楼宇空调自动控制(自控)系统方案
全面的楼宇自控系统设计方案,含设备清单
1楼宇自控系统1.1系统总体需求楼宇自控系统(BAS)是将建筑物(或建筑群)内的电力、空调、给水、排水、通风、运输等机电设备以集中监视和管理为目的,构成一个集散型系统,实现分散控制、集中管理的计算机控制网络。
楼宇自控系统是由计算机技术、网络技术、自动控制技术和通信技术组成的高度自动化的综合管理系统,它确保建筑物内设备高效运行,整体达到最佳节能效果,同时保障建筑物的安全,使其成为最佳工作与生活环境。
楼宇自控系统的整体功能可以概括为以下的四个方面:1.对建筑设备实现以最优控制为中心的过程控制自动化;2.以运行状态监视和控制运算为中心的设备管理自动化;3.以安全状态监视和灾害控制为中心的防灾自动化;4.以节能运行为中心的能量管理自动化。
楼宇自控系统的模式应采用分层分布式三层集成模式,包括管理层、自动化层、现场设备层。
系统结构必须是开放式的,采用全以太网接入方式,方便与第三方系统进行集成。
系统设计总体要求如下:1.系统设计和设备配置必须充分反映出实用性、先进性、扩展性及经济性。
2.BAS监控中心对建筑物内所有受控设备均可集中进行有效监控。
3.该网络架构应该由各种级别的以太网设备组成,以保证通讯效率。
4.应以以太网通讯为基础,由高性能的点对点(Peer-to-peer)楼宇级网络,DDC控制器,楼层级本地网络组成,其访问权限应对用户完全透明,以便访问系统的数据或改进控制程序。
5.所有动力机械设备在自动控制方式上,除了应该满足各自特定的启停及作息条件外,还必须兼顾到与系统内其他设备、设施的因果及内在关系,保证系统的可靠和安全。
6.所有受控设备在中央监控站停止工作时,均可在直接数字控制器的作用下实现就地控制。
7.当系统设置为手动操作模式时,所有的受控设备均可实现就地手动单独控制。
8.当设备故障时,备用设备能快速自动投入使用,同时锁定故障设备。
在未检修完好前不再投入使用。
9.中央监控站应能显示所有监控设备的运行状态、故障报警、监测参数、调节设定值、实时记录每一次报警、离线、禁用、超越,并能协调处理一般的突发事件。
空调自控方案
空调自控方案目录1. 空调自控方案概述 (2)1.1 方案背景 (2)1.2 方案目标 (3)1.3 方案原则 (4)2. 空调系统概述 (5)2.1 系统构成 (6)2.2 系统功能 (7)2.3 系统布局 (8)3. 自控系统要求 (9)3.1 控制系统要求 (10)3.2 通信要求 (11)3.3 安全要求 (12)4. 自控方案设计 (13)4.1.1 控制器选择 (16)4.1.2 数据采集与传输 (18)4.2 通信系统设计 (19)4.2.1 网络架构 (20)4.2.2 通信协议 (21)4.3 人机交互设计 (22)4.3.1 用户界面 (24)4.3.2 操作流程 (25)5. 系统实现 (26)5.1 硬件安装 (28)5.2 软件配置 (29)5.3 现场调试 (30)6. 自控方案优化 (32)6.1 能耗分析 (33)7. 系统维护与升级 (35)7.1 日常维护 (36)7.2 故障处理 (38)7.3 系统升级 (38)8. 案例分析 (40)8.1 成功案例 (41)8.2 故障案例 (42)1. 空调自控方案概述随着技术的不断进步,现代建筑中对空调系统的智能化需求也越来越高。
本空调自控方案旨在通过先进的控制技术,提高建筑的能源使用效率,同时创造出更舒适的环境。
该方案运用了集成化的控制平台,汇集了多种传感器与执行器,不仅能够实时监测室内外环境参数,还能根据预设条件自动调整空调系统的运行模式。
通过运用智能算法,本方案可以有效平衡舒适度与能效之间的关系,体现出“节能减排”的时代要求。
结合自学习能力的控制系统,该方案具有高度的适应性与自我优化能力,能够在用户行为模式改变的情况下,自动更新最佳运行策略。
这不仅减少了对人工干预的依赖,还大大提高了空调系统在日常运行中的自主性和智能化水平。
本空调自控方案强调动态、高效并兼具人机交互的现代空调控制系统设计理念,力求通过先进的技术与创新的设计,为建筑带来最优质的舒适空气体验,也能显著地为业主单位节省能源开支,实现节能环保的双重价值。
霍尼韦尔symmetre楼宇自控系统方案设计
客户对能源管理和环境舒适度的要求越来越高,楼宇自控系统在提高能源利用效 率、降低能源消耗、改善室内环境舒适度等方面发挥着重要作用。
霍尼韦尔Symmetre系统介绍
Symmetre系统特点
霍尼韦尔Symmetre楼宇自控系统是一款高性能、可扩展、易用的楼宇管理系统,具有高效节能、灵活可配置、 易于管理等特点。
风险评估
