实验7 相关与回归分析SPSS应用
(整理)相关分析与回归分析SPSS实现
相关分析与回归分析一、试验目标与要求本试验项目的目的是学习并使用SPSS 软件进行相关分析和回归分析,具体包括:(1) 皮尔逊pearson 简单相关系数的计算与分析(2) 学会在SPSS 上实现一元及多元回归模型的计算与检验。
(3) 学会回归模型的散点图与样本方程图形。
(4) 学会对所计算结果进行统计分析说明。
(5) 要求试验前,了解回归分析的如下内容。
♦ 参数α、β的估计♦ 回归模型的检验方法:回归系数β的显著性检验(t -检验);回归方程显著性检验(F -检验)。
二、试验原理1.相关分析的统计学原理相关分析使用某个指标来表明现象之间相互依存关系的密切程度。
用来测度简单线性相关关系的系数是Pearson 简单相关系数。
2.回归分析的统计学原理相关关系不等于因果关系,要明确因果关系必须借助于回归分析。
回归分析是研究两个变量或多个变量之间因果关系的统计方法。
其基本思想是,在相关分析的基础上,对具有相关关系的两个或多个变量之间数量变化的一般关系进行测定,确立一个合适的数据模型,以便从一个已知量推断另一个未知量。
回归分析的主要任务就是根据样本数据估计参数,建立回归模型,对参数和模型进行检验和判断,并进行预测等。
线性回归数学模型如下:i ik k i i i x x x y εββββ+++++= 22110在模型中,回归系数是未知的,可以在已有样本的基础上,使用最小二乘法对回归系数进行估计,得到如下的样本回归函数:iik k i i i e x x x y +++++=ββββˆˆˆˆ22110 回归模型中的参数估计出来之后,还必须对其进行检验。
如果通过检验发现模型有缺陷,则必须回到模型的设定阶段或参数估计阶段,重新选择被解释变量和解释变量及其函数形式,或者对数据进行加工整理之后再次估计参数。
回归模型的检验包括一级检验和二级检验。
一级检验又叫统计学检验,它是利用统计学的抽样理论来检验样本回归方程的可靠性,具体又可以分为拟和优度评价和显著性检验;二级检验又称为经济计量学检验,它是对线性回归模型的假定条件能否得到满足进行检验,具体包括序列相关检验、异方差检验等。
SPSS的相关分析和线性回归分析
• 如果两变量的正相关性较强,它们秩的变化具有同步性,于
是
n
Di2
n
(Ui
Vi)2的值较小,r趋向于1;
• i1
i1
如果两变量的正相关性较弱,它们秩的变化不具有同步性,
于是
n
n
Di2 (Ui Vi)2
的值较大,r趋向于0;
• i1
i1
在小样本下,在零假设成立时, Spearman等级相关系数
用最小二乘法求解方程中的两个参数,得到:
1
(xi x)(yi y) (xi x)2
0 ybx
多元线性回归模型
多元线性回归方程: y=β0+β1x1+β2x2+.+βkxk
β1、β2、βk为偏回归系数。 β1表示在其他自变量保持不变的情况下,自变量x1变动
一个单位所引起的因变量y的平均变动。
析功能子命令Bivariate过程、Partial过程、 Distances过程,分别对应着相关分析、偏相关分析和相 似性测度(距离)的三个spss过程。
Bivariate过程用于进行两个或多个变量间的相关分 析,如为多个变量,给出两两相关的分析结果。
Partial过程,当进行相关分析的两个变量的取值都受 到其他变量的影响时,就可以利用偏相关分析对其他变量 进行控制,输出控制其他变量影响后的偏相关系数。
• 回归分析的一般步骤
确定回归方程中的解释变量(自变量)和被解释变量( 因变量) 确定回归方程 对回归方程进行各种检验 利用回归方程进行预测
8.4.2 线性回归模型 一元线性回归模型的数学模型:
y0 1x
其中x为自变量;y为因变量; 0 为截距,即
常量; 1 为回归系数,表明自变量对因变量的影
《2024年数据统计分析软件SPSS的应用(五)——相关分析与回归分析》范文
《数据统计分析软件SPSS的应用(五)——相关分析与回归分析》篇一数据统计分析软件SPSS的应用(五)——相关分析与回归分析一、引言在当今的大数据时代,数据统计分析成为了科学研究、市场调研、社会统计等众多领域的重要工具。
SPSS(Statistical Package for the Social Sciences)作为一款功能强大的数据统计分析软件,广泛应用于各种数据分析场景。
本文将重点介绍SPSS 中的相关分析与回归分析的应用。
二、相关分析1. 相关分析的概念与意义相关分析是研究两个或多个变量之间关系密切程度的一种统计方法。
通过相关分析,我们可以了解变量之间的关联性,从而为后续的回归分析提供基础。
2. SPSS中的相关分析操作在SPSS中,我们可以使用Bivariate或Correlate等过程进行相关分析。
首先,我们需要将数据导入SPSS,并选择需要进行相关分析的变量。
然后,选择相关的统计量(如Pearson相关系数、Spearman等级相关等),最后运行分析过程,即可得到相关系数及显著性检验结果。
3. 相关分析的应用案例以市场调研为例,我们可以通过相关分析研究消费者购买行为与产品价格、产品质量、广告投入等因素之间的关系。
