以为材料的设计和应用提供指导。
最后,金属材料的应用是研究的最终目的。
金属材料广泛应用于航空航天、汽车制造、建筑等领域。
例如,钢材用于建筑和桥梁的承重结构,铝合金用于制造航空器的机身和翅膀,不锈钢用于厨具和医疗器械等。
通过研究金属材料的应用,可以发展新的材料和工艺,提高生产效率和质量。
综上所述,金属材料的研究包括组成、结构、性能和应用等方面,这些方面相互关联、相互作用,共同构成了金属材料的科学体系。
通过不断深入研究,可以进一步提高金属材料的性能和应用,推动工程技术的发展和进步。
金属材料与人类社会的发展
金属材料与人类社会的发展概要:金属是人类历史发展中最不可或缺的材料,更是人类社会进步的关键所在,本篇论文将围绕金属在人类社会中的地位,应用等方面展开。
主要论述金属材料与人类社会之间的关系,回顾金属过去在人类历史中的作用,分析其在现代社会的地位,并且展望金属才来的在未来的发展前景。
正文:从100万年以前,原始人以石头作为工具,称旧石器时代。
1万年以前,人类对石器进行加工,使之成为器皿和精致的工具,从而进入新石器时代。
现在考古发掘证明我国在八千多年前已经制成实用的陶器,在六千多年前已经冶炼出黄铜,在四千多年前已有简单的青铜工具,在三千多年前已用陨铁制造兵器。
我们的祖先在二千五百多年前的春秋时期已会冶炼生铁,比欧洲要早一千八百多年以上。
18世纪,钢铁工业的发展,成为产业革命的重要内容和物质基础。
19世纪中叶,现代平炉和转炉镍管炼钢技术的出现,使人类真正进入了钢铁时代。
与此同时,铜、铅、锌也大量得到应用,铝、镁、钛等金属相继问世并得到应用。
至今,金属材料在材料工业中一直占有主导地位。
金属材料可以说是人类社会发展的全称见证者,我之所以那么说,是与他在人类社会各个转型期所起到的举足轻重的作用所分不开的。
作为人类最早发现并开始加以利用的一种材料,金属可以说从方方面面影响着人类的历史发展进程。
从最初把金属打造成狩猎武器到如今人类的生活已完全离不开金属,可见金属早已融入了整个人类社会,那么金属在人类社会中的过去,现在和将来又会是什么样的呢?金属的在人类社会的过去时中扮演的角色多为一个时期的社会性质的缩影。
如新石器时代,青铜器时代等等,而之所会如此为这些时代命名,归根结底,最主要的原因,便是人类在这一石器开发出了某种新的金属,而这一金属几乎决定了人类在这一时期的文明发展进程。
如在战国石器,由于铁器的发明和使用,既解放了农村的大量生产力,又在投入战争使用后,大大缩短了战争的进程,从而加速了整个国家的统一,结束了乱世的局面,使得我国文明在一段动荡时期后能够继续得以正常的发展。
金属材料毕业论文
金属材料毕业论文金属材料毕业论文金属材料在现代社会中扮演着重要的角色,广泛应用于各个领域,如建筑、汽车、航空航天等。
因此,对金属材料的研究和应用具有重要意义。
本文将从金属材料的分类、性能、加工以及未来发展等方面进行探讨。
一、金属材料的分类金属材料可以根据其组成元素和结构特点进行分类。
常见的金属材料包括钢铁、铝、铜、镁等。
钢铁是一种含有碳元素的合金,具有优异的强度和韧性,广泛应用于建筑和机械制造领域。
铝具有轻质、导电性好等特点,被广泛应用于航空航天和汽车制造等领域。
铜是一种良好的导电材料,常用于电子元器件的制造。
镁具有轻质、高强度等特点,被广泛应用于航空航天和汽车制造领域。
二、金属材料的性能金属材料具有许多独特的性能,如强度、韧性、导电性、导热性等。
强度是金属材料抵抗外力破坏的能力,是评价材料质量的重要指标。
韧性是金属材料在外力作用下发生塑性变形的能力,直接影响材料的可靠性和使用寿命。
导电性是金属材料传导电流的能力,是电子元器件制造中的重要性能指标。
导热性是金属材料传导热量的能力,影响材料的热稳定性和散热效果。
三、金属材料的加工金属材料的加工是将原始材料转变为最终产品的过程。
常见的金属加工方法包括锻造、铸造、冲压、焊接等。
锻造是通过对金属材料施加压力,使其发生塑性变形,从而得到所需形状的加工方法。
铸造是将熔化的金属倒入模具中,经过冷却凝固后得到所需形状的加工方法。
冲压是利用冲压设备对金属材料进行剪切、冲孔、弯曲等加工方法。
焊接是将两个或多个金属材料通过加热或施加压力使其连接在一起的加工方法。
四、金属材料的未来发展随着科技的不断进步,金属材料的研究和应用也在不断发展。
未来,金属材料的发展趋势将主要体现在以下几个方面。
首先,金属材料将更加注重环保和可持续发展。
随着环境问题的日益突出,金属材料的生产和使用将更加注重资源利用效率和环境保护。
其次,金属材料将更加注重功能性和多样化。
随着科技的不断进步,人们对金属材料的性能要求越来越高,金属材料将不仅仅满足基本的力学性能,还将具备更多的功能性能,如防腐、防磨、防辐射等。
关于金属材料的论文
Second, the performance
For more rational use of metal materials, give full play to its function, must master all kinds of metal material made of zero, member in normal working circumstances should have the performance (performance) and in hot and cold processing process material should have the performance (process performance).