识别项目中可能存在的风险因素,如技术风 险、市场风险等,并采取相应的措施进行风 险控制和规避。同时,建立风险预警机制, 及时发现并处理潜在风险。
06
总结与展望未来发展趋势
项目成果总结回顾
成功实施
霍尼韦尔symmetre楼宇自控系统 方案在多个项目中成功实施,实 现了楼宇设备的智能化管理和能 源的高效利用。
绿色建筑
随着环保意识的提高,绿色建筑和节能建筑将成 为未来发展的重要趋势,楼宇自控系统将在其中 发挥更加重要的作用。
跨界融合
楼宇自控系统将与智能家居、智慧城市等领域进 行跨界融合,形成更加完整的智能建筑生态系统 。
下一步工作计划和目标设定
完善系统功能
继续研发和优化霍尼韦尔symmetre楼宇自控系统,提高系统的 稳定性和可靠性,满足更多应用场景的需求。
成本构成及估算方法介绍
直接成本
包括硬件设备、软件系统、安装调试 等直接与项目相关的费用。
间接成本
估算方法
根据项目规模、设备数量、技术复杂 度等因素,采用历史数据法、参数法 等估算方法对成本进行合理预测。
涉及培训、维护、技术支持等后期运 营所需的费用。
经济效益评价指标体系构建
投资回报率(ROI)
01
Symmetre系统功能
楼宇自控系统技术方案(可做模板)
楼宇自控系统技术方案前言:楼宇自控系统技术方案很多朋友不知道怎么做?薛哥整理了一篇分享给大家,收藏做标准模板也可以。
正文:概述本方案针对楼宇自控系统(BAS)而进行设计,根据该项目的特点,我们将利用BAS系统对建筑物内的公共照明、空调系统、供暖通风、给水排水系统等实行全时间的控制和管理,系统收集、记录、保存有关系统的重要信息及数据,作到一体化管理,达到提高运行效率、保证办公环境需要、节省能源、节省人力的效果,最大限度安全延长设备寿命的目的。
1、设计依据提供一些标准和规范以及招标文件提供的相关资料及技术文件;2、需求分析楼宇自控系统的主要任务是对大厦内的机电设备进行监控和管理。
要想管理好大厦内的机电设备,首先必须要知晓它们的运行情况、所处系统中担任的角色以及设备的特性等。
楼宇自控系统(BAS)是建立在机电系统的基础上,利用自控技术、计算机软件技术、计算机网络通信技术,将大厦中的不同机电系统设备产生的信息汇集起来,实现各类设备之间的数据、信息交换,并对各种不同类型的信息进行综合处理,以实现对所有被监控机电设备的综合管理。
等现代城市综合体本案需要楼宇自控系统(BAS)监控内容具体描述如下:空调及动力设备(通过DDC接入BAS)送/排风机系统新风系统排风排烟给排水系统(通过DDC及接入BAS)集水井排水泵公共照明(通过DDC接入BAS)公共照明3、BAS系统监控内容根据项目要求,本项目楼宇自控系统监控的机电设备包括:公共照明、空调系统、供暖通风、给水排水系统。
根据某大厦内各类功能建筑的以上各系统设置情况不同,建筑设备监控系统的设置范围及监控内容如下:3.1 新风机控制监控内容控制方法启停控制空调可以通过BAS系统自动控制启动停止,也可以在现场手动控制;具有定时启停功能,可以根据预定的时间表启停设备;具有联锁功能,送风机启动前,风阀全开,送风机启动后,温度、流量控制回路使能,送风机停止后,风阀关闭,水阀关闭;支持消防联动,接受消防强制信号控制送风机以及风阀。
中法燕达医院楼宇自控系统控制方案
中法燕达医院楼宇自控系统控制方案清晨的阳光透过窗帘,洒在办公桌上,我泡了杯咖啡,打开电脑,开始构思这个中法燕达医院楼宇自控系统控制方案。
这是一个充满挑战的任务,但我知道,凭借我10年的方案写作经验,我一定能把这个方案做得精彩。
我梳理了一下整个医院的楼宇自控系统需求。
中法燕达医院是一座集医疗、科研、教学于一体的现代化医院,楼宇自控系统需要覆盖照明、空调、新风、电梯、安防等多个方面,确保医院高效、安全、舒适的运行。
一、照明控制系统照明系统是医院中不可或缺的部分,我们要实现的是智能照明,根据不同区域、时间段和光线强度自动调节灯光亮度。
具体方案如下:1.采用LED灯具,节能环保。
2.安装智能照明控制器,实现灯光的自动调节。
3.根据区域功能,设置不同场景模式,如普通照明、手术照明、紧急照明等。
二、空调控制系统1.采用多联机空调系统,满足不同区域的需求。
2.安装温度传感器,实时监测室内温度,自动调节空调运行。
3.设置预约功能,提前调整室内温度,节省能源。
三、新风控制系统1.采用高效过滤新风系统,确保空气质量。
2.安装空气质量传感器,实时监测PM2.5、CO2等指标。
3.根据空气质量自动调节新风量,保证室内空气质量。
四、电梯控制系统1.采用智能电梯控制系统,实现电梯的自动调度。
2.设置优先级,确保医护人员和病人的出行需求。
3.实现电梯故障预警,提高电梯运行的安全性。
五、安防控制系统1.安装高清摄像头,实现全院无死角监控。