通过分析相关系数,我们可以了解各因素之间的关联程度,为企业的市场策略提供依据。
三、回归分析1. 回归分析的概念与意义回归分析是研究一个或多个自变量与因变量之间关系的一种统计方法。
通过回归分析,我们可以了解自变量对因变量的影响程度,并建立预测模型。
2. SPSS中的回归分析操作在SPSS中,我们可以使用Linear Regression、Curve Estimation等过程进行回归分析。
操作步骤与相关分析类似,首先导入数据,选择因变量和自变量,然后选择合适的回归模型,最后运行分析过程。
SPSS将输出回归系数、显著性检验结果、模型拟合度等统计量。
3. 回归分析的应用案例以经济学为例,我们可以通过回归分析研究GDP与人口、产业结构、政策因素等自变量之间的关系。
SPSS统计分析实验教程——相关分析与回归分析
第七章相关分析【学习提要与目标】客观世界中的许多现象都存在着有机的联系,而且这些联系可以通过一定的数量关系反映出来。
例如,家庭收入与消费之间的关系、产品产量与单位成本之间的关系、广告费与商品销售额之间的关系等等。
这些变量之间就其关系的变化来说,一般可分为两大类型:一是函数关系,二是相关关系。
函数关系是变量之间的一种一一对应的关系,即当自变量x取一定值时,因变量y可以依据确定的函数关系取唯一的值。
客观世界中这种函数关系有很多,比如商品的销售额与销售量之间是一一对应的关系,在单价确定时,给定销售量就能唯一地确定销售额,再比如圆的面积与圆的半径之间的关系,等等。
相关关系是另一类普遍存在的关系。
在实际问题中,变量间往往并不是简单的关系,也就是说,变量之间有着密切的关系,但又不能由一个或几个变量的值确定另一个变量的值,即当自变量x取一定值时,,因变量y的值可能会有很多个。
这种变量之间的非一一对应的、不确定的线性关系,称之为相关关系。
例如,子女身高与父母身高之间的关系,虽然两者之间存在一定的关系,但这种关系却不能像函数关系那样以用一个确定的数学函数描述。
我们可以通过图形和数值两种方式,有效地揭示事务之间相关关系的强弱程度。
通过本章的学习,旨在使学生了解相关关系的概念、分类;掌握相关系数的计算方法和相关系数的取值含义;熟练掌握利用SPSS统计分析软件提供的三种相关分析方法进行相关关系的分析。
§7.1两变量相关分析【实验目的】了解相关关系的概念、分类、相关分析的主要内容以及相关系数的计算方法和取值含义,熟练地利用SPSS统计软件绘制散点图和两变量的相关分析——计算两变量的相关系数。
【实验原理】相关关系的分类两变量相关分析即是研究和分析两个变量之间相关关系的一种常用的统计方法。
现象之间的相互关系是很复杂的,它们以不同的方向、不同的程度相互作用,表现为各种形态,我们可以按不同的标准加以划分。
1.按相关关系的表现形态来划分,可分为线性相关和非线性相关。
数据统计分析软件SPSS的应用(五)——相关分析与回归分析
数据统计分析软件SPSS的应用(五)——相关分析与回归分析数据统计分析软件SPSS的应用(五)——相关分析与回归分析数据统计分析软件SPSS是目前应用广泛且非常强大的数据分析工具之一。
在前几篇文章中,我们介绍了SPSS的基本操作和一些常用的统计方法。
本篇文章将继续介绍SPSS中的相关分析与回归分析,这些方法是数据分析中非常重要且常用的。
一、相关分析相关分析是一种用于确定变量之间关系的统计方法。
SPSS提供了多种相关分析方法,如皮尔逊相关、斯皮尔曼相关等。
在进行相关分析之前,我们首先需要收集相应的数据,并确保数据符合正态分布的假设。
下面以皮尔逊相关为例,介绍SPSS 中的相关分析的步骤。
1. 打开SPSS软件并导入数据。
可以通过菜单栏中的“File”选项来导入数据文件,或者使用快捷键“Ctrl + O”。
2. 准备相关分析的变量。
选择菜单栏中的“Analyze”选项,然后选择“Correlate”子菜单中的“Bivariate”。
在弹出的对话框中,选择要进行相关分析的变量,并将它们添加到相应的框中。
3. 进行相关分析。
点击“OK”按钮后,SPSS会自动计算所选变量之间的相关系数,并将结果输出到分析结果窗口。
4. 解读相关分析结果。
SPSS会给出相关系数的值以及显著性水平。
相关系数的取值范围为-1到1,其中-1表示完全负相关,1表示完全正相关,0表示没有相关关系。
显著性水平一般取0.05,如果相关系数的显著性水平低于设定的显著性水平,则可以认为两个变量之间存在相关关系。
二、回归分析回归分析是一种用于探索因果关系的统计方法,广泛应用于预测和解释变量之间的关系。
SPSS提供了多种回归分析方法,如简单线性回归、多元线性回归等。
下面以简单线性回归为例,介绍SPSS中的回归分析的步骤。
1. 打开SPSS软件并导入数据。
同样可以通过菜单栏中的“File”选项来导入数据文件,或者使用快捷键“Ctrl + O”。
2. 准备回归分析的变量。
相关分析和回归分析SPSS讲解
相关系数的计算
对不同类型的变量应采用不同的相关系数来度
量,常用的相关系数主要有Pearson相关系 数、Spearman等级相关系数和Kendall相 关系数、点二列相关、二列相关等。 Pearson相关系数(适用于两个变量都是线 性、成对、正态、连续的数据)
r
或化简为
r