Material process performance refers to the material used to cold, hot working method ability.
一、分类:
金属材料通常分为黑色金属、有色金属和特种金属材料。
①黑色金属又称钢铁材料,包括含铁90%以上的工业纯铁,含碳 2%~4%的铸铁,含碳小于 2%的碳钢,以及各种用途的结构钢、不锈钢、耐热钢、高温合金、精密合金等。广义的黑色金属还包括铬、锰及其合金。
②有色金属是指除铁、铬、锰以外的所有金属及其合金,通常分为轻金属、重金属、贵金属、半金属、稀有金属和稀土金属等。有色合金的强度和硬度一般比纯金属高,并且电阻大、电阻温度系数小。
金属材料是指由金属元素或以金属元素为主构成的具有金属特性的材料的统称。包括纯金属、合金、金属间化合物和特种金属材料等。
人类文明的发展和社会的进步同金属材料关系十分密切。继石器时代之后出现的铜器时代、铁器时代,均以金属材料的应用为其时代的显著标志。现代,种类繁多的金属材料已成为人类社会发展的重要物质基础。我们对金属材料的认识应从以下几方面开始:
金属材料工程毕业论文
金属材料工程毕业论文金属材料工程毕业论文金属材料工程是一个涉及材料科学和工程学的领域,研究金属材料的结构、性能和应用。
作为一门重要的工程学科,金属材料工程在现代工业生产中起着至关重要的作用。
本文将探讨金属材料工程的研究内容和应用领域,以及未来的发展方向。
一、金属材料工程的研究内容金属材料工程的研究内容非常广泛,包括金属材料的合金设计、制备工艺、性能测试和表征等方面。
其中,合金设计是金属材料工程的核心内容之一。
通过调节金属中的元素成分和相组成,可以改变金属的力学性能、耐腐蚀性能和热稳定性等特性。
合金设计的目标是寻找最佳的成分和相组成,以满足特定工程应用的需求。
制备工艺是金属材料工程的另一个重要方面。
不同的制备工艺可以产生具有不同结构和性能的金属材料。
常见的制备工艺包括熔炼、铸造、轧制、焊接和热处理等。
这些工艺的选择和优化对于获得高质量的金属材料至关重要。
性能测试和表征是评价金属材料性能的重要手段。
通过对金属材料的硬度、强度、韧性、疲劳寿命等性能进行测试,可以了解材料的力学性能。
同时,通过金相显微镜、扫描电子显微镜和透射电子显微镜等表征手段,可以观察金属材料的微观结构和相组成,进一步揭示材料的性能与结构之间的关系。
二、金属材料工程的应用领域金属材料工程在许多领域都有广泛的应用。
首先是工业领域,金属材料广泛应用于汽车、航空航天、船舶、建筑和机械等行业。
例如,高强度钢和铝合金在汽车制造中被广泛使用,以提高汽车的安全性和燃油效率。
航空航天领域对于高温合金和轻质材料的需求也促进了金属材料工程的发展。
其次是能源领域,金属材料工程在能源产业中扮演着重要的角色。
例如,燃气轮机用的镍基高温合金具有良好的耐热性和抗氧化性能,可以用于提高燃气轮机的效率和寿命。
此外,太阳能电池中的铜铟镓硒薄膜材料也是金属材料工程的研究方向之一。
再次是生物医学领域,金属材料工程在医疗器械和人工关节等方面有着广泛的应用。
例如,钛合金在人工关节中被广泛使用,具有良好的生物相容性和力学性能,可以提供良好的支撑和运动性能。
金属材料的论文
金属材料的论文
金属材料是工程领域中应用最广泛的一类材料,其在机械制造、建筑结构、航
空航天等领域都扮演着重要的角色。
本文将从金属材料的基本性能、常见种类、应用领域等方面进行探讨。
首先,金属材料具有良好的机械性能,包括强度、硬度、韧性等。
这些性能使
得金属材料在工程领域中得到广泛应用,能够承受各种复杂的力学作用,保障工程结构的稳定性和安全性。
其次,金属材料种类繁多,常见的有铁、铜、铝、镁等。
每种金属材料都具有
独特的物理化学性能,适用于不同的工程需求。
