二用数学归纳法证明不等式
数学归纳法证明不等式
![数学归纳法证明不等式](https://img.taocdn.com/s3/m/fa3a8495690203d8ce2f0066f5335a8102d266a8.png)
数学归纳法证明不等式归纳法由有限多个个别的特殊事例得出一般结论的推理方法。
那怎么用归纳法来证明不等式呢? 接下来店铺为你整理了数学归纳法证明不等式,一起来看看吧。
数学归纳法证明不等式的基本知识数学归纳法的基本原理、步骤和使用范围(1)在数学里,常用的推理方法可分为演绎法和归纳法,演绎法一般到特殊,归纳法是由特殊到一般.由一系列有限的特殊事例得出一般结论的推理方法,通常叫归纳法。
在归纳时,如果逐个考察了某类事件的所有可能情况,因而得出一般结论,那么结论是可靠的.这种归纳法叫完全归纳法(通常也叫枚举法)如果考察的只是某件事的部分情况,就得出一般结论,这种归纳法叫完全归纳法.这时得出的结论不一定可靠。
数学问题中,有一类问题是与自然数有关的命题,因为自然数有无限多个,我们不可能就所有的自然数一一加以验证,所以用完全归纳法是不可能的.然而只就部分自然数进行验证所得到的结论,是不一定可靠的例如一个数列的通项公式是an=(n2-5n+5)2容易验证a1=1,a2=1,a3=1,a4=1,如果由此作出结论——对于任何n∈N+, an=(n2-5n+5)2=1都成立,那是错误的.事实上,a5=25≠1.因此,就需要寻求证明这一类命题的一种切实可行、比较简便而又满足逻辑严谨性要求的新的方法——数学归纳法.(2)数学归纳法是一种重要的数学证明方法,其中递推思想起主要作用。
形象地说,多米诺骨牌游戏是递推思想的一个模型,数学归纳法的基本原理相当于有无限多张牌的多米诺骨牌游戏,其核心是归纳递推.一般地,当要证明一个命题对于不小于某正整数n0的所有正整数n都成立时,可以用一下两个步骤:(1)证明当n=n0(例如n0=1或2等)时命题成立;(2)假设当n=k(k∈N+,且k≥n0)时命题成立,证明当n=k+1时命题也成立.在完成了这两个步骤以后,就可以断定命题对于不小于n0所有自然数都成立.这种证明方法称为数学归纳法.自然数公理(皮亚诺公理)中的“归纳公理”是数学归纳法的理论根据,数学归纳法的两步证明恰是验证这条公理所说的两个性质.数学归纳法的适用范围仅限于与自然数n有关的命题.这里的n是任意的正整数,它可取无限多个值.附录:下面是自然数的皮亚诺公理,供有兴趣的同学阅读.任何一个象下面所说的非空集合N的元素叫做自然数,在这个集合中的某些元素a与b之间存在着一种基本关系:数b是数a后面的一个“直接后续”数,并且满足下列公理:①1是一个自然数;②在自然数集合中,每个自然数a有一个确定“直接后续”数a’;③a’≠1,即1不是任何自然数的“直接后续”数;④由a’ =b’推出a=b,这就是说,每个自然数只能是另一个自然数的“直接后续”数;⑤设M是自然数的一个集合,如果它具有下列性质:(Ⅰ)自然数1属于M,(Ⅱ)如果自然数a属于M,那么它的一个“直接后续”数a’也属于M,则集合M包含一切自然数.其中第5条公理又叫做归纳公理,它是数学归纳法的依据.(3)数学归纳法可以证明与自然数有关的命题,但是,并不能简单地说所有涉及正整数n的命题都可以用数学归纳法证明.例如用数学归纳法证明(1+1)n(n∈N+)的单调性就难以实现.一般来说,n从k=n到k=n+1时,如果问题中存在可利用的递推关系,则数学归纳法有用武之地,否则使用数学归纳法就有困难.数学归纳法证明不等式例题。
数学归纳法证明不等式
![数学归纳法证明不等式](https://img.taocdn.com/s3/m/43519c5c640e52ea551810a6f524ccbff121ca02.png)
数学归纳法证明不等式数学归纳法是一种证明数学命题的重要方法,它基于数学归纳的思想,通过证明一个命题在一些特定条件下成立,并且在此条件下该命题的下一步也具有同样的性质,从而证明该命题对于一切满足该条件的情况都成立。
在这里,我们将使用数学归纳法来证明一个不等式。
不等式是数学中常见的一种关系式,它描述了两个数或者更多数之间大小关系的性质。
在这里,我们将使用数学归纳法来证明一个形如:$2^n>n^2$的不等式,其中$n$是一个正整数。
首先,我们需要证明当$n=1$时,不等式$2^n>n^2$成立。
当$n=1$时,不等式变为$2^1>1^2$,显然成立。
其次,我们需要证明对于任意一个正整数$k$,如果当$n=k$时不等式$2^k>k^2$成立,那么当$n=k+1$时,不等式$2^{k+1}>(k+1)^2$也成立。
也就是说,我们需要证明如果$2^k>k^2$,那么$2^{k+1}>(k+1)^2$。
根据我们的假设,我们知道$2^k>k^2$。
将不等式两边都乘以2,我们得到$2^{k+1}>2k^2$。
由于$k$是一个正整数,所以$k^2>k$。
将这个不等式代入前面的结果中,我们得到$2^{k+1}>2k^2>k^2+k^2>k^2+k>(k+1)^2$。
也就是说,如果$2^k>k^2$,那么$2^{k+1}>(k+1)^2$。
通过对$n=1$和$n=k+1$的情况都进行证明,我们完成了对于任意正整数$n$的证明。
根据数学归纳法的原理,这意味着不等式$2^n>n^2$对于一切$n$都成立。
综上所述,我们使用数学归纳法成功地证明了不等式$2^n>n^2$,其中$n$是一个正整数。
数学归纳法证明不等式的两个技巧
![数学归纳法证明不等式的两个技巧](https://img.taocdn.com/s3/m/1684521c492fb4daa58da0116c175f0e7dd1194f.png)
数学归纳法证明不等式的两个技巧数学归纳法是一种数学证明方法,常用于证明自然数的性质。
它的基本思想是:首先证明当n为一些特定的自然数时,不等式成立;然后假设当n为一些自然数时,不等式也成立;最后利用这个假设证明当n为n+1时,不等式仍然成立。
下面将介绍两种常用的数学归纳法证明不等式的技巧。
技巧一:基础情况的证明在使用数学归纳法证明不等式时,首先需要证明基础情况,即当n为一些特定的自然数时,不等式是否成立。
例如,我们想要证明对于任意的正整数n,都有1+2+3+...+n≤n²。
基础情况是n=1时,不等式左边为1,右边为1²=1,不等式成立。
技巧二:归纳假设的运用假设当n为一些自然数时,不等式也成立,即假设1+2+3+...+n≤n²成立。
然后我们要利用这个假设来证明当n为n+1时,不等式仍然成立。
例如,我们要证明对于任意的正整数n,都有1+2+3+...+n+(n+1)≤(n+1)²。
根据归纳假设,我们可以得到1+2+3+...+n≤n²,所以我们可以将不等式右边的(n+1)²展开为n²+2n+1现在,我们需要证明1+2+3+...+n+(n+1)≤n²+2n+1、我们可以逐步将左边拆分成两部分,即(1+2+3+...+n)+(n+1)。
根据归纳假设,我们知道前一部分不大于n²,所以该不等式可以进一步简化为n²+(n+1)≤n²+2n+1最后,可以发现左边的n²+(n+1)小于等于右边的n²+2n+1,因为(n+1)小于等于2n+1、所以,我们得到了当n为n+1时,不等式仍然成立。
综上所述,通过基础情况的证明和归纳假设的运用,可以使用数学归纳法证明不等式。
这两个技巧可以帮助我们在证明过程中合理利用已有的条件和假设,从而简化证明的过程。
不等式证明方法
![不等式证明方法](https://img.taocdn.com/s3/m/4fcc8d40854769eae009581b6bd97f192279bf3d.png)
不等式证明方法不等式在数学中占有重要的地位,它是描述数之间大小关系的一种数学工具。
不等式证明方法是数学中的重要内容之一,本文将介绍不等式证明的几种常见方法,希望能够帮助读者更好地理解和掌握不等式的证明技巧。
一、数学归纳法。
数学归纳法是一种重要的数学证明方法,它通常用于证明某个命题对于一切自然数成立。
在不等式证明中,我们可以利用数学归纳法证明不等式的成立。
具体来说,我们首先证明不等式对于n=1时成立,然后假设不等式对于n=k时成立,再证明不等式对于n=k+1时也成立。
通过数学归纳法,我们可以比较简单地证明一些不等式的成立。
二、换元法。
换元法是不等式证明中常用的一种方法。
当我们遇到复杂的不等式时,可以通过适当的换元将不等式化简为更简单的形式,从而更容易进行证明。
换元法的关键在于选择合适的变量替换原不等式中的变量,使得不等式的结构更加清晰,证明过程更加简单明了。
三、分析法。
分析法是一种直接从不等式的定义出发,通过分析不等式的性质和特点来进行证明的方法。
在不等式证明中,我们可以通过分析不等式两边的大小关系,利用数学运算性质和数学规律,推导出不等式成立的条件,从而完成不等式的证明。
四、综合利用不等式性质。
不等式有许多性质,如传递性、对称性、反对称性等,我们可以通过综合利用这些性质来进行不等式的证明。
具体来说,我们可以利用不等式的传递性将复杂的不等式化简为简单的形式,再利用对称性和反对称性来推导不等式的成立条件,从而完成不等式的证明。
五、几何法。
在不等式证明中,几何法也是一种常用的证明方法。
通过几何图形的分析,我们可以直观地理解不等式的性质和特点,从而更容易进行证明。
在利用几何法进行不等式证明时,我们可以通过构造合适的几何图形,利用几何关系和几何性质来推导不等式的成立条件,完成不等式的证明。
六、数学推理法。
数学推理法是不等式证明中常用的一种方法,通过逻辑推理和数学推理来证明不等式的成立。
在利用数学推理法进行不等式证明时,我们可以通过分析不等式的性质和特点,运用数学推理规律和数学推理方法,推导出不等式成立的条件,完成不等式的证明。
数学归纳法证明不等式
![数学归纳法证明不等式](https://img.taocdn.com/s3/m/ab42790e0740be1e650e9a55.png)
二.用数学归纳法证明几何问题
例2.平面上有n( n N , n 3)个点, 其中任何三点都不在 同一条直线上, 过这些点中任意两点作 直线, 这样的直线 共有多少条? 证明你的结论.