( x x )( y y ) (x x) ( y y)
Bivariate过程用于进行两个或多个变量间的相关分析,如为
多个变量,给出两两相关的分析结果。 Partial过程,当进行相关分析的两个变量的取值都受到其他 变量的影响时,就可以利用偏相关分析对其他变量进行控制 ,输出控制其他变量影响后的偏相关系数。 Distances过程用于对各样本点之间或各个变量之间进行相似 性分析,一般不单独使用,而作为聚类分析和因子分析等的 预分析。
一元线性回归模型(概念要点)
对于只涉及一个自变量的简单线性回归模型可表示 为 y = b + b1 x +
模型中,y 是 x 的线性函数(部分)加上误差项 线性部分反映了由于 x 的变化而引起的 y 的变化 误差项 是随机变量 • 反映了除 x 和 y 之间的线性关系之外的随机因素对 y 的影响 • 是不能由 x 和 y 之间的线性关系所解释的变异性 b0 和 b1 称为模型的参数
Bivariate相关分析步骤
(1)选择菜单Analyze-Correlate-Bivariate, 出现窗口:
(2)把参加计算相关系数的变量选到Variables框。 (3)在Correlation Coefficents框中选择计算哪种相关系数 。 (4)在Test of Significance框中选择输出相关系数检验的双 边(Two-Tailed)概率p值或单边(One-Tailed)概率 p值。 (5)选中Flag significance correlation选项表示分析结果 中除显示统计检验的概率p值外,还输出星号标记,以标明 变量间的相关性是否显著;不选中则不输出星号标记。 (6)在Option按钮中的Statistics选项中,选中Crossproduct deviations and covariances表示输出两变量的 离差平方和协方差。
相关分析和回归分析SPSS实现
相关分析和回归分析SPSS实现SPSS(统计包统计分析软件)是一种广泛使用的数据分析工具,在相关分析和回归分析方面具有强大的功能。
本文将介绍如何使用SPSS进行相关分析和回归分析。
相关分析(Correlation Analysis)用于探索两个或多个变量之间的关系。
在SPSS中,可以通过如下步骤进行相关分析:1.打开SPSS软件并导入数据集。
2.选择“分析”菜单,然后选择“相关”子菜单。
3.在“相关”对话框中,选择将要分析的变量,然后单击“箭头”将其添加到“变量”框中。
4.选择相关系数的计算方法(如皮尔逊相关系数、斯皮尔曼等级相关系数)。
5.单击“确定”按钮,SPSS将计算相关系数并将结果显示在输出窗口中。
回归分析(Regression Analysis)用于建立一个预测模型,来预测因变量在自变量影响下的变化。
在SPSS中,可以通过如下步骤进行回归分析:1.打开SPSS软件并导入数据集。
2.选择“分析”菜单,然后选择“回归”子菜单。
3.在“回归”对话框中,选择要分析的因变量和自变量,然后单击“箭头”将其添加到“因变量”和“自变量”框中。
4.选择回归模型的方法(如线性回归、多项式回归等)。
5.单击“统计”按钮,选择要计算的统计量(如参数估计、拟合优度等)。
6.单击“确定”按钮,SPSS将计算回归模型并将结果显示在输出窗口中。
在分析结果中,相关分析会显示相关系数的数值和统计显著性水平,以评估变量之间的关系强度和统计显著性。
回归分析会显示回归系数的数值和显著性水平,以评估自变量对因变量的影响。
值得注意的是,相关分析和回归分析在使用前需要考虑数据的要求和前提条件。
例如,相关分析要求变量间的关系是线性的,回归分析要求自变量与因变量之间存在一定的关联关系。
总结起来,SPSS提供了强大的功能和工具,便于进行相关分析和回归分析。
通过上述步骤,用户可以轻松地完成数据分析和结果呈现。
然而,分析结果的解释和应用需要结合具体的研究背景和目的进行综合考虑。
SPSS的相关分析和回归分析
n
( Xi X )(Yi Y )
r
11
n
n
( Xi X )2 (Yi Y )2i 1i 1源自2021/3/611
计算相关系数
(一)相关系数 (3)种类:
n
n
Di2 (Ui Vi )2
i 1
i 1
R
1
6 n(n2
Di2 1)
• Spearman相关系数:用来度量定序或定类变量间的线性相
第八章 SPSS的相关分析和回归分 析
2021/3/6
1
概述
(一)相关关系
(1)函数关系:(如:销售额与销售量;圆面积和圆半径.)
是事物间的一种一一对应的确定性关系.即:当一 个变量x取一定值时,另一变量y可以依确定的关 系取一个确定的值
(2)统计关系:(如:收入和消费;身高的遗传.)
事物间的关系不是确定性的.即:当一个变量x取 一定值时,另一变量y的取值可能有几个.一个变 量的值不能由另一个变量唯一确定
300
•散点图在进行相
200
关分析时较为粗略
100
领导(管理)人数
2021/3/6
0
Rsq = 0.7762
8 200 400 600 800 1000 1200 1400 1600 1800
普通职工数
计算相关系数
(一)相关系数 (1)作用:
– 以精确的相关系数(r)体现两个变量间的线性 关系程度.