2.采用人脸识别技术,实现人员权限管理。
3.设置报警系统,一旦发现异常情况,立即启动报警。
六、系统集成与联动1.将各子系统通过网络连接,实现数据共享。
2.实现各系统之间的联动,如空调系统与新风系统联动,照明系统与安防系统联动等。
3.开发一套智能楼宇自控系统软件,实现远程监控和管理。
整个方案构思完毕,我喝了一口咖啡,看着电脑屏幕,心中充满了成就感。
这个中法燕达医院楼宇自控系统控制方案,既满足了医院的功能需求,又体现了智能化、节能环保的理念。
楼宇自控系统规划设计方案
楼宇自控系统规划设计方案1.1楼宇自控系统1.1.1系统概述本工程为某体育中心, 设有网球场、室内健身、高尔夫、瑜伽室及办公室,建筑按五层设计。
楼宇自控系统将对整座建筑的机电设备进行信号采集和控制,实现体育馆设备管理系统自动化,旨在对体育馆内空调新风、通风、给排水以及动力系统进行集中管理和监控,以满足使用者对于馆内温度、通风等环境条件的严格要求,创造舒适的建筑环境同时达到服务和能源双优的效果。
根据某体育中心的特点,采用楼宇自控系统的主要目的在于将建筑内各种机电设备的信息进行分析、归类、处理、判断,采用最优化的控制手段,对各系统设备进行集中监控和管理,使各子系统设备始终处于有条不紊、协同一致和高效、有序的状态下运行,在创造出一个高效、舒适、安全的工作环境中,降低各系统造价,尽量节省能耗和日常管理的各项费用,保证系统充分运行,保证特殊生产环境需要,节省能源10%,节省人力,最大限度安全延长设备寿命的目的。
从而提高了智能建筑的高水平的现代化管理和服务,使投资能得到一个良好的回报。
1.1.2需求分析楼宇自控系统的建设需要充分体现技术的先进性、系统的专业性、功能的复杂性、投资的可行性、建设的实用性等弱电系统建设所特有的专业要求,确保某体育中心的建设的顺利实施和按期正常运行。
楼宇自控系统能自动接收各DDC控制器上传的统计信息及设备状态信息(正常、故障及报警),并能记录、打印、分析和管理。
可完成功能集成,实现与消防报警系统、智能照明、监控和报警等系统的接口和联锁控制,能与其他相关的工作站进行接口,配合集成商搭建成功能完善的物业管理中心。
本方案针对某体育中心的楼宇自动控制系统(BAS)而进行设计。
根据该项目的特点,针对建筑设备监控系统及系统集成的技术要求,围绕先进的控制理念和开放式的智能化建筑结构方式,依据有关国内外先进成功案例和相关设计规范并结合我们在建筑设备监控系统及系统集成方面的多年实践经验,运用当今主流的计算机技术和自动控制技术而进行的设计。
楼宇自动化控制系统安装施工方案
楼宇自动化控制系统安装施工方案楼宇自动化系统现场设备主要有:DDC单元、FLN楼层级网络设备、LonWorks网络设备、系统控制台和软件、传感器、阀门与执行器、风阀执行器、设备接口及相关硬件。
安装工艺流程开箱检验→通电试验→明确安装方式→安装→接线→做标签→填写安装记录。
技术协调由于楼控系统规模庞大,被控设备数量多,在安装自控设备前要落实被控设备的安装位置、接入点等,检查被控设备是否按原设计设置了监控点。
技术协调内容如下:·监控传感器的设计安装位置是否达到设计原意的要求·其它专业有关的监控点在相关专业内是否有相应内容配合,如电动阀的控制等在空调系统内是否有设置相应的电动阀等·相关设备是否达到监控点的要求,如控制箱的外接端子如控制、开关状态、报警点是否按照楼宇自控系统的要求进行预留,设备的控制流程、功能是否与楼宇自控系统的设计控制流程要求相符。
·监控设备是否与消防有关,楼宇自控系统的监控是否有阻碍消防功能,消防控制是否为最大优先级。
·相关电气控制设备是否符合楼宇自控系统的控制功能要求,控制箱(柜)的二次控制电路及相应的被监控设备是否预留有楼宇自控系统的接入点。
·照明动力电气是否预留有相应供电回路对楼宇自控系统的各设备供电,如有相应供电回路则检查其是否符合楼宇自控系统的要求·楼宇自控系统自身图纸是否齐全,图纸内各检测点的位置是否清晰明了,系统图中各检测末端是否在平面图上有相应标注。
·楼宇自控系统图中的各接入点是否已进行编码·楼宇自控系统的各末端检测点线路在平面图是否有编码,与系统图中相应接入点编码是否相一致,编码是否存在重码、错码、漏码·楼宇自控系统的接地是否符合要求,工作接地、保护接地的接地点是否有预留安装技术要求传感器安装·室内温度传感器的安装:温度传感器至控制器之间的连接符合设计要求,尽量减少因接线而引起的误差;室内温度传感器安装在采暖或空调房间内墙,远离门窗和热源,或可能暴露在阳光的地方;导管开口要密封,以防止由于导管吸风而引起虚假温度测量;在高电磁干扰区域采用屏蔽线传感器导线与电源之间距离应大于150mm;室内温度传感器安装高度1.4m。
楼宇自控方案范文