特别提示:
用数学归纳法证几何问题,应特别注意语言叙述正确,清 楚,一定要讲清从n=k到n=k+1时,新增加量是多少.一般 地,证明第二步常用的方法是加一法,即在原来的基础上, 再增加一个,也可以从k+1个中分出一个来,剩下的k个利 用假设.
例2.证明不等式sin n n sin ( n N )
例3.证明贝努利不等式: 如果x是实数, 且x 1, x 0, n为大于1的自然数, 那么有 (1 x ) 1 nx
n
注: 事实上, 把贝努利不等式中的正整数 n 改为实数 仍有 类似不等式成立 . 当 是实数,且 或 0 时 ,有 (1 x ) ≥ 1 x ( x 1) 当 是实数,且 0 1 时 ,有 (1 x ) ≤ 1 x ( x 1)
若 k 1 个正数 a1 , a2 , , ak , ak 1 都相等 ,则它们都是 1. 其和为 k 1 ,命题成立.
若这 k 1 个正数 a1 , a2 , , ak , ak 1 不全相等 , 则其中 必有大于 1 的数,也有小于 1 的数(否则与 a1a2 ak ak 1 1 矛盾).不妨设 a1 1, a2 1 „„
一.用数学归纳法证明等式问题
通过计算下面的式子, 猜想出 1 3 5 ( 1)n ( 2n 1) 的结果, 并加以证明. 1 3 _____;1 3 5 ______ 1 3 5 7 ______;1 3 5 7 9 _______
如何应用数学归纳法证明不等式
![如何应用数学归纳法证明不等式](https://img.taocdn.com/s3/m/5274b8c8d1d233d4b14e852458fb770bf68a3b71.png)
如何应用数学归纳法证明不等式数学归纳法是一种常见的数学证明方法,通过证明初始情况成立和任意情况都成立,来证明一般情况成立。
在不等式证明中,也可以应用数学归纳法。
本文将介绍如何应用数学归纳法证明不等式。
第一步,证明初始情况成立。
通常,需要选取一个最小的自然数来作为初始情况,然后证明不等式在该自然数下成立。
以证明$a^n-1$能够被$(a-1)$整除为例。
当$n=1$时,$a^1-1=a-1$,由于$a-1$显然能够整除$a-1$,因此初始情况成立。
第二步,假设任意情况成立。
即假设当$n=k(k \in N^*)$时,$a^k-1$能够被$(a-1)$整除。
第三步,证明一般情况也成立。
即证明当$n=k+1$时,$a^{k+1}-1$也能够被$(a-1)$整除。
由于$a^{k+1}-1 = a^k \cdot a - 1 = (a^k-1) \cdot a + (a-1)$,而根据假设,$a^k-1$能够被$(a-1)$整除,因此$a^{k+1}-1$也能够被$(a-1)$整除。
通过上述三步,我们得到了$a^n-1$能够被$(a-1)$整除。
类似的,可以应用数学归纳法证明其他的不等式。
例如证明$1+2+...+n=\frac{n(n+1)}{2}$,我们可以选取$1$作为初始情况;假设当$n=k(k \in N^*)$时,$1+2+...+k=\frac{k(k+1)}{2}$;然后证明当$n=k+1$时,$1+2+...+k+(k+1)=\frac{(k+1)(k+2)}{2}$。
当然,在进行数学归纳法证明时,选择初始情况和需要证明的语句都需要谨慎选择。
总结一下,数学归纳法是一种常见的数学证明方法,可以应用在不等式证明当中。
通过证明初始情况成立、假设任意情况成立、证明一般情况也成立这三步,可以有效地证明不等式。
5.3数学归纳法证明不等式2 课件(人教A版选修4-5)
![5.3数学归纳法证明不等式2 课件(人教A版选修4-5)](https://img.taocdn.com/s3/m/19c5d9d2a58da0116c1749f7.png)
3、一定要用上假设
练习巩固
4.用数学归纳法证明 1×2+2×3+3×4+…+n(n+1) =
证明: 1)当n=1时,左边=1×2=2,右边= 1×1×2×3 =2. 命题成立
3
2)假设n=k时命题成立,即 1×2+2×3+3×4+…+k(k+1)=
1 n(n + 1)(n + 2) 3
1 k (k 1)( k 2) 3
则当n k 1时,左边= 2 2 3 3 4 ... k (k 1) (k 1)(k 2) 1
利用 假设
1 k (k 1)( k 2) (k 1)( k 2) 3 1 ( k 1)( k 1)( k 2) 从n=k到n=k+1有什么变化 3
数学归纳法主要步骤:
找准起点 奠基要稳
数学归纳法是一种证明与正整数有关的数学命题的重要方法。 主要有两个步骤、一个结论:
第一步:验证当n取第一个值n0(如 n0=1或2等)时结论正确 第二步:假设n=k (k∈N+ , 且k≥ n0)时结论正确, 证明n=k+1时结论也正确
结论:由(1)、(2)得出结论正确
数学归纳法是一种完全归纳法 ,它是在可靠的基 础上,利用命题自身具有的传递性,运用“有限”的 手段,来解决“无限”的问题。它克服了完全归纳法 的繁杂、不可行的缺点,又克服了不完全归纳法结论 不可靠的不足,使我们认识到事情由简到繁、由特殊 到一般、由有限到无穷。
(1)思考题:问题 1中大球中有很多个小球,如 何证明它们都是绿色的? 模拟演示 (2)课本作业 P50. 习题4. 1 (3)补充作业: 用数学归纳法证明:如果{an}是一个等差数列, 那么an=a1+(n-1)d对于一切n∈N*都成立。
5.3数学归纳法证明不等式 课件(人教A版选修4-5)
![5.3数学归纳法证明不等式 课件(人教A版选修4-5)](https://img.taocdn.com/s3/m/27f8ff16a76e58fafab0030d.png)
因为kx2>0,所以左边>右边,即(1+x)k+1>1+(k+1)x.
这就是说,原不等式当n=k+1时也成立. 根据(1)和(2),原不等式对任何不小于2的自然数n都成立.
1 1 1 1 1 1 1 2 2 2 2 2 2 3 k ( k 1) k ( k 1)2
2.当 n≥ 2 时,求证: 1
1 2
1
1 3
1 n
n
2 . 证明: (1) 当n 2 时,左式 1 1 17 2 右式 2 2
若 k 1 个正数 a1 , a2 ,, ak , ak 1 都相等,则它们都是 1. 其和为 k 1 ,命题成立.
若这 k 1 个 正数 a1 , a2 ,, ak , ak 1 不全 相等,则 其中 必有大于 1 的数,也有小于 1 的数(否则与 a1a2 ak ak 1 1 矛盾).不妨设 a1 1, a2 1 .
证明:⑴当 n 1 时,有 a1 1 ,命题成立. ⑵ 设 当 n k (k≥1) 时 , 命 题 成 立 , 即 若 k 个 正数 a1 , a2 ,, ak 的乘积 a1a2 ak 1,那么它们的和 a1 a2 ak ≥ k . 那么当 n k 1 时 ,已知 k 1 个正 数 a1 , a2 ,, ak , ak 1 满 足 a1a2 ak ak 1 1 .