2021/3/6
17
计算相关系数
(五)应用举例
• 通过27家企业普通员工人数和管理人员数,利用 相关系数分析人数之间的关系
– *表示t检验值发生的概率小于等于0.05,即总体无相 关的可能性小于0.05;
SPSS相关分析与回归分析专题课件
SPSS相关分析与回归分析专题课件
线性回归
相关分析 与
回归分析
回归分析一般步骤: •确定回归方程中的解释变量(自变量)和
被解释变量(因变量) •确定回归模型 •建立回归方程 •对回归方程进行各种检验 •利用回归方程进行预测
SPSS相关分析与回归分析专题课件
线性回归
线性回归模型
相关分析 与
回归分析
研究者把非确定性关系称为相关关系。
SPSS相关分析与回归分析专题课件
相关分析 与
回归分析
三.相关分析的特点和应用
相关关系是普遍存在的,函数关系仅是相关关系的特 例。 1.相关关系的类型
相关关系多种多样,归纳起来大致有以下6种: 强正相关关系,其特点是一变量X增加,导致另一变量
Y明显增加,说明X是影响Y的主要因素。 弱正相关关系,其特点是一变量X增加,导致另一变量
所以,相关分析的意义和目的在于: (1)在统计学中有理论与实践意义 (2)对相关关系的存在性给出判断
( 3 ) 对相关关系的强度给出度量和分析
SPSS相关分析与回归分析专题课件
相关分析 与
回归分析
二、相关分析的概念
变量之间的关系分为确定性关系和非确定性关系。 确定性关系:当一个变量值(自变量)确定后,另一个 变量值(因变量)也就完全确定了,确定性关系往往可以 表示成一个函数的形式,比如圆的面积和半径的关系: S=πr² 非确定性关系:给定了一个变量值后,另一个变量值可 以在一定范围内变化,例如家庭的消费支出和家庭收入的 关系。
回归分析
SPSS相关分析与回归分析专题课件
相关分析 与
回归分析
(1)案例处理摘要。“案例处理摘要”表格给出了数 据使用的基本情况。主要是对有无缺失值的统计信息, 可见本例的11个案例没有缺失,全部用于分析。 (2)近似矩阵。“近似矩阵”表格给出的是各变量之 间的相似矩阵,图中以线框标注了相关系数较大的几对 变量。它们在进一步的分析中应重点关注,或者直接对 其进行适当的预处理(例如变量约减)
(转载)SPSS之相关分析与线性回归模型(图文+数据集)
(转载)SPSS之相关分析与线性回归模型(图文+数据集)在讲解线性回归模型之前,先来学习相关分析的知识点,因为相关分析与回归有着密切的联系相关分析•任意多个变量都可以考虑相关问题,不单单局限于两个变量,一次可以分析多个变量的相关性•任意测量尺度的变量都可以测量相关强度,不单单仅可以测连续与连续变量的相关性,连续变量和有序分类变量,连续变量和无序分类变量都可以测量相关性,不过衡量指标我们不常接触而已连续与连续变量的相关性常用术语直线相关两变量呈线性共同增大呈线性一增一减曲线相关两变量存在相关趋势并非线性,而是呈各种可能的曲线趋势正相关与负相关完全相关相关分析对应SPSS位置(分析--相关)双变量过程(例子:考察信心指数值和年龄的相关性)§进行两个/多个变量间的参数/非参数相关分析§如果是多个变量,则给出两两相关的分析结果偏相关过程(例子:在控制家庭收入QS9对总信心指数影响的前提下,考察总信心指数值和年龄的相关性。
)§对其他变量进行控制§输出控制其他变量影响后的相关系数距离过程§对同一变量内部各观察单位间的数值或各个不同变量间进行相似性或不相似性(距离)分析§前者可用于检测观测值的接近程度§后者则常用于考察各变量的内在联系和结构§一般不单独使用,而是作为多维标度分析(multidimensional scaling ,MDS)的预分析过程相关分析和回归分析的关系研究两个变量间的紧密程度:相关分析研究因变量随自变量的变化:回归分析回归分析概述因变量:连续变量自变量:通常为连续变量,也可以是其他类型1.研究一个连续性变量(因变量)的取值随着其它变量(自变量)的数值变化而变化的趋势2.通过回归方程解释两变量之间的关系显的更为精确,可以计算出自变量改变一个单位时因变量平均改变的单位数量,这是相关分析无法做到的3.除了描述两变量的关系以外,通过回归方程还可以进行预测和控制,这在实际工作中尤为重要§回归分析假定自变量对因变量的影响强度是始终保持不变的,如公式所示:§对于因变量的预测值可以被分解成两部分:§常量(constant):x取值为零时y的平均估计量,可以被看成是一个基线水平§回归部分:它刻画因变量Y的取值中,由因变量Y与自变量X的线性关系所决定的部分,即可以由X直接估计的部分§Ŷ:y的估计值(所估计的平均水平),表示给定自变量的取值时,根据公式算得的y的估计值§a:常数项,表示自变量取值均为0时因变量的平均水平,即回归直线在y轴上的截距(多数情况下没有实际意义,研究者也不用关心)§b:回归系数,在多变量回归(多个自变量的回归)中也称偏回归系数。
相关分析报告与回归分析报告SPSS实现
相关分析与回归分析一、试验目标与要求本试验项目的目的是学习并使用SPSS 软件进展相关分析和回归分析,具体包括:(1) 皮尔逊pearson 简单相关系数的计算与分析(2) 学会在SPSS 上实现一元与多元回归模型的计算与检验。
(3) 学会回归模型的散点图与样本方程图形。
(4) 学会对所计算结果进展统计分析说明。
(5) 要求试验前,了解回归分析的如下内容。