楼宇自控方案范文楼宇自控方案是指通过应用先进的自动化技术和智能设备,对建筑物进行集中控制和管理的方案。
通过楼宇自控系统,可以实现对建筑物内的照明、空调、安防、能源管理等设备的集中控制和自动化管理,提高建筑物的舒适性、安全性和能源效益,降低运营成本。
一、方案背景目前,随着城市化进程的不断推进,建筑物数量不断增加,传统的手动管理方式已经不能满足对建筑物运行效率和能源消耗的要求。
而楼宇自控技术的应用,可以提升建筑物的自动化程度,减少人为操作,提高运行效率,并且可以实时监测和控制建筑物内各项设备,保障建筑物的安全和舒适。
二、方案内容1.楼宇智能化系统引入智能化系统,可以实现对建筑物内部各项设备的集中控制和管理。
通过建立楼宇自控中心,集中控制建筑物内的照明、空调、排风、供水、消防等设备的运行状态和参数。
并且可以通过智能感知技术实时监测建筑物内的各项数据,如温湿度、CO2浓度等,以及对建筑物内设备的故障进行检测和预警,提高设备的可靠性和安全性。
2.空调系统优化楼宇自控方案中的一个重要方面是对建筑物内的空调系统进行优化。
通过智能化控制,可以实现对空调系统的运行状态进行监测和控制,调整温度、湿度和风速等参数来满足不同的使用需求。
同时,可以通过智能感知技术实时检测和控制建筑物内的温湿度,实现自动化的节能调控,提高空调系统的效能和节能效果。
3.照明系统管理楼宇自控方案中的另一个重要方面是对建筑物内的照明系统进行管理。
通过智能化控制,可以实现对照明系统的运行状态进行监测和控制,根据不同的时间、区域和光照强度等因素来自动调节灯光亮度和色温,实现智能照明的效果。
同时,可以通过智能感知技术实时检测建筑物内的光照强度和人员流动情况,实现自动化的灯光调控,提高照明系统的效能和节能效果。
4.安防系统增强楼宇自控方案还可以增强建筑物的安全性。
通过智能化控制,可以实现对建筑物内的安防系统进行集中监控和管理,如视频监控、门禁控制、报警系统等。
楼宇自动化控制系统技术方案
楼宇自动化操纵系统技术方案一、总体介绍区检综合楼建筑面积20000平方米,楼高20层,地下1层,整栋大楼里分布着冷水机、电梯、上下压变配电柜、大量的空调风柜、照明配电柜、给排水泵等机电设备,设计定位为智能综合大楼,拟将该大楼建设成为具有国际高水准的智能化大厦,以提高大楼的附加值,展示区检新形象,进而提供一个高效、舒适、节能、经济的办公环境。
这种情况下,分析业主的实际需求,有针对性的进行设计,就显得尤为重要二、需求分析依据招标文件JCA2001-009Y的招标工程要求,并结合本地建筑智能化现状,区检综合楼是屹今为止整个省所有建筑物当中智能化程度要求最高的。
因此,在智能化系统的设计上,如何将各子系统的设计完美结合,这是业主体贴的也是我们设计的侧重点,后面的章节将对此有具体的论述。
区检综合楼的机电设备数量庞大,为了将这些设备有机的治理起来,提高设备的运行效率,减低设备的运行本钞票,一方面通过楼宇设备自动操纵系统集中监视和操纵,另一方面江森公司作为世界最大的机电运营维护商,借鉴国外多年机电设备运营治理经验,首次将楼宇综合治理系统的概念和可行性方案提提供区检综合楼,使本方案不仅满足区检综合楼现在的需求,更加对以后机电设备运行和维护的高效率,提供了解决方案,提高楼宇设备治理水平,这是目前业主体贴的也是我们设计所侧重的。
区检察院作为一个国家的重要部门,天天都要处理许多的事务,工作人员的工作繁忙,这便要求一个极为舒适宽松的办公环境,以提高办公效率。
为此,我们在在对区检综合楼楼宇自控系统的设计时,将提高舒适性和高效率摆在一个特殊重要的位置上,运用高科技手段,将环境参数调整到对人最舒适的数值,充分表达科技以人为本的真谛。
依据区检综合楼楼宇自控系统的设计要求〔招标书JCA2001-009Y〕、相关专业的国家标准及业主提供的相关图纸进行工程设计,设计将会参照所提供之技术讲明,并以品质标准进行楼宇中治理系统的设计。
本系统工程监控范围包括以下局部:三、系统选型摘要为了使区检综合楼成为新世纪的智能建筑,一个高素养的楼宇自控系统是不可缺少的,我们设计选用美国江森自控的M5系统,该楼宇自控系统包括中心操作站、网络操纵器(NCU)及直截了当数字操纵器〔DDC〕,分不分布在大楼治理中心,楼层设备箱等地点。
楼宇自控系统技术方案
楼宇自控系统技术方案楼宇自控系统是一种先进的建筑自动化技术,旨在通过自动化和智能化控制系统来管理和监控整个楼宇内部的各种设施,如照明、暖通空调、电力、安防等,以提高效率、降低能耗、保障人员安全和舒适性。
以下为一些技术方案:1.控制系统架构楼宇自控系统的应用需求较高,其主要架构应包含客户端、服务端、系统接口和数据库。