第二节证明不等式的基本方法、数学归纳法证明不等式
![第二节证明不等式的基本方法、数学归纳法证明不等式](https://img.taocdn.com/s3/m/b3a587a184868762cbaed503.png)
(2)某个命题与正整数n有关,如果当n=k时该命题成立.那么可
推导出当n=k+1时也成立.现已知n=12时,该命题不成立.那么 可推得n=______时,该命题不成立. 【解析】∵n=12时,命题不成立.∴n=11时命题不成立.同理 n=10、9、8、…、2、1时命题均不成立. 答案:1、2、3、…、11
往往用分析法找思路,用综合法写步骤,由此可见,分析法与综
合法相互转化,互相渗透,互为前提,充分利用这一辩证关系,
可以拓宽解题思路,开阔知识视野.
2.分析法的应用
当所证明的不等式不能使用比较法,且和重要不等式、基本不 等式没有直接联系,较难发现条件和结论之间的关系时,可用 分析法来寻找证明途径,使用分析法证明的关键是推理的每一 步必须可逆.
4 4 4 1 64 . 1 4 ,
三式同向相乘,得(1-a)a(1-b)b(1-c)c> 又 1 a a
1 c c
( ( 1 a a 2 )
2
) 1 4 .
2
1 4
, 1 b b (
1 b b 2
)
2
1 c c 2
∴(1-a)a(1-b)b(1-c)c≤
1 2
) 2+
1 2
]≥0,
∴1+2x4≥2x3+x2.
方法二:(1+2x4)-(2x3+x2) =x4-2x3+x2+x4-2x2+1 =(x-1)2·x2+(x2-1)2≥0 ∴1+2x4≥2x3+x2.
(2)
a b
a
b
ab
ba
ab
ab 2
a
数学归纳法证明不等式
![数学归纳法证明不等式](https://img.taocdn.com/s3/m/6afd5dfcfc0a79563c1ec5da50e2524de518d0d7.png)
01
02
03
例子一:n=5时的情况
假设n=10时,不等式成立,即$a_1 + a_2 + a_3 + a_4 + a_5 + a_6 + a_7 + a_8 + a_9 + a_{10} geq b_1 + b_2 + b_3 + b_4 + b_5 + b_6 + b_7 + b_8 + b_9 + b_{10}$。
02
CHAPTER
数学归纳法证明不等式的步骤
验证基础情况
首先验证n=1时,不等式是否成立。
基础情况成立
如果基础情况成立,则可以继续进行归纳步骤。
初始步骤
归纳步骤
归纳假设
假设当n=k时,不等式成立,即$P(k)$成立。
归纳推理
基于归纳假设,推导当n=k+1时,不等式也成立,即$P(k+1)$成立。
应用归纳假设
在归纳推理过程中,需要利用归纳假设$P(k)$来推导$P(k+1)$。
要点一
要点二
完成归纳
当归纳步骤完成后,可以得出结论,对于任意正整数n,不等式都成立。
归纳假设的应用
03
CHAPTER
应用数学归纳法证明不等式的例子
假设n=5时,不等式成立,即$a_1 + a_2 + a_3 + a_4 + a_5 geq b_1 + b_2 + b_3 + b_4 + b_5$。
确定数列的通项公式
通过数学归纳法,可以证明数列的通项公式,进而研究数列的性质和规律。
不等式的推导和证明方法
![不等式的推导和证明方法](https://img.taocdn.com/s3/m/056fac5a1fd9ad51f01dc281e53a580216fc50c4.png)
不等式的推导和证明方法不等式是数学中不可或缺的一个概念,它用于表示数值之间的关系。
不等式的形式可以很简单,例如$x>2$,也可以非常复杂,例如 $\sqrt{x^2+y^2}>\frac{x+y}{2}$。
在解决各类数学问题时,推导和证明不等式的方法是非常重要的一步。
本文将介绍一些常见的不等式的推导和证明方法。
一、数学归纳法数学归纳法是一种证明数学命题的通用方法。
若要证明某个命题对于自然数 $n$ 成立,则需要证明该命题在 $n=1$ 时成立,并证明若该命题在 $n=k$ 时成立,则该命题在 $n=k+1$ 时也成立。
不等式的证明中,归纳法常常被用于证明柯西不等式、阿贝尔不等式等一些数列不等式。
例如,考虑柯西不等式:$(a_1^2+a_2^2+\cdots+a_n^2)(b_1^2+b_2^2+\cdots+b_n^2)\geq(a_1b _1+a_2b_2+\cdots+a_nb_n)^2$。
对于 $n=1$,该不等式显然成立。
假设对于 $n=k$ 时该不等式成立,即$$(a_1^2+a_2^2+\cdots+a_k^2)(b_1^2+b_2^2+\cdots+b_k^2)\geq(a_1b_1+a_2b_2+\cdots+a_kb_k)^2$$现在考虑 $n=k+1$ 时该不等式是否成立。
根据柯西不等式,有\begin{align*}&(a_1^2+a_2^2+\cdots+a_{k+1}^2)(b_1^2+b_2^2+\cdots+b_{k+1 }^2)\\=&[(a_1^2+a_2^2+\cdots+a_k^2)+a_{k+1}^2][(b_1^2+b_2^2+\cd ots+b_k^2)+b_{k+1}^2]\\\geq&(a_1b_1+a_2b_2+\cdots+a_kb_k+a_{k+1}b_{k+1})^2\end{align*}因此,该命题对于 $n=k+1$ 成立,由数学归纳法可知对于所有$n\in\mathbb{N}$,柯西不等式成立。
3.2用数学归纳法证明不等式贝努利不等式课件人教新课标B版
![3.2用数学归纳法证明不等式贝努利不等式课件人教新课标B版](https://img.taocdn.com/s3/m/3a3e1349cec789eb172ded630b1c59eef8c79af3.png)
1
3
1
+…+
+…+
1
3
+
1−
3
1
1
利用 ③,得 11
1
3 1- 3
1
1-3
1
3
D典例透析 S随堂演练
IANLITOUXI
UITANGLIANXI
+1 +
3
= 1−
1
32
1
2
1
+1
3
1
1
1
+ 2+…+
3 3
3
1
1
1
· + 2+…+
3 3
3
1-
1
3+1
≥1−
.
3+1
1-
≥ 1-
3+1
1
即当 n=k+1 时,③式也成立.
故对一切 n∈N*,③式都成立.
=1 −
HONGNANJUJIAO
题型三
则当 n=k+1 时,
1-
Z 知识梳理 Z 重难聚焦
目标导航
… 11-
1
3
1
3
≥1 −
=
1
1
+ 2
3 3
1 1 1
+
2 2 3
>
+…+
1
3
1
, 即②式成立.
2
故原不等式成立.
3.了解贝努利不等式的应用条件.
-2-
3.2
用数学归纳法证明不等式,
贝努利不等式
归纳法证明不等式
![归纳法证明不等式](https://img.taocdn.com/s3/m/aacd3c53876fb84ae45c3b3567ec102de2bddfac.png)
完成归纳
01
02
03
04
验证n=1时,不等式是否成立
假设当n=k时,不等式成立
利用归纳假设,推导出当n=k+1时,不等式也成立
通过初始步骤和归纳步骤,证明了不等式对所有的自然数n都成立
03
CHAPTER
归纳法证明不等式的应用
总结词
归纳法在证明等差数列求和公式时非常有用,通过递推的方式,我们可以逐步推导出整个数列的和。
详细描述
总结词
归纳法不仅可以用于证明等式,还可以用于证明不等式。通过逐步推导,我们可以证明一些重要的不等式。
要点一
要点二
详细描述
例如,我们可以利用归纳法证明算术平均数总是大于等于几何平均数。首先,我们可以从两个数的算术平均数和几何平均数的定义出发,通过逐步推导,我们可以证明对于任意两个正数,算术平均数总是大于等于几何平均数。此外,我们还可以利用归纳法证明其他的三角不等式、Cauchy不等式等。
归纳法证明不等式是一种常用的方法,它可以通过观察和实验来发现和证明不等式的性质和规律。使用归纳法证明不等式可以帮助我们更好地理解不等式的性质和证明方法,同时也可以帮助我们更好地掌握数学思维和证明技巧。
02
CHAPTER
归纳法证明不等式的原理
基于自然数的归纳公理
归纳公理的推理步骤
初始步骤
归纳假设
在数学中,我们通常需要证明一个命题对于所有的自然数或实数都是成立的,而归纳法只能用于证明对于所有的自然数或实数的前n个值成立的命题。
对于一些不等式证明问题,使用归纳法可能会很复杂和困难,特别是那些涉及到复杂函数或无穷序列的不等式证明。
在证明一些重要的不等式时,如AM-GM不等式、Cauchy-Schwarz不等式等,使用归纳法并不是最佳选择,而需要采用更高级的数学技巧和工具。
人教数学选修4-5全册精品课件:第四讲二用数学归纳法证明不等式
![人教数学选修4-5全册精品课件:第四讲二用数学归纳法证明不等式](https://img.taocdn.com/s3/m/7d204be75ef7ba0d4a733bbe.png)
【思路点拨】
本题由递推公式先计算前几项,然
后再进行猜想,最后用数学归纳法进行证明;对于 (2)中的第①题,要利用数学归纳法进行证明;②利 用放缩法证明.
