2015年江苏省高考数学试题及答案(理科)【解析版】(DOC)

合集下载

2015年普通高等学校招生全国统一考试数学试题(江苏卷)(含答案全解析)

2015年普通高等学校招生全国统一考试数学试题(江苏卷)(含答案全解析)

2015年普通高等学校招生全国统一考试江苏数学数学Ⅰ注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共4页,均为非选择题(第1题~第20题.共20题).本卷满分为160分,考试时间为120分钟,本试卷结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗. 参考公式:圆柱的体积公式:V 圆柱=Sh ,其中S 是圆柱的底面积,h 为高. 圆锥的体积公式:V 圆锥=13Sh ,其中S 是圆锥的底面积,h 为高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上. 1.(2015江苏,1)已知集合A={1,2,3},B={2,4,5},则集合A ∪B 中元素的个数为 . 答案:5解析:A ∪B={1,2,3}∪{2,4,5}={1,2,3,4,5},即A ∪B 中元素的个数是5.2.(2015江苏,2)已知一组数据4,6,5,8,7,6,那么这组数据的平均数为 . 答案:6 解析:平均数x =4+6+5+8+7+6=6.3.(2015江苏,3)设复数z 满足z 2=3+4i(i 是虚数单位),则z 的模为 . 答案: 5解析:因为z 2=3+4i,所以|z 2|= 32+42=5,所以|z|= 5.解析:S=1,I=1;S=S+2=1+2=3,I=I+3=1+3=4<8; S=S+2=3+2=5,I=I+3=4+3=7<8; S=S+2=5+2=7,I=I+3=7+3=10>8. 故S=7.5.(2015江苏,5)袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为 . 答案:5解析:根据条件得P=C 11C 11+C 11C 21+C 11C 21C 42=56或P=1-C 22C 42=56.6.(2015江苏,6)已知向量a =(2,1),b =(1,-2),若m a +n b =(9,-8)(m ,n ∈R ),则m-n 的值为 . 答案:-3解析:由m a +n b =(9,-8)得,m (2,1)+n (1,-2)=(9,-8), 即(2m+n ,m-2n )=(9,-8),所以 2m +n =9,m -2n =-8,解得 m =2,n =5,故m-n=-3.7.(2015江苏,7)不等式2x2-x<4的解集为.答案:{x|-1<x<2}(或(-1,2))解析:2x2-x<4,即2x2-x<22,所以x2-x<2,即x2-x-2<0,所以(x-2)(x+1)<0.解得-1<x<2,故不等式的解集为{x|-1<x<2}(或(-1,2)).8.(2015江苏,8)已知tan α=-2,tan(α+β)=17,则tan β的值为.答案:3解析:tan β=tan[(α+β)-α]=tan(α+β)-tanα=17+21-27=3.9.(2015江苏,9)现有橡皮泥制作的底面半径为5、高为4的圆锥和底面半径为2、高为8的圆柱各一个.若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为.答案:7解析:设新的底面半径为r,根据题意得1×π×52×4+π×22×8=1πr2×4+πr2×8,即28r2=196,解得r=.10.(2015江苏,10)在平面直角坐标系xOy中,以点(1,0)为圆心且与直线mx-y-2m-1=0(m∈R)相切的所有圆中,半径最大的圆的标准方程为.答案:(x-1)2+y2=2解析:(方法一)设A(1,0).由mx-y-2m-1=0,得m(x-2)-(y+1)=0,则直线过定点P(2,-1),即该方程表示所有过定点P的直线系方程.当直线与AP垂直时,所求圆的半径最大.此时,半径为|AP|=(2-1)2+(-1-0)2=2.故所求圆的标准方程为(x-1)2+y2=2.(方法二)设圆的半径为r,根据直线与圆相切的关系得r=|m+1|2=m2+2m+12=1+2m2,当m<0时,1+2m2<1,故1+2m2无最大值;当m=0时,r=1;当m>0时,m2+1≥2m(当且仅当m=1时取等号).所以r≤1+1=,即r max=故半径最大的圆的方程为(x-1)2+y2=2.11.(2015江苏,11)设数列{a n}满足a1=1,且a n+1-a n=n+1(n∈N*).则数列1a n前10项的和为. 答案:20解析:a2-a1=2,a3-a2=3,a4-a3=4,…,a n-a n-1=n,以上n-1个式子相加,得a n-a1=2+3+4+…+n.∵a1=1,∴a n=1+2+3+…+n=n(n+1)2,∴1a n =2n(n+1)=21n-1n+1.∴S10=21-1+1-1+1-1+…+1 9-110+110-111=21-111=2011.12.(2015江苏,12)在平面直角坐标系xOy中,P为双曲线x2-y2=1右支上的一个动点.若点P到直线x-y+1=0的距离大于c恒成立,则实数c的最大值为.答案:22解析:直线x-y+1=0与双曲线的渐近线y=x平行,且两平行线间的距离为2.由图形知,双曲线右支上的动点P 到直线x-y+1=0的距离的最小值无限趋近于 22,要使距离d 大于c 恒成立,只需c ≤ 2即可,故c 的最大值为 2.13.(2015江苏,13)已知函数f (x )=|ln x|,g (x )= 0,0<x ≤1,|x 2-4|-2,x >1,则方程|f (x )+g (x )|=1实根的个数为 .答案:4解析:f (x )= -ln x ,0<x ≤1,ln x ,x >1,g (x )= 0,0<x ≤1,2-x 2,1<x <2,x 2-6,x ≥2.(1)当0<x ≤1时,方程化为|-ln x+0|=1,解得x=1或x=e(舍去). 所以此时方程只有一个实根1e.(2)当1<x<2时,方程可化为|ln x+2-x 2|=1. 设h (x )=ln x+2-x 2,h'(x )=1-2x=1-2x 2.因为1<x<2,所以h'(x )=1-2x 2x<0,即函数h (x )在(1,2)上单调递减.因为h (1)=ln 1+2-12=1,h (2)=ln 2+2-22=ln 2-2,所以h (x )∈(ln 2-2,1). 又ln 2-2<-1,故当1<x<2时方程只有一解. (3)当x ≥2时,方程可化为|ln x+x 2-6|=1.记函数p (x )=ln x+x 2-6,显然p (x )在区间[2,+∞)上单调递增. 故p (x )≥p (2)=ln 2+22-6=ln 2-2<-1. 又p (3)=ln 3+32-6=ln 3+3>1,所以方程|p (x )|=1有两个解,即方程|ln x+x 2-6|=1有两个解. 综上可知,方程|f (x )+g (x )|=1共有4个实根. 14.(2015江苏,14)设向量a k = cos kπ6,sin kπ6+cos kπ6 (k=0,1,2,…,12),则∑k =011(a k ·a k+1)的值为 .答案:9 解析:因为a k = coskπ6,sin kπ6+cos kπ6 , 所以a k+1= cos k +16π,sin k +16π+cos k +16π ,于是a k ·a k+1=cos kπ6·cos k +16π+ sin kπ6+cos kπ6 sin k +16π+cos k +16π=cos kπ6cos kπ6+π6 +sin kπ6sin kπ6+π6 +sin kπ6cos kπ6+π6 +cos kπ6sin kπ6+π6 +cos kπ6cos kπ6+π6=cos π6+sin kπ3+π6 +cos kπ6cos kπ6+π6=3 3+ 3-1 sin kπ+ 3+1 cos kπ, 则∑k =011(a k ·a k+1) =∑k =0113 34+32-14sinkπ3+ 34+12 cos kπ3=9 +∑k =0113-1sin kπ+∑k =011 3+1 cos kπ=9 + 3-1 ×0+ 3+1×0=9 .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分14分)(2015江苏,15)在△ABC 中,已知AB=2,AC=3,A=60°. (1)求BC 的长; (2)求sin 2C 的值.解:(1)由余弦定理知,BC 2=AB 2+AC 2-2AB ·AC ·cos A=4+9-2×2×3×12=7,所以BC= 7.(2)由正弦定理知,ABsin C=BCsin A, 所以sin C=AB ·sin A=2sin60°7=21.因为AB<BC ,所以C 为锐角,则cos C=1-sin2C=1-37=277.因此sin 2C=2sin C·cos C=2×21×27=43.16.(本小题满分14分)(2015江苏,16)如图,在直三棱柱ABC-A1B1C1中,已知AC⊥BC,BC=CC1.设AB1的中点为D,B1C∩BC1=E.求证:(1)DE∥平面AA1C1C;(2)BC1⊥AB1.证明:(1)由题意知,E为B1C的中点,又D为AB1的中点,因此DE∥AC.又因为DE⊄平面AA1C1C,AC⊂平面AA1C1C,所以DE∥平面AA1C1C.(2)因为棱柱ABC-A1B1C1是直三棱柱,所以CC1⊥平面ABC.因为AC⊂平面ABC,所以AC⊥CC1.又因为AC⊥BC,CC1⊂平面BCC1B1,BC⊂平面BCC1B1,BC∩CC1=C,所以AC⊥平面BCC1B1.又因为BC1⊂平面BCC1B1,所以BC1⊥AC.因为BC=CC1,所以矩形BCC1B1是正方形,因此BC1⊥B1C.因为AC,B1C⊂平面B1AC,AC∩B1C=C,所以BC1⊥平面B1AC.又因为AB1⊂平面B1AC,所以BC1⊥AB1.17.(本小题满分14分)(2015江苏,17)某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路.记两条相互垂直的公路为l1,l2,山区边界曲线为C,计划修建的公路为l.如图所示,M,N为C的两个端点,测得点M到l1,l2的距离分别为5千米和40千米,点N到l1,l2的距离分别为20千米和2.5千米.以l2,l1所在的直线分别为x,y轴,建立平面直角坐标系xOy.假设曲线C符合函数y=ax2+b (其中a,b为常数)模型.(1)求a,b的值;(2)设公路l与曲线C相切于P点,P的横坐标为t.①请写出公路l长度的函数解析式f(t),并写出其定义域;②当t为何值时,公路l的长度最短?求出最短长度.解:(1)由题意知,点M,N的坐标分别为(5,40),(20,2.5).将其分别代入y=a x 2+b ,得 a25+b =40,a =2.5,解得 a =1 000,b =0.(2)①由(1)知,y=1 000x2(5≤x ≤20),则点P 的坐标为 t ,1 000t 2, 设在点P 处的切线l 交x ,y 轴分别于A ,B 点,y'=-2 000x 3, 则l 的方程为y-1 000t 2=-2 000t3(x-t ), 由此得A 3t ,0 ,B 0,3 0002 . 故f (t )= 3t 2 2+3 000t 2 2=32 t 2+4×106t 4,t ∈[5,20]. ②设g (t )=t 2+4×1064,则g'(t )=2t-16×106t5.令g'(t )=0,解得t=10 2.当t ∈(5,10 2)时,g'(t )<0,g (t )是减函数; 当t ∈(10 时,g'(t )>0,g (t )是增函数.从而,当t=10 2时,函数g (t )有极小值,也是最小值, 所以g (t )min =300,此时f (t )min =15 3.答:当t=10 2时,公路l 的长度最短,最短长度为15 3千米.18.(本小题满分16分)(2015江苏,18)如图,在平面直角坐标系xOy 中,已知椭圆x 2a2+y 2b2=1(a>b>0)的离心率为 22,且右焦点F 到左准线l 的距离为3. (1)求椭圆的标准方程;(2)过F 的直线与椭圆交于A ,B 两点,线段AB 的垂直平分线分别交直线l 和AB 于点P ,C ,若PC=2AB ,求直线AB 的方程.解:(1)由题意,得c a=22且c+a 2c=3,解得a= 2,c=1,则b=1, 所以椭圆的标准方程为x 22+y 2=1.(2)当AB ⊥x 轴时,AB= 2, 又CP=3,不合题意.当AB 与x 轴不垂直时,设直线AB 的方程为y=k (x-1),A (x 1,y 1),B (x 2,y 2),将AB 的方程代入椭圆方程,得(1+2k 2)x 2-4k 2x+2(k 2-1)=0,则x 1,2=2k 2± 2(1+k 2)1+2k2,C 的坐标为2k21+2k2,-k 1+2k2 ,且AB= (x 2-x 1)2+(y 2-y 1)2 = (1+k 2)(x 2-x 1)2=2 2(1+k 2)1+2k2.若k=0,则线段AB 的垂直平分线为y 轴,与左准线平行,不合题意. 从而k ≠0,故直线PC 的方程为y+k1+2k2=-1kx -2k21+2k2 ,则P 点的坐标为 -2,5k 2+2k (1+2k 2),从而PC=2(3k 2+1) 1+k 2|k |(1+2k 2).因为PC=2AB , 所以2(3k 2+1) 1+k 2|k |(1+2k 2)=4 2(1+k 2)1+2k2,解得k=±1.此时直线AB 方程为y=x-1或y=-x+1.19.(本小题满分16分)(2015江苏,19)已知函数f (x )=x 3+ax 2+b (a ,b ∈R ).(1)试讨论f (x )的单调性;(2)若b=c-a (实数c 是与a 无关的常数),当函数f (x )有三个不同的零点时,a 的取值范围恰好是(-∞,-3)∪ 1,32∪ 32,+∞ ,求c 的值. 解:(1)f'(x )=3x 2+2ax ,令f'(x )=0,解得x 1=0,x 2=-2a. 当a=0时,因为f'(x )=3x 2>0(x ≠0), 所以函数f (x )在(-∞,+∞)上单调递增;当a>0时,x ∈ -∞,-2a ∪(0,+∞)时,f'(x )>0,x ∈ -2a,0 时,f'(x )<0, 所以函数f (x )在 -∞,-2a 3 ,(0,+∞)上单调递增,在 -2a3,0 上单调递减;当a<0时,x ∈(-∞,0)∪ -2a 3,+∞ 时,f'(x )>0,x ∈ 0,-2a3 时,f'(x )<0,所以函数f (x )在(-∞,0), -2a ,+∞ 上单调递增,在 0,-2a上单调递减.(2)由(1)知,函数f (x )的两个极值为f (0)=b ,f -2a =4a 3+b ,则函数f (x )有三个零点等价于f (0)·f -2a 3 =b 427a 3+b <0,从而a >0,-4a 3<b <0或a <0,0<b <-4a 3. 又b=c-a ,所以当a>0时,4a 3-a+c>0或当a<0时,4a 3-a+c<0.设g (a )=427a 3-a+c ,因为函数f (x )有三个零点时,a 的取值范围恰好是(-∞,-3)∪ 1,32∪ 32,+∞ , 则在(-∞,-3)上g (a )<0,且在 1,3 ∪ 3,+∞ 上g (a )>0均恒成立, 从而g (-3)=c-1≤0,且g 3 =c-1≥0,因此c=1.此时,f (x )=x 3+ax 2+1-a=(x+1)[x 2+(a-1)x+1-a ],因函数有三个零点,则x 2+(a-1)x+1-a=0有两个异于-1的不等实根,所以Δ=(a-1)2-4(1-a )=a 2+2a-3>0,且(-1)2-(a-1)+1-a ≠0,解得a ∈(-∞,-3)∪ 1,3 ∪ 3,+∞ .综上c=1.20.(本小题满分16分)(2015江苏,20)设a 1,a 2,a 3,a 4是各项为正数且公差为d (d ≠0)的等差数列. (1)证明:2a 1,2a 2,2a 3,2a 4依次构成等比数列;(2)是否存在a 1,d 使得a 1,a 22,a 33,a 44依次构成等比数列?并说明理由;(3)是否存在a 1,d 及正整数n ,k ,使得a 1n ,a 2n +k ,a 3n +2k ,a 4n +3k依次构成等比数列?并说明理由. 解:(1)证明:因为2a n +1a n=2a n +1-a n =2d (n=1,2,3)是同一个常数,所以2a 1,2a 2,2a 3,2a 4依次构成等比数列.(2)令a 1+d=a ,则a 1,a 2,a 3,a 4分别为a-d ,a ,a+d ,a+2d (a>d ,a>-2d ,d ≠0).假设存在a 1,d ,使得a 1,a 22,a 33,a 44依次构成等比数列,则a 4=(a-d )(a+d )3,且(a+d )6=a 2(a+2d )4.令t=d ,则1=(1-t )(1+t )3,且(1+t )6=(1+2t )4 -1<t <1,t ≠0 , 化简得t 3+2t 2-2=0(*),且t 2=t+1. 将t 2=t+1代入(*)式,t (t+1)+2(t+1)-2=t 2+3t=t+1+3t=4t+1=0,则t=-14. 显然t=-1不是上面方程的解,矛盾,所以假设不成立,因此不存在a 1,d ,使得a 1,a 22,a 33,a 44依次构成等比数列.(3)假设存在a 1,d 及正整数n ,k ,使得a 1n ,a 2n +k ,a 3n +2k ,a 4n +3k依次构成等比数列,则a 1n(a 1+2d )n+2k =(a 1+d )2(n+k ),且(a 1+d )n+k (a 1+3d )n+3k =(a 1+2d )2(n+2k ).分别在两个等式的两边同除以a 12(n +k )及a 12(n +2k ),并令t=d a 1t >-13,t ≠0 , 则(1+2t )n+2k =(1+t )2(n+k ),且(1+t )n+k (1+3t )n+3k =(1+2t )2(n+2k ). 将上述两个等式两边取对数, 得(n+2k )ln(1+2t )=2(n+k )ln(1+t ), 且(n+k )ln(1+t )+(n+3k )ln(1+3t ) =2(n+2k )ln(1+2t ).化简得2k [ln(1+2t )-ln(1+t )] =n [2ln(1+t )-ln(1+2t )],且3k[ln(1+3t)-ln(1+t)]=n[3ln(1+t)-ln(1+3t)].再将这两式相除,化简得ln(1+3t)ln(1+2t)+3ln(1+2t)ln(1+t)=4ln(1+3t)ln(1+t).(**) 令g(t)=4ln(1+3t)ln(1+t)-ln(1+3t)ln(1+2t)-3ln(1+2t)ln(1+t),则g'(t)=2[(1+3t)2ln(1+3t)-3(1+2t)2ln(1+2t)+3(1+t)2ln(1+t)](1+t)(1+2t)(1+3t).令φ(t)=(1+3t)2ln(1+3t)-3(1+2t)2ln(1+2t)+3(1+t)2ln(1+t),则φ'(t)=6[(1+3t)ln(1+3t)-2(1+2t)ln(1+2t)+(1+t)ln(1+t)].令φ1(t)=φ'(t),则φ'1(t)=6[3ln(1+3t)-4ln(1+2t)+ln(1+t)].令φ2(t)=φ'1(t),则φ'2(t)=12(1+t)(1+2t)(1+3t)>0.由g(0)=φ(0)=φ1(0)=φ2(0)=0,φ'2(t)>0,知φ2(t),φ1(t),φ(t),g(t)在-1,0和(0,+∞)上均单调.故g(t)只有唯一零点t=0,即方程(**)只有唯一解t=0,故假设不成立.所以不存在a1,d及正整数n,k,使得a1n,a2n+k,a3n+2k,a4n+3k依次构成等比数列.数学Ⅱ(附加题)注意事项考生在答题前请认真阅读本注意事项及各题答题要求.1.本试卷共2页,均为非选择题(第21题~第23题),本卷满分为40分,考试时间为30分钟.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名,准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答.在其他位置作答一律无效.5.如需作图,须用2B铅笔绘,写清楚,线条、符号等须加黑、加粗.21.(2015江苏,21)【选做题】本题包括A、B、C、D四小题,请选定其中两小题........,.并在相应的答题区域内作答.............若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A.[选修4—1:几何证明选讲](本小题满分10分)如图,在△ABC中,AB=AC,△ABC的外接圆☉O的弦AE交BC于点D.求证:△ABD∽△AEB.证明:因为AB=AC,所以∠ABD=∠C.又因为∠C=∠E,所以∠ABD=∠E.又∠BAE为公共角,可知△ABD∽△AEB.B.[选修4—2:矩阵与变换](本小题满分10分)已知x,y∈R,向量α=1-1是矩阵A=x1y0的属于特征值-2的一个特征向量,求矩阵A以及它的另一个特征值.解:由已知,得Aα=-2α,即x1y01-1=x-1y=-22,则x-1=-2,y=2,即x=-1,y=2,所以矩阵A=-1120.从而矩阵A的特征多项式f(λ)=(λ+2)(λ-1),所以矩阵A的另一个特征值为1.C.[选修4—4:坐标系与参数方程](本小题满分10分)已知圆C的极坐标方程为ρ2+22ρsin θ-π4-4=0,求圆C的半径.解:以极坐标系的极点为平面直角坐标系的原点O,以极轴为x轴的正半轴,建立直角坐标系xOy.圆C的极坐标方程为ρ2+22ρ2sinθ-2cosθ -4=0,化简,得ρ2+2ρsin θ-2ρcos θ-4=0.则圆C的直角坐标方程为x2+y2-2x+2y-4=0,即(x-1)2+(y+1)2=6,所以圆C的半径为6.D.[选修4—5:不等式选讲](本小题满分10分)解不等式x+|2x+3|≥2.解:原不等式可化为x<-32,-x-3≥2或x≥-3,3x+3≥2,解得x≤-5或x≥-13.综上,原不等式的解集是x x≤-5或x≥-13.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时写出文字说明、证明过程或演算步骤.22.(本小题满分10分)(2015江苏,22)如图,在四棱锥P-ABCD中,已知PA⊥平面ABCD,且四边形ABCD为直角梯形,∠ABC=∠BAD=π,PA=AD=2,AB=BC=1.(1)求平面PAB与平面PCD所成二面角的余弦值;(2)点Q是线段BP上的动点,当直线CQ与DP所成的角最小时,求线段BQ的长.解:以{AB,AD,AP}为正交基底建立如图所示的空间直角坐标系A-xyz,则各点的坐标为B(1,0,0),C(1,1,0),D(0,2,0),P(0,0,2).(1)因为AD⊥平面PAB,所以AD是平面PAB的一个法向量,AD=(0,2,0).因为PC=(1,1,-2),PD=(0,2,-2).设平面PCD的法向量为m=(x,y,z),则m·PC=0,m·PD=0.即x+y-2z=0, 2y-2z=0.令y=1,解得z=1,x=1.所以m=(1,1,1)是平面PCD的一个法向量.从而cos<AD,m>=AD·m|AD||m|=3,所以平面PAB与平面PCD所成二面角的余弦值为33.(2)因为BP=(-1,0,2),设BQ=λBP=(-λ,0,2λ)(0≤λ≤1),又CB=(0,-1,0),则CQ=CB+BQ=(-λ,-1,2λ),又DP =(0,-2,2),从而cos <CQ ,DP >=CQ ·DP|CQ ||DP |=10λ+2.设1+2λ=t ,t ∈[1,3], 则cos 2<CQ ,DP >=2t 25t 2-10t +9=29 1t -59 2+209≤9. 当且仅当t=95,即λ=25时,|cos <CQ,DP >|的最大值为3 1010.因为y=cos x 在 0,π2上是减函数,此时直线CQ 与DP 所成角取得最小值.又因为BP= 2+22= 5,所以BQ=25BP=2 55.23.(本小题满分10分)(2015江苏,23)已知集合X={1,2,3},Y n ={1,2,3,…,n }(n ∈N *),设S n ={(a ,b )|a 整除b 或b 整除a ,a ∈X ,b ∈Y n }.令f (n )表示集合S n 所含元素的个数. (1)写出f (6)的值;(2)当n ≥6时,写出f (n )的表达式,并用数学归纳法证明. 解:(1)f (6)=13.(2)当n ≥6时,f (n )=n +2+ n2+n3 ,n =6t ,n +2+ n -12+n -13 ,n =6t +1,n +2+ n +n -2,n =6t +2,n +2+ n -12+n3,n =6t +3,n +2+ n +n -1 ,n =6t +4,n +2+ n -12+n -23,n =6t +5,(t ∈N *). 下面用数学归纳法证明:①当n=6时,f (6)=6+2+6+6=13,结论成立;②假设n=k (k ≥6)时结论成立,那么n=k+1时,S k+1在S k 的基础上新增加的元素在(1,k+1),(2,k+1),(3,k+1)中产生,分以下情形讨论:1)若k+1=6t ,则k=6(t-1)+5,此时有f (k+1)=f (k )+3=k+2+k -12+k -23+3 =(k+1)+2+k +1+k +1,结论成立;2)若k+1=6t+1,则k=6t ,此时有 f (k+1)=f (k )+1=k+2+k +k+1=(k+1)+2+(k +1)-1+(k +1)-1,结论成立;3)若k+1=6t+2,则k=6t+1,此时有 f (k+1)=f (k )+2=k+2+k -1+k -1+2 =(k+1)+2+k +1+(k +1)-2,结论成立;4)若k+1=6t+3,则k=6t+2,此时有 f (k+1)=f (k )+2=k+2+k 2+k -23+2 =(k+1)+2+(k +1)-1+k +1,结论成立;5)若k+1=6t+4,则k=6t+3,此时有 f (k+1)=f (k )+2=k+2+k -12+k3+2 =(k+1)+2+k +1+(k +1)-1,结论成立;6)若k+1=6t+5,则k=6t+4,此时有 f (k+1)=f (k )+1=k+2+k2+k -13+1=(k+1)+2+(k+1)-12+(k+1)-23,结论成立.综上所述,结论对满足n≥6的自然数n均成立.。