♦ 参数α、β的估计♦ 回归模型的检验方法:回归系数β的显著性检验〔t -检验〕;回归方程显著性检验〔F -检验〕。
二、试验原理1.相关分析的统计学原理相关分析使用某个指标来明确现象之间相互依存关系的密切程度。
用来测度简单线性相关关系的系数是Pearson 简单相关系数。
2.回归分析的统计学原理相关关系不等于因果关系,要明确因果关系必须借助于回归分析。
回归分析是研究两个变量或多个变量之间因果关系的统计方法。
其根本思想是,在相关分析的根底上,对具有相关关系的两个或多个变量之间数量变化的一般关系进展测定,确立一个适宜的数据模型,以便从一个量推断另一个未知量。
回归分析的主要任务就是根据样本数据估计参数,建立回归模型,对参数和模型进展检验和判断,并进展预测等。
线性回归数学模型如下:i ik k i i i x x x y εββββ+++++= 22110在模型中,回归系数是未知的,可以在已有样本的根底上,使用最小二乘法对回归系数进展估计,得到如下的样本回归函数:iik k i i i e x x x y +++++=ββββˆˆˆˆ22110 回归模型中的参数估计出来之后,还必须对其进展检验。
如果通过检验发现模型有缺陷,如此必须回到模型的设定阶段或参数估计阶段,重新选择被解释变量和解释变量与其函数形式,或者对数据进展加工整理之后再次估计参数。
回归模型的检验包括一级检验和二级检验。
一级检验又叫统计学检验,它是利用统计学的抽样理论来检验样本回归方程的可靠性,具体又可以分为拟和优度评价和显著性检验;二级检验又称为经济计量学检验,它是对线性回归模型的假定条件能否得到满足进展检验,具体包括序列相关检验、异方差检验等。
SPSS统计分析-第7章 回归分析
7.3 多元线性回归分析
自然界的万事万物都是相互联系和关联的,所以一个 因变量往往同时受到很多个自变量的影响。如本章开 篇时讲到的那个例子,男性胃癌患者发生术后院内感 染的影响因素有很多,如年龄、手术创伤程度、营养 状态、术前预防性抗菌、白细胞数以及癌肿病理分度。 这时我们如果要更加精确的、有效的预测男性胃癌患 者发生术后院内感染的具体情况这个因变量,就必须 引入多个自变量,建立多元回归模型。
(2)选择“分析”|“回归”|“线性”命令,打开“线性回归” 主对话框,如下图所示:
(3) 在 “ 线 性 回 归 ” 主 对 话 框 左 侧 的 变 量 列 表 框 中 选 中 变 量 “术后感染”,将其移入右侧的“因变量”文本框中。
(4)在“线性回归”主对话框左侧的变量列表框中分别选中变 量“年龄”、“手术创伤程度”、“营养状态”、“术前预防 性抗菌”、“白细胞数”和“癌肿病理分度”,将它们选入右 侧的“自变量”列表框中。在中间的“方法”文本框系统默认 是“进入”选项,无需修改。
(4)回归系数
如下表所示为回归模型的回归系数及回归系数的显著性差 异,包括为标准化的回归系数、未标准化的回归系数、回 归系数的显著性的t值。标准化回归系数的绝对值越大,表 示该预测变量对因变量的影响越大,其解释因变量的变异 量也就会越大。从表中可以得到为标准化的回归方程:
50日龄鸭重=582.185+21.712*雏鸭重
7.3.1 多元线性回归的基本概念
多元回归模型是指含有两个或者两个以上的自变量的 线性回归模型,用于揭示因变量与多个自变量之间的 线性关系。多元回归的方程式为:
Y=b0+b1X1+b2X2+…biXi 以下呈现的是在计算多元回归模型时一般采用的几种
spss教程相关分析与回归模型的建立与分析
第三章相关分析与回归模型的建立与分析相关分析和回归分析是统计分析方法中最重要内容之一,是多元统计分析方法的基础。
相关分析和回归分析主要用于研究和分析变量之间的相关关系,在变量之间寻求合适的函数关系式,特别是线性表达式。
◆本章主要内容:1、对变量之间的相关关系进行分析(Correlate)。
其中包括简单相关分析(Bivariate)和偏相关分析(Partial)。
2、建立因变量和自变量之间回归模型(Regression),其中包括线性回归分析(Linear)和曲线估计(Curve Estimation)。
◆数据条件:参与分析的变量数据是数值型变量或有序变量。
§3.1 相关分析在SPSS中,可以通过Analyze菜单进行相关分析(Correlate),Correlate菜单如图3.1所示。
图3.1 Correlate 相关分析菜单§3.1.1 简单相关分析两个变量之间的相关关系称简单相关关系。
有两种方法可以反映简单相关关系。
一是通过散点图直观地显示变量之间关系,二是通过相关系数准确地反映两变量的关系程度。
§3.1.1.1 散点图SPSS软件的绘图命令集中在Graphs菜单。
下面通过例题来介绍具体操作方法。
例1:数据库SY-8中的变量X表示山东省人均国内生产总值,Y表示山东省城镇居民的消费额(资料来源:山东省2003年统计年鉴),现画出散点图来观察两个变量的关联程度。
具体操作步骤如下:首先打开数据SY-8,然后单击Graphs Scatter,打开Scatter plot散点图对话框,如图3.2所示。
然后选择需要的散点图,图中的四个选项依次是:Simple 简单散点图Matrix 矩阵散点图Overlay 重叠散点图3-D 三维散点图图3.2 散点图对话框如果只考虑两个变量,可选择简单的散点图Simple,然后点击Define,打开Simple Scatterplot对话框,如图3.3所示。