例如,铁材料具有良好的磁性能,适用于电磁设备的制造;铜材料具有良好的导电性和导热性,适用于电气设备的制造。
此外,金属材料在航空航天、汽车制造、化工设备等领域有着广泛的应用。
在
航空航天领域,金属材料被用于制造飞机、火箭等载具的结构零部件,要求具有较高的强度和轻量化;在汽车制造领域,金属材料被用于制造车身、发动机等部件,要求具有良好的耐磨性和耐腐蚀性;在化工设备领域,金属材料被用于制造反应釜、换热器等设备,要求具有良好的耐高温、耐腐蚀性能。
总的来说,金属材料作为工程材料的一大类,具有广泛的应用前景和发展空间。
随着工程技术的不断进步,金属材料的性能和种类也在不断得到提升和丰富,为各个领域的工程应用提供了更多的选择和可能性。
因此,对于金属材料的研究和应用具有重要的意义,可以推动工程技术的发展
和进步,为人类社会的发展做出更大的贡献。
希望本文能够对金属材料的研究和应用有所启发,促进相关领域的学术交流和技术创新。
金属材料工程毕业论文
金属材料工程毕业论文随着社会经济的快速发展,各行各业对材料需求量越来越大,其中金属材料是必不可少的一种材料。
然而,由于金属材料种类繁多,生产、加工及应用过程中存在着种种问题,如何解决这些问题并进一步提高金属材料的质量和性能一直以来都是一个重要的研究方向。
因此,本篇论文将从金属材料工程的角度来探究如何提高金属材料的质量和性能。
一、金属材料的基础特性及应用金属材料是一种以金属和合金为原料的材料,具有物理性能优越、化学性能稳定、机械性能强和加工性能好的特点。
金属材料通常分为铁系金属材料、有色金属材料和特殊金属材料三大类,不同类别的金属材料由于其组成成分和结构的不同,自然也拥有着各自不同的性能和应用范围。
铁系金属材料是指以铁元素为主要成分的金属材料,包括钢、铁素体不锈钢、马氏体不锈钢、铸铁等。
这类材料通常是用来制造机械设备、建筑材料、轴承、汽车零件等。
铁系金属材料具有较好的机械性能,同时易于加工成型和进行热处理,因此在现代工业制造过程中占据了重要地位。
有色金属材料是指除了铁元素之外,以其他金属或金属合金为主要成分的材料。
有色金属材料有铜、铝、镁、镍、锌、锡等,其中铜和铝在现代工业中应用最广。
有色金属材料主要用于制造电器、航空、船舶、汽车及建筑材料等,因其导电性、导热性和耐腐蚀性能优良,堪称现代工业材料宝库。
特殊金属材料是指那些特定领域所需的金属材料,其主要是由一些金属或者金属间化合物构成,如钨、钼、钛、铌等。
这类材料既有被广泛用于航天、航空、军工等高技术领域的钨钼合金,也有成为新能源电池电极材料的锂离子电池正极材料铁锂磷酸盐等。
二、金属材料质量问题随着生产技术和制造设备的不断升级以及对材料性能的不断追求,在生产过程中,金属材料的质量也受到了越来越多的关注。
然而,在实际生产过程中,金属材料的质量问题主要与以下因素有关:1.金属材料的基础材质存在问题金属材料是由成千上万个原子组合而成的微观结构,其中每个原子的位置、晶格、晶界等都会影响材料的性能。
钛及钛合金论文
钛及钛合金摘要:先进材料钛及钛合金的应用与前沿技术的发展一直是当前材料领域的热点研究课题之一。
钛、钛合金及钛化合物的优良性能促使人类迫切需要它们。
然而,生产成本之高,使应用受到限制。
我们相信在不久的将来,随着钛的冶炼技术不断改进和提高,钛、钛合金及钛的化合物的应用将会得到更大的发展。
本文介绍了钛合金的发展现状、特性、铸造工艺性能及其热处理,阐述了钛合金的生产技术及其应用,分析其优势与局限性,并展望发展趋势。
关键字:金属钛,钛合金; 发展状况;分布,性质; 铸造加工性能; 热处理;生产技术,应用; 研究前景钛和钛合金的发展过程:钛是英国化学家格雷戈尔(Gregor R W ,1762—1817。
)在1791年研究钛铁矿和金红石时发现的。