2015年江苏省高考数学试卷解析

2015年江苏省高考数学试卷解析

2015年江苏省高考数学试卷一、填空题(本大题共 小题,每小题 分,共计 分).( 分)( ❿江苏)已知集合✌, , ❝, , , ❝,则集合✌✉中元素的个数为..( 分)( ❿江苏)已知一组数据 , , , , , ,那么这组数据的平均数为..( 分)( ❿江苏)设复数 满足 ♓(♓是虚数单位),则 的模为..( 分)( ❿江苏)根据如图所示的伪代码,可知输出的结果 为..( 分)( ❿江苏)袋中有形状、大小都相同的 只球,其中 只白球、 只红球、 只黄球,从中一次随机摸出 只球,则这 只球颜色不同的概率为..( 分)( ❿江苏)已知向量 ( , ), ( ,﹣ ),若❍ ⏹ ( ,﹣ )(❍,⏹ ),则❍﹣⏹的值为..( 分)( ❿江苏)不等式 < 的解集为..( 分)( ❿江苏)已知♦♋⏹↑﹣ ,♦♋⏹(↑↓) ,则♦♋⏹↓的值为..( 分)( ❿江苏)现有橡皮泥制作的底面半径为 ,高为 的圆锥和底面半径为 ,高为 的圆柱各一个,若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为..( 分)( ❿江苏)在平面直角坐标系⌧⍓中,以点( , )为圆心且与直线❍⌧﹣⍓﹣ ❍﹣ (❍ )相切的所有圆中,半径最大的圆的标准方程为..( 分)( ❿江苏)设数列 ♋⏹❝满足♋ ,且♋⏹ ﹣♋⏹ ⏹(⏹ ☠✉),则数列 ❝的前 项的和为..( 分)( ❿江苏)在平面直角坐标系⌧⍓中, 为双曲线⌧ ﹣⍓ 右支上的一个动点,若点 到直线⌧﹣⍓的距离大于♍恒成立,则实数♍的最大值为..( 分)( ❿江苏)已知函数♐(⌧) ●⏹⌧,♑(⌧) ,则方程 ♐(⌧) ♑(⌧) 实根的个数为..( 分)( ❿江苏)设向量 (♍☐♦,♦♓⏹ ♍☐♦)( , , ,⑤, ),则(♋ ❿♋  )的值为.二、解答题(本大题共 小题,共计 分,解答时应写出文字说明、证明过程或演算步骤).( 分)( ❿江苏)在 ✌中,已知✌,✌,✌.( )求 的长;( )求♦♓⏹的值..( 分)( ❿江苏)如图,在直三棱柱✌﹣✌ 中,已知✌,  ,设✌ 的中点为 , ✆ ☜.求证:( ) ☜平面✌✌ ;( )  ✌ ..( 分)( ❿江苏)某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路,记两条相互垂直的公路为● ,● ,山区边界曲线为 ,计划修建的公路为●,如图所示, ,☠为 的两个端点,测得点 到● ,● 的距离分别为 千米和 千米,点☠到● ,● 的距离分别为 千米和 千米,以● ,● 在的直线分别为⌧,⍓轴,建立平面直角坐标系⌧⍓,假设曲线 符合函数⍓(其中♋,♌为常数)模型.( )求♋,♌的值;( )设公路●与曲线 相切于 点, 的横坐标为♦.♊请写出公路●长度的函数解析式♐(♦),并写出其定义域;♋当♦为何值时,公路●的长度最短?求出最短长度..( 分)( ❿江苏)如图,在平面直角坐标系⌧⍓中,已知椭圆 (♋>♌> )的离心率为,且右焦点☞到左准线●的距离为 .( )求椭圆的标准方程;( )过☞的直线与椭圆交于✌, 两点,线段✌的垂直平分线分别交直线●和✌于点 , ,若 ✌,求直线✌的方程..( 分)( ❿江苏)已知函数♐(⌧) ⌧ ♋⌧ ♌(♋,♌ ).( )试讨论♐(⌧)的单调性;( )若♌♍﹣♋(实数♍是与♋无关的常数),当函数♐(⌧)有三个不同的零点时,♋的取值范围恰好是(﹣ ,﹣ )✉( ,)✉(, ),求♍的值..( 分)( ❿江苏)设♋ ,♋ ,♋ .♋ 是各项为正数且公差为♎(♎♊)的等差数列.( )证明: , , , 依次构成等比数列;( )是否存在♋ ,♎,使得♋ ,♋ ,♋ ,♋ 依次构成等比数列?并说明理由;( )是否存在♋ ,♎及正整数⏹, ,使得♋ ⏹,♋ ⏹,♋ ⏹,♋ ⏹ 依次构成等比数列?并说明理由.三、附加题(本大题包括选做题和必做题两部分)【选做题】本题包括 题,请选定其中两小题作答,若多做,则按作答的前两小题评分,解答时应写出文字说明、证明过程或演算步骤【选修 :几何证明选讲】.( 分)( ❿江苏)如图,在 ✌中,✌✌, ✌的外接圆 的弦✌☜交 于点 .求证: ✌✌☜.【选修 :矩阵与变换】.( 分)( ❿江苏)已知⌧,⍓ ,向量 是矩阵的属于特征值﹣ 的一个特征向量,求矩阵✌以及它的另一个特征值.【选修 :坐标系与参数方程】.( ❿江苏)已知圆 的极坐标方程为⇧ ⇧♦♓⏹(→﹣)﹣ ,求圆 的半径.☯选修 :不等式选讲】.( ❿江苏)解不等式⌧⌧♏.【必做题】每题 分,共计 分,解答时写出文字说明、证明过程或演算步骤.( 分)( ❿江苏)如图,在四棱锥 ﹣✌中,已知 ✌平面✌,且四边形✌为直角梯形, ✌ ✌, ✌✌,✌.( )求平面 ✌与平面 所成二面角的余弦值;( )点✈是线段 上的动点,当直线 ✈与 所成的角最小时,求线段 ✈的长..( 分)( ❿江苏)已知集合✠, , ❝,✡⏹ , , ,⑤,⏹)(⏹ ☠✉),设 ⏹ (♋,♌) ♋整除♌或整除♋,♋ ✠, ✡⏹❝,令♐(⏹)表示集合 ⏹所含元素的个数.( )写出♐( )的值;( )当⏹♏时,写出♐(⏹)的表达式,并用数学归纳法证明.年江苏省高考数学试卷参考答案与试题解析一、填空题(本大题共 小题,每小题 分,共计 分).( 分)考点:并集及其运算.专题:集合.分析:求出✌✉,再明确元素个数解答:解:集合✌, , ❝, , , ❝,则✌✉, , , , ❝;所以✌✉中元素的个数为 ;故答案为:点评:题考查了集合的并集的运算,根据定义解答,注意元素不重复即可,属于基础题 .( 分)考点:众数、中位数、平均数.专题:概率与统计.分析:直接求解数据的平均数即可.解答:解:数据 , , , , , ,那么这组数据的平均数为: .故答案为: .点评:本题考查数据的均值的求法,基本知识的考查..( 分)考点:复数求模.专题:数系的扩充和复数.分析:直接利用复数的模的求解法则,化简求解即可.解答:解:复数 满足 ♓,可得 ♓ ,.故答案为:.点评:本题考查复数的模的求法,注意复数的模的运算法则的应用,考查计算能力. .( 分)考点:伪代码.专题:图表型;算法和程序框图.分析:模拟执行程序框图,依次写出每次循环得到的✋, 的值,当✋时不满足条件✋< ,退出循环,输出 的值为 .解答:解:模拟执行程序,可得,✋满足条件✋< , ,✋满足条件✋< , ,✋满足条件✋< , ,✋不满足条件✋< ,退出循环,输出 的值为 .故答案为: .点评:本题主要考查了循环结构的程序,正确判断退出循环的条件是解题的关键,属于基础题..( 分)考点:古典概型及其概率计算公式.专题:概率与统计.分析:根据题意,把 个小球分别编号,用列举法求出基本事件数,计算对应的概率即可.解答:解:根据题意,记白球为✌,红球为 ,黄球为 、 ,则一次取出 只球,基本事件为✌、✌ 、✌ 、  、  、 共 种,其中 只球的颜色不同的是✌、✌ 、✌ 、  、  共 种;所以所求的概率是 .故答案为:.点评:本题考查了用列举法求古典概型的概率的应用问题,是基础题目..( 分)考点:平面向量的基本定理及其意义.专题:平面向量及应用.分析:直接利用向量的坐标运算,求解即可.解答:解:向量 ( , ), ( ,﹣ ),若❍ ⏹ ( ,﹣ )可得,解得❍,⏹,❍﹣⏹﹣ .故答案为:﹣ .点评:本题考查向量的坐标运算,向量相等条件的应用,考查计算能力..( 分)考点:指、对数不等式的解法.专题:函数的性质及应用;不等式的解法及应用.分析:利用指数函数的单调性转化为⌧ ﹣⌧< ,求解即可.解答:解; < ,⌧ ﹣⌧< ,即⌧ ﹣⌧﹣ < ,解得:﹣ <⌧<故答案为:(﹣ , )点评:本题考查了指数函数的性质,二次不等式的求解,属于简单的综合题目,难度不大..( 分)考点:两角和与差的正切函数.专题:三角函数的求值.分析:直接利用两角和的正切函数,求解即可.解答:解:♦♋⏹↑﹣ ,♦♋⏹(↑↓) ,可知♦♋⏹(↑↓) ,即 ,解得♦♋⏹↓.故答案为: .点评:本题考查两角和的正切函数,基本知识的考查..( 分)考点:棱柱、棱锥、棱台的体积.专题:计算题;空间位置关系与距离.分析:由题意求出原来圆柱和圆锥的体积,设出新的圆柱和圆锥的底面半径❒,求出体积,由前后体积相等列式求得❒.解答:解:由题意可知,原来圆锥和圆柱的体积和为:.设新圆锥和圆柱的底面半径为❒,则新圆锥和圆柱的体积和为:.,解得:.故答案为:.点评:本题考查了圆柱与圆锥的体积公式,是基础的计算题..( 分)考点:圆的标准方程;圆的切线方程.专题:计算题;直线与圆.分析:求出圆心到直线的距离♎的最大值,即可求出所求圆的标准方程.解答:解:圆心到直线的距离♎ ♎,❍时,圆的半径最大为,所求圆的标准方程为(⌧﹣ ) ⍓ .故答案为:(⌧﹣ ) ⍓ .点评:本题考查所圆的标准方程,考查点到直线的距离公式,考查学生的计算能力,比较基础..( 分)考点:数列的求和;数列递推式.专题:等差数列与等比数列.分析:数列 ♋⏹❝满足♋ ,且♋⏹ ﹣♋⏹ ⏹(⏹ ☠✉),利用❽累加求和❾可得♋⏹ .再利用❽裂项求和❾即可得出.解答:解: 数列 ♋⏹❝满足♋ ,且♋⏹ ﹣♋⏹ ⏹(⏹ ☠✉),当⏹♏时,♋⏹ (♋⏹﹣♋⏹﹣ ) ⑤(♋ ﹣♋ ) ♋ ⏹⑤.当⏹时,上式也成立,♋⏹ ..数列 ❝的前⏹项的和 ⏹.数列 ❝的前 项的和为.故答案为:.点评:本题考查了数列的❽累加求和❾方法、❽裂项求和❾方法、等差数列的前⏹项和公式,考查了推理能力与计算能力,属于中档题..( 分)考点:双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:双曲线⌧ ﹣⍓ 的渐近线方程为⌧⍓,♍的最大值为直线⌧﹣⍓与直线⌧﹣⍓的距离.解答:解:由题意,双曲线⌧ ﹣⍓ 的渐近线方程为⌧⍓,因为点 到直线⌧﹣⍓的距离大于♍恒成立,所以♍的最大值为直线⌧﹣⍓与直线⌧﹣⍓的距离,即.故答案为:.点评:本题考查双曲线的性质,考查学生的计算能力,比较基础..( 分)考点:根的存在性及根的个数判断.专题:综合题;函数的性质及应用.分析::由 ♐(⌧) ♑(⌧) 可得♑(⌧) ﹣♐(⌧) ,分别作出函数的图象,即可得出结论.解答:解:由 ♐(⌧) ♑(⌧) 可得♑(⌧) ﹣♐(⌧) .♑(⌧)与♒(⌧) ﹣♐(⌧) 的图象如图所示,图象有两个交点;♑(⌧)与⇧(⌧) ﹣♐(⌧)﹣ 的图象如图所示,图象有两个交点;所以方程 ♐(⌧) ♑(⌧) 实根的个数为 .故答案为: .点评:本题考查求方程 ♐(⌧) ♑(⌧) 实根的个数,考查数形结合的数学思想,考查学生分析解决问题的能力,属于中档题..( 分)考点:数列的求和.专题:等差数列与等比数列;平面向量及应用.分析:利用向量数量积运算性质、两角和差的正弦公式、积化和差公式、三角函数的周期性即可得出.解答:解:,(♋ ❿♋  )⑤⑤.故答案为: .点评:本题考查了向量数量积运算性质、两角和差的正弦公式、积化和差公式、三角函数的周期性,考查了推理能力与计算能力,属于中档题.二、解答题(本大题共 小题,共计 分,解答时应写出文字说明、证明过程或演算步骤).( 分)考点:余弦定理的应用;二倍角的正弦.专题:解三角形.分析:( )直接利用余弦定理求解即可.( )利用正弦定理求出 的正弦函数值,然后利用二倍角公式求解即可.解答:解:( )由余弦定理可得:  ✌ ✌ ﹣ ✌❿✌♍☐♦✌﹣  ,所以 .( )由正弦定理可得:,则♦♓⏹ ,✌< , 为锐角,则♍☐♦ .因此♦♓⏹♦♓⏹♍☐♦ .点评:本题考查余弦定理的应用,正弦定理的应用,二倍角的三角函数,注意角的范围的解题的关键..( 分)考点:直线与平面平行的判定;直线与平面垂直的性质.专题:证明题;空间位置关系与距离.分析:( )根据中位线定理得 ☜✌,即证 ☜平面✌✌ ;( )先由直三棱柱得出  平面✌,即证✌ ;再证明✌平面  ,即证  ✌;最后证明  平面 ✌,即可证出  ✌ .解答:证明:( )根据题意,得;☜为 的中点, 为✌ 的中点,所以 ☜✌;又因为 ☜④平面✌✌ ,✌②平面✌✌ ,所以 ☜平面✌✌ ;( )因为棱柱✌﹣✌ 是直三棱柱,所以  平面✌,因为✌②平面✌,所以✌ ;又因为✌, ②平面  ,②平面  ,✆ ,所以✌平面  ;又因为  ②平面平面  ,所以  ✌;因为  ,所以矩形  是正方形,所以  平面 ✌;又因为✌ ②平面 ✌,所以  ✌ .点评:本题考查了直线与直线,直线与平面以及平面与平面的位置关系,也考查了空间想象能力和推理论证能力的应用问题,是基础题目..( 分)考点:函数与方程的综合运用.专题:综合题;导数的综合应用.