【解】 (1)由 a1=2,得 a2=a2-a1+1=3;由 a2= 1 3,得 a3=a2-2a2+1=4;由 a3=4,得 a4=a2-3a3 2 3 +1=5. 由此猜想:an=n+1(n∈N+). (2)①用数学归纳法证明: 当 n=1 时,a1≥3=1+2,不等式成立; 假设当 n=k(k≥1)时,不等式成立,即 ak≥k+2. 那么当 n=k+1 时,ak+1=a2-kak+1=ak(ak-k)+ k 1≥(k+2)(k+2-k)+1=2(k+2)+1≥k+3=(k+1) +2,也就是说,当 n=k+1 时,ak+1≥(k+1)+2. 综上可得,对于所有 n≥1,有 an≥n+2.
=k+1成立时没有进行推证,而是直接写出结论, 这样是不符合数学归纳法要求的.
【自我校正】 (1)同上. (2)假设当 n=k(k≥1)时,结论成立. kk+1 k+12 即 <ak< . 2 2 当 n=k+1 时,ak+1=ak+ k+1k+2 kk+1 kk+1 > + k+1k+2> +(k+1) 2 2 k+1[k+1+1] = . 2
当 n=k+1 时, k+1k+2 ak+1=ak+ k+1k+2> . 2 k+2 2 又 ak+1=ak+ k+1k+2<( ), 2 ∴当 n=k+1 时,结论也成立. 由(1)、(2)知,对一切 n∈N+,不等式成立.
【错因】
错误出在(2)中,从n=k成立,证明n
假设当n=k时, 起始自然数)不等式成立 ______________________;第二步是_____________
知识导学(二 用数学归纳法证明不等式
![知识导学(二 用数学归纳法证明不等式](https://img.taocdn.com/s3/m/3af33bdc76eeaeaad1f3301b.png)
二 用数学归纳法证明不等式知识梳理1.本节例题中的有关结论(1)n 2<2n (n ∈N +,___________);(2)|sinnθ|≤___________|sinθ|,(n ∈N +);(3)贝努利不等式:如果x 是实数,且x>-1,x≠0,n 为大于1的自然数,那么有___________;当α是实数,并且满足α>1或者α<0时,有___________;当α是实数并且0<α<1时,有___________.(4)如果n(n 为正整数)个正数a 1,a 2,…,a n 的乘积a 1a 2…a n =1,那么它们的和a 1+a 2+…+a n ≥_____.2.用数学归纳法证明不等式在数学归纳法证明不等式时,我们常会用到证明不等式的其他比较重要的一个方法是___________.知识导学本节内容主要是认知如何用数学归纳法证明正整数n 的不等式(其中n 取无限多个值). 其中例1提供出了一种全新的数学思想方法:观察、归纳、猜想、证明,这是在数学归纳法中经常应用到的综合性数学方法,观察是解决问题的前提条件,需要进行合理的试验和归纳,提出合理的猜想,从而达到解决问题的目的.猜想归纳能培养探索问题的能力,因此,应重视对本节内容的学习.前面已学习过证明不等式的一系列方法,如比较法、综合法、分析法、放缩法、反证法等.而本节又增了数学归纳法证不等式,而且主要解决的是n 是无限的问题,因而难度更大一些,但仔细研究数学归纳法的关键,即由n=k 到n=k+1的过渡,也是学习好用数学归纳法证不等式的重中之重的问题了.疑难突破1.观察、归纳、猜想、证明的方法这种方法解决的问题主要是归纳型问题或探索性问题,结论如何?命题的成立不成立都预先需要归纳与探索,而归纳与探索多数情况下是从特例、特殊情况下入手,得到一个结论,但这个结论不一定正确,因为这是靠不完全归纳法得出的,因此,需要给出一定的逻辑证明,所以,通过观察、分析、归纳、猜想,探索一般规律,其关键在于正确的归纳猜想,如果归纳不出正确的结论,那么数学归纳法的证明也就无法进行了.在观察与归纳时,n 的取值不能太少,否则将得出错误的结论.例1中若只观察前3项:a 1=1,b 1=2⇒a 1<b 1;a 2=4,b 2=4⇒a 2=b 2,a 3=9,b 3=8⇒a 3>b 3,就此归纳出n 2>2n (n ∈N +,n≥3)就是错误的,前n 项的关系可能只是特殊情况,不具有一般性,因而,要从多个特殊事例上探索一般结论.2.从“n=k”到“n=k+1”的方法与技巧在用数学归纳法证明不等式问题中,从“n=k”到“n=k+1”的过渡中,利用归纳假设是比较困难的一步,它不像用数学归纳法证明恒等式问题一样,只需拼凑出所需要的结构来,而证明不等式的第二步中,从“n=k”到“n=k+1”,只用拼凑的方法,有时也行不通,因为对不等式来说,它还涉及“放缩”的问题,它可能需通过“放大”或“缩小”的过程,才能利用上归纳假设,因此,我们可以利用“比较法”“综合法”“分析法”等来分析从“n=k”到“n=k+1”的变化,从中找到“放缩尺度”,准确地拼凑出所需要的结构.典题精讲【例1】 (经典回放)已知函数φ(x)=1+x +1,f(x)=(a+b)x -a x -b x ,其中a,b ∈N +,a≠1,b≠1,a≠b,且ab=4,(1)求函数φ(x)的反函数g(x);(2)对任意n ∈N +,试指出f(n)与g(2n )的大小关系,并证明你的结论.思路分析:欲比较f(n)与g(2n )的大小,需求出f(n)与g(2n )的关于n 的表达式,以利于特殊探路——从n=1,2,3,…中寻找、归纳一般性结论,再用数学归纳法证明.解:(1)由y=1+x +1,得1+x =y-1(y≥1),有x+1=(y-1)2,即x=y 2-2y,故g(x)=x 2-2x(x≥1).(2)∵f(n)=(a+b)n -a n -b n ,g(2n )=4n -2n+1,当n=1时f(1)=0,g(2)=0,有f(1)=g(2).当n=2时,f(2)=(a+b)2-a 2-b 2=2ab=8,g(22)=42-23=8,f(2)=g(22).当n=3时,f(3)=(a+b)3-a 3-b 3=3a 2b+3ab 2=3ab(a+b) >3ab×ab 2=48.g(23)=43-24=48,有f(3)>g(23).当n=4时,f(4)=(a+b)4-a 4-b 4=4a 3b+4ab 3+6a 2b 2=4ab(a 2+b 2)+6a 2b 2>4ab×2ab+6a 2b 2=14a 2b 2=224.g(24)=44-25=224,有f(4)>g(24),由此推测当1≤n≤2时,f(n)=g(2n ),当n≥3时,f(n)>g(2n ).下面用数学归纳法证明.(1)当n=3时,由上述推测成立;(2)假设n=k 时,推测成立.即f(k)>g(2k )(k≥3),即(a+b )k -a k -b k >4k -2k+1,那么f(k+1)=(a+b)k+1-a k+1-b k+1=(a+b)·(a+b)k -a·a k -b·b k=(a+b)[(a+b)k -a k -b k ]+a k b+ab k .又依题设a+b>2ab=4.a k b+ab k >k k bab a 2=2(ab)21+k =2k+2,有f(k+1)>4[(a+b)k -a k -b k ]+2k+2>4(4k -2k+1)+2k+2=4k+1-2k+2=g(2k+1),即n=k+1时,推测也成立.由(1)(2)知n≥3时,f(n)>g(2n )都成立.绿色通道:为保证猜想的准确性,当设n=1,2时,得出f(n)=g(2n ),不要急于去证明,应再试验一下n=3,4时,以免出现错误.【变式训练】 已知等差数列{a n }公差d 大于0,且a 2,a 5是方程x 2-12x+27=0的两根,数列{b n }的前n 项和为T n ,且T n =1-21b n . (1)求数列{a n }\,{b n }的通项公式;(2)设数列{a n }的前n 项和为S n ,试比较nb 1与S n+1的大小,并说明理由. 思路分析:“试分析”在告诉我们,n b 1与S n+1的大小可能随n 的变化而变化,因此对n 的取值验证要多取几个.解:(1)由已知得,⎩⎨⎧==+.27,125152a a a a 又∵{a n }的公差大于0,∴a 5>a 2.∴a 2=3,a 5=9.∴d=339525-=-a a =2,a 1=1. ∵T n =1-21b 1,∴b 1=32. 当n≥2时,T n-1=1-21b n-1, ∵b n =T n -T n-1=1-21b n -(1-21b n-1),化简,得b n =31b n-1, ∴{b n }是首项为32,公比为31的等比数列, ∴b n =32×(31)n-1=n 32.∴a n =2n-1,b n =n 32. (2)∵S n =2)]12(1[-+n n=n 2, ∴S n+1=(n+1)2,n b 1=23n, 以下比较nb 1与S n+1的大小: 当n=1时,2311=b ,S 2=4,∴11b <S 2, 当n=2时,2912=b ,S 3=9,∴21b <S 3, 当n=3时,22713=b ,S 4=16,∴31b <S 4,当n=4时,28114=b ,S 5=25,∴41b >S 5. 