客户端通过显示器对系统进行人机交互,服务端作为控制中心,通过各种传感器和执行器来控制和监控系统,系统接口用于与其他系统的数据交换,数据库用于存储和处理相关数据。
2.传感器和执行器传感器和执行器是楼宇自控系统的关键部件。
其目的在于将现场数据收集和控制信号传输到系统中。
传感器包括温度传感器、湿度传感器、光照度传感器、二氧化碳传感器等,执行器则包括调光器、控制器、阀门等。
3.智能控制算法楼宇自控系统需要采用智能控制算法,以满足不同控制目标的需求。
例如,需要根据时间、人员、气候等因素来控制照明、暖通、电力等设施的开启和关闭。
同时,系统还应支持个性化设置,允许用户根据需求自由设置控制规则。
4.平台适配性楼宇自控系统应具有较高的平台适配性,兼容不同的硬件和软件平台。
用户可以选择不同的设备来使用该系统,这包括PC、智能手机和平板电脑等。
同时,系统还应能够与其他建筑自动化系统兼容,以实现数据集成和协同操作。
5.网络通信能力楼宇自控系统必须具有良好的网络通信能力,以实现远程监控和控制。
用户可以通过手机或电脑等设备实现远程控制和监测,方便企业或个人进行管理。
系统应该支持TCP/IP、HTTP、HTTPS等常用协议。
6.安全性能对于自控系统来说,安全性也是非常重要的。
系统应该提供安全认证机制,以确保只有授权人员才能访问系统。
同时,系统还应该具有防御黑客攻击的能力,防止病毒和木马等恶意软件入侵。
系统数据应该进行密钥加密保护,确保数据的机密性、完整性和可用性。
总结:楼宇自控系统是一个极具实用性的实用技术,能够为企事业单位提高管理效率并降低成本。
楼宇自控系统施工方案(3篇)
第1篇一、项目概述本项目为XX大厦楼宇自控系统施工项目,位于我国XX市XX区XX路XX号。
大厦占地面积约20000平方米,建筑高度约100米,共30层,其中地上28层,地下2层。
本项目楼宇自控系统主要包括建筑设备监控、能源管理、安全防范、信息管理等子系统。
二、施工准备1. 组织准备- 成立项目组,明确各成员职责,确保施工过程中责任到人。
- 对施工人员进行技术培训,确保其熟悉楼宇自控系统的工作原理和操作方法。
2. 技术准备- 深入了解大厦建筑结构和设备情况,编制详细的施工方案。
- 购置必要的施工设备和工具,如电线、电缆、传感器、控制器等。
3. 物资准备- 根据施工方案,列出所需材料清单,确保材料质量符合国家标准。
- 对材料进行验收,确保材料合格。
三、施工流程1. 现场勘查- 对大厦进行现场勘查,了解建筑结构、设备布局和安装环境。
- 根据勘查结果,对施工方案进行调整。
2. 设备安装- 根据施工方案,进行设备安装,包括传感器、控制器、执行器等。
- 确保设备安装牢固、准确,连接线路规范。
3. 线路敷设- 按照设计图纸,进行线路敷设,包括电源线、信号线、通信线等。
- 线路敷设要符合国家标准,确保安全可靠。
4. 系统调试- 对安装完成的设备进行调试,确保系统运行正常。
- 对系统进行功能测试,确保各项功能符合设计要求。
5. 系统联调- 将各个子系统进行联调,确保系统之间协调工作。
- 对系统进行整体测试,确保系统稳定可靠。
6. 系统验收- 按照国家标准和设计要求,对系统进行验收。
- 验收合格后,交付使用。
四、施工技术要求1. 设备安装- 设备安装位置要准确,确保设备正常运行。
- 设备安装牢固,防止因振动、位移等原因导致设备损坏。
2. 线路敷设- 线路敷设要符合国家标准,确保安全可靠。
- 线路连接要牢固,防止因松动等原因导致线路损坏。
3. 系统调试- 系统调试要全面,确保各项功能符合设计要求。
- 系统调试过程中,要注意观察设备运行状态,及时发现问题并解决。
酒店楼宇自控系统方案
酒店楼宇自控系统方案引言随着科技的发展,酒店业面临越来越多的挑战,包括如何提高服务质量、改善能源效率和降低运营成本等。
在此背景下,酒店楼宇自控系统成为了一种解决方案,它可以实现对酒店各种设备和系统的智能集成和控制,以提供更好的用户体验和更高的运营效率。
本文将介绍酒店楼宇自控系统的方案。
方案概述酒店楼宇自控系统是一种基于物联网技术的智能化管理系统,通过集成多个设备和系统,实现对酒店内的灯光、空调、电梯、门禁等设备的远程监控和控制。
通过对各个设备的智能控制,酒店可以实现节能减排、提高安全性和服务质量等目标。
系统架构酒店楼宇自控系统的架构分为以下几个组成部分:1.传感器和执行器:通过安装在酒店各个区域的传感器和执行器,实现对设备和系统的感知和控制。
比如,温度传感器可以实时监测房间的温度,并根据设定的温度范围控制空调系统的运行。
2.网络通信:通过网络通信技术,将传感器和执行器连接到云平台或中央控制系统。
这样可以实现远程监控和控制,方便酒店管理员对设备和系统进行管理。