分析:( )由题意知,点 ,☠的坐标分别为( , ),( , ),将其分别代入⍓,建立方程组,即可求♋,♌的值;( )♊求出切线●的方程,可得✌, 的坐标,即可写出公路●长度的函数解析式♐(♦),并写出其定义域;♋设♑(♦) ,利用导数,确定单调性,即可求出当♦为何值时,公路●的长度最短,并求出最短长度.解答:解:( )由题意知,点 ,☠的坐标分别为( , ),( , ),将其分别代入⍓,得,解得,( )♊由( )⍓( ♎⌧♎), (♦,),⍓﹣,切线●的方程为⍓﹣ ﹣(⌧﹣♦)设在点 处的切线●交⌧,⍓轴分别于✌, 点,则✌(, ), ( ,), ♐(♦) ,♦ ☯, ;♋设♑(♦) ,则♑(♦) ♦﹣ ,解得♦,♦ ( , )时,♑(♦)< ,♑(♦)是减函数;♦ ( , )时,♑(♦)> ,♑(♦)是增函数,从而♦时,函数♑(♦)有极小值也是最小值,♑(♦)❍♓⏹ ,♐(♦)❍♓⏹ ,答:♦时,公路●的长度最短,最短长度为 千米.点评:本题考查利用数学知识解决实际问题,考查导数知识的综合运用,确定函数关系,正确求导是关键..( 分)考点:直线与圆锥曲线的综合问题;椭圆的标准方程.专题:直线与圆;圆锥曲线的定义、性质与方程.分析:( )运用离心率公式和准线方程,可得♋,♍的方程,解得♋,♍,再由♋,♌,♍的关系,可得♌,进而得到椭圆方程;( )讨论直线✌的斜率不存在和存在,设出直线方程,代入椭圆方程,运用韦达定理和弦长公式,以及两直线垂直的条件和中点坐标公式,即可得到所求直线的方程.解答:解:( )由题意可得,♏ ,且♍ ,解得♍,♋,则♌,即有椭圆方程为 ⍓ ;( )当✌⌧轴,✌, ,不合题意;当✌与⌧轴不垂直,设直线✌:⍓(⌧﹣ ),✌(⌧ ,⍓ ), (⌧ ,⍓ ),将✌方程代入椭圆方程可得(  )⌧ ﹣  ⌧( ﹣ ) ,则⌧ ⌧ ,⌧ ⌧ ,则 (,),且✌❿ ,若 ,则✌的垂直平分线为⍓轴,与左准线平行,不合题意;则 ♊,故 :⍓ ﹣(⌧﹣), (﹣ ,),从而 ,由 ✌,可得 ,解得 ,此时✌的方程为⍓⌧﹣ 或⍓﹣⌧.点评:本题考查椭圆的方程和性质,主要考查椭圆的离心率和方程的运用,联立直线方程,运用韦达定理和弦长公式,同时考查两直线垂直和中点坐标公式的运用,属于中档题..( 分)考点:利用导数研究函数的单调性;函数零点的判定定理.专题:综合题;导数的综合应用.分析:( )求导数,分类讨论,利用导数的正负,即可得出♐(⌧)的单调性;( )由( )知,函数♐(⌧)的两个极值为♐( ) ♌,♐(﹣) ♌,则函数♐(⌧)有三个不同的零点等价于♐( )♐(﹣) ♌( ♌)< ,进一步转化为♋> 时,﹣♋♍> 或♋< 时,﹣♋♍< .设♑(♋) ﹣♋♍,利用条件即可求♍的值.解答:解:( ) ♐(⌧) ⌧ ♋⌧ ♌,♐(⌧) ⌧ ♋⌧,令♐(⌧) ,可得⌧或﹣.♋时,♐(⌧)> , ♐(⌧)在(﹣ , )上单调递增;♋> 时,⌧ (﹣ ,﹣)✉( , )时,♐(⌧)> ,⌧ (﹣, )时,♐(⌧)< ,函数♐(⌧)在(﹣ ,﹣),( , )上单调递增,在(﹣, )上单调递减;♋< 时,⌧ (﹣ , )✉(﹣, )时,♐(⌧)> ,⌧ ( ,﹣)时,♐(⌧)< ,函数♐(⌧)在(﹣ , ),(﹣, )上单调递增,在( ,﹣)上单调递减;( )由( )知,函数♐(⌧)的两个极值为♐( ) ♌,♐(﹣) ♌,则函数♐(⌧)有三个不同的零点等价于♐( )♐(﹣) ♌( ♌)< , ♌♍﹣♋,♋> 时,﹣♋♍> 或♋< 时,﹣♋♍< .设♑(♋) ﹣♋♍,函数♐(⌧)有三个不同的零点时,♋的取值范围恰好是(﹣ ,﹣ )✉( ,)✉(, ),在(﹣ ,﹣ )上,♑(♋)< 且在( ,)✉(, )上♑(♋)> 均恒成立,♑(﹣ ) ♍﹣ ♎,且♑() ♍﹣ ♏,♍,此时♐(⌧) ⌧ ♋⌧ ﹣♋(⌧)☯⌧ (♋﹣ )⌧﹣♋,函数有三个零点,⌧ (♋﹣ )⌧﹣♋有两个异于﹣ 的不等实根,(♋﹣ ) ﹣ ( ﹣♋)> ,且(﹣ ) ﹣(♋﹣ ) ﹣♋♊,解得♋ (﹣ ,﹣ )✉( ,)✉(, ),综上♍.点评:本题考查导数知识的综合运用,考查函数的单调性,考查函数的零点,考查分类讨论的数学思想,难度大..( 分)考点:等比关系的确定;等比数列的性质.专题:等差数列与等比数列.分析:( )根据等比数列和等差数列的定义即可证明;( )利用反证法,假设存在♋ ,♎使得♋ ,♋ ,♋ ,♋ 依次构成等比数列,推出矛盾,否定假设,得到结论;( )利用反证法,假设存在♋ ,♎及正整数⏹, ,使得♋ ⏹,♋ ⏹,♋ ⏹,♋ ⏹ 依次构成等比数列,得到♋ ⏹(♋ ♎)⏹ (♋ ♎) (⏹),且(♋ ♎)⏹(♋♎)⏹ (♋ ♎) (⏹),利用等式以及对数的性质化简整理得到●⏹( ♦)●⏹( ♦) ●⏹( ♦)●⏹( ♦) ●⏹( ♦)●⏹( ♦),(✉✉),多次构造函数,多次求导,利用零点存在定理,推出假设不成立.解答:解:( )证明: ♎,(⏹, , ,)是同一个常数, , , , 依次构成等比数列;( )令♋ ♎♋,则♋ ,♋ ,♋ ,♋ 分别为♋﹣♎,♋,♋♎,♋♎(♋>♎,♋>﹣ ♎,♎♊)假设存在♋ ,♎使得♋ ,♋ ,♋ ,♋ 依次构成等比数列,则♋ (♋﹣♎)(♋♎) ,且(♋♎) ♋ (♋♎) ,令♦,则 ( ﹣♦)( ♦) ,且( ♦) ( ♦) ,(﹣<♦< ,♦♊),化简得♦ ♦ ﹣ (✉),且♦ ♦,将♦ ♦代入(✉)式,♦(♦) (♦)﹣ ♦ ♦♦♦♦,则♦﹣,显然♦﹣不是上面方程的解,矛盾,所以假设不成立,因此不存在♋ ,♎,使得♋ ,♋ ,♋ ,♋ 依次构成等比数列.( )假设存在♋ ,♎及正整数⏹, ,使得♋ ⏹,♋ ⏹,♋ ⏹,♋ ⏹ 依次构成等比数列,则♋ ⏹(♋ ♎)⏹ (♋ ♎) (⏹),且(♋ ♎)⏹(♋ ♎)⏹ (♋ ♎) (⏹),分别在两个等式的两边同除以 ♋ (⏹),♋ (⏹),并令♦,(♦>,♦♊),则( ♦)⏹ ( ♦) (⏹),且( ♦)⏹( ♦)⏹ ( ♦) (⏹),将上述两个等式取对数,得(⏹)●⏹( ♦) (⏹)●⏹( ♦),且(⏹)●⏹( ♦) (⏹)●⏹( ♦) (⏹)●⏹( ♦),化简得, ☯●⏹( ♦)﹣●⏹( ♦) ⏹☯●⏹( ♦)﹣●⏹( ♦) ,且 ☯●⏹( ♦)﹣●⏹( ♦) ⏹☯●⏹( ♦)﹣●⏹( ♦) ,再将这两式相除,化简得,●⏹( ♦)●⏹( ♦) ●⏹( ♦)●⏹( ♦) ●⏹( ♦)●⏹( ♦),(✉✉)令♑(♦) ●⏹( ♦)●⏹( ♦)﹣●⏹( ♦)●⏹( ♦) ●⏹( ♦)●⏹( ♦),则♑(♦) ☯( ♦) ●⏹( ♦)﹣ ( ♦)●⏹( ♦) ( ♦) ●⏹( ♦) ,令⇧(♦) ( ♦) ●⏹( ♦)﹣ ( ♦) ●⏹( ♦) ( ♦) ●⏹( ♦),则⇧(♦) ☯( ♦)●⏹( ♦)﹣ ( ♦)●⏹( ♦) ( ♦)●⏹( ♦) ,令⇧ (♦) ⇧(♦),则⇧ (♦) ☯●⏹( ♦)﹣ ●⏹( ♦) ●⏹( ♦) ,令⇧ (♦) ⇧ (♦),则⇧ (♦) > ,由♑( ) ⇧( ) ⇧ ( ) ⇧ ( ) ,⇧ (♦)> ,知♑(♦),⇧(♦),⇧ (♦),⇧ (♦)在(﹣, )和( , )上均单调,故♑(♦)只有唯一的零点♦,即方程(✉✉)只有唯一解♦,故假设不成立,所以不存在♋ ,♎及正整数⏹, ,使得♋ ⏹,♋ ⏹,♋ ⏹,♋ ⏹ 依次构成等比数列.点评:本题主要考查等差数列、等比数列的定义和性质,函数与方程等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力,属于难题.三、附加题(本大题包括选做题和必做题两部分)【选做题】本题包括 题,请选定其中两小题作答,若多做,则按作答的前两小题评分,解答时应写出文字说明、证明过程或演算步骤【选修 :几何证明选讲】.( 分)考点:相似三角形的判定.专题:推理和证明.分析:直接利用已知条件,推出两个三角形的三个角对应相等,即可证明三角形相似.解答:证明: ✌✌, ✌ ,又  ☜, ✌ ☜,又 ✌☜是公共角,可知: ✌✌☜.点评:本题考查圆的基本性质与相似三角形等基础知识,考查逻辑推理能力.【选修 :矩阵与变换】.( 分)考点:特征值与特征向量的计算.专题:矩阵和变换.分析:利用✌ ﹣ ,可得✌,通过令矩阵✌的特征多项式为 即得结论.解答:解:由已知,可得✌ ﹣ ,即 ,则,即,矩阵✌,从而矩阵✌的特征多项式♐(↖) (↖)(↖﹣ ),矩阵✌的另一个特征值为 .点评:本题考查求矩阵及其特征值,注意解题方法的积累,属于中档题.【选修 :坐标系与参数方程】.( ❿江苏)考点:简单曲线的极坐标方程.专题:计算题;坐标系和参数方程.分析:先根据⌧⇧♍☐♦→,⍓⇧♦♓⏹→,求出圆的直角坐标方程,求出半径.解答:解:圆的极坐标方程为⇧ ⇧♦♓⏹(→﹣)﹣ ,可得⇧ ﹣ ⇧♍☐♦→⇧♦♓⏹→﹣ ,化为直角坐标方程为⌧ ⍓ ﹣ ⌧⍓﹣ ,化为标准方程为(⌧﹣ ) (⍓) ,圆的半径❒.点评:本题主要考查把极坐标方程化为直角坐标方程的方法,以及求点的极坐标的方法,关键是利用公式⌧⇧♍☐♦→,⍓⇧♦♓⏹→,比较基础,☯选修 :不等式选讲】.( ❿江苏)考点:绝对值不等式的解法.专题:不等式.分析:思路 (公式法):利用 ♐(⌧) ♏♑(⌧) ♐(⌧)♏♑(⌧),或♐(⌧)♎﹣♑(⌧);思路 (零点分段法):对⌧的值分❽⌧♏❾❽⌧<❾进行讨论求解.解答:解法 :⌧⌧♏变形为 ⌧♏﹣⌧,得 ⌧♏﹣⌧,或 ⌧♏﹣( ﹣⌧),即⌧♏,或⌧♎﹣ ,即原不等式的解集为 ⌧⌧♏,或⌧♎﹣ ❝.解法 :令 ⌧,得⌧.♊当⌧♏时,原不等式化为⌧( ⌧)♏,即⌧♏,所以⌧♏;♋⌧<时,原不等式化为⌧﹣( ⌧)♏,即⌧♎﹣ ,所以⌧♎﹣ .综上,原不等式的解集为 ⌧⌧♏,或⌧♎﹣ ❝.点评:本题考查了含绝对值不等式的解法.本解答给出的两种方法是常见的方法,不管用哪种方法,其目的是去绝对值符号.若含有一个绝对值符号,利用公式法要快捷一些,其套路为: ♐(⌧) ♏♑(⌧) ♐(⌧)♏♑(⌧),或♐(⌧)♎﹣♑(⌧);♐(⌧) ♎♑(⌧) ﹣♑(⌧)♎♐(⌧)♎♑(⌧).可简记为:大于号取两边,小于号取中间.使用零点分段法时,应注意:同一类中取交集,类与类之间取并集.【必做题】每题 分,共计 分,解答时写出文字说明、证明过程或演算步骤.( 分)(考点:二面角的平面角及求法;点、线、面间的距离计算.专题:空间位置关系与距离;空间角.分析:以✌为坐标原点,以✌、✌、✌所在直线分别为⌧、⍓、 轴建系✌﹣⌧⍓.( )所求值即为平面 ✌的一个法向量与平面 的法向量的夹角的余弦值的绝对值,计算即可;( )利用换元法可得♍☐♦ <,>♎,结合函数⍓♍☐♦⌧在( ,)上的单调性,计算即得结论.解答:解:以✌为坐标原点,以✌、✌、✌所在直线分别为⌧、⍓、 轴建系✌﹣⌧⍓如图,由题可知 ( , , ), ( , , ), ( , , ), ( , , ).( ) ✌平面 ✌, ( , , ),是平面 ✌的一个法向量, ( , ,﹣ ), ( , ,﹣ ),设平面 的法向量为 (⌧,⍓, ),由,得,取⍓,得 ( , , ),♍☐♦<,> ,平面 ✌与平面 所成两面角的余弦值为;( ) (﹣ , , ),设 ↖ (﹣↖, , ↖)( ♎↖♎),又 ( ,﹣ , ),则 (﹣↖,﹣ , ↖),又 ( ,﹣ , ),从而♍☐♦<,> ,设 ↖♦,♦ ☯, ,则♍☐♦ <,> ♎,当且仅当♦,即↖时, ♍☐♦<,> 的最大值为,因为⍓♍☐♦⌧在( ,)上是减函数,此时直线 ✈与 所成角取得最小值.又  , ✈ .点评:本题考查求二面角的三角函数值,考查用空间向量解决问题的能力,注意解题方法的积累,属于中档题..( 分)考点:数学归纳法.专题:综合题;点列、递归数列与数学归纳法.分析:( )♐( )  ;( )根据数学归纳法的证明步骤,分类讨论,即可证明结论.解答:解:( )♐( )  ;( )当⏹♏时,♐(⏹) .下面用数学归纳法证明:♊⏹时,♐( )  ,结论成立;♋假设⏹( ♏)时,结论成立,那么⏹时,  在 的基础上新增加的元素在( , ),( , ),( , )中产生,分以下情形讨论: )若 ♦,则 (♦﹣ ) ,此时有♐( ) ♐( ) ( )  ,结论成立;)若 ♦,则 ♦,此时有♐( ) ♐( )  ( )  ,结论成立;)若 ♦,则 ♦,此时有♐( ) ♐( )  ( )  ,结论成立;)若 ♦,则 ♦,此时有♐( ) ♐( )  ( )  ,结论成立;)若 ♦,则 ♦,此时有♐( ) ♐( )  ( )  ,结论成立;)若 ♦,则 ♦,此时有♐( ) ♐( )  ( )  ,结论成立.综上所述,结论对满足⏹♏的自然数⏹均成立.点评:本题考查数学归纳法,考查学生分析解决问题的能力,正确归纳是关键.。