猜想:n≥4时,n b 1>S n+1. 下面用数学归纳法证明:(1)当n=4时,已证.(2)假设当n=k(k ∈N +,k≥4)时,kb 1>S k+1, 即23k>(k+1)2, 那么,n=k+1时,23111++=k k b =3×23k >3(k+1)2=3k 2+6k+3 =(k 2+4k+4)+2k 2+2k-1>[(k+1)+1]2=S (k+1)+1,∴n=k+1时,nb 1>S n+1也成立. 由(1)(2)可知n ∈N +,n≥4时,n b 1>S n+1都成立. 综上所述,当n=1,2,3时,nb 1<S n+1, 当n≥4时,nb 1>S n+1. 【例2】 (2006江西高考,22) 已知数列{a n }满足:a 1=23,且a n =12311-+--n a na n n (n≥2,n ∈N +). (1)求数列{a n }的通项公式;(2)求证:对一切正整数n ,不等式a 1×a 2…a n <2×n !恒成立.思路分析:由题设条件知,可用构造新数列的方法求得a n ;第(2)问的证明,可以等价变形,视为证明新的不等式.解:(1)将条件变为:1-)11(311---=n n a n a n , 因此,数列{1-n a n }为一个等比数列,其首项为1-11a =31,公比为31,从而1-n n a n 31=n ,据此得a n =133-⨯n nn (n≥1).① (2)证明:据①得,a 1×a 2…a n =)311()311)(311(!2n n --- 为证a 1a 2…a n <2n!, 只要证n ∈N +时有(1-31)(1-231)…(1-n 31)>21.② 显然,左端每个因式皆为正数,先证明,对每个n ∈N +, (1-31)(1-231)…(1-n 31)≥1-(31+231+…+n 31).③ 用数学归纳法证明③式;(Ⅰ)n=1时,显然③式成立,(Ⅱ)假设n=k 时,③式成立.即(1-31)(1-231)…(1-k 31) ≥1-(31+231+…+k 31), 则当n=k+1时, (1-31)(1-231)…(1-k 31)(1-131+k ) ≥[1-(31+231+…+k 31)](1-131+k ) =1-(31+231+…+k 31)-131+k +131+k (31+231+…+k 31) ≥1-(31+231+…+k 31+131+k ). 即当n=k+1时,③式也成立.故对一切n ∈N +,③式都成立. 利用③,得(1-31)(1-231)…(1-n 31) ≥1-(31+231+…+n 31) =1-311])31(1[31--n =1-21[1-(31)n ]=21+21(31)n >21. 绿色通道:本题提供了用数学归纳法证明相关问题的一种证明思路,即要证明的不等式不一定非要用数学归纳法去直接证明,我们通过分析法、综合法等方法的分析,可以找到一些证明的关键,“要证明……”,“只需证明……”,转化为证明其他某一个条件,进而说明要证明的不等式是成立的.【变式训练】 已知数列{a n }是正数组成的等差数列,S n 是其前n 项的和,并且a 3=5,a 4S 2=28.(1)求数列{a n }的通项公式;(2)求证:不等式(1+11a )(1+21a )…(1+n a 1)·332121≥+n 对一切n ∈N +均成立. 思路分析:第(2)问中的不等式左侧,每个括号的规律是一致的,因此121+n 显得“多余”,所以可尝试变形,即把不等式两边同乘以12+n ,然后再证明.(1)解:设数列{a n }的公差为d ,由已知,得⎩⎨⎧=++=+.28)3)(2(,52111d a d a d a ∴(10-3d)(5+d)=28,∴3d 2+5d-22=0,解之得d=2或d=311-. ∵数列{a n }各项均为正,∴d=2.∴a 1=1,∴a n =2n-1.(2)证明:∵n ∈N +,∴只需证明(1+11a )(1+21a )…(1+na 1) ≥12332+n 成立. ①当n=1时,左边=2,右边=2,∴不等式成立.②假设当n=k 时,不等式成立,即(1+11a )(1+21a )…(1+ka 1)≥12332+k . 那么当n=k+1时, (1+11a )(1+21a )…(1+k a 1)(1+11+k a ) ≥12332+k (1+11+k a )=1222332++∙k k 以下只需证明323321222332+≥++k k k . 即只需证明2k+2≥3212+∙+k k .∵(2k+2)2-(3212+∙+k k )2=1>0,∴(1+111a +)(1+211a +)…(1+111++k a ) ≥1)1(233232332++=+k k . 综上①②知,不等式对于n ∈N +都成立. 【例3】设P n =(1+x)n ,Q n =1+nx+2)1(-n n x 2,n ∈N +,x ∈(-1,+∞),试比较P n 与Q n 的大小,并加以证明.思路分析:这类问题,一般都是将P n 、Q n 退至具体的P n 、Q n 开始观察,以寻求规律,作出猜想,再证明猜想的正确性.P 1=1+x=Q 1,P 2=1+2x+x 2=Q 2,P 3=1+3x+3x 2+x 3,Q 3=1+3x+3x 2,P 3-Q 3=x 3,由此推测,P n 与Q n 的大小要由x 的符号来决定.解:(1)当n=1,2时,P n =Q n .(2)当n≥3时,(以下再对x 进行分类).①若x ∈(0,+∞),显然有P n >Q n ;②若x=0,则P n =Q n ;③若x ∈(-1,0),则P 3-Q 3=x 3<0,所以P 3<Q 3;P 4-Q 4=4x 3+x 4=x 3(4+x)<0,所以P 4<Q 4;假设P k <Q k (k≥3),则P k+1=(1+x)P k <(1+x)Q k =Q k +xQ k (运用归纳假设) =1+2)1(2x k k -+x+kx 2+2)1(3x k k - =1+(k+1)x+2)1(+k k x 2+2)1(+k k x 3 =Q k+1+2)1(+k k x 3<Q k+1, 即当n=k+1时,不等式成立.所以当n≥3,且x ∈(-1,0)时,P n <Q n .绿色通道:本题除对n 的不同取值会有P n 与Q n 之间的大小变化,变量x 也影响P n 与Q n 的大小关系,这就要求我们在探索大小关系时,不能只顾“n”,而忽视其他变量(参数)的作用.【变式训练】 已知f(x)=n n n n xx x x --+-,对n ∈N +,试比较f(2)与1122+-n n 的大小,并说明理由. 思路分析:利用分析法探求需要推理证明的关系,然后用数学归纳法证明.解:设F(n)=1211211122222+-=+-+=+-n n n n n , f(2)=1-122+n , 因而只需比较2n 与n 2的大小.n=1时,21>12;n=2时,22=22;n=3时,23<32,n=4时,24=42,n=5时,25>52,猜想n≥5时,2n >n 2,简证2k >k 2(k≥5),则当n=k+1时,2k+1=2×2k >2×k 2=k 2+k 2+2k+1-2k-1=(k+1)2+(k-1)2-2>(k+1)2.综上所述,n=1或n≥5时,f(2)>1122+-n n ; n=2或4时,f(2)=1122+-n n ;n=3时,f(2)<1122+-n n . 问题探究问题:有两堆棋子,数目相同,两人游戏的规则是:两人轮流取棋子,每人可以从一堆中任意取棋,但不能同时从两堆取,取得最后一颗棋子的人获胜,求证后取棋子者一定可以获胜.设每堆棋子数目为n ,你可以先试试能证明上述结论吗?导思:分析题设中的数学思想,转化为数学问题,而本问题可以用数学归纳法证明. 探究:下面用第二数学归纳法证明.证明:设每堆棋子数目为n.(1)当n=1时,先取棋子者只能从一堆里取1颗,这样另一堆里留下的1颗就被后取棋子者取得,所以结论是正确的.(2)假设当n≤k(k≥1)时结论正确,即这时后取棋子者一定可以获胜.考虑当n=k+1时的情形.先取棋子者如果从一堆里取k+1颗,那么另一堆里留下的k+1颗就被后取棋子者取得,所以结论是正确的.先取棋子者如果从一堆里取棋子m(1≤m≤k)颗,这样,剩下的两堆棋子,一堆有k+1颗,另一堆有k+1-m 颗,这时后取棋子者可以在较多的一堆里取m 颗,使两堆棋子数目都是k+1-m 颗,这时就变成了n=k+1-m 的问题,而不论m 是1—k 的哪个整数,n=k+1-m 都是不大于k 的正整数,由归纳假设可知这时后取棋子者一定可以获胜.于是,当n=k+1时结论正确.由(1)(2)知,根据第二数学归纳法,无论每堆棋子的数目是多少,后取棋子者都能获胜.。
数学归纳法(二)
![数学归纳法(二)](https://img.taocdn.com/s3/m/3fdf580a03d8ce2f0066235b.png)
1 1 1 D. 2 2k 1 2k 2 k
知识探究
1.用数学归纳法证明 时,第一步即证下述哪个不等式成立( C )
A.