四年后,1795年,德国化学家克拉普罗特(Klaproth M H ,1743—1817。
)在分析匈牙利产的红色金红石时也发现了这种元素。
他主张采取为铀(1789年由克拉普罗特发现的)命名的方法,引用希腊神话中泰坦神族“Titanic”的名字给这种新元素起名叫“Titanium”。
中文按其译音定名为钛。
格雷戈尔和克拉普罗特当时所发现的钛是粉末状的二氧化钛,而不是金属钛。
因为钛的氧化物极其稳定,而且金属钛能与氧、氮、氢、碳等直接激烈地化合,所以单质钛很难制取。
直到1910年才被美国化学家亨特(Hunter M A)第一次制得纯度达99.9%的金属钛。
由于钛在液化状态时化学活性非常高, 钛与气体和所有制模成形用的难熔材料都有很高的活性, 因此, 钛合金铸造成形工业化的生产晚于变形钛合金和变形工艺。
自海绵钛工业化以来, 钛在工业上的广泛应用推动了钛工业的迅速发展, 钛的生产能力正在逐年提升, 并将陆续超过铅、锌、铜成为名副其实的第三金属。
目前, 由于国际紧张局势的缓和和军备缩减, 使军用飞机的钛需求量减少, 但民用客机今后可望继续增长。
要使钛业得以生存, 普遍认为还是要扩大飞机以外的一般用途。
金属材料论文
金属材料论文金属材料是工程领域中最常用的材料之一,其在各种工业领域都有着重要的应用。
金属材料的性能直接影响着工程产品的质量和性能,因此对金属材料的研究和应用具有重要意义。
本文将就金属材料的性能、种类、应用以及未来发展方向进行探讨。
首先,金属材料的性能包括力学性能、物理性能、化学性能等多个方面。
力学性能是金属材料最基本的性能之一,包括强度、韧性、硬度等指标。
物理性能则包括密度、导热性、导电性等指标,而化学性能则包括金属材料的耐蚀性、耐磨性等指标。
这些性能直接影响着金属材料在工程中的应用,因此对金属材料性能的研究具有重要意义。
其次,金属材料的种类繁多,常见的金属材料包括铁、铝、铜、镁等。
不同种类的金属材料具有不同的性能和用途,因此在工程中需要根据具体的使用要求选择合适的金属材料。
此外,金属材料还可以通过合金化、热处理等方式改善其性能,进一步扩大了其应用范围。
再次,金属材料在工程领域中有着广泛的应用,例如在航空航天、汽车制造、建筑领域等都有着重要的地位。
随着工程技术的不断发展,对金属材料的要求也在不断提高,因此对金属材料的研究和应用具有重要意义。
最后,随着科学技术的不断进步,金属材料的研究也在不断深入,未来金属材料的发展方向主要包括轻量化、高强度、高温耐久性等方面。
这些方向的发展将进一步拓展金属材料的应用领域,推动工程技术的发展。
综上所述,金属材料作为工程领域中最常用的材料之一,其性能、种类、应用以及未来发展方向都具有重要意义。
对金属材料的研究和应用将进一步推动工程技术的发展,为社会经济的发展做出重要贡献。
希望本文的内容能够为相关领域的研究人员和工程技术人员提供一定的参考和借鉴,推动金属材料领域的发展。
铝及铝合金应用论文
铝及铝合金应用论文铝及铝合金是一种重要的金属材料,在工业生产和日常生活中有广泛的应用。
本文将从铝及铝合金的特性、制备方法以及应用领域等方面进行论述。
首先,铝及铝合金具有许多优良的特性。
首先,铝具有较低的密度,仅为钢的1/3,因此具有较轻的重量。
其次,铝具有良好的导电性和导热性,可以用于制造电线、电缆和散热器等产品。
此外,铝具有良好的耐腐蚀性,可以在潮湿和酸性环境中长期使用。
最后,铝具有良好的可塑性和可加工性,可以通过压铸、挤压和轧制等工艺制备成各种形状的产品。
其次,铝及铝合金的制备方法多种多样。
常见的制备方法包括熔炼、挤压、轧制和铸造等。
熔炼是将铝矿石经过冶炼、精炼和合金化等过程得到纯铝或铝合金的方法。
挤压是将铝坯料加热至一定温度后通过模具挤压成型的方法。