2015年江苏高考数学试题及参考答案

2015年江苏高考数学试题及参考答案
标系xOy.
圆C的极坐标方程为,
化简,得.
则圆C的直角坐标方程为, 即,所以圆C的半径为. D. [选修4−5:不等式选讲] 本小题主要考查含绝对值不等式的解法,考查分类讨论的能力.满 分10分. 解:原不等式可化为或.
解得或. 综上,原不等式的解集是.
22.【必做题】本小题主要考查空间向量、二面角和异面直线所成角等 基础知识,考查运用空间
解:(1)由题意知,点M,N的坐标分别为(5,40),(20,2.5). 将其分别入,得, 解得.
(2)①由(1)知,(),则点P的坐标为, 设在点P处的切线l交,轴分别于A,B点,, 则的方程为,由此得,. 故,. ②设,则.令,解得. 当时,,是减函数;
当时,,是增函数. 从而,当时,函数有极小值,也是最小值,所以, 此时. 答:当时,公路的长度最短,最短长度为千米.
如图,在平面直角坐标系xOy中,已知椭圆的离心率为,且右焦点F 到左准线l的距离为3. (1)求椭圆的标准方程; (2)过F的直线与椭圆交于A,B两点,线段AB的垂直平分线分别交直线l 和AB于点P,C,若PC = 2AB,求直线AB的方程. 19. 已知函数f (x) = x3 + ax2 + b (a,b∈R)。 (1)试讨论f (x)的单调性; (2)若b = c − a(实数c是a与无关的常数),当函数f (x)有三个不同的零 点时,a的取值范围恰好是(−∞,−3)∪(1, )∪(,+∞),求c的值。 20. 设a1,a2,a3,a4是各项为正数且公差为d(d≠0)的等差数列. (1)证明: ,,,依次成等比数列; (2)是否存在a1,d,使得a1,a22,a33,a44依次成等比数列?并说明理 由; (3)是否存在a1,d及正整数n,k,使得a1n,a2n+k,a3 n+2k,a4 n+3k依次成 等比数列?并说明理由.

2015年高考理科数学江苏卷及答案

2015年高考理科数学江苏卷及答案

绝密★启用前2015年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ参考公式:圆柱的体积公式:V Sh =圆柱,其中S 是圆柱的底面积,h 是高圆锥的体积公式:13V Sh =圆锥,其中S 是圆锥的底面积,h 是高一、填空题:本大题共14小题,每小题5分,共70分.把答案填在题中的横线上.1.已知集合{1,2,3}A =,{2,4,5}B =,则集合AB 中元素的个数为 . 2.已知一组数据4,6,5,8,7,6,那么这组数据的平均数为 . 3.设复数z 满足234i z =+(i 是虚数单位),则z 的模为 . 4.根据如图所示的伪代码,5.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球, 从中一次随机摸出2只球,则这2只球颜色不同的概率为 .6.已知向量a (2,1)=,b (1,2)=-,若m a +n b (9,8)=-(,)m n ∈R ,则m n -的值为 .7.不等式224xx-<的解集为 .8.已知tan 2α=-,1tan()=7αβ+,则tan β的值为 .9.现有橡皮泥制作的底面半径为5、高为4的圆锥和底面半径为2、高为8的圆柱各一个.若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为 .10.在平面直角坐标系xOy 中,以点(1,0)为圆心且与直线210()mx y m m ---=∈R 相切的所有圆中,半径最大的圆的标准方程为 .11.设数列{}n a 满足11a =,且*11()n n a a n n +-=+∈Ν,则数列1{}na 的前10项的和为 .12.在平面直角坐标系xOy 中,P 为双曲线221x y -=右支上的一个动点,若点P 到直线10x y -+=的距离大于c 恒成立,则实数c 的最大值为 .13.已知函数()|ln |f x x =,20,01,()|4|2,1,x g x x x ⎧=⎨--⎩<≤>则方程|()()|1f xg x +=实根的个数为 .14.设向量a k πππ(cos ,sin cos )(0,1,2,,12)666k k k k =+=⋅⋅⋅,则11(k =∑a k a k+1)的值为 .二、解答题:本大题共6小题,共90分.解答应写出必要的文字说明、证明过程或演算步骤.15.(本小题满分14分)在ABC △中,已知2AB =,3AC =,60A =︒. (Ⅰ)求BC 的长; (Ⅱ)求sin2C 的值.16.(本小题满分14分)如图,在直三棱柱111ABC A B C -中,已知AC BC ⊥,1BC CC =,设1AB 的中点为D ,11B C BC E =.求证:(Ⅰ)DE平面11AA C C ;(Ⅱ)11BC AB ⊥.17.(本小题满分14分)某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路的山区边界的直线型公路,记两条相互垂直的公路为1l ,2l ,山区边界曲线为C ,计划修建的公路为l ,如图所示,M ,N 为C 的两个端点,测得点M 到1l ,2l 的距离分别为5 千米和40 千米,点N 到1l ,2l 的距离分别为20 千米和2.5 千米,以2l ,1l 所在的直线分别为x ,y 轴,建立平面直角坐标系xOy ,假设曲线C 符合函数2ay x b=+(其中a ,b 为常数)模型. (Ⅰ)求a ,b 的值;(Ⅱ)设公路l 与曲线C 相切于P 点,P 的横坐标为t . (ⅰ)请写出公路l 长度的函数解析式()f t ,并写出其定义域; (ⅱ)当t 为何值时,公路l 的长度最短?求出最短长度.姓名________________ 准考证号_____________--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无------------------------------------18.(本小题满分16分)如图,在平面直角坐标系xOy 中,已知椭圆22221(0)x y a b a b +=>>,且右焦点F 到左准线l 的距离为3. (Ⅰ)求椭圆的标准方程;(Ⅱ)过F 的直线与椭圆交于A ,B 两点,线段AB 的垂直平分线分别交直线l 和AB 于点P ,C ,若2PC AB =,求直线AB 的方程.19.(本小题满分16分)已知函数32()=(,)f x x ax b a b ++∈R , (Ⅰ)试讨论()f x 的单调性;(Ⅱ)若b c a =-(实数c 是与a 无关的常数),当函数()f x 有三个不同的零点时,a 的取值范围恰好是33(,3)(1,)(,)22-∞-+∞,求c 的值.20.(本小题满分16分)设1a ,2a ,3a ,4a 是各项为正数且公差为(0)d d ≠的等差数列, (Ⅰ)证明:12a ,22a ,32a ,42a 依次构成等比数列;(Ⅱ)是否存在1a ,d ,使得1a ,22a ,33a ,44a 依次构成等比数列?并说明理由;(Ⅲ)是否存在1a ,d 及正整数n ,k 使得1n a ,2n k a +,23n k a +,54n ka +依次构成等比数列?并说明理由.数学Ⅱ(附加题)21.【选做题】在A ,B ,C ,D 四小题中只能选做两题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.A .(本小题满分10分)选修4—1:几何证明选讲如图,在ABC △中,AB AC =,ABC △的外接圆O 的弦AE 交 BC 于点D .求证:ABD AEB △∽△.B .(本小题满分10分)选修4—2:矩阵与变换已知,R x y ∈,向量a 11⎡⎤=⎢⎥-⎣⎦是矩阵A 10x y ⎡⎤=⎢⎥⎣⎦的属性特征值2-的一个特征向量,矩阵A 以及它的另一个特征值.C .(本小题满分10分)选修4—4:坐标系与参数方程已知圆C 的极坐标方程为2πsin()404ρθ+--=,求圆C 的半径.D .(本小题满分10分)选修4—5:不等式选讲 解不等式||223x x ++≥.【必做题】第22,23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22.(本小题满分10分)如图,在四棱锥P ABCD -中,已知PA ⊥平面ABCD ,且四边形ABCD 为直角梯形,π2ABC BAD ∠=∠=,2PA AD ==,1AB BC ==.(Ⅰ)求平面PAB 与平面PCD 所成二面角的余弦值;(Ⅱ)点Q 是线段BP 上的动点,当直线CQ 与DP 所成的角最小时,求线段BQ 的长.23.(本小题满分10分)已知集合{1,2,3}X =,*{1,2,3,,}()n Y n n =⋅⋅⋅∈Ν,设{(,)|n S a b a =整除b 或b 整除a ,a X ∈,}n b Y ∈,令()f n 表示集合n S 所含元素的个数. (Ⅰ)写出(6)f 的值;(Ⅱ)当6n≥时,写出()f n 的表达式,并用数学归纳法证明.2015年普通高等学校招生全国统一考试(江苏卷)答案解析数学ⅠA B中的元素个数为A B,再明确元素个数集合并集及其运算11BC CC C =1ACB C C =,,所以1BC AB ⊥∥平面1AA C(0,)⎫+∞⎪⎭时,,(0,)+∞上单调递增,在2,0),3a ⎛-+∞ ⎝,0),2,3a ⎛- ⎝333)1,,22⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭,上()0g a <,且在31,,2⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭30≥因此c =()33),3,2⎛⎫-∞-+∞ ⎪⎝⎭.综上(Ⅰ)分类讨论,利用导数的正负,即可得出()f x 的单调性;数学Ⅱ(附加题)21A.【答案】见解析【解析】证明:因为AB AC =,所以ABD C ∠=∠.又因为C E ∠=∠,所以ABD E ∠=∠,标为(1,0,0)B ,(1,1,0)C ,(0,2,0)D ,(0,0,2)P .uuu ruuu r。