B.
C.
D.
5 1 3 1 1 2.观察下列式子:1+ 2 ,1+ 2 2 < , 2 3 3 2 2 1 1 1 7 1+ 2 2 2 ,…则可归纳出:___________.
课后作业
教材53页2(2)、3
时,由n k 的假设证明 n
k 1 时,如果从等式左边证
明右边,则必须证得右边为( D ) 1 1 1 1 1 1 1 A. B. k 1 2k 2k 1 k 1 2k 2k 1 2k 2
1 1 1 C. 2 2k 2k 1 k
2 3 4 4
1 1 1 2n 1 1 2 2 2 2 3 (n 1) n 1
知识探究
1 1 1 1 * 1 n, n N 3.试用数学归纳法证明: n 2 3 4 2 1
4. 比较 n 与
2
2
n 的大小,试证明你的结论.
理论迁移 例1.证明不等式| sin n | n | sin | ( n N ) .
例2.证明贝努利不等式:
(1 x) 1 nx ( x 1, x 0, n N , n 1)
n
达标检测
教材53页2(2)、3
归纳延伸 用数学归纳法证明恒等式(或不等式) 的步骤及注意事项:明确首取值n0并验证真 假(必不可少).“假设n=k时命题正确”并 写出命题形式。 分析“n=k+1时”命题是什么,并找出 与“n=k”时命题形式的差别弄清左端应增 加的项明确等式左端变形目标,掌握恒等式 变形常用的方法:乘法公式、因式分解、添 拆项、配方等可明确为:两个步骤、一个结 论;递推基础不可少,归纳假设要用到,结 论写明莫忘掉。
人教版数学高二A版选修4-5素材4.2用数学归纳法证明不等式
![人教版数学高二A版选修4-5素材4.2用数学归纳法证明不等式](https://img.taocdn.com/s3/m/19a55ef9b4daa58da1114a59.png)
庖丁巧解牛知识·巧学一、数学归纳法证明不等式的基本步骤(1)证明当n取第一个值n0(如n0=1或n0=2等等)时,命题正确;(2)证明如下事实:假设当n=k(k∈N且k≥n0)时,命题正确,由此推出当n=k+1时命题也正确.完成了以上两步后,就可断定命题对于从n0开始的所有自然数都正确.用数学归纳法证明,要完成两个步骤,这两个步骤是缺一不可的.但从证题的难易来分析,证明第二步是难点和关键,要充分利用归纳假设,做好命题从n=k到n=k+1的转化,这个转化要求在变化过程中结构不变,先比较n=k与n=k+1这两个不等式间的差异,以决定n=k时不等式做何种变形.一般地,只能变出n=k+1等式的一边,然后再利用比较、分析、综合、放缩及不等式的传递性来完成由n=k成立推出n=k+1不等式成立的证明.辨析比较数学归纳法与其他证明不等式的方法数学归纳法证明不等式有它的局限性,它只能用来证明与自然数有关的不等式.而其他证明不等式的方法运用比较广泛.但具体运用时,各自都有自己的具体要求,比如数学归纳法就有严格的两个步骤,反证法就有严格的格式(必须先假设结论的否命题,再推出矛盾,最后否定假设,肯定原命题),分析法也有自己的格式(综合法的逆过程),综合法是广泛运用已知的定理、性质、推论等来证明.但是与自然数有关的不等式其他方法不如数学归纳法来得简洁,在数学归纳法的第二步中,也经常使用反证法、分析法、综合法、放缩法等作为辅助手段.二、数学归纳法证明不等式的重点和难点1.重点:巩固对数学归纳法意义和有效性的理解,并能正确表达解题过程,以及掌握利用数学归纳法证明不等式的基本思路.2.难点:在证明中,对于n=k+1时的证明是整个数学归纳法证明过程中的难点.要注意分离出该命题中,可以使用归纳假设的部分(没有使用归纳假设的证明不是数学归纳法的证明),即假设f(k)>g(k)成立,证明f(k+1)>g(k+1)成立.对这个条件不等式的证明,除了灵活运用作差比较法、作商比较法、综合法、分析法等常用的不等式证明方法外;放缩法作为证明不等式的特有技巧,在用数学归纳法证明不等式时,更被经常使用.误区警示数学归纳法证明不等式,不能简单套用两个基本步骤,一定要用到归纳假设,对于n=k+1时的证明注意以下几点:(1)在从n=k到n=k+1的过程中,应分析清楚不等式两端(一般是左端)项数的变化,也就是要认清不等式的结构特征;(2)瞄准当n=k+1时的递推目标,有目的地进行放缩、分析;(3)活用起点的位置;(4)有的试题需要先作等价变换.三、数学归纳法证明不等式的运用范围数学归纳法是用来证明与自然数有关命题的一种有效方法,在我们高中数学中,经常会以数列和函数为知识载体,构造一些与自然数有关的命题,数学归纳法是证明它们的有效手段,但不是唯一手段.联想发散在上一节中,我们还学习了归纳猜想证明的方法,在数学归纳法证明不等式的运用中,可不可以也先根据题目的条件归纳出一般规律,大胆猜想出一个不等式的命题,然后运用数学归纳法来证明呢? 典题·热题知识点一: 命题的结构特征例1 求证:6531312111>+++++++n n n n ,n≥2,n ∈N . 思路分析:本题在由n=k 到n=k+1时的推证过程中,k31不是第k 项,应是第2k 项,数列各项分母是连续的自然数,最后一项是以3k 收尾.根据此分母的特点,在3k 后面还有3k+1、3k+2,最后才为3k+3,即3(k+1).不等式左端增加了131+k ,231+k ,331+k 共三项,而不是只增加)1(31+k 一项.证明:(Ⅰ)当n=2时,右边=31+41+51+61>65,不等式成立. (Ⅱ)假设当n=k(k≥2,k ∈N )时命题成立,即65312111>+++++k k k .则当n=k+1时,)1(31231131312)1(11)1(1+++++++++++++k k k k k k=)11331231131(312111+-+++++++++++k k k k k k k >)11331231131(65+-++++++k k k k >65)113313(65)11331331331(65=+-+⨯+=+-++++++k k k k k k . 所以当n=k+1时,不等式也成立.由(Ⅰ)(Ⅱ)可知,原不等式对一切n≥2,n ∈N *均成立. 误区警示错误的思维定式认为从n=k 到n=k+1时,只增加一项,求和式中最后一项即为第几项的通项,所以一定要认清不等式的结构特征.例2 已知,S n =1+21+31+…+n1,n ∈N , 用数学归纳法证明:n S 2>1+2n,n≥2,n ∈N .思路分析:本题在由n=k 到n=k+1时的推证过程中,不等式左端增加了2k 项,而不是只增加了121+k 这一项,否则证题思路必然受阻.证明:(Ⅰ)当n=2时,22S =1+21+31+41=1+>12131+22, ∴命题成立.(Ⅱ)假设当n=k(k≥2,k ∈N )时命题成立,即k S 2=1+21+31+…+2121k k +>. 则当n=k+1时,12+k S =1+21+31+…+12122112121+++++++k k k k >1+111121212121212211212++++++++>++++++k k k k k k k k2112121212211++=++=⨯++=+k k k k k 所以当n=k+1时,不等式也成立.由(Ⅰ)(Ⅱ)可知,原不等式对一切n≥2,n ∈N 均成立. 方法归纳本题在由n=k 到n=k+1时的推证过程中,一定要注意分析清楚命题的结构特征,即由n=k 到n=k+1时不等式左端项数的增减情况. 知识点二: 比较法 例3 求证:1+21+31+…+n 1≥12+n n . 思路分析:本题在由n=k 到n=k+1时的推证过程中,关键的是证明1)1()1(2112+++>++k k k k ,为证此,我们采用了不等式证明方法中的比较法.证明:(Ⅰ)当n=1时,左式=1,右式=1112+⨯,左式=右式; 当n=2时,左式=1+21=23,右式=1222+⨯=34;23>34,左式>右式. ∴当n=1或n=2时,不等式成立.(Ⅱ)假设当n=k(k≥1)时,不等式成立,即 1+21+31+…+121+≥k k k . 则当n=k+1时, 左式=1+21+31+…+1121112111++=+++≥++k k k k k k k . ∵)2)(1(1)1()1(2112++=+++-++k k k k k k k >0, ∴1)1()1(2112+++>++k k k k =右式. 由不等式的传递性,可得左式>右式, ∴当n=k+1时,不等式也成立.由(Ⅰ)(Ⅱ)可得,对一切n ∈N ,不等式都成立. 误区警示在用数学归纳法证明不等式的过程中,我们经常因思维定式认为只能做代数变形,比较法是一种综合证明法,不能在数学归纳法中使用,这是一种错误的认识.证明不等式的基本方法在数学归纳法的第二步中都可以使用,究竟选择哪种方法要因具体题目而定. 知识点三: 放缩法 例4 证明:n n21312111<++++,n≥2,n ∈N .思路分析:本题在由n=k 到n=k+1时的推证过程中,在证明12112+<++k k k 时,使用了均值定理进行放缩. 证明:(Ⅰ)当n=2时,左边=223212211=+<+,右边=22. ∴左边<右边,∴n=2时,原不等式成立.(Ⅱ)假设当n=k 时,不等式成立,即k k21312111<++++. 当n=k+1时,112111312111++<++++++k k k k1211)]1([1112112+=++++<+++•=+=<k k k k k k k k k ∴n=k+1时,原不等式成立.由(Ⅰ)(Ⅱ)知对n≥2的任何自然数,原不等式成立.知识点四: 转化等价命题例5 数列{a n }的通项公式为a n =3n+2,将数列{a n }中的第2,4,8,…,2n 项依次取出,按原来的顺序组成一个新数列{b n },记其前n 项和为S n ,T n =n(9+a n ),当n ≥4时,证明S n >T n . 