轧制是将铝坯料经过多次轧制和拉伸等工艺得到所需厚度和形状的方法。
铸造是将熔融的铝或铝合金倒入模具中冷却凝固得到所需形状的方法。
最后,铝及铝合金在各个领域有广泛的应用。
在航空航天领域,铝及铝合金被广泛应用于飞机、火箭和卫星等载体结构中,以提高载体的轻量化和耐腐蚀性能。
在汽车工业中,铝及铝合金被用于制造车身、发动机和底盘等部件,以提高汽车的燃油经济性和安全性能。
在建筑领域,铝及铝合金被用于制造门窗、幕墙和屋顶等建筑材料,以提高建筑物的耐久性和美观性。
在电子领域,铝及铝合金被用于制造电子器件、散热器和电池等产品,以提高电子设备的性能和散热效果。
此外,铝及铝合金还被广泛应用于包装、船舶、铁路、电力和军工等领域。
综上所述,铝及铝合金是一种重要的金属材料,具有较低的密度、良好的导电性和导热性、耐腐蚀性、可塑性和可加工性等特性。
其制备方法多种多样,包括熔炼、挤压、轧制和铸造等。
铝及铝合金在航空航天、汽车、建筑、电子等领域有广泛的应用。
随着科技的进步和工艺的改进,铝及铝合金的应用前景将更加广阔。
金属材料的力学性能研究毕业论文
金属材料的力学性能研究毕业论文摘要:本论文旨在研究金属材料的力学性能,通过分析材料的力学特性和加工工艺对其性能的影响,以期提高金属材料的应用价值。
首先,介绍了金属材料力学性能的基本概念和相关理论知识。
其次,以某特定金属材料为例,通过实验和数值模拟的方法,深入探究其力学性能在不同条件下的变化规律,并对其应用前景进行评估。
最后,提出了未来金属材料力学性能研究的发展方向与挑战。
1. 引言在现代工业中,金属材料被广泛应用于制造业、航空航天工程、汽车工业等领域。
材料的力学性能是评判其使用性能的重要指标,因此对金属材料力学性能的研究具有重要意义。
本文旨在探索金属材料力学性能的关键因素,以期提高材料的机械强度、韧性和耐磨性,从而广泛应用于实际工程中。
2. 金属材料力学性能的基本概念2.1 弹性模量弹性模量是衡量材料抵抗外力变形程度的指标,其数值越大代表材料越硬。
弹性模量与材料的原子间力有关,可以通过实验和理论模拟方法计算和测定。
2.2 屈服强度屈服强度是金属材料在受到外力作用下开始产生塑性变形的临界值。
屈服强度的大小直接影响材料的机械性能和使用寿命,可以通过压缩试验、拉伸试验等实验方法进行测定。
3. 材料力学性能与加工工艺的关系3.1 冷加工冷加工是指在室温下对金属材料进行塑性变形的工艺。
通过冷加工可以改善材料的强度、硬度和韧性,但同时也会导致材料变脆和晶界变异等问题。
3.2 热加工热加工是指在高温下对金属材料进行塑性变形的工艺。
相比冷加工,热加工能够更充分地改善材料的晶体结构和塑性变形能力,但也存在加热温度控制和后续退火等工艺问题。
4. 实验与数值模拟研究4.1 实验设计通过选取特定金属材料,采用不同试样形状和尺寸,结合拉伸试验、压缩试验等实验方法,探究金属材料的力学性能及其与加工工艺的关系。
4.2 数值模拟通过建立金属材料力学行为的数学模型,运用有限元分析方法,模拟金属材料在受力下的变形行为和力学性能。
结合实验结果进行验证和优化。
关于金属材料的论文
关于金属材料的论文金属材料是一种重要的结构材料,广泛应用于工程领域。
其独特的物理和化学性质使其成为各种工程应用的理想选择。
本文将对金属材料的性质、应用和发展进行探讨,以期为相关领域的研究和实践提供参考。
首先,金属材料具有良好的导电性和导热性。
这一特性使得金属材料在电子、电力、通讯等领域有着广泛的应用。
例如,铜、铝等金属被广泛应用于电线、电缆的制造中,其优异的导电性能能够有效地传输电能,满足现代社会对电力的需求。
同时,金属材料的导热性也使其在散热器、冷却设备等领域有着重要的应用,能够有效地将热量传递和散发出去,保证设备的正常运行。
其次,金属材料具有良好的可塑性和可加工性。