「相关分析与回归分析SPSS实现」
「相关分析与回归分析SPSS实现」相关分析与回归分析是统计学中常用的方法,可以用来研究两个或多个变量之间的相关关系,并进行预测和解释。
SPSS(Statistical Package for the Social Sciences)是一种常见的统计分析软件,提供了完成相关分析和回归分析的功能。
本文将从相关分析和回归分析的基本原理、SPSS的操作步骤以及分析结果的解释等方面进行阐述。
首先,相关分析用于研究两个变量之间的相关关系。
可以通过计算相关系数来衡量两个变量之间的相关程度。
根据变量的度量尺度不同,常用的相关系数有皮尔逊相关系数、斯皮尔曼等级相关系数和切比雪夫距离等。
在SPSS中,进行相关分析的步骤如下:1.打开SPSS软件,并导入待分析的数据文件。
2.选择“分析”菜单,点击“相关”子菜单。
3.在弹出的对话框中,选择需要进行分析的变量,并选择相关系数的计算方法。
4.点击“确定”按钮,即可得到相关分析的结果。
相关分析的结果包括相关系数、显著性水平和样本大小等。
相关系数的取值范围在-1到1之间,接近-1或1表示两个变量呈现很强的正相关或负相关关系,接近0表示两个变量之间没有线性相关关系。
其次,回归分析用于预测和解释变量之间的关系。
回归分析可以包括一元回归分析和多元回归分析。
一元回归分析用于研究一个自变量对一个因变量的影响,多元回归分析则可以同时研究多个自变量对一个因变量的影响。
在SPSS中,进行回归分析的步骤如下:1.打开SPSS软件,并导入待分析的数据文件。
2.选择“分析”菜单,点击“回归”子菜单。
3.在弹出的对话框中,选择需要进行分析的因变量和自变量。
对于多元回归分析,可以选择多个自变量。
4.可以选择加入交互项和控制变量等进行高级分析。
5.点击“确定”按钮,即可得到回归分析的结果。
回归分析的结果包括回归方程、回归系数、显著性水平和拟合优度等。
回归方程可以用来预测因变量的取值,回归系数表示自变量对因变量的影响程度,显著性水平表示回归模型是否具有统计学意义,拟合优度表示回归模型对观测数据的拟合程度。
spss统计分析及应用教程-第6章 相关和回归分析课件PPT
实验二 偏相关分析
❖ 实验目的
准确理解偏相关分析的方法原理和使用前提; 熟练掌握偏相关分析的SPSS操作; 了解偏相关分析在中介变量运用方法。
实验二 偏相关分析
❖ 准备知识
偏相关分析的概念
在多元相关分析中,由于其他变量的影响,Pearson相关系数 只是从表面上反映两个变量相关性,相关系数不能真正反映两 个变量间的线性相关程度,甚至会给出相关的假想。因此,在 有些场合中,简单的Pearson相关系数并不是测量相关关系的 本质性统计量。当其他变量控制后,给定的任意两个变量之间 的相关系数叫做偏相关系数。偏相关系数才是真正反映两个变 量相关关系的统计量。
(3)点击“选项”按钮,见图,选择 零阶相关系数(也就是两两简单相关系 数,可以用与偏相关系数比较)。点击 “继续”按钮回到主分析框。点击“确 定”按钮。
❖ 实验结果
描述性统计分析
偏相关分析
实验三 简单线性回归分析
❖ 实验目的
准确理解简单线性回归分析的方法原理; 熟练掌握简单线性回归分析的SPSS操作与分析; 了解相关性与回归分析之间关系; 培养运用简单线性回归分析解决实际问题的能力。
实验二 偏相关分析
❖ 实验步骤
(1)在SPSSl7.0中打开数据文件6-2.sav,通过选择“文件— 打开”命令将数据调入SPSSl7.0的工作文件窗口 。
❖ 旅游投资数据文件
(2)从菜单上依次选择“分析-相关-偏相关”命令,打开其 对话框,如图所示。选择“商业投资”与“经济增长”作为相 关分析变量,送入变量框中;选择“游客增长率”作为控制变 量,用箭头送入右边的控制框中。
实验一 相关分析
❖ 实验内容
❖ 某大学一年级12名女生的胸围(cm)、肺活量(L)身 高(m),数据见表6-1-1。试分析胸围与肺活量两个变 量之间相关关系。
实验7相关与回归分析SPSS应用
实验7相关与回归分析SPSS应用引言:在统计学中,相关与回归分析是两种常用的数据分析方法。
相关分析主要用于研究变量之间的关联程度,回归分析则主要用于预测和解释一个或多个自变量对因变量的影响程度。
本实验将使用SPSS软件进行相关与回归分析的应用,并通过一个案例来说明具体的步骤和方法。
实验目的:1.理解相关与回归分析的基本概念和原理;2.掌握使用SPSS软件进行相关与回归分析的方法;3.并能够通过实例运用所学知识进行数据分析和解释。
实验方法:1.数据准备:首先,我们需要准备一组相关的数据,包括自变量和因变量。
本实验中,我们选择一个经典的案例,研究汽车的速度与刹车距离之间的关系。
我们随机选择了10辆汽车,并记录了它们的刹车速度和刹车距离数据。
2.相关分析:首先,我们使用SPSS软件对所收集的数据进行相关性分析。
具体步骤如下:a.打开SPSS软件并导入数据文件;b.选择“分析”菜单中的“相关”选项;c.从左边的变量列表中选择自变量和因变量,并将其移动到右边的变量列表中;d.点击“OK”按钮,开始进行相关分析;e. 分析结果将显示相关系数矩阵、Sig.值和样本大小等信息。
3.回归分析:在完成相关性分析后,我们可以进一步使用回归分析来预测和解释因变量。