2015年江苏省高考数学试卷及答案Word版(K12教育文档)

2015年江苏省高考数学试卷及答案Word版(K12教育文档)

(直打版)2015年江苏省高考数学试卷及答案Word版(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((直打版)2015年江苏省高考数学试卷及答案Word版(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(直打版)2015年江苏省高考数学试卷及答案Word版(word版可编辑修改)的全部内容。

2015年江苏省高考数学试卷一、填空题1.已知集合{}123A =,,,{}245B =,,,则集合AB 中元素的个数为_______。

2.已知一组数据4,6,5,8,7,6,那么这组数据的平均数为________.3.设复数z 满足234z i =+(i 是虚数单位),则z 的模为_______。

4.根据如图所示的伪代码,可知输出的结果S 为________.5.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为________。

6.已知向量()21a =,,()2a =-1,,若()()98ma nb mn R +=-∈,,则m-n 的值为______.7.不等式224x x-<的解集为________。

8。

已知tan 2α=-,()1tan 7αβ+=,则tan β的值为_______。

9.现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2、高为8的圆柱各一个.若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥与圆柱各一个,则新的底面半径为 。

10。

在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为 。

2015江苏高考数学试卷及答案

2015江苏高考数学试卷及答案

2015年全国高等学校统一招生考试(江苏卷)数学(Ⅰ)一、填空题(共14小题,每小题5分,共70分) 1.已知集合{}123A =,,,{}245B =,,,则集合AB 中元素的个数为_____.2.已知一组数据4,6,5,8,7,6,那么这组数据的平均数为______.3.设复数z 满足234i z =+(i 是虚数单位),则z 的模为______.4.根据如图所示的伪代码,可知输出的结果S 为________. 5.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为________.6.已知向量,(21)=,a ,(12)=-,b ,若(98)m n +=-,a b ()m n ∈R ,,则m n -的值为______. 7.不等式224x x-<的解集为________.8.已知tan 2α=-,()1tan 7αβ+=,则tan β的值为_______. 9.现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2,高为8的圆柱各一个.若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥与圆柱各一个,则新的底面半径为 .10.在平面直角坐标系xOy 中,以点(10),为圆心且与直线210()mx y m m ---=∈R 相切的所有圆中,半径最大的圆的标准方程为 .11.数列}{n a 满足11=a ,且11+=-+n a a n n (*n ∈N ),则数列}1{na 的前10项和为 .12.在平面直角坐标系xOy 中,P 为双曲线122=-y x 右支上的一个动点.若点P 到直线01=+-y x 的距离大于c 恒成立,则实数c 的最大值为 .1S ←1I ←Whiie 8I <2S S +← 3I I +← End Whiie Print S13.已知函数|ln |)(x x f =,2001()|4|21x g x x x <⎧=⎨-->⎩,≤,,,则方程1|)()(|=+x g x f 实根的个数为 .14.设向量(cos sin cos )(01212)666k k k k πππ=+=,,,,,k a ,则11()k =∑1k k+a a 的值为 .二、解答题,本题共6个小题,共计90分,请在答题卡指定区域内作答,解答时应写出文字说明,证明过程或演算步骤.15.在ABC V 中,已知2160AB AC A ===,,o. (1 ) 求BC 的长;(2)求sin 2C 的值.16.如图,在直三棱柱111ABC A B C -中,已知1AC BC BC CC ⊥=,.设1AB 的中点为D ,11B C BC E =I .求证:(1)//DE 平面11AAC C ; (2 ) 11BC AB ⊥.ACBDEA 1B 1C 1(第16题)17.(本小题满分14分)某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路的山区边界的直线型公路,记两条相互垂直的公路为12l l ,,山区边界曲线为C ,计划修建的公路为l ,如图所示,M ,N 为C 的两个端点,测得点M 到12l l ,的距离分别为5千米和40千米,点N 到12l l ,的距离分别为20千米和2.5千米,以12l l ,所在的直线分别为x ,y 轴,建立平面直角坐标系xOy ,假设曲线C 符合函数2ay x b=+(其中a ,b 为常数)模型. (1)求a ,b 的值;(2)设公路l 与曲线C 相切于P 点,P 的横坐标为t . ①请写出公路l 长度的函数解析式()f t ,并写出其定义域; ②当t 为何值时,公路l 的长度最短?求出最短长度. 18.(本小题满分16分)如图,在平面直角坐标系xOy 中,已知椭圆()222210x y a b a b +=>>的离心率为22,且右焦 点F 到左准线l 的距离为3. (1)求椭圆的标准方程;(2)过F 的直线与椭圆交于A ,B 两点,线段AB 的垂直平分线分别交直线l 和AB 于点P ,C ,若2P C A B =,求直线AB 的方程.ONMxyPlCl 1l 2(第17题)OBAPC yx(第18题)l19.(本小题满分16分)已知函数32()()f x x ax b a b =++∈R ,. (1)试讨论)(x f 的单调性;(2)若a c b -=(实数c 是与a 无关的常数),当函数)(x f 有三个不同的零点时,a的取值范围恰好是33(3)(1)()22-∞-+∞,,,,求c 的值.20.设1234a a a a ,,,是各项为正数且公差为d (0)d ≠的等差数列. (1)证明:31242222a a a a,,,依次成等比数列;(2)是否存在1a d ,,使得2341234a a a a ,,,依次成等比数列,并说明理由; (3)是否存在1a d ,及正整数n k ,,使得231234n n k n k n k a a a a +++,,,依次成等比数列,并说明理由.2015年全国高等学校统一招生考试(江苏卷)数学(Ⅱ)21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两小题,并在相应的区域内作答,若多做,则按作答的前两小题评分,解答时应写出文字说明、证明过程或演算步骤. A .[选修4-1:几何证明选讲](本小题满分10分)如图,在ABC ∆中,AC AB =,ABC ∆的外接圆圆O 的弦AE 交BC 于点D .求证:ABD ∆∽AEB ∆.B .[选修4-2:矩阵与变换](本小题满分10分)已知x y ∈R ,,向量11⎡⎤=⎢⎥-⎣⎦α是矩阵⎢⎣⎡⎥⎦⎤=01y x A 的属性特征值2-的一个特征向量,求矩阵A 以及它的另一个特征值.C .[选修4-4:坐标系与参数方程](本小题满分10分)已知圆C 的极坐标方程为222sin()404ρρθπ+--=,求圆C 的半径.D .[选修4-5:不等式选讲](本小题满分10分)解不等式|23|2x x ++≥.OBAD CE(第21-A 题)【必做题】 22.(本小题满分10分)如图,在四棱锥P ABCD -中,已知PA ⊥平面ABCD ,且四边形ABCD 为直角梯形,2ABC BAD π∠=∠=,21PA AD AB BC ====,. (1) 求平面PAB 与平面PCD 所成二面角的余弦值; (2)点Q 是线段BP 上的动点,当直线CQ 与DP 所成角最小时,求线段BQ 的长.23.(本小题满分10分)已知集合*{123}{123}()n X Y n n ==∈N ,,,,,,,,设{()|n S a b a =,整除b或b 整除a ,}n a X b Y ∈∈,,令()f n 表示集合n S 所含元素个数.(1)写出(6)f 的值;(2)当6n ≥时,写出()f n 的表达式,并用数学归纳法证明.Q B A DC P(第22题)。

2015年江苏高考数学试题及答案完整版.doc

2015年江苏高考数学试题及答案完整版.doc

江苏一、填空题1.已知集合{}123A =,,,{}245B =,,,则集合AB 中元素的个数为_______.2.已知一组数据4,6,5,8,7,6,那么这组数据的平均数为________.3.设复数z 满足234z i =+(i 是虚数单位),则z 的模为_______.4.根据如图所示的伪代码,可知输出的结果S 为________.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为________.已知向量()21a =,,()2a =-1,,若()()98ma nb mn R +=-∈,,则m-n 的值为______. 不等式224x x-<的解集为________.已知tan 2α=-,()1tan 7αβ+=,则tan β的值为_______. 现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2、高为8的圆柱各一个。

若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥与圆柱各一个,则新的底面半径为 。

10.在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为 。

11.数列}{n a 满足11=a ,且11+=-+n a a n n (*N n ∈),则数列}1{na 的前10项和为 。

12.在平面直角坐标系xOy 中,P 为双曲线122=-y x 右支上的一个动点。

若点P 到直线01=+-y x 的距离对c 恒成立,则是实数c 的最大值为 。

13.已知函数|ln |)(x x f =,⎩⎨⎧>--≤<=1,2|4|10,0)(2x x x x g ,则方程1|)()(|=+x g x f 实根的个数为 。

14.设向量)12,,2,1,0)(6cos 6sin ,6(cos =+=k k k k a k πππ,则∑=+⋅121)(k k ka a的值为 。

2015年高考数学江苏卷含答案

2015年高考数学江苏卷含答案
������=0

答案:9√3.
建议解法:������������
=
(cos
������π 6
,
√2
sin(
������π 6
+
π 4
)),������������+1
=
(cos
(������
+ 6
1)π
,
√2 sin( (������
+ 1)π 6
+
π 4
)),
所以
������������

������������+1

答案:√5. 建议解法:因为 |������|2 = |������2| = √32 + 42 = 5,所以 |������| = √5.
S 数学 I 试卷 第 1 页(共 11 页)
4. 根据如图所示的伪代码,可知输出的结果 ������ 为
答案:7. 建议解法:列表如下:
������ 1 3 5 7 ������ 1 4 7 10 当 ������ = 10 时,循环结束,此时 ������ = 7.
2. 答题前,请您务必将自己的姓名、准考证号用 0.5 毫米黑色墨水的签字笔填写在试卷及答题卡的规定 位置。
3. 请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与您本人是否相符。 4. 作答试题,必须用 0.5 毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其它位置作答一律无
效。 5. 如需作图,须用 2B 铅笔绘、写清楚,线条、符号等须加黑、加粗。
1)π
+
1 2
cos
(2������
+ 6
1)π

2015年江苏高考数学真题及答案(精校版)

2015年江苏高考数学真题及答案(精校版)

2015年江苏高考数学真题及答案(精校版)2绝密★启用前2015年普通高等学校招生全国统一考试(江苏卷)数学I参考公式: 圆柱的体积公式:shV=圆柱,其中s 为圆柱的表面积,h 为高. 圆锥的体积公式:sh V 31=圆锥,其中s 为圆锥的底面积,h 为高.一、填空题:本大题共14小题,每小题5分,共计70分. 请把答案填写在答题卡相应位置.......注 意 事 项考生在答题前请认真阅读本注意事项及各题答题要求1. 本试卷共4页,包含填空题(第1题—第14题)、解答题(第15题 - 第20题).本卷满分160分,考试时间为120分钟.考试结束后,请将答题卡交回. 2. 答题前,请您务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3. 请在答题卡上按照顺序在对应的答题区域内作答,在其他位置作答一律无效.作答必须用0.5毫米黑色墨水的签字笔.请注意字3上.. 1. 已知集合{}3,2,1=A ,{}5,4,2=B ,则集合BA Y 中元素的个数为 ▲ .2. 已知一组数据4, 6, 5, 8, 7, 6,则这组数据的平均数为 ▲ .3. 设复数z 满足iz 432+=(i 是虚数单位),则z 的模为 ▲ .4. 根据如图所示的伪代码,可知输出的结果S 为 ▲ .5. 袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球. 从中一次随机摸出2只球,则这2只球颜色不同的概率为 ▲ . 6. 已知向量a =)1,2(,b=)2,1(-, 若ma +nb =)8,9(-(R n m ∈,), nm -的值为 ▲ .7. 不等式422<-xx 的解集为 ▲ .1←S1←IWhile48. 已知2tan -=α,71)tan(=+βα,则βtan 的值为▲ .9. 现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2,高为8的圆柱各一个. 若将它们重新制作成总体积和高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为 ▲ . 10. 在平面直角坐标系x O y 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为 ▲ . 11. 设数列{}na 满足11=a,且11+=-+n a an n (*N n ∈), 则数列⎭⎬⎫⎩⎨⎧na1前10项的和为 ▲ .12. 在平面直角坐标系x O y 中,P 为双曲线122=-y x 右支上的一个动点,若点P 到直线51=+-y x 的距离大于c 恒成立,则实数c 的最大值为 ▲ . 13. 已知函数x x f ln )(=,⎪⎩⎪⎨⎧>--≤<=,1,24,10,0)(2x x x x g ,则方程1)()(=+x g x f 实根的个数为 ▲ .14. 设向量a k=(6cos 6sin ,6cos πππk k k +),(12,,2,1,0Λ=k ),则∑=+⋅111)(k k ka a的值为▲ .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内........作答,解答时应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分14分) 在ABC ∆中,已知ο60,3,2===A AC AB .(1)求BC 的长; (2)求C 2sin 的值.616.(本题满分14分)如图,在直三棱柱111C B A ABC -中,已知BC AC⊥, 1CC BC =,设1AB 的中点为D ,E BCC B =11I . 求证:(1)C C AA DE 11//平面;(2)11AB BC ⊥.17.(本小题满分14分)某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建 一条连接两条公路的山区边界的直线型公路,记两条相互垂直的公路为12l l ,,山区边 界曲线为C ,计划修建的公路为l ,如图所示,M ,N 为C 的两个端点,测得点M 到12l l ,的距离分别为5千米和40千米,点N 到12l l ,的距离分别为20千米和2.5千米,以12l l ,所在的直线分别为x ,y 轴,建立平面直角ABCDEA BC7坐标系xOy ,假设曲线C 符合函数2a y xb =+(其中a ,b 为常数)模型. (1)求a ,b 的值;(2)设公路l 与曲线C 相切于P 点,P 的横坐标为t .①请写出公路l 长度的函数解析式()f t ,并写出其定义域;②当t 为何值时,公路l 的长度最短?求出最短长度.18.(本小题满分16分)如图,在平面直角坐标系xOy 中,已知椭圆()222210x y a b a b+=>>2,且右焦点F 到左准线l 的距离为3. (1)求椭圆的标准方程;8(2)过F 的直线与椭圆交于A ,B 两点,线段AB 的垂直平分线分别交直线l 和AB 于 点P ,C ,若PC =2AB ,求直线AB 的方程.19.(本小题满分16分) 已知函数),()(23R b a b ax xx f ∈++=.(1)试讨论)(x f 的单调性;BAO x ylP C9(2)若a c b -=(实数c 是a 与无关的常数),当函数)(x f 有三个不同的零点时,a的取值范围恰好是),23()23,1()3,(+∞--∞Y Y ,求c 的值.20.(本小题满分16分)设1234,,,a a a a 是各项为正数且公差为d (0)d ≠的等差数列(1)证明:31242,2,2,2a a a a 依次成等比数列;(2)是否存在1,a d ,使得2341234,,,a aa a 依次成等比10数列,并说明理由;(3)是否存在1,a d 及正整数,n k ,使得kn k n k n n a a a a 342321,,,+++依次成等比数列,并说明理由.★ 启用前绝密2015年普通高等学校招生全国统一考试(江苏卷) 数学II21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两题......,并在相应的答题区域内作答............,若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.A.(选修4—1:几何证明选讲)如图,在ABC ∆中,AC AB =,ABC ∆的外接圆圆O 的弦AE 交BC 于点D求证:ABD ∆∽AEB ∆ 注 意 事 项考生在答题前请认真阅读本注意事项及各题答题要求 1. 本试卷只有解答题,供理工方向考生使用.本试卷第21题有A 、B 、C 、D 4个小题供选做,每位考生在4个选做题中选答2题.若考生选做了3题或4题,则按选做题中的前2题计分.第22、23题为必答题.每小题10分,共40分.考试时间30分钟.考试结束后,请将答题卡交回. 2. 答题前,请您务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试B .(选修4—2:矩阵与变换)已知R y x ∈,,向量⎥⎦⎤⎢⎣⎡-=11α是矩阵⎢⎣⎡⎥⎦⎤=01y x A 的属性特征值2-的一个特征向量,矩阵A 以及它的另一个特征值.C .(选修4—4:坐标系与参数方程)已知圆C 的极坐标方程为222sin()404πρρθ+--=,求圆C 的半径. AB C ED O (第21D.(选修4—5:不等式选讲)解不等式|23|3x x ++≥【必做题】第22、23题,每小题10分,计20分.请把答案写在答题....卡.的指定区域内....... 22.(本小题满分10分)如图,在四棱锥P ABCD -中,已知PA ⊥平面ABCD ,且四边形ABCD 为直角梯 形,2ABC BAD π∠=∠=,2,1PA AD AB BC ==== (1)求平面PAB 与平面PCD 所成二面角的余弦值;(2)点Q 是线段BP 上的动点,当直线CQ 与DP 所成角最小时,求线段BQ 的长23.(本小题满分10分) 已知集合{}3,2,1=X ,{})(,,3,2,1*N n n Yn ∈=Λ,{,),(a b b a b a S n 整除或整除= }n Y b X a ∈∈,,令()f n 表示集合n S 所含元素的个数.(1)写出(6)f 的值;(2)当6n ≥时,写出()f n 的表达式,并用数学归纳法证明.PAB C D Q。