3.云平台:云平台是酒店楼宇自控系统的核心,它负责接收传感器和执行器的数据,并进行分析和处理。
同时,云平台还可以提供数据存储和分析功能,帮助酒店管理员进行运营决策和优化。
4.中央控制系统:中央控制系统是酒店楼宇自控系统的用户界面,通过它可以实现对各个设备和系统的监控和控制。
酒店管理员可以通过中央控制系统查看设备运行状态、调整设备参数等。
功能特点酒店楼宇自控系统具有以下功能特点:1.自动化控制:酒店楼宇自控系统可以实现对设备和系统的自动化控制。
比如,在没客人入住的时候,系统可以根据设定的规则自动关闭空调和灯光,从而节约能源。
2.能耗监测和优化:酒店楼宇自控系统可以实时监测各个设备的能耗情况,并提供优化方案,帮助酒店减少能源消耗和运营成本。
3.安全监控:酒店楼宇自控系统可以实现对酒店内的安全设备的集成和控制。
比如,当有人非法闯入时,系统可以自动报警并通知相关人员。
楼宇自控系统(BA)应用解决方案
☆ 集成各种子系统
楼宇的各种子系统:楼宇自控系统、火灾报警系统、综合保安管理系统、广播 系统、智能照明系统,集成成为一个“有机”的统一系统,其接口界面标准化、规范 化,完成各子系统的信息交换和通讯协议转换,实现五个方面的功能集成:所有子 系统信息的集成和综合管理,对所有子系统的集中监视和控制,全局事件的管理, 流程自动化管理,最终实现集中监视控制与综合管理的功能。
再次,空调与冷热源是建筑物中能耗最大的一项,中央空调系统 占整个 大楼的耗能 50%以上,而大楼装有楼宇自控系统以后,可节省 能耗 25%,节省 人力约 50%。冷热源采用楼宇自控系统后,同常规控 制相比,可以大大提高控制 精度。从统计数据来看,一般来说,可以 节省 20%~30%左右的冷量,夏季温度 比设定值每升 1℃约可节省 10% 的冷量。这些对于减少运行费用与节约能源均有 重要意义。且出现故 障,能够及时知道何时何地出现何种故障,使事故消除在萌 芽状态。
☆ 模块化
系统要严格按照模块化结构方式开发,以满足通用性和可替换性。采用模 块化设计,分布实施的ቤተ መጻሕፍቲ ባይዱ略。
☆ 互连性
这种互连性体现在传输媒体和结构化综合布线系统;各种网络设备的配 置;各种网络互连设备的配置;以及各类机电设备、话音/视频设备和各类控制设 备等的配置。子网之间互连采用 TCP/IP 等标准化协议。
高新信息技术和计算机网络技术的高速发展,对建筑物的结构、 系统、 服务及管理最优*化组合的要求越来越高,要求建筑物提供一个 合理、高效、节能 和舒适的工作环境。节能是一项基本国策,也是建 筑电气设计全面技术经济分析 的重要组成部分。楼宇自控系统正是顺应了这一潮流而诞生的。
1.3 系统设计目标 1.3.1 实现目标 机电设备运行状态监控: 监控整个建筑物内的空调、照明、给排水、送排风、冷热源、变配电、电 梯等系统设备的各项重要运行参数以及故障报警的数据, ① 空调系统监控内容
楼宇自动化系统设计方案
楼宇自动化系统设计方案楼宇自动化系统设计方案一、引言楼宇自动化系统(Building Automation System,简称BAS)是指利用先进的计算机技术和通信技术对楼宇的设备、系统和网络进行集中管理、监控和控制的系统。
它可以实现楼宇设施的高效运行、节能降耗、安全防范等目标,提高楼宇的管理水平和人居环境质量。
本文将介绍一个楼宇自动化系统的设计方案,包括系统结构、功能模块、技术选型等内容。
二、系统结构楼宇自动化系统的整体结构一般分为三层:传感器与执行器层、控制层和管理层。
具体结构如下:1. 传感器与执行器层:该层通过各种传感器和执行器采集楼宇内各种设备和环境参数的信息,包括温度、湿度、照明状态、空调状态、门窗开关状态等。
同时,通过执行器控制设备的开关、调节和执行操作。
2. 控制层:该层通过PLC(可编程逻辑控制器)或DCS(分散控制系统)等设备,对传感器层采集到的数据进行处理和逻辑控制。
通过设定的算法和规则,实现楼宇设备的自动控制和调节。
3. 管理层:该层通过服务器和人机界面,实现对整个楼宇自动化系统的管理、监控和控制。
管理员可以通过从远程访问系统,实时查看楼宇设备状态和运行情况,进行参数设置和系统调整。
三、功能模块楼宇自动化系统的功能模块一般包括以下几个方面:1. 照明控制:通过照明传感器和调光设备,根据楼宇内的光线强度和使用需求,智能调节照明设备的亮度和开关状态,实现照明的节能管理。
2. 空调控制:通过温湿度传感器和空调设备,根据楼宇内的温湿度变化和使用需求,智能调节空调设备的运行模式和参数,实现空调的节能控制和舒适性管理。
3. 电梯控制:通过电梯传感器和电梯设备,监测电梯的使用情况和负载,并根据乘客需求和楼层分布,智能控制电梯的运行状态、优化电梯调度,提高运行效率和节能指标。