具体步骤如下:a.选择“分析”菜单中的“回归”选项;b.从左边的变量列表中选择因变量和自变量,并将其移动到右边的变量列表中;c.在“方法”选项卡中,选择适当的回归方法;d.点击“OK”按钮,开始进行回归分析;e.分析结果将显示模型的回归系数、截距、显著性和模型拟合度等信息。
实验结果与讨论:在完成相关与回归分析后,我们可以得到以下结果:1.相关性分析结果:相关性分析结果显示,汽车的刹车速度与刹车距离呈显著正相关(r=0.818,p<0.01)。
这说明了刹车速度和刹车距离之间存在较强的线性关系,车速越快,刹车距离越大。
2.简单线性回归结果:根据回归分析结果,我们建立了一个简单的线性回归模型:刹车距离=0.804×刹车速度-17.579回归系数说明刹车速度每增加1单位,刹车距离平均增加0.804单位,截距表示当刹车速度为0时,刹车距离的预测值为-17.579回归模型的显著性水平为0.000,说明模型的预测能力较强。
数据统计分析软件SPSS的应用相关分析与回归分析
数据统计分析软件SPSS的应用相关分析与回归分析一、本文概述随着信息技术的快速发展和大数据时代的来临,数据统计分析在各个领域的应用越来越广泛。
SPSS作为一款功能强大的数据统计分析软件,其在社会科学、商业分析、医学统计等多个领域具有广泛的应用。
本文将深入探讨SPSS在相关分析与回归分析中的应用,帮助读者更好地理解和应用这一强大的工具。
本文将简要介绍SPSS软件的基本功能和特点,使读者对其有一个初步的了解。
随后,文章将重点介绍相关分析的概念、类型及其在SPSS中的实现方法,包括皮尔逊相关系数、斯皮尔曼秩相关系数等。
文章还将详细阐述回归分析的基本原理、类型及其在SPSS中的操作步骤,如线性回归分析、逻辑回归分析等。
通过本文的学习,读者将能够掌握SPSS在相关分析与回归分析中的基本应用,提高数据处理和分析的能力,为实际工作和研究提供有力支持。
文章还将提供一些实际案例,以帮助读者更好地理解和应用所学知识,提高实际操作能力。
二、SPSS软件基础SPSS,全称为Statistical Package for the Social Sciences,即“社会科学统计软件包”,是一款广泛应用于社会科学领域的数据统计分析软件。
它提供了丰富的数据分析工具,包括描述性统计、推论性统计、探索性数据分析、回归分析、因子分析、聚类分析等,能够帮助研究者轻松处理和分析数据,挖掘数据背后的深层次信息。
在使用SPSS之前,用户需要对其基本界面和常用功能有所了解。
SPSS界面友好,主要分为菜单栏、工具栏、数据视图和变量视图等部分。
菜单栏包含了大多数统计分析功能的命令,如“分析”“描述统计”“因子分析”等。
工具栏则提供了一些常用的统计分析工具的快捷方式。
数据视图是用户输入和编辑数据的地方,而变量视图则用于定义变量的属性,如变量名、变量类型、宽度、小数位数等。
在SPSS中,数据分析的核心步骤通常包括数据准备、数据分析、结果解释和报告生成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验7 相关与回归分析
7.1实验目的
熟练掌握一元线性回归分析的SPSS应用技能,掌握一元非线性回归分析的SPSS应用技能,对实验结果做出解释。
7.2相关知识(略)
7.3实验内容
7.3.1一元线性回归分析的SPSS实验
7.3.2一元非线性回归分析的SPSS实验
7.4实验要求
7.4.1准备实验数据
1.线性回归分析数据
(The Wall 美国各航空公司业绩的统计数据公布在《华尔街日报1999年年鉴》
Street Journal Almanac 1999)上。
航班正点到达的比率和每10万名乘客投诉
的次数的数据,见表7-1所示。
表7-1 美国航空公司航空正点率与乘客投诉次数资料
2.非线性回归分析数据
1992~2013年某国保费收入与国内生产总值的数据,试研究保费收入与国内生产
总值的关系的数据,见表7-2所示。
表7-2 1992~2013年某国保费收入与国内生产总值数据 单位:万元
7.4.2完成一元线性回归分析的SPSS 实验,对实验结果作出简要分析。
7.4.3完成一元非线性回归分析的SPSS 实验,对实验结果作出简要分析。
7.5实验步骤
7.5.1 完成一元线性回归分析的SPSS 实验步骤 1.运用SPSS 绘制散点图散点图。
第一步:在excel 中输入数据
图7-1
第二步:将excel 数据导入spss
单击打开数据文档按钮(或选择菜单文件→打开)→选择文件航空公司航班
正点率与投诉率.xls
图7-2
第三步:选择菜单图形→旧对话框→散点/点状,在散点图/点图对话框中,
选择简单分布按钮
图7-3
第三步:在简单散点图对话框中,将候选变量框中的投诉率添加到Y轴,航班正点率添加到X轴,点击确定:
第四步:运行得到:
根据散点图初步判断航班正点率和投诉率呈线性关系
2.计算相关系数,明确变量之间存在的相关关系。
第一步:选择菜单分析(A)相关(C)→双变量相关(B),在双变量相关
对话框中,将候选变量框中的航班正点率和投诉率添加到变量(V)框,点击确
定:
图7-6
第二步:运行得到
根据相关系数判断:航班正点率和投诉率的相关系数为-0.833,显著性水平P为0.002小于0.05,说明航班正点率和投诉率高度负相关。
3.拟合回归方程