这一特性使得金属材料可以通过锻造、轧制、拉伸等加工工艺,制成各种形状和尺寸的零部件,满足不同工程应用的需求。
例如,汽车、航空航天、建筑等领域都需要大量的金属零部件,这就需要金属材料具有良好的可加工性和可塑性。
同时,金属材料的可塑性也使其在焊接、铸造等工艺中有着广泛的应用,可以实现复杂零部件的制造和加工。
另外,金属材料具有较高的强度和刚度。
这一特性使得金属材料在工程结构中有着重要的应用,能够承受较大的荷载和变形。
例如,桥梁、建筑结构、机械设备等都需要金属材料来承担荷载,保证结构的稳定和安全。
同时,金属材料的高强度和刚度也使其在航空航天、国防等领域有着重要的应用,能够满足复杂环境下的工程需求。
最后,随着科学技术的不断发展,金属材料的研究和应用也在不断深化和拓展。
新型金属材料的涌现,为工程领域提供了更多的选择和可能。
例如,高强度、高温合金、形状记忆合金等新型金属材料的应用,为航空航天、能源、环境等领域提供了新的解决方案。
同时,金属材料的再生利用和资源化利用也成为当前研究的热点,为可持续发展提供了新的思路和途径。
综上所述,金属材料作为一种重要的工程材料,具有良好的导电性、导热性、可塑性、可加工性、强度和刚度等特性,广泛应用于各个领域。
随着科学技术的不断发展,金属材料的研究和应用也在不断深化和拓展,为工程领域提供了更多的选择和可能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
固态合金中,各组元相互溶解而形成的均匀物质称为固溶体。固溶体根据溶质原子在固溶体中所处的位置不同,可分为两种:
(1)置换式固溶体溶质原子替代溶剂的部分原子占据着晶格的正常位置,仍结合成溶剂的晶格类型所形成的固体,称为置换式固溶体。
(2)间隙式固溶体溶质原子存在于溶剂晶格间隙处所形成的固溶体,称为间隙式固溶体。
不具备平衡加热条件的升温都是非平衡加热。表现为加热速度快、温度分布不均匀,存在局部金属温度过高,工件各部分之间或表层与心部之间温差大。当周围介质再勇者参与热过程时,必将使加热结果极不理想,影响零件的最终质量。实际生产中,非平衡加热是最普通的加热状况。
金属非平衡加热时,其内部温度的分布很不均衡,因而金属组织的变化大大不同于平衡加热时的组织结果。显然,此时金属组织的转变是一个与温度和时间有关的动态过程。组织转变结果主要取决于各层金属所能的最高温度。据此,可以依据最高温度、参照平衡加热转变的结果加以分析。
(2)对中碳结构钢工件,正火可消除成形工艺过程中产生的某些组织缺陷,保持合适的硬度,便于切削加工,为后续热处理作好组织准备。
(3)对过共析钢,经正火后可消除网状二次渗碳体,为球化退火和后续淬火作组织准备。
(4)结某些高合金钢件,正火的冷却速度有可能大于获得马氏体的临界冷却速度,因而正火起到了淬火作用,后的工件在稍高于马氏体转变温度点温度的盐浴中冷却并保温足够时间,从而获得下贝氏体组织的淬火方法。等温淬火的内应力很小,工件不易变形和开裂,而且具有良好的综合力学性能。
(5)局部淬火法
有些工件按其工作条件只是局部要求高硬度,则可进行局部加热淬火,以避免工件其它部分产生变形与裂纹。
固态金属的原子彼此靠金属键结合在一起,表现出有规则的特征,即固态金属具有晶体结构。固态金属的晶格有多种形式,除少数具有复杂的结构外,大多数都属于体心立方,面心立方和密排六方三种中的一种:
体心立方晶格的结构特点:8个原子组成一个立方体,立方体的中心处还有一个原子。这种晶胞所占有的实际原子数为2,各棱边长度相等;具有这种结构特点的金属有:W、Cr、Mo、V、Nb等。
一、金属材料的性质
二、铁碳合金
三、金属的工艺性能
四、金属材料的改性方法
五、金属材料的发展趋势
六、参考文献
金属材料的性质