4. 安防监控:通过视频监控设备、门禁系统和报警设备,实时监测楼宇内的安全状况,及时发现异常情况并采取相应的措施,保障楼宇的人身和财产安全。
楼宇自控系统设计方案
楼宇自控系统1 概述某医院将机电设备管理、智能灯光和能源管理三部分内容做在一个管理平台上,实现共平台的统一管理;楼控系统主要包含:楼宇自控系统和能源管理的水电空调气的采集系统二部分内容。
在本方案中,设计的二个子系统均通过设备网进行数据通讯,并共享一个管理平台,实现共平台上的楼宇自控和能源管理二个管理模块。
某医院内部有大量机电设备,如由空调通风监控、冷热源监控、环境监测、给/排水监控、公共区域照明、公共区域风机盘管、VRV空调系统、电梯监测、变配电监测、计量管理(自动抄表)、医疗气体监测11个子系统组成,这些子系统设备多而分散。
其中,多:即数量多,被控、监视、测量的对象多,多达上千点以上;散:即这些设备分布在各楼层和各个角落。
如果采用分散管理,就地控制、监视和测量是难以想象的。
采用楼宇自控系统,就可以合理利用设备,节约能源,节省人力,确保设备的安全运行,加强楼内机电设备的现代化管理,并创造安全、舒适与便利的工作环境,提高经济效益。
本工程的楼宇自控系统主要考虑对上述大楼的机电设备进行监控和管理,所有机电设备由中央控制站统一管理,协调运作。
某医院楼宇自控系统是将医院内的楼宇自控系统(空调通风监控、冷热源监控、环境监测、给/排水监控、公共区域照明、公共区域风机盘管、VRV空调系统、电梯监测、变配电监测等)的运行状态进行分散控制、集中监测和管理,从而提供一个舒适、安全的工作和生活环境,通过优化控制提高管理水平,从而达到节约能源和人工成本,并能方便的实现管理人员管理的优化。
针对不同的室外环境,我们相应调节空调系统的阀门,水泵等设备,使其工作稳定,最大限度的保证人体舒适性,最高程度的节省能源。
另外,楼宇自控系统的一个重要的作用是它可以采集很多的数据,如水、电、风系统的运行数据、对气体(氧气等)的监测、冷热量计量及各种传感器所采集的数据,这些数据对于管理者分析设备运行状况、维修时间、能源状况、费用计算都提供了依据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
楼宇空调自动控制(自控)系统方案慧聪网一、设计范围本设计方案为天津市陈塘科技文化园服务中心综合楼空调自动控制系统,完成4层楼14个空调机房18套空调机组和新风机组的自控。
根据甲方提供的建筑平面图、空调自控系统图及甲方要求,我公司凭借多年在中央空调自控领域的丰富经验为此自控系统进行优化设计,采用西门子可编程逻辑控制器PLC配以各类温、湿度传感器,压差传感器对综合楼共四层空调机房18套空调机组和新风机组进行数据检测和自动控制。
对空调机组、新风机组风机启停进行远程控制及状态显示、故障报警,温度湿度等参数显示、超限报警,风过滤器堵塞报警控制,保证综合楼各房间恒温、恒湿控制要求及设备安全运行和远程控制。
二、设计标准DJ/TJ08-601-2001智能建筑施工及验收规范JGJ/T116-92建筑电气设计技术规范GBJ19-87采暖通风与空气调节设计规范GBJ936-86工业自动化仪表工程施工及验收标准国家、地方的相关规范标准货物的制造及验收标准三、设计概述本次综合楼中央空调自动控制系统的设计以严格满足综合楼各房间及展厅、餐厅、厨房、办公区等区域空气质量要求、温湿度要求,系统稳定性、操作性为首要目标,兼顾系统的经济性能为前提,性价比最优为原则进行优化设计。
根据中央空调及楼宇自控的要求,保证整个综合楼各房间的温湿度必须控制在规定范围内,因此需要在选定的房间内安装高精度的温、湿度传感器,压差传感器,电动调节阀,风阀执行器等,对表冷阀、加湿阀、新风执行器进行自动控制,同时将检测信号上传至中央控制室,以便于业主进行综合管理。
因此我公司为本工程设置了中央空调集中控制系统,本控制系统采用SIEMENSS7-200系列可编程逻辑控制器(PLC)安装在各层空调机房的空调机组和新风机组上作为集中控制器,高性能的TD-200文本显示器作为系统工作站的人机对话界面,进行机组运行参数的显示,故障报警,控制参数设定等。
同时将所有空调机房的可变程序控制器通过MODBusRS-485总线方式连接,将各空调机组和新风机组的参数上传至中央控制室,在控制室集中显示各机房空调机组和新风机组的工艺流程画面、运行参数动态显示和控制数据的设定或修改,对报警数据、机组运行数据存档,实现历史数据的查询和各类日报表、月报表的打印,最终实现中央空调控制的自动化和管理办公的无纸化。
四、初步设计方案1、自控系统网络框图(见附图)2、中央空调自控系统遵循原则⌝控制系统划分为若干子系统,子系统设计应遵守“独立完整”的原则,以保持通讯数据高速公路上信息交换量最少。