第一步:选择菜单分析(A)→回归(R)→线性(L),将候选变量框中的投诉率添加到因变量框(D),航班正点率添加到自变量框(T),点击确定:
图7-7
第二步,运行得到
拟合回归方程为
Y=-0.07 X + 6.018,常数项和自变量t值分别为5.719和-4.967,
显著性水平P分别为0.001和0.002,均小于0.05,说明常数项和自变量X对因变量Y有显著影响。
4.计算回归标准误差,说明回归直线的代表性;计算样本拟合优度,说明模型拟合的效果。
第一步:操作同3
第二步,运行得到
估计标准误差2
)
(2
--=
∑∧
n Y Y S YX =0.16082比较小,说明回归直线代表性较好。
R 2为0.747接近1,表明模型的拟合效果比较好。
5.在不同置信水平下建立回归估计的置信区间
在置信水平
1-α取不同值的情况下,回归估计的置信区间为:
⎥⎦⎤
⎢⎣⎡++--+-=⎥⎦⎤⎢⎣⎡+-∧∧222216082.0018.67.0,16082.0018.67.0,ααααZ X Z X S Z Y S Z Y YX YX
6.对估计的回归方程的斜率作出解释
回归方程的斜率,即回归系数b=-0.07,表示航班正点率每提高1%,旅客投诉率会降低0.07%。
7.如果航班按时到达的正点率为80%,估计每10万名乘客投诉的次数。
根据回归方程∧
Y =-0.7 X + 6.018,当航班正点率为80%时,每10万名乘客投诉的次数为-0.7×80+6.018=0.418(次)
8.如果航班按时到达的正点率为80%,试在95%可信程度下估计每10万名乘客投诉的置信区间。
如果航班按时到达的正点率为80%,试在95%可信程度下估计每10万名乘客投诉的置信区间为
⎥⎦⎤
⎢⎣
⎡++--+-=⎥⎦⎤⎢⎣⎡+-∧∧222216082.0018.67.0,16082
.0018.67.0,ααααZ X Z X S Z Y S Z Y YX YX =[0.1028,0.7332]
7.5.2完成一元非线性回归分析的SPSS实验步骤
1. 画出这些数据的散点图
第一步:在excel中输入数据
图7-1
第二步:将excel数据导入spss
单击打开数据文档按钮(或选择菜单文件→打开)→选择文件国民生产总值与保费收入.xls
图7-2
第三步:选择菜单图形→旧对话框→散点/点状,在散点图/点图对话框中,
选择简单分布按钮
图7-3
第四步:在简单散点图对话框中,将候选变量框中的将保费收入添加到Y轴,
国民生产总值添加到X轴:
第五步:运行得到:
图7-5
根据散点图初步判:国民生产总值与保费收入呈非线性关系。
2.计算不同模型的样本拟合优度,并据此选择拟合效果最好的模型。
第一步:选择菜单分析→回归→曲线估计,在曲线估计对话框中,将候选变量框中的保费收入添加到因变量,将国民生产总值添加到自变量,依次选择模型复选框中的线性、二次项、对数、指数等模型。
图7-6
第二步:依次得到运行结果
图7-7 直线 R2=0.941
图7-8二次曲线 R2=0.973
图7-9 复合 R2=0.789
图7-10 增长 R2=0.789
图7-11 三次曲线 R2=0.990
图7-12 对数 R2=0.772
图7-13 S曲线 R2=0.946
图7-14 指数 R2=0.789
图7-15 反向 R2=0.015
图7-16 幂 R2=0.015
图7-17 Logistic R2=0.829
通过对比上述模型,与观测点变化趋势拟合最好的是三次曲线模型,三次曲线的拟合优度最大(R2=0.990),也说明它是拟合效果最好的模型。
或者在第一步中,将所有模型的复选框全部选定,得到运行结果:
同样,通过对比上述模型,与观测点变化趋势拟合最好的是三次曲线模型,三次曲线的拟合优度最大(R2=0.990),也说明它是拟合效果最好的模型。
3.求解保费收入依国民生产总值的估计回归方程。
第一步:选择菜单分析→回归→曲线估计,在曲线估计对话框中,将候选变量框中的保费收入添加到因变量,将国民生产总值添加到自变量,选择模型复选框中的立方模型
图7-18
第二步:单击曲线估计对话框中的保存按钮,在曲线估计:保存对话框中,选择预测值、残差、预测区间复选框
图7-19
第三步,运行结果
表7-4 模型汇总
R2为0.990非常接近1,表明模型的拟合效果非常好。
表7-5 系数
从表中可知因变量与自变量的三次回归模型为:y=-166.430 + 0.029x - 5.364E-7x2 + 5.022E-12x3
7.6 思考与练习题
7.6.1一元线性回归分析
合金钢的强度Y与碳含量X关系密切,通常根据强度要求来控制碳的含量来达到目的,二者之间关系如下:
(1)画出这些数据的散点图;
(2)根据散点图和相关系数,表明二变量之间存在什么关系?
(3)求出描述钢强度是如何依赖碳含量的估计的回归方程;
(4)计算回归标准误差,说明回归直线的代表性;计算样本拟合优度,说明模型拟合的效果;(5)对估计的回归方程的斜率作出解释;
(6)如果碳含量控制在0.18,试估计钢的强度;
(7)如果碳含量控制在0.18,试在95%可信程度下估计钢强度的置信区间。
7.6.2一元非线性回归分析
处在青春期发育阶段的学生,其年龄与远视率的变化关系入下表:
实验要求:
(1)画出这些数据的散点图;
(2)计算不同模型的样本拟合优度,根据样本拟合优度选择拟合效果最好的模型;
(3)求出描述保费收入是如何依赖国民生产总值的估计的回归方程。