2015年江苏省高考数学试题及答案(理科)【解析版】(DOC)

2015年江苏省高考数学试题及答案(理科)【解析版】(DOC)

2015年江苏省高考数学试卷一、填空题(本大题共14小题,每小题5分,共计70分)1.(5分)(2015•江苏)已知集合A={1,2,3},B={2,4,5},则集合A∪B中元素的个数为5.考点: 并集及其运算.专题:集合.分析:求出A∪B,再明确元素个数解答:解:集合A={1,2,3},B={2,4,5},则A∪B={1,2,3,4,5};所以A∪B中元素的个数为5;故答案为:5点评:题考查了集合的并集的运算,根据定义解答,注意元素不重复即可,属于基础题2.(5分)(2015•江苏)已知一组数据4,6,5,8,7,6,那么这组数据的平均数为6.考点:众数、中位数、平均数.专题: 概率与统计.分析:直接求解数据的平均数即可.解答:解:数据4,6,5,8,7,6,那么这组数据的平均数为:=6.故答案为:6.点评:本题考查数据的均值的求法,基本知识的考查.3.(5分)(2015•江苏)设复数z满足z2=3+4i(i是虚数单位),则z的模为.考点:复数求模.专题: 数系的扩充和复数.分析:直接利用复数的模的求解法则,化简求解即可.解答:解:复数z满足z2=3+4i,可得|z||z|=|3+4i|==5,∴|z|=.故答案为:.点评:本题考查复数的模的求法,注意复数的模的运算法则的应用,考查计算能力.4.(5分)(2015•江苏)根据如图所示的伪代码,可知输出的结果S为7.考点:伪代码.专题: 图表型;算法和程序框图.分析:模拟执行程序框图,依次写出每次循环得到的I,S的值,当I=10时不满足条件I<8,退出循环,输出S的值为7.解答:解:模拟执行程序,可得S=1,I=1满足条件I<8,S=3,I=4满足条件I<8,S=5,I=7满足条件I<8,S=7,I=10不满足条件I<8,退出循环,输出S的值为7.故答案为:7.点评:本题主要考查了循环结构的程序,正确判断退出循环的条件是解题的关键,属于基础题.5.(5分)(2015•江苏)袋中有形状、大小都相同的4只球,其中1只白球、1只红球、2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为.考点: 古典概型及其概率计算公式.专题: 概率与统计.分析:根据题意,把4个小球分别编号,用列举法求出基本事件数,计算对应的概率即可.解答:解:根据题意,记白球为A,红球为B,黄球为C1、C2,则一次取出2只球,基本事件为AB、AC1、AC2、BC1、BC2、C1C2共6种,其中2只球的颜色不同的是AB、AC1、AC2、BC1、BC2共5种;所以所求的概率是P=.故答案为:.点评:本题考查了用列举法求古典概型的概率的应用问题,是基础题目.6.(5分)(2015•江苏)已知向量=(2,1),=(1,﹣2),若m+n=(9,﹣8)(m,n∈R),则m﹣n的值为﹣3.考点:平面向量的基本定理及其意义.专题:平面向量及应用.分析:直接利用向量的坐标运算,求解即可.解答:解:向量=(2,1),=(1,﹣2),若m+n=(9,﹣8)可得,解得m=2,n=5,∴m﹣n=﹣3.故答案为:﹣3.点评:本题考查向量的坐标运算,向量相等条件的应用,考查计算能力.7.(5分)(2015•江苏)不等式2<4的解集为(﹣1,2).考点:指、对数不等式的解法.专题: 函数的性质及应用;不等式的解法及应用.分析:利用指数函数的单调性转化为x2﹣x<2,求解即可.解答:解;∵2<4,∴x2﹣x<2,即x2﹣x﹣2<0,解得:﹣1<x<2故答案为:(﹣1,2)点评:本题考查了指数函数的性质,二次不等式的求解,属于简单的综合题目,难度不大.8.(5分)(2015•江苏)已知tanα=﹣2,tan(α+β)=,则tanβ的值为3.考点:两角和与差的正切函数.专题: 三角函数的求值.分析:直接利用两角和的正切函数,求解即可.解答:解:tanα=﹣2,tan(α+β)=,可知tan(α+β)==,即=,解得tanβ=3.故答案为:3.点评:本题考查两角和的正切函数,基本知识的考查.9.(5分)(2015•江苏)现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2,高为8的圆柱各一个,若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为.考点:棱柱、棱锥、棱台的体积.专题:计算题;空间位置关系与距离.分析:由题意求出原来圆柱和圆锥的体积,设出新的圆柱和圆锥的底面半径r,求出体积,由前后体积相等列式求得r.解答:解:由题意可知,原来圆锥和圆柱的体积和为:.设新圆锥和圆柱的底面半径为r,则新圆锥和圆柱的体积和为:.∴,解得:.故答案为:.点评:本题考查了圆柱与圆锥的体积公式,是基础的计算题.10.(5分)(2015•江苏)在平面直角坐标系xOy中,以点(1,0)为圆心且与直线mx﹣y﹣2m﹣1=0(m∈R)相切的所有圆中,半径最大的圆的标准方程为(x﹣1)2+y2=2.考点:圆的标准方程;圆的切线方程.专题:计算题;直线与圆.分析:求出圆心到直线的距离d的最大值,即可求出所求圆的标准方程.解答:解:圆心到直线的距离d==≤,∴m=1时,圆的半径最大为,∴所求圆的标准方程为(x﹣1)2+y2=2.故答案为:(x﹣1)2+y2=2.点评:本题考查所圆的标准方程,考查点到直线的距离公式,考查学生的计算能力,比较基础.11.(5分)(2015•江苏)设数列{a n}满足a1=1,且a n+1﹣a n=n+1(n∈N*),则数列{}的前10项的和为.考点:数列的求和;数列递推式.专题:等差数列与等比数列.分析:数列{a n}满足a1=1,且a n+1﹣a n=n+1(n∈N*),利用“累加求和”可得a n=.再利用“裂项求和”即可得出.解答:解:∵数列{a n}满足a1=1,且a n+1﹣a n=n+1(n∈N*),∴当n≥2时,a n=(a n﹣a n﹣1)+…+(a2﹣a1)+a1=+n+…+2+1=.当n=1时,上式也成立,∴a n=.∴=2.∴数列{}的前n项的和S n===.∴数列{}的前10项的和为.故答案为:.点评:本题考查了数列的“累加求和”方法、“裂项求和”方法、等差数列的前n项和公式,考查了推理能力与计算能力,属于中档题.12.(5分)(2015•江苏)在平面直角坐标系xOy中,P为双曲线x2﹣y2=1右支上的一个动点,若点P到直线x﹣y+1=0的距离大于c恒成立,则实数c的最大值为.考点:双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:双曲线x2﹣y2=1的渐近线方程为x±y=0,c的最大值为直线x﹣y+1=0与直线x﹣y=0的距离.解答:解:由题意,双曲线x2﹣y2=1的渐近线方程为x±y=0,因为点P到直线x﹣y+1=0的距离大于c恒成立,所以c的最大值为直线x﹣y+1=0与直线x﹣y=0的距离,即.故答案为:.点评:本题考查双曲线的性质,考查学生的计算能力,比较基础.13.(5分)(2015•江苏)已知函数f(x)=|lnx|,g(x)=,则方程|f (x)+g(x)|=1实根的个数为4.考点:根的存在性及根的个数判断.专题:综合题;函数的性质及应用.分析::由|f(x)+g(x)|=1可得g(x)=﹣f(x)±1,分别作出函数的图象,即可得出结论.解答:解:由|f(x)+g(x)|=1可得g(x)=﹣f(x)±1.g(x)与h(x)=﹣f(x)+1的图象如图所示,图象有两个交点;g(x)与φ(x)=﹣f(x)﹣1的图象如图所示,图象有两个交点;所以方程|f(x)+g(x)|=1实根的个数为4.故答案为:4.点评:本题考查求方程|f(x)+g(x)|=1实根的个数,考查数形结合的数学思想,考查学生分析解决问题的能力,属于中档题.14.(5分)(2015•江苏)设向量=(cos,sin+cos)(k=0,1,2,…,12),则(a k•a k+1)的值为.考点:数列的求和.专题:等差数列与等比数列;平面向量及应用.分析:利用向量数量积运算性质、两角和差的正弦公式、积化和差公式、三角函数的周期性即可得出.解答:解:=+=++++=++=++,∴(a k•a k+1)=+++++++…+++++++…+=+0+0=.故答案为:9.点评:本题考查了向量数量积运算性质、两角和差的正弦公式、积化和差公式、三角函数的周期性,考查了推理能力与计算能力,属于中档题.二、解答题(本大题共6小题,共计90分,解答时应写出文字说明、证明过程或演算步骤) 15.(14分)(2015•江苏)在△ABC中,已知AB=2,AC=3,A=60°.(1)求BC的长;(2)求sin2C的值.考点:余弦定理的应用;二倍角的正弦.专题:解三角形.分析:(1)直接利用余弦定理求解即可.(2)利用正弦定理求出C的正弦函数值,然后利用二倍角公式求解即可.解答:解:(1)由余弦定理可得:BC2=AB2+AC2﹣2AB•ACcosA=4+8﹣2×2×3×=7,所以BC=.(2)由正弦定理可得:,则sinC===,∵AB<BC,∴C为锐角,则cosC===.因此sin2C=2sinCcosC=2×=.点评:本题考查余弦定理的应用,正弦定理的应用,二倍角的三角函数,注意角的范围的解题的关键.16.(14分)(2015•江苏)如图,在直三棱柱ABC﹣A1B1C1中,已知AC⊥BC,BC=CC1,设AB1的中点为D,B1C∩BC1=E.求证:(1)DE∥平面AA1C1C;(2)BC1⊥AB1.考点: 直线与平面平行的判定;直线与平面垂直的性质.专题:证明题;空间位置关系与距离.分析:(1)根据中位线定理得DE∥AC,即证DE∥平面AA1C1C;(2)先由直三棱柱得出CC1⊥平面ABC,即证AC⊥CC1;再证明AC⊥平面BCC1B1,即证BC1⊥AC;最后证明BC1⊥平面B1AC,即可证出BC1⊥AB1.解答:证明:(1)根据题意,得;E为B1C的中点,D为AB1的中点,所以DE∥AC;又因为DE⊄平面AA1C1C,AC⊂平面AA1C1C,所以DE∥平面AA1C1C;(2)因为棱柱ABC﹣A1B1C1是直三棱柱,所以CC1⊥平面ABC,因为AC⊂平面ABC,所以AC⊥CC1;又因为AC⊥BC,CC1⊂平面BCC1B1,BC⊂平面BCC1B1,BC∩CC1=C,所以AC⊥平面BCC1B1;又因为BC1⊂平面平面BCC1B1,所以BC1⊥AC;因为BC=CC1,所以矩形BCC1B1是正方形,所以BC1⊥平面B1AC;又因为AB1⊂平面B1AC,所以BC1⊥AB1.点评:本题考查了直线与直线,直线与平面以及平面与平面的位置关系,也考查了空间想象能力和推理论证能力的应用问题,是基础题目.17.(14分)(2015•江苏)某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路,记两条相互垂直的公路为l1,l2,山区边界曲线为C,计划修建的公路为l,如图所示,M,N为C的两个端点,测得点M到l1,l2的距离分别为5千米和40千米,点N到l1,l2的距离分别为20千米和2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015年江苏省高考数学试卷一、填空题(本大题共14小题,每小题5分,共计70分)1.(5分)(2015•江苏)已知集合A={1,2,3},B={2,4,5},则集合A∪B中元素的个数为5.考点:并集及其运算.专题:集合.分析:求出A∪B,再明确元素个数解答:解:集合A={1,2,3},B={2,4,5},则A∪B={1,2,3,4,5};所以A∪B中元素的个数为5;故答案为:5点评:题考查了集合的并集的运算,根据定义解答,注意元素不重复即可,属于基础题2.(5分)(2015•江苏)已知一组数据4,6,5,8,7,6,那么这组数据的平均数为6.考点:众数、中位数、平均数.专题:概率与统计.分析:直接求解数据的平均数即可.解答:解:数据4,6,5,8,7,6,那么这组数据的平均数为:=6.故答案为:6.点评:本题考查数据的均值的求法,基本知识的考查.3.(5分)(2015•江苏)设复数z满足z2=3+4i(i是虚数单位),则z的模为.考点:复数求模.专题:数系的扩充和复数.分析:直接利用复数的模的求解法则,化简求解即可.解答:解:复数z满足z2=3+4i,可得|z||z|=|3+4i|==5,∴|z|=.故答案为:.点评:本题考查复数的模的求法,注意复数的模的运算法则的应用,考查计算能力.4.(5分)(2015•江苏)根据如图所示的伪代码,可知输出的结果S为7.考点:伪代码.专题:图表型;算法和程序框图.分析:模拟执行程序框图,依次写出每次循环得到的I,S的值,当I=10时不满足条件I<8,退出循环,输出S的值为7.解答:解:模拟执行程序,可得S=1,I=1满足条件I<8,S=3,I=4满足条件I<8,S=5,I=7满足条件I<8,S=7,I=10不满足条件I<8,退出循环,输出S的值为7.故答案为:7.点评:本题主要考查了循环结构的程序,正确判断退出循环的条件是解题的关键,属于基础题.5.(5分)(2015•江苏)袋中有形状、大小都相同的4只球,其中1只白球、1只红球、2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为.考点:古典概型及其概率计算公式.专题:概率与统计.分析:根据题意,把4个小球分别编号,用列举法求出基本事件数,计算对应的概率即可.解答:解:根据题意,记白球为A,红球为B,黄球为C1、C2,则一次取出2只球,基本事件为AB、AC1、AC2、BC1、BC2、C1C2共6种,其中2只球的颜色不同的是AB、AC1、AC2、BC1、BC2共5种;所以所求的概率是P=.故答案为:.点评:本题考查了用列举法求古典概型的概率的应用问题,是基础题目.6.(5分)(2015•江苏)已知向量=(2,1),=(1,﹣2),若m+n=(9,﹣8)(m,n∈R),则m﹣n的值为﹣3.考点:平面向量的基本定理及其意义.专题:平面向量及应用.分析:直接利用向量的坐标运算,求解即可.解答:解:向量=(2,1),=(1,﹣2),若m+n=(9,﹣8)可得,解得m=2,n=5,∴m﹣n=﹣3.故答案为:﹣3.点评:本题考查向量的坐标运算,向量相等条件的应用,考查计算能力.7.(5分)(2015•江苏)不等式2<4的解集为(﹣1,2).考点:指、对数不等式的解法.专题:函数的性质及应用;不等式的解法及应用.分析:利用指数函数的单调性转化为x2﹣x<2,求解即可.解答:解;∵2<4,∴x2﹣x<2,即x2﹣x﹣2<0,解得:﹣1<x<2故答案为:(﹣1,2)点评:本题考查了指数函数的性质,二次不等式的求解,属于简单的综合题目,难度不大.8.(5分)(2015•江苏)已知tanα=﹣2,tan(α+β)=,则tanβ的值为3.考点:两角和与差的正切函数.专题:三角函数的求值.分析:直接利用两角和的正切函数,求解即可.解答:解:tanα=﹣2,tan(α+β)=,可知tan(α+β)==,即=,解得tanβ=3.