思路分析:要证S n >T n ,只需证3×2n+1+2n-6>3n 2+11n ,即证2n+1>n 2+3n+2.这就证明了原不等式的等价不等式,从而将命题简化. 证明:∵a n =3n+2, ∴n a 2=3×2n +2,∴S n =a 2+a 4+a 8+…+a n a 2=3(2+4+8+…+2n )+2n=3×2n+1+2n-6. 而T n =n(9+a n )=3n 2+11n. 要证S n >T n ,只需证3×2n+1+2n-6>3n 2+11n , 即证2n+1>n 2+3n+2. 用数学归纳法来证明:(Ⅰ)当n=4时,S 4=98,T 4=92,S 4>T 4成立.(Ⅱ)假设当n=k(k≥4)时,结论成立,就是2k+1>k 2+3k+2,那么 2k+2-[(k+1)2+3(k+1)+2]>2(k 2+3k+2)-(k 2+5k+6) =k 2+k-2=(k+2)(k-1).∵k≥4,∴(k+2)(k-1)>0.∴2k+2>(k+1)2+3(k+1)+2.这就是说,当n=k+1时,S n >T n 也成立. 由(Ⅰ)(Ⅱ)知,对n≥4,S n >T n 都成立. 方法归纳本题用数学归纳法证明2n+1>n 2+3n+2,第二步采用的是作差比较法:作差——利用归纳假设——变形(因式分解)——定号.这比通常的“作差——变形——定号”多了利用归纳假设这一步,这是因为归纳假设是用数学归纳法证明命题时所必需的. 巧解提示也可不用数学归纳法来证明2n+1>n 2+3n+2(n≥4),而是利用二项展开式和放缩法直接证得.当n≥4时, 2n+1=2·2n =2(1+1)n=2(11210n n n n n n C C C C C +++++- ) ≥2(11210n n n n n n C C C C C ++++-)=n 2+3n+4 >n 2+3n+2.知识点五: 单调性例6 已知数列{a n }中,所有项都是正数,且a n+1≤a n -a 2n ,求证:a n <n1. 思路分析:(Ⅰ)当n=1时,由a 2≤a 1-a 12=a 1(1-a 1),且a 1>0,a 2>0,可得a 1<1,命题成立. (Ⅱ)假设当n=k(k≥1)时命题成立,即a k <k1. 则当n=k+1时,a k+1≤a k -a 2k =a k (1-a k ),∵a k <k1, ∴1-a k >1-k 1=kk 1-.由于以上二式不是同向不等式,所以无法完成由k 到(k+1)的证明.所以我们可以利用函数f(x)=-x 2+x 的单调性进行证明:函数f(x)=-x 2+x 的最大值为f(21)=41,且在(-∞,21]上为增函数.证明:(Ⅰ)当n=1时,由a 2≤a 1-a 12=a 1(1-a 1),且a 1>0,a 2>0,可得a 1<1,命题成立.而a 2≤a 1-a 12=f(a 1)≤41<21,故n=2时命题也成立. (Ⅱ)假设n=k(k≥2)时,命题成立,即a k <k1,因为函数f(x)=-x 2+x 在(-∞,21]上为增函数,所以由a k <k 1≤21及a k+1≤a k -a 2k 得a k+1≤f(a k )<f(k 1)=21k -+k 1=21k k -<11112+=--k k k ,即a k+1<11+k , 所以当n=k+1时,命题也成立.根据(Ⅰ)(Ⅱ)可知,对任何n ∈N *,a n <n1. 知识点六: 活用起点的位置 例7 已知函数f(x)=ax-23x 2的最大值不大于61,又当x ∈[41,21]时,f(x)≥81. (1)求a 的值; (2)设0<a 1<21,a n+1=f(a n ),n ∈N *,证明:a n <11+n . 思路分析:在用数学归纳法证明不等式的过程中,充分利用了数列递推关系式a n+1=f(a n )=23-a 2n +a n 的函数单调性,需注意命题的递推关系式中起点位置的推移. (1)解:由于f(x)=ax 23-x 2的最大值不大于61,所以f(3a )=62a ≤61,即a 2≤1.又x ∈[41,21]时f(x)≥81, 所以⎪⎪⎩⎪⎪⎨⎧≥-≥-⎪⎪⎩⎪⎪⎨⎧≥≥.813234,81832,81)41(,81)21(a a f f 即解得a≥1. ∴a=1.(2)证明:(Ⅰ)当n=1时,0<a 1<21,不等式0<a n <11+n 成立; 因f(x)>0,x ∈(0,32),所以0<a 2=f(a 1)≤61<31,故n=2时不等式也成立.(Ⅱ)假设n=k(k≥2)时,不等式0<a k <11+k 成立, 因为f(x)=x-32x 2的对称轴为x=31,知f(x)在[0,31]为增函数,所以由0<a k <11+k ≤31得0<f(a k )<f(11+k ),于是有0<a k+1<11+k -32·21)2()1(24212121)1(122+<+++-+=+-+++k k k k k k k k . 所以当n=k+1时,不等式也成立.根据(Ⅰ)(Ⅱ)可知,对任何n ∈N *,不等式a n <11+n 成立.方法归纳将起点的位置推移至2的目的,就是要将a k 和11+k 置于函数f(x)的单调区间[0,31]内,从而由0<a k <11+k ≤31得0<f(a k )<f(11+k ). 问题·探究交流讨论探究问题1 我们已经学习过贝努利不等式(1+x )n >1+nx 的证明,如果我们加强条件,如:已知x >-1,且x≠0,n ∈N ,n≥2.如何来证明不等式(1+x )n >1+nx.证明的方法有哪些呢? 探究过程:老师:首先验证n=2时的情况.(1)当n=2时,左边=(1+x )2=1+2x+x 2,右边=1+2x ,因x 2>0,则原不等式成立. (2)假设n=k 时(k≥2),不等式成立,即(1+x )k >1+kx. 现在要证的目标是(1+x )k +1>1+(k+1)x ,请同学们考虑.同学甲:因为应用数学归纳法,在证明n=k+1命题成立时,一定要运用归纳假设,所以当n=k+1时.应构造出归纳假设适应的条件.所以有(1+x )k +1=(1+x )k (1+x ).因为x >-1(已知),所以1+x >0,于是(1+x )k (1+x )>(1+kx )(1+x ).同学乙:现将命题转化成如何证明不等式(1+kx )(1+x )≥1+(k+1)x. 显然,上式中“=”不成立.故只需证:(1+kx )(1+x )>1+(k+1)x. 老师:证明不等式的基本方法有哪些?同学丙:证明不等式的基本方法有比较法、综合法、分析法.老师:在第二步证明中,合理运用归纳假设的同时,其本质是不等式证明,因此证明不等式的所有方法、技巧手段都适用.同学丁:证明不等式(1+kx )(1+x )>1+(k+1)x ,可采用作差比较法.(1+kx )(1+x )-[1+(k+1)x ]=1+x+kx+kx 2-1-kx-x=kx 2>0(因x≠0,则x 2>0). 所以,(1+kx )(1+x )>1+(k+1)x. 同学甲:也可采用综合法的放缩技巧.(1+kx )(1+x )=1+kx+x+kx 2=1+(k+1)x+kx 2.因为kx 2>0,所以1+(k+1)x+kx 2>1+(k+1)x ,即(1+kx )(1+x )>1+(1+k )x 成立. 老师:这些方法,哪种更简便,更适合数学归纳法的书写格式?学生丙用放缩技巧证明显然更简便,利于书写.探究结论:在证明中,对于n=k+1时的证明是整个数学归纳法证明过程中的重点和难点.要注意分离出该命题中可以使用归纳假设的部分(没有使用归纳假设的证明不是数学归纳法的证明),并借助于其他数学方法(如分析法、比较法、综合法、反证法等).问题2 我们在证明不等式的时候,常用放缩法的技巧来达成目的,可在具体的题目中究竟如何放缩还要视具体的题目而定,我们不妨来看看这样一个命题的证明,求证:2上标n+2>n 2,n ∈N .探究过程:老师:(1)当n=1时,左边=21+2=4;右边=1,左边>右边.所以原不等式成立. (2)假设n=k 时(k≥1且k ∈N )时,不等式成立,即2k +2>k 2. 现在,请同学们考虑n=k+1时,如何论证2k+1+2>(k+1)2成立. 同学甲:利用归纳假设2k+1+2=2·2k+2=2(2k+2)-2>2·k 2-2.老师:将不等式2k 2-2>(k+1)2,右边展开后得k 2+2k+1.由于转化目的十分明确,所以只需将不等式的左边向k 2+2k+1方向进行转化,即2k 2-2=k 2+2k+1+k 2-2k-3.由此不难看出,只需证明k 2-2k-3≥0,不等式2k 2-2>k 2+2k+1即成立.同学乙:因为k 2-2k-3=(k-3)(k+1),而k ∈N ,故k+1>0,但k-3≥0成立的条件是k≥3,所以当k∈N时,k-3≥0未必成立.老师:不成立的条件是什么?同学乙:当k=1,2时,不等式k-3≥0不成立.老师:由于使不等式不成立的k值是有限的,只需利用归纳法,将其逐一验证原命题成立,因此在证明第一步中,应补充验证n=2时原命题成立.那么,n=3时是否也需要论证?同学丙:n=3需要验证,这是因为数学归纳法中的第一步验证是第二步归纳假设的基础,而第二步中对于k是大于或等于3才成立,故在验证时,应验证n=3时,命题成立.老师:通过上例可知,在证明n=k+1时命题成立过程中,针对目标k2+2k+1,采用缩小的手段,但是由于k的取值范围(k≥1)太大,不便于缩小,因此,用增加奠基步骤(把验证n=1扩大到验证n=1,2,3)的方法,使假设中k的取值范围适当缩小到k≥3,促使放缩成功,达到目标.探究结论:设S(n)表示原式左边,f(n)表示原式右边,则由上面的证法可知,从n=k到n=k+1命题的转化途径是:要注意:这里S′(k)不一定是一项,应根据题目情况确定.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
情感态度与价值观
培养学生严密的逻辑思维能力 和严谨的态度.