在自然界中,金属元素占75%。价电子数目少,电子层数较多,原子核对价电子的引力较弱,价电子容易脱离原子核的束缚而形成自由电子是其金属原子的结构特点。
自由电子在正离子之间作高速运动,形成带负电的电子云,正离子与电子云之间产生强烈的静电吸引力,金属原子间这种正离子与自由电子的引力结合称为金属键。金属键与非金属原子间的结合键不同。由于金属键的作用力很大,并且大量的原子结合成整体金属,固金属的强度高;金属键没有方向性,原子间也没有选择性,所以在外力作用下发生原子位置的相对移动时,金属健也不会遭到破坏,所以金属具有比较好的塑性变形能力;由于金属中的自由电子在电场的作用下作定向运动,使金属具有导电性,金属离子在平衡位置可以作热振动,且温度越高,金属离子的振幅越大,因此金属具有良好的导热性。
(5)莱氏体 莱氏体是液态合金在恒温条件下结晶后获得的机械混合物,由奥氏体和渗碳体组成,用符号Ld表示。莱氏体的含碳质量分数为4.3%。温度低于727℃的莱氏体是由珠光体与渗碳体组成的机械混合物,用符号Ld´表示。由于渗碳体在莱氏体中所占比例圈套,故莱氏体属脆性组织。
金属的工艺性能
金属的工艺性能是一种综合性能,是金属材料在工艺过程中所具有和表现出来的性能。它与金属的物理性能、化学性能、力学性能等有关,也与环境有关。金属材料工艺性能的优劣,不仅影响工艺过程的繁简难易程度,也影响金属制品质量的高低粗精。目前工业中的金属制品,尤其是机械零件,仍以钢铁为主要材料。
(3)渗碳体 渗碳体是铁和碳形成的金属化合物,用Fe3C表示。其含碳质量分数为6.69%,具有复杂的晶格结构。渗碳体的硬度高,塑性和韧性很差,是一种脆性组织。铁碳合金的性能在很大程度上与渗碳体的数量、形状和分布状态有关。
(4)珠光体 珠光体是奥氏体在恒温条件下分解而获得的机械混合物,由铁素体和渗碳体组成,用符号P表示。珠光体的含碳质量分数为0.77%,呈层状结构。珠光体的力学性能介于铁素体和渗碳体的性能之间,具有一定的塑性和韧性。
金属材料的改性方法
金属材料的原始性能能不能满足各种零件工作条件的要求,必须采用某些工艺方法(热处理、塑性变形等)使之具有理想的性能。金属性能主要取决于内部结构,一切改变金属内部结构的手段均属改性方法。其中,热处理工艺是主要方法。
一、整体热处理方法
热处理是指金属在固态下通过改变温度、保温和随后调整至室温,实现改变金属组织,从而获得所需性能的工艺方法。热处理中改变温度的目的是使金属内部发生组织转变,保温的作用主要是保证组织转变进行得彻底。调整至室温的阶段是热处理中的重要阶段。经过这个阶段可使金属具有多种组织结构,且性能差异很大,极大地扩展了金属的使用范围,满足了科学迅速发展对金属制品的各种要求。因此,热处理工艺在工业中占有很重要的地位。
以上的三种晶格是一种理想的状况,与实际金属的晶体结构有很大的差距。实际金属的原子排列不可能像理想晶体那样规则和完整,由于要受到加工、凝固以及其它因素的影响,实际晶体中总存在着偏离完整性的区域,这些区域就称为晶体缺陷。按几何特征,晶体缺陷可分为点缺陷,线缺陷和面缺陷。
(1)点缺陷结晶过程中,在高温下或由于辐照等,晶体中会产生点缺陷。其特征是三维方向上尺寸都很小,仅引起几个原子范围的不完整,该缺陷就是点缺陷。包括空位,间隙原子和异类原子三种。
(2)双液淬火法
将加热到奥氏体状态下的工件在冷却能力强的淬火介质中冷却到马氏体转变开始温度,立即转入冷却能力较弱的淬火介质中冷却,直至完成马氏体转变。此法的优点是既可避免奥体在高温下的转变,又可使马氏体转变比较缓慢,以减小内应力、变形和开裂的倾向。缺点是工件的表面与心部的温差仍然较大,第一种介质中的停留时时间不易掌握,需要有实践经验。
面心立方晶格的结构特点:8个原子组成一个立方体,立方体各面的中心处还分布有1个原子。这种晶胞所占有的实际原子数为4,各棱边长度相等;具有这种结构的金属有:Cu、Al、Ni、Pb等。