故答案为:3.点评:本题考查两角和的正切函数,基本知识的考查.9.(5分)(2015•江苏)现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2,高为8的圆柱各一个,若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为.考点:棱柱、棱锥、棱台的体积.专题:计算题;空间位置关系与距离.分析:由题意求出原来圆柱和圆锥的体积,设出新的圆柱和圆锥的底面半径r,求出体积,由前后体积相等列式求得r.解答:解:由题意可知,原来圆锥和圆柱的体积和为:.设新圆锥和圆柱的底面半径为r,则新圆锥和圆柱的体积和为:.∴,解得:.故答案为:.点评:本题考查了圆柱与圆锥的体积公式,是基础的计算题.10.(5分)(2015•江苏)在平面直角坐标系xOy中,以点(1,0)为圆心且与直线mx﹣y ﹣2m﹣1=0(m∈R)相切的所有圆中,半径最大的圆的标准方程为(x﹣1)2+y2=2.考点:圆的标准方程;圆的切线方程.专题:计算题;直线与圆.分析:求出圆心到直线的距离d的最大值,即可求出所求圆的标准方程.解答:解:圆心到直线的距离d==≤,∴m=1时,圆的半径最大为,∴所求圆的标准方程为(x﹣1)2+y2=2.故答案为:(x﹣1)2+y2=2.点评:本题考查所圆的标准方程,考查点到直线的距离公式,考查学生的计算能力,比较基础.11.(5分)(2015•江苏)设数列{a n}满足a1=1,且a n+1﹣a n=n+1(n∈N*),则数列{}的前10项的和为.考点:数列的求和;数列递推式.专题:等差数列与等比数列.分析:数列{a n}满足a1=1,且a n+1﹣a n=n+1(n∈N*),利用“累加求和”可得a n=.再利用“裂项求和”即可得出.解答:解:∵数列{a n}满足a1=1,且a n+1﹣a n=n+1(n∈N*),∴当n≥2时,a n=(a n﹣a n﹣1)+…+(a2﹣a1)+a1=+n+…+2+1=.当n=1时,上式也成立,∴a n=.∴=2.∴数列{}的前n项的和S n===.∴数列{}的前10项的和为.故答案为:.点评:本题考查了数列的“累加求和”方法、“裂项求和”方法、等差数列的前n项和公式,考查了推理能力与计算能力,属于中档题.12.(5分)(2015•江苏)在平面直角坐标系xOy中,P为双曲线x2﹣y2=1右支上的一个动点,若点P到直线x﹣y+1=0的距离大于c恒成立,则实数c的最大值为.考点:双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:双曲线x2﹣y2=1的渐近线方程为x±y=0,c的最大值为直线x﹣y+1=0与直线x﹣y=0的距离.解答:解:由题意,双曲线x2﹣y2=1的渐近线方程为x±y=0,因为点P到直线x﹣y+1=0的距离大于c恒成立,所以c的最大值为直线x﹣y+1=0与直线x﹣y=0的距离,即.故答案为:.点评:本题考查双曲线的性质,考查学生的计算能力,比较基础.13.(5分)(2015•江苏)已知函数f(x)=|lnx|,g(x)=,则方程|f(x)+g(x)|=1实根的个数为4.考点:根的存在性及根的个数判断.专题:综合题;函数的性质及应用.分析::由|f(x)+g(x)|=1可得g(x)=﹣f(x)±1,分别作出函数的图象,即可得出结论.解答:解:由|f(x)+g(x)|=1可得g(x)=﹣f(x)±1.g(x)与h(x)=﹣f(x)+1的图象如图所示,图象有两个交点;g(x)与φ(x)=﹣f(x)﹣1的图象如图所示,图象有两个交点;所以方程|f(x)+g(x)|=1实根的个数为4.故答案为:4.点评:本题考查求方程|f(x)+g(x)|=1实根的个数,考查数形结合的数学思想,考查学生分析解决问题的能力,属于中档题.14.(5分)(2015•江苏)设向量=(cos,sin+cos)(k=0,1,2,…,12),则(a k•a k+1)的值为.考点:数列的求和.专题:等差数列与等比数列;平面向量及应用.分析:利用向量数量积运算性质、两角和差的正弦公式、积化和差公式、三角函数的周期性即可得出.解答:解:=+=++++=++=++,∴(a k•a k+1)=+++++++…+++++++…+=+0+0=.故答案为:9.点评:本题考查了向量数量积运算性质、两角和差的正弦公式、积化和差公式、三角函数的周期性,考查了推理能力与计算能力,属于中档题.二、解答题(本大题共6小题,共计90分,解答时应写出文字说明、证明过程或演算步骤)15.(14分)(2015•江苏)在△ABC中,已知AB=2,AC=3,A=60°.(1)求BC的长;(2)求sin2C的值.考点:余弦定理的应用;二倍角的正弦.专题:解三角形.分析:(1)直接利用余弦定理求解即可.(2)利用正弦定理求出C的正弦函数值,然后利用二倍角公式求解即可.解答:解:(1)由余弦定理可得:BC2=AB2+AC2﹣2AB•ACcosA=4+8﹣2×2×3×=7,所以BC=.(2)由正弦定理可得:,则sinC===,∵AB<BC,∴C为锐角,则cosC===.因此sin2C=2sinCcosC=2×=.点评:本题考查余弦定理的应用,正弦定理的应用,二倍角的三角函数,注意角的范围的解题的关键.16.(14分)(2015•江苏)如图,在直三棱柱ABC﹣A1B1C1中,已知AC⊥BC,BC=CC1,设AB1的中点为D,B1C∩BC1=E.求证:(1)DE∥平面AA1C1C;(2)BC1⊥AB1.考点:直线与平面平行的判定;直线与平面垂直的性质.专题:证明题;空间位置关系与距离.分析:(1)根据中位线定理得DE∥AC,即证DE∥平面AA1C1C;(2)先由直三棱柱得出CC1⊥平面ABC,即证AC⊥CC1;再证明AC⊥平面BCC1B1,即证BC1⊥AC;最后证明BC1⊥平面B1AC,即可证出BC1⊥AB1.解答:证明:(1)根据题意,得;E为B1C的中点,D为AB1的中点,所以DE∥AC;又因为DE⊄平面AA1C1C,AC⊂平面AA1C1C,所以DE∥平面AA1C1C;(2)因为棱柱ABC﹣A1B1C1是直三棱柱,所以CC1⊥平面ABC,因为AC⊂平面ABC,所以AC⊥CC1;又因为AC⊥BC,CC1⊂平面BCC1B1,BC⊂平面BCC1B1,BC∩CC1=C,所以AC⊥平面BCC1B1;又因为BC1⊂平面平面BCC1B1,所以BC1⊥AC;因为BC=CC1,所以矩形BCC1B1是正方形,所以BC1⊥平面B1AC;又因为AB1⊂平面B1AC,所以BC1⊥AB1.点评:本题考查了直线与直线,直线与平面以及平面与平面的位置关系,也考查了空间想象能力和推理论证能力的应用问题,是基础题目.17.(14分)(2015•江苏)某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路,记两条相互垂直的公路为l1,l2,山区边界曲线为C,计划修建的公路为l,如图所示,M,N为C的两个端点,测得点M到l1,l2的距离分别为5千米和40千米,点N到l1,l2的距离分别为20千米和2.5千米,以l2,l1在的直线分别为x,y轴,建立平面直角坐标系xOy,假设曲线C符合函数y=(其中a,b为常数)模型.(1)求a,b的值;(2)设公路l与曲线C相切于P点,P的横坐标为t.①请写出公路l长度的函数解析式f(t),并写出其定义域;②当t为何值时,公路l的长度最短?求出最短长度.考点:函数与方程的综合运用.专题:综合题;导数的综合应用.分析:(1)由题意知,点M,N的坐标分别为(5,40),(20,2.5),将其分别代入y=,建立方程组,即可求a,b的值;(2)①求出切线l的方程,可得A,B的坐标,即可写出公路l长度的函数解析式f(t),并写出其定义域;②设g(t)=,利用导数,确定单调性,即可求出当t为何值时,公路l的长度最短,并求出最短长度.解答:解:(1)由题意知,点M,N的坐标分别为(5,40),(20,2.5),将其分别代入y=,得,解得,(2)①由(1)y=(5≤x≤20),P(t,),∴y′=﹣,∴切线l的方程为y﹣=﹣(x﹣t)设在点P处的切线l交x,y轴分别于A,B点,则A(,0),B(0,),∴f(t)==,t∈[5,20];②设g(t)=,则g′(t)=2t﹣=0,解得t=10,t∈(5,10)时,g′(t)<0,g(t)是减函数;t∈(10,20)时,g′(t)>0,g(t)是增函数,从而t=10时,函数g(t)有极小值也是最小值,∴g(t)min=300,∴f(t)min=15,答:t=10时,公路l的长度最短,最短长度为15千米.点评:本题考查利用数学知识解决实际问题,考查导数知识的综合运用,确定函数关系,正确求导是关键.18.(16分)(2015•江苏)如图,在平面直角坐标系xOy中,已知椭圆+=1(a>b>0)的离心率为,且右焦点F到左准线l的距离为3.(1)求椭圆的标准方程;(2)过F的直线与椭圆交于A,B两点,线段AB的垂直平分线分别交直线l和AB于点P,C,若PC=2AB,求直线AB的方程.考点:直线与圆锥曲线的综合问题;椭圆的标准方程.专题:直线与圆;圆锥曲线的定义、性质与方程.分析:(1)运用离心率公式和准线方程,可得a,c的方程,解得a,c,再由a,b,c 的关系,可得b,进而得到椭圆方程;(2)讨论直线AB的斜率不存在和存在,设出直线方程,代入椭圆方程,运用韦达定理和弦长公式,以及两直线垂直的条件和中点坐标公式,即可得到所求直线的方程.解答:解:(1)由题意可得,e==,且c+=3,解得c=1,a=,则b=1,即有椭圆方程为+y2=1;(2)当AB⊥x轴,AB=,CP=3,不合题意;当AB与x轴不垂直,设直线AB:y=k(x﹣1),A(x1,y1),B(x2,y2),将AB方程代入椭圆方程可得(1+2k2)x2﹣4k2x+2(k2﹣1)=0,则x1+x2=,x1x2=,则C(,),且|AB|=•=,若k=0,则AB的垂直平分线为y轴,与左准线平行,不合题意;则k≠0,故PC:y+=﹣(x﹣),P(﹣2,),从而|PC|=,由|PC|=2|AB|,可得=,解得k=±1,此时AB的方程为y=x﹣1或y=﹣x+1.点评:本题考查椭圆的方程和性质,主要考查椭圆的离心率和方程的运用,联立直线方程,运用韦达定理和弦长公式,同时考查两直线垂直和中点坐标公式的运用,属于中档题.19.(16分)(2015•江苏)已知函数f(x)=x3+ax2+b(a,b∈R).(1)试讨论f(x)的单调性;(2)若b=c﹣a(实数c是与a无关的常数),当函数f(x)有三个不同的零点时,a的取值范围恰好是(﹣∞,﹣3)∪(1,)∪(,+∞),求c的值.考点:利用导数研究函数的单调性;函数零点的判定定理.专题:综合题;导数的综合应用.分析:(1)求导数,分类讨论,利用导数的正负,即可得出f(x)的单调性;(2)由(1)知,函数f(x)的两个极值为f(0)=b,f(﹣)=+b,则函数f(x)有三个不同的零点等价于f(0)f(﹣)=b(+b)<0,进一步转化为a>0时,﹣a+c>0或a<0时,﹣a+c<0.设g(a)=﹣a+c,利用条件即可求c的值.解答:解:(1)∵f(x)=x3+ax2+b,∴f′(x)=3x2+2ax,令f′(x)=0,可得x=0或﹣.a=0时,f′(x)>0,∴f(x)在(﹣∞,+∞)上单调递增;a>0时,x∈(﹣∞,﹣)∪(0,+∞)时,f′(x)>0,x∈(﹣,0)时,f′(x)<0,∴函数f(x)在(﹣∞,﹣),(0,+∞)上单调递增,在(﹣,0)上单调递减;a<0时,x∈(﹣∞,0)∪(﹣,+∞)时,f′(x)>0,x∈(0,﹣)时,f′(x)<0,∴函数f(x)在(﹣∞,0),(﹣,+∞)上单调递增,在(0,﹣)上单调递减;(2)由(1)知,函数f(x)的两个极值为f(0)=b,f(﹣)=+b,则函数f(x)有三个不同的零点等价于f(0)f(﹣)=b(+b)<0,∵b=c﹣a,∴a>0时,﹣a+c>0或a<0时,﹣a+c<0.设g(a)=﹣a+c,∵函数f(x)有三个不同的零点时,a的取值范围恰好是(﹣∞,﹣3)∪(1,)∪(,+∞),∴在(﹣∞,﹣3)上,g(a)<0且在(1,)∪(,+∞)上g(a)>0均恒成立,∴g(﹣3)=c﹣1≤0,且g()=c﹣1≥0,∴c=1,此时f(x)=x3+ax2+1﹣a=(x+1)[x2+(a﹣1)x+1﹣a],∵函数有三个零点,∴x2+(a﹣1)x+1﹣a=0有两个异于﹣1的不等实根,∴△=(a﹣1)2﹣4(1﹣a)>0,且(﹣1)2﹣(a﹣1)+1﹣a≠0,解得a∈(﹣∞,﹣3)∪(1,)∪(,+∞),综上c=1.点评:本题考查导数知识的综合运用,考查函数的单调性,考查函数的零点,考查分类讨论的数学思想,难度大.20.(16分)(2015•江苏)设a1,a2,a3.a4是各项为正数且公差为d(d≠0)的等差数列.(1)证明:2,2,2,2依次构成等比数列;(2)是否存在a1,d,使得a1,a22,a33,a44依次构成等比数列?并说明理由;(3)是否存在a1,d及正整数n,k,使得a1n,a2n+k,a3n+2k,a4n+3k依次构成等比数列?并说明理由.考点:等比关系的确定;等比数列的性质.专题:等差数列与等比数列.分析:(1)根据等比数列和等差数列的定义即可证明;(2)利用反证法,假设存在a1,d使得a1,a22,a33,a44依次构成等比数列,推出矛盾,否定假设,得到结论;(3)利用反证法,假设存在a1,d及正整数n,k,使得a1n,a2n+k,a3n+2k,a4n+3k依次构成等比数列,得到a1n(a1+2d)n+2k=(a1+2d)2(n+k),且(a1+d)n+k(a1+3d)n+3k=(a1+2d)2(n+2k),利用等式以及对数的性质化简整理得到ln(1+3t)ln(1+2t)+3ln(1+2t)ln(1+t)=4ln(1+3t)ln(1+t),(**),多次构造函数,多次求导,利用零点存在定理,推出假设不成立.解答:解:(1)证明:∵==2d,(n=1,2,3,)是同一个常数,∴2,2,2,2依次构成等比数列;(2)令a1+d=a,则a1,a2,a3,a4分别为a﹣d,a,a+d,a+2d(a>d,a>﹣2d,d≠0)假设存在a1,d使得a1,a22,a33,a44依次构成等比数列,则a4=(a﹣d)(a+d)3,且(a+d)6=a2(a+2d)4,令t=,则1=(1﹣t)(1+t)3,且(1+t)6=(1+2t)4,(﹣<t<1,t≠0),化简得t3+2t2﹣2=0(*),且t2=t+1,将t2=t+1代入(*)式,t(t+1)+2(t+1)﹣2=t2+3t=t+1+3t=4t+1=0,则t=﹣,显然t=﹣不是上面方程的解,矛盾,所以假设不成立,因此不存在a1,d,使得a1,a22,a33,a44依次构成等比数列.