教学重难点
重点
会运用数学归纳法证明含有任意 正整数n的不等式(包括贝努利不等式).
难点
灵活运用数学归纳法.
例1 观察下面两个数列,从第几项起an 始终小于bn?证明你的结论. {an=n2}:1,4,9,16,25,36,…; {bn=2n}:2,4,8,16,32,64,…
分析
这是与正整数密切相关的不等式,它 的形式简洁和谐.用数学归纳法证明它时, 应注意利用n个正数的乘积为1的条件,并 对什么时归纳假设和由它要递推的目标心 中有数.
证
明
(1)当n=1时,有a1=1,命题成立.
(2)假设当n=k时,命题成立, 即若k个正数的乘积a1a2…ak=1, 则a1+a2+…+ak≥k.当 n=k+1时,已知k+1个正数a1,a2,…,ak 满足条件a1a2…ak+1=1.
在数学研究中,经常用贝努利不等式 把二项式的乘方(1+x)n缩小为简单的1+nx 的形式.这在数值估计和放缩法证明不等式 中可以发挥作用.
事实上,贝努利不等式的一般形式是: 当a是实数,并且满足a>1或者a<0时, 有(1+x)a ≥1+ax(x>-1); 当a是实数,并且满足a>1或者0<a<1时, 有(1+x)a ≤1+ax(x>-1).
(2)假设当n=k(k≥2)时不等式成立,
即有(1+x)1+kx.
当n=k+1时, (1+x)k+1=(1+x)(1+x)k>(1+x)(1+kx) >1+(k+1)x
所以当n=k+1时不等式成立.
由(1)(2)可知,贝努利不等式成立.
例4 证明: 如果n(n为正整数)个正数a1,a2,…,an 的乘积a1,a2,…,an, 那么它们的和a1+a2…+an=1.
由(1)(2)得:a1+a2-a1a2≥1. (3)
则(1)+(3)=(2). 由于a1>1,a2<1得(a1-1)(a2-1)<0,
即a1+a2-a1a2>1.
于是目标得证,即:当n=k+1时命题成立. 由(1)(2)可知,原命题成立.
课堂小结
本节用数学归纳法证明不等式通过4 个例题由浅入深的讨论如何通过“奠 基”“假设和递推”证明含有任意正整 数n的不等式.
若这k+1个正数a1,a2,…,ak+1都相等,则它 们都是1.其和为k+1,命题成立. 若这k+1个正数a1,a2,…,ak+1不全相等, 则其中必有大于1的数,也有小于1的数. 不妨设a1>1,a2<1 有归纳假设可得到: a1+a2+…+ak+ak+1 ≥k (1)
我们要证a1+a2+…+ak+ak+1≥k+1 (2)
分析 由数列的前几项猜想,从第5项起, an<bn即n2<2n(n N+,n≥5),用数学归纳 法证明上述猜想时,第(1)步应该证明 n=5的情形.
证
明
(1)当n=5时,52<25,命题成立.
(2)假设n=k(k≥5)时,命题成立,
即k2<2k.
当n=k+1时,因为 (k+1)2=k2+2k+1<k2+3k<2k2<2k+1 由(1)(2)知,n2<2n(n N+,n≥5) 所以(k+1)2<2k+1,即当n=k+1时命题成立.
随堂练习
1.对任意的n N+,试比较n!与2n-1的大小, 证明你的结论.
解:对任意的nN+,有n!≥2n-1可用数学归 纳法证明此结论. (1)当n=1时,命题成立. (2)假设当n=k(k≥1)时,命题成立.即k! ≥2k-1. 当n=k+1时,(k+1)!=k!(k+1) ≥2k-1(k+1) ≥2k. 所以,当n=k+1时,命题成立. 由(1)(2)知,命题对一切正整数成立.
当n=k+1时, │sin(k+1)θ│
=│sinkθcosθ+coskθsinθ│ │coskθsinθ│
≤│sinkθcosθ│+
= │sinkθ││cosθ│+ │coskθ││sinθ│ ≤k │sinθ│+ │sinθ│ =(k+1) │sinθ│ 由(1)(2)可知,不等式对一切正整数n均 成立.
1 1 1 k 1 ... . 2 2 2 2 3 k k 1
由 1 2 知,命题对任意大于1的正整数成立.
习题答案
习题4.2(第53页)
1 1 1.(1)当n = 3时,左边 = (1 + 2 + 3)(1 + + ) = 11, 2 3 右边 = 32 + 3 - 1 = 11,左边 = 右边,即命题成立. (2)假设当n = k(k 3)时,命题成立. 1 1 即(1 + 2 + + k)(1 + + ) k 2 + k - 1. 2 k 当n = k + 1时,
新课导入
回顾旧知
数学归纳法的步骤:
(1)证明当n=n0时命题成立;
(2)假设当n=k时命题成立,证明 n=k+1时命题也成立.
教学目标
知识与能力
会运用数学归纳法证明含有任意 正整数n的不等式(包括贝努力不等式).
过程与方法
通过例题的学习,能够证明含有 任意正整数n的不等式(包括贝努力不 等式).
例3 证明贝努利不等式: 如果x是实数,且x>-1,x 0 ,n为大于 1的自然数,那么有(1+x)n>1+nx
分析 贝努利不等式中涉及两个字母,x 表示大于-1且不等于0的任意实数,n是 大于1的自然数,我们用数学归纳法只 能对n进行归纳.
证
明
(1)当n=2时,由x ≠ 0得 (1+x)2>1+2x,不等式成立.
2.用数学归纳法证明:对于任意大于1的 正整数n,不等式 12 12 ... 12 n 1 都成立.
2 3 n n
解: 1 21 1 当 n 2 时, ,命题成立. 2 2 2
2 假设当n k k 2 时,命题成立,即
当n k 1时, 1 1 1 1 k 1 1 ... 22 32 k 2 k 1 2 k 1 k 1 2 k3 k2 k k 1 k 1 1 . k 1 所以当n k 1时命题成立.
例2 证明不等式│sinnθ│≤n│sinθ│(n N+)
分析 这是个涉及正整数n的三角函数问题, 又与绝对值有关,在证明递推关系时,应 注意利用三角函数的性质及绝对值不等式 .
证
明
(1)当n=1时,左边=右边,命题成立. (2)假设当n=k(k≥1) 时命题成立,即 有│sinkθ│≤k│sinθ│