密排六方晶格的结构特点:12个原子组成一个六棱柱体,上下两个六边形中心处各有1个原子,六棱柱体的心部所占有的实际原子数为6。具有这种晶格的金属有:Mg、Be、Cd、Zn等。
吸气和蒸发现象的出现,会严重改变金属成分和结构,即有害气体成分增多,有益元素减少。这种金属再盗劫至室温时,其性能明显变差。
非平衡方式加热金属工件时,必然存在温差较大状态,引起工件各部分的膨胀量不同。当彼此制约而不能自由伸长时,就会形成应力,变形或裂纹。
综上所述,非平衡加热会产生缺陷,甚至是出现严重后果的缺陷。因此,必须严格控制加热规范,并针对加热条件、材料特性及工件结构特点等,采取必要的工艺措施来防止加热缺陷的产生。
1.淬火是指把钢加热到组织转变温度以上30~50℃,保温后快速冷却的处理工艺。其目的在于获得马氏体组织,使钢具有高硬度和高耐磨性。淬火是强化钢材的重要方法。其中淬火方法有以下几种:
(1)单液淬火法
将加热到奥氏体状态下的工件放入一种淬火介质中一直冷却到室温的淬火方法。此法的优点是操作简单,容易实现机械化,缺点是工件的表面与心部温差较大,易造成淬火应力或硬度不均匀现象。
其中热处理方法包括退火,正火,淬火,回火几个方面。退火又可根据加热温度的不同分为完全退火,球化退火,等温退火,扩散退火,去应力退火,再结晶退火。
正火冷却速度比退火快,得到的是非平衡组织,因而钢的性能有很大改变。正火的作用因钢种不同且有很大的差别。
(1)对普通结构钢件或低碳钢、低合金钢件,正火的目的是消除过热组织、细化晶粒、提高硬度、改善切削加工性,为保证后续加工质量和满足使用性能的要求奠定基础。
(2)线缺陷指晶格中某一列或若干列原子出现有规律的错排,破坏了晶格的规则而形成的缺陷。位错的种类很多,但最简单、最基本的有两种类型:一种是刃型位错,另一种是螺型位错。
(3)面缺陷面缺陷主要是指晶界、亚晶界等。其特点是两个方向尺寸较大,一个方向尺寸很小。
铁碳合金
一合金及其结构
两种或两种以上的元素组成的金属物质称为合金。合金是金属,因而合金的组元中含有较大比例的金属元素。而其他含量少的元素可以是金属元素,也可以是非金属元素。如黄铜是铜锌合金,黄铜的组成元素都是金属元素。而钢是铁、碳等元素组成的合金,所含铁、锰等元素是金属元素,但碳、硅等则是非金属元素。合金中各组元之间相互影响、相互作用,因而可组成各种不同的结构。
(3)分级淬火法
将加热到奥氏体状态下的工件首先淬入略高于钢的马氏体转变开始温度点的盐浴或碱浴沪中淬火,保温一定时间后,使工件的内外温度与淬火剂的温度一致,然后取出在空气中冷却,完成马氏体转变。此法的优点是降低了工件内外温度差,降低了马氏体转变的冷却速度,从而减少了淬火应力,防止变形和开裂。缺点是因为硝盐浴或碱浴的冷却能力较弱,不适合大型件的处理。
(2)奥氏体奥氏体是碳溶解在γ-Fe中的固溶体,用符号A表示,奥氏体具有面心立方晶格,属间隙式固溶体。奥氏体溶解碳的能力较强,温度在1148℃时溶碳质量分数可达2.11%。随着温度的降低,其溶碳能力下降,727℃时溶碳质量分数为0.77%。奥氏体属高温组织,无磁性。只有当某些合金元素含量较多时,奥氏体才能保持到室温。奥氏体的强度不高,而塑性很好,适合塑性加工成形。
2.回火是把淬火后的钢加热到一定温度,保温后冷却至室温的处理工艺。这是淬火工件必须进行的一个工序,它决定了该工件在使用状态时的组织和性能,也可以说是决定了工件的使用性能和寿命。回火的目的是为了消除淬火时因冷却过快而产生的内应力,降低淬火工件的脆性,稳定工件尺寸和使工件具有符合工作条件的性能。根据回火加热温度的不同,回火可分为以下三种:
无论哪种固溶体,由于溶质原子的掺入,固溶体的晶格都存在畸变现象,从而改变了合金性能,表现为强度指标升高。
2.化合物