(3)假设存在a1,d及正整数n,k,使得a1n,a2n+k,a3n+2k,a4n+3k依次构成等比数列,则a1n(a1+2d)n+2k=(a1+2d)2(n+k),且(a1+d)n+k(a1+3d)n+3k=(a1+2d)2(n+2k),分别在两个等式的两边同除以=a12(n+k),a12(n+2k),并令t=,(t>,t≠0),则(1+2t)n+2k=(1+t)2(n+k),且(1+t)n+k(1+3t)n+3k=(1+2t)2(n+2k),将上述两个等式取对数,得(n+2k)ln(1+2t)=2(n+k)ln(1+t),且(n+k)ln(1+t)+(n+3k)ln(1+3t)=2(n+2k)ln(1+2t),化简得,2k[ln(1+2t)﹣ln(1+t)]=n[2ln(1+t)﹣ln(1+2t)],且3k[ln(1+3t)﹣ln(1+t)]=n[3ln(1+t)﹣ln(1+3t)],再将这两式相除,化简得,ln(1+3t)ln(1+2t)+3ln(1+2t)ln(1+t)=4ln(1+3t)ln(1+t),(**)令g(t)=4ln(1+3t)ln(1+t)﹣ln(1+3t)ln(1+2t)+3ln(1+2t)ln(1+t),则g′(t)=[(1+3t)2ln(1+3t)﹣3(1+2t)2ln(1+2t)+3(1+t)2ln(1+t)],令φ(t)=(1+3t)2ln(1+3t)﹣3(1+2t)2ln(1+2t)+3(1+t)2ln(1+t),则φ′(t)=6[(1+3t)ln(1+3t)﹣2(1+2t)ln(1+2t)+3(1+t)ln(1+t)],令φ1(t)=φ′(t),则φ1′(t)=6[3ln(1+3t)﹣4ln(1+2t)+ln(1+t)],令φ2(t)=φ1′(t),则φ2′(t)=>0,由g(0)=φ(0)=φ1(0)=φ2(0)=0,φ2′(t)>0,知g(t),φ(t),φ1(t),φ2(t)在(﹣,0)和(0,+∞)上均单调,故g(t)只有唯一的零点t=0,即方程(**)只有唯一解t=0,故假设不成立,所以不存在a1,d及正整数n,k,使得a1n,a2n+k,a3n+2k,a4n+3k依次构成等比数列.点评:本题主要考查等差数列、等比数列的定义和性质,函数与方程等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力,属于难题.三、附加题(本大题包括选做题和必做题两部分)【选做题】本题包括21-24题,请选定其中两小题作答,若多做,则按作答的前两小题评分,解答时应写出文字说明、证明过程或演算步骤【选修4-1:几何证明选讲】21.(10分)(2015•江苏)如图,在△ABC中,AB=AC,△ABC的外接圆⊙O的弦AE交BC于点D.求证:△ABD∽△AEB.考点:相似三角形的判定.专题:推理和证明.分析:直接利用已知条件,推出两个三角形的三个角对应相等,即可证明三角形相似.解答:证明:∵AB=AC,∴∠ABD=∠C,又∵∠C=∠E,∴∠ABD=∠E,又∠BAE是公共角,可知:△ABD∽△AEB.点评:本题考查圆的基本性质与相似三角形等基础知识,考查逻辑推理能力.【选修4-2:矩阵与变换】22.(10分)(2015•江苏)已知x,y∈R,向量=是矩阵的属于特征值﹣2的一个特征向量,求矩阵A以及它的另一个特征值.考特征值与特征向量的计算.点:矩阵和变换.专题:分利用A=﹣2,可得A=,通过令矩阵A的特征多项式为0即得结论.析:解答:解:由已知,可得A=﹣2,即==,则,即,∴矩阵A=,从而矩阵A的特征多项式f(λ)=(λ+2)(λ﹣1),∴矩阵A的另一个特征值为1.本题考查求矩阵及其特征值,注意解题方法的积累,属于中档题.点评:【选修4-4:坐标系与参数方程】23.(2015•江苏)已知圆C的极坐标方程为ρ2+2ρsin(θ﹣)﹣4=0,求圆C的半径.考点:简单曲线的极坐标方程.专题:计算题;坐标系和参数方程.分析:先根据x=ρcosθ,y=ρsinθ,求出圆的直角坐标方程,求出半径.解答:解:圆的极坐标方程为ρ2+2ρsin(θ﹣)﹣4=0,可得ρ2﹣2ρcosθ+2ρsinθ﹣4=0,化为直角坐标方程为x2+y2﹣2x+2y﹣4=0,化为标准方程为(x﹣1)2+(y+1)2=6,圆的半径r=.点评:本题主要考查把极坐标方程化为直角坐标方程的方法,以及求点的极坐标的方法,关键是利用公式x=ρcosθ,y=ρsinθ,比较基础,[选修4-5:不等式选讲】24.(2015•江苏)解不等式x+|2x+3|≥2.考点:绝对值不等式的解法.专题:不等式.分析:思路1(公式法):利用|f(x)|≥g(x)⇔f(x)≥g(x),或f(x)≤﹣g(x);思路2(零点分段法):对x的值分“x≥”“x<”进行讨论求解.解答:解法1:x+|2x+3|≥2变形为|2x+3|≥2﹣x,得2x+3≥2﹣x,或2x+3≥﹣(2﹣x),即x≥,或x≤﹣5,即原不等式的解集为{x|x≥,或x≤﹣5}.解法2:令|2x+3|=0,得x=.①当x≥时,原不等式化为x+(2x+3)≥2,即x≥,所以x≥;②x<时,原不等式化为x﹣(2x+3)≥2,即x≤﹣5,所以x≤﹣5.综上,原不等式的解集为{x|x≥,或x≤﹣5}.点评:本题考查了含绝对值不等式的解法.本解答给出的两种方法是常见的方法,不管用哪种方法,其目的是去绝对值符号.若含有一个绝对值符号,利用公式法要快捷一些,其套路为:|f(x)|≥g(x)⇔f(x)≥g(x),或f(x)≤﹣g(x);|f(x)|≤g(x)⇔﹣g(x)≤f(x)≤g(x).可简记为:大于号取两边,小于号取中间.使用零点分段法时,应注意:同一类中取交集,类与类之间取并集.【必做题】每题10分,共计20分,解答时写出文字说明、证明过程或演算步骤25.(10分)(2015•江苏)如图,在四棱锥P﹣ABCD中,已知PA⊥平面ABCD,且四边形ABCD为直角梯形,∠ABC=∠BAD=,PA=AD=2,AB=BC=1.(1)求平面PAB与平面PCD所成二面角的余弦值;(2)点Q是线段BP上的动点,当直线CQ与DP所成的角最小时,求线段BQ的长.考点:二面角的平面角及求法;点、线、面间的距离计算.专题:空间位置关系与距离;空间角.分析:以A为坐标原点,以AB、AD、AP所在直线分别为x、y、z轴建系A﹣xyz.(1)所求值即为平面PAB的一个法向量与平面PCD的法向量的夹角的余弦值的绝对值,计算即可;(2)利用换元法可得cos2<,>≤,结合函数y=cosx在(0,)上的单调性,计算即得结论.解答:解:以A为坐标原点,以AB、AD、AP所在直线分别为x、y、z轴建系A﹣xyz如图,由题可知B(1,0,0),C(1,1,0),D(0,2,0),P(0,0,2).(1)∵AD⊥平面PAB,∴=(0,2,0),是平面PAB的一个法向量,∵=(1,1,﹣2),=(0,2,﹣2),设平面PCD的法向量为=(x,y,z),由,得,取y=1,得=(1,1,1),∴cos<,>==,∴平面PAB与平面PCD所成两面角的余弦值为;(2)∵=(﹣1,0,2),设=λ=(﹣λ,0,2λ)(0≤λ≤1),又=(0,﹣1,0),则=+=(﹣λ,﹣1,2λ),又=(0,﹣2,2),从而cos<,>==,设1+2λ=t,t∈[1,3],则cos2<,>==≤,当且仅当t=,即λ=时,|cos<,>|的最大值为,因为y=cosx在(0,)上是减函数,此时直线CQ与DP所成角取得最小值.又∵BP==,∴BQ=BP=.点评:本题考查求二面角的三角函数值,考查用空间向量解决问题的能力,注意解题方法的积累,属于中档题.26.(10分)(2015•江苏)已知集合X={1,2,3},Y n={1,2,3,…,n)(n∈N*),设S n={(a,b)|a整除b或整除a,a∈X,B∈Y n},令f(n)表示集合S n所含元素的个数.(1)写出f(6)的值;(2)当n≥6时,写出f(n)的表达式,并用数学归纳法证明.考点:数学归纳法.专题:综合题;点列、递归数列与数学归纳法.分析:(1)f(6)=6+2++=13;(2)根据数学归纳法的证明步骤,分类讨论,即可证明结论.解答:解:(1)f(6)=6+2++=13;(2)当n≥6时,f(n)=.下面用数学归纳法证明:①n=6时,f(6)=6+2++=13,结论成立;②假设n=k(k≥6)时,结论成立,那么n=k+1时,S k+1在S k的基础上新增加的元素在(1,k+1),(2,k+1),(3,k+1)中产生,分以下情形讨论:1)若k+1=6t,则k=6(t﹣1)+5,此时有f(k+1)=f(k)+3=(k+1)+2++,结论成立;2)若k+1=6t+1,则k=6t+1,此时有f(k+1)=f(k)+1=k+2+++1=(k+1)+2++,结论成立;3)若k+1=6t+2,则k=6t+1,此时有f(k+1)=f(k)+2=k+2+++2=(k+1)+2++,结论成立;4)若k+1=6t+3,则k=6t+2,此时有f(k+1)=f(k)+2=k+2+++2=(k+1)+2++,结论成立;5)若k+1=6t+4,则k=6t+3,此时有f(k+1)=f(k)+2=k+2+++2=(k+1)+2++,结论成立;6)若k+1=6t+5,则k=6t+4,此时有f(k+1)=f(k)+2=k+2+++2=(k+1)+2++,结论成立.综上所述,结论对满足n≥6的自然数n均成立.点评:本题考查数学归纳法,考查学生分析解决问题的能力,正确归纳是关键.2015年江苏省高考数学试卷一、填空题(本大题共14小题,每小题5分,共计70分)1.(5分)(2015•江苏)已知集合A={1,2,3},B={2,4,5},则集合A∪B中元素的个数为.2.(5分)(2015•江苏)已知一组数据4,6,5,8,7,6,那么这组数据的平均数为.3.(5分)(2015•江苏)设复数z满足z2=3+4i(i是虚数单位),则z的模为.4.(5分)(2015•江苏)根据如图所示的伪代码,可知输出的结果S为.5.(5分)(2015•江苏)袋中有形状、大小都相同的4只球,其中1只白球、1只红球、2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为.6.(5分)(2015•江苏)已知向量=(2,1),=(1,﹣2),若m+n=(9,﹣8)(m,n∈R),则m﹣n的值为.7.(5分)(2015•江苏)不等式2<4的解集为.8.(5分)(2015•江苏)已知tanα=﹣2,tan(α+β)=,则tanβ的值为.9.(5分)(2015•江苏)现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2,高为8的圆柱各一个,若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为.10.(5分)(2015•江苏)在平面直角坐标系xOy中,以点(1,0)为圆心且与直线mx﹣y ﹣2m﹣1=0(m∈R)相切的所有圆中,半径最大的圆的标准方程为.11.(5分)(2015•江苏)设数列{a n}满足a1=1,且a n+1﹣a n=n+1(n∈N*),则数列{}的前10项的和为.12.(5分)(2015•江苏)在平面直角坐标系xOy中,P为双曲线x2﹣y2=1右支上的一个动点,若点P到直线x﹣y+1=0的距离大于c恒成立,则实数c的最大值为.13.(5分)(2015•江苏)已知函数f(x)=|lnx|,g(x)=,则方程|f(x)+g(x)|=1实根的个数为.14.(5分)(2015•江苏)设向量=(cos,sin+cos)(k=0,1,2,…,12),则(a k•a k+1)的值为.二、解答题(本大题共6小题,共计90分,解答时应写出文字说明、证明过程或演算步骤)15.(14分)(2015•江苏)在△ABC中,已知AB=2,AC=3,A=60°.(1)求BC的长;(2)求sin2C的值.16.(14分)(2015•江苏)如图,在直三棱柱ABC﹣A1B1C1中,已知AC⊥BC,BC=CC1,设AB1的中点为D,B1C∩BC1=E.求证:(1)DE∥平面AA1C1C;(2)BC1⊥AB1.17.(14分)(2015•江苏)某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路,记两条相互垂直的公路为l1,l2,山区边界曲线为C,计划修建的公路为l,如图所示,M,N为C的两个端点,测得点M到l1,l2的距离分别为5千米和40千米,点N到l1,l2的距离分别为20千米和2.5千米,以l2,l1在的直线分别为x,y轴,建立平面直角坐标系xOy,假设曲线C符合函数y=(其中a,b为常数)模型.(1)求a,b的值;(2)设公路l与曲线C相切于P点,P的横坐标为t.①请写出公路l长度的函数解析式f(t),并写出其定义域;②当t为何值时,公路l的长度最短?求出最短长度.18.(16分)(2015•江苏)如图,在平面直角坐标系xOy中,已知椭圆+=1(a>b>0)的离心率为,且右焦点F到左准线l的距离为3.(1)求椭圆的标准方程;(2)过F的直线与椭圆交于A,B两点,线段AB的垂直平分线分别交直线l和AB于点P,C,若PC=2AB,求直线AB的方程.19.(16分)(2015•江苏)已知函数f(x)=x3+ax2+b(a,b∈R).(1)试讨论f(x)的单调性;(2)若b=c﹣a(实数c是与a无关的常数),当函数f(x)有三个不同的零点时,a的取值范围恰好是(﹣∞,﹣3)∪(1,)∪(,+∞),求c的值.20.(16分)(2015•江苏)设a1,a2,a3.a4是各项为正数且公差为d(d≠0)的等差数列.(1)证明:2,2,2,2依次构成等比数列;(2)是否存在a1,d,使得a1,a22,a33,a44依次构成等比数列?并说明理由;(3)是否存在a1,d及正整数n,k,使得a1n,a2n+k,a3n+2k,a4n+3k依次构成等比数列?并说明理由.三、附加题(本大题包括选做题和必做题两部分)【选做题】本题包括21-24题,请选定其中两小题作答,若多做,则按作答的前两小题评分,解答时应写出文字说明、证明过程或演算步骤【选修4-1:几何证明选讲】21.(10分)(2015•江苏)如图,在△ABC中,AB=AC,△ABC的外接圆⊙O的弦AE交BC于点D.求证:△ABD∽△AEB.【选修4-2:矩阵与变换】22.(10分)(2015•江苏)已知x,y∈R,向量=是矩阵的属于特征值﹣2的一个特征向量,求矩阵A以及它的另一个特征值.【选修4-4:坐标系与参数方程】23.(2015•江苏)已知圆C的极坐标方程为ρ2+2ρsin(θ﹣)﹣4=0,求圆C的半径.[选修4-5:不等式选讲】24.(2015•江苏)解不等式x+|2x+3|≥2.【必做题】每题10分,共计20分,解答时写出文字说明、证明过程或演算步骤25.(10分)(2015•江苏)如图,在四棱锥P﹣ABCD中,已知PA⊥平面ABCD,且四边形ABCD为直角梯形,∠ABC=∠BAD=,PA=AD=2,AB=BC=1.(1)求平面PAB与平面PCD所成二面角的余弦值;(2)点Q是线段BP上的动点,当直线CQ与DP所成的角最小时,求线段BQ的长.26.(10分)(2015•江苏)已知集合X={1,2,3},Y n={1,2,3,…,n)(n∈N*),设S n={(a,b)|a整除b或整除a,a∈X,B∈Y n},令f(n)表示集合S n所含元素的个数.(1)写出f(6)的值;(2)当n≥6时,写出f(n)的表达式,并用数学归纳法证明.。

相关文档
最新文档