⌝组态的控制系统,在控制系统局部故障时,不能引起系统的危急状态,并将这一影响降到最小。
⌝控制的基本原则是必须直接并快速地响应代表负荷或能量指令的前馈信号,并通过闭环反馈控制和其它先进控制策略,对该信号进行静态精度和动态补偿的调整。
⌝控制系统任何部分运行方式的切换,不论是人为的还是由联锁系统自动的,均平滑进行,不引起过程变量的扰动,并且不需要运行人员的修正。
⌝控制系统的输出信号为脉冲量或4~20mA连续信号,并有上下限设定,以保证控制系统故障时系统设备安全。
⌝控制系统的手操备用,包括人机界面上的软手操和直接作用到控制装置的硬手操两种,系统的“自动”和“手动”之间的切换,必须是双向无扰的。
硬手操能在任何的控制系统故障情况下,均能对现场设备实行控制。
⌝控制系统能监视设定值与被控变量之间的偏差,当偏差超过预定范围时,系统将与之对应的M/A站切换至手动并报警。
⌝手动切换一个或一个以上的驱动装置投入自动时,为不产生过程扰动,而保持合适的关系,使处于自动状态的驱动装置等量并反向作用。
3、系统参数及被控设备、功能详解①现场采样参数包括:综合楼共四层14个机房18套空调机组和新风内所有回风温、湿度,初效段、中效段过滤网压差报警开关,风机运行状态,风机故障报警等。
对于吊装式新风机组只采集送风温度,初效段、中效段过滤网压差报警开关,风机运行状态以及风机故障等。
②现场控制参数包括:在现场人机界面(文本显示器)上可以对空调机组和新风机组控制参数的设定:回风温度、回风湿度等参数的设定,以便对表冷阀、加湿阀进行自动控制。
防冻开关保护参数的设定可以直接在开关上设定、调节。
③报警指示、联锁保护系统包括:回风温湿度超限报警,初效段、中效段过滤网压差报警,防冻开关报警、机组风机故障报警等。
联锁停机:防冻开关报警新风阀自动关闭同时联锁停机;风机故障告警时联锁停机,联锁停机均有语音报警提示。
⑤微机自控系统功能包括:表冷阀自动控制、加湿阀自动控制、新风阀自动控制、控制原理及控制内容:1、恒温控制:在回风风道上安装温湿度传感器,将检测信号引至可编程控制器,控制器通过编写在CPU内的程序自动执行,根据回风温度自动调节表冷阀开度,调节表冷器的水量控制室温,保证了系统的水力平衡,整个控制过程形成了闭环控制。
原理说明:将房间温度控制在合理的范围内是中央空调自控的基本要求,首先将回风风道温度信号通过温度变送器转换为标准的4~20mA信号传输到PLC控制站的AI模块内进行采样和数字滤波,与PLC内部存储的设定值(此设定值可由工作人员根据外部气温的变化和房间适宜温度随时调整)进行偏差PID运算,根据运算结果PLC的AO模块给出4~20mA控制信号到表冷电动调节阀,从而调节表冷器的水量控制室温,且保证系统的水力平衡。
2、恒湿控制:PLC控制器通过检测回风湿度,与相对湿度设定值相比较,经控制器作PID 运算输出一个模拟量进行控制加湿器、模拟量调节加湿阀达到湿度设定要求。
如相对湿度高于设定相对湿度,系统先关闭加湿,若加湿全关,则逐渐加大制冷系统,同时调整加热量使温度恒定,最终确保温度和湿度达到要求。
如相对湿度低于设定相对湿度,系统先逐渐关闭制冷系统,若温度升高则逐渐调小加热量,至到热量已调至最小,则终止制冷系统开启过程,并打开加湿,最终确保温度和湿度达到要求。
新风与风机连锁,机组关闭后,新风阀自动关闭,防止外界污浊空气进入办公区及展厅内。
其控制原理可参考恒温控制系统。
3、新风风门执行控制:当系统刚开机后,PLC控制自动给出一个3V的电压信号,将风门执行器开启到30%,在空调运行过程中,根据需要将自动调整风门的开启角度。
为了保护设备的安全运行,在冬季设备停用时或防冻开关发出报警信号后,系统自动将新风口风门关闭,保护了空调机组和新风机组。
4、远程启停控制:当控制系统手\自动档出于自动控制时,值班人员可在中央控制室监控系统上用鼠标对个空调机组和新风机组进行远程启动,遇有报警或运行条件不具备时,设备不能启动。
通过以上监控措施:该控制系统需具有强大的控制功能和系统特点:●极高的可靠性●在图形化操作界面上完成一切操作,便捷的操作●丰富的内置集成功能●提供能够自动调节的严格恒温、恒湿环境●预防突发事故发生,保护设备的投资●将整个综合楼的所有空调机组和新风机组设备统一管理五、上位机系统功能简介1、自控系统的特点:λ逼真的工艺流程画面,画面图标与实物相似,流程图通俗易懂λ极高的可靠性和稳定性,高速度的通讯速率进行数据交换λ功能强大的SQLServer数据库对运行数据进行归档,方便查询λ在全中文操作界面上完成一切操作、设置和报表打印等λ检测系统免维护,一次调试成功后,不需要专业人员定期维护λ极高的保护功能,如有故障及时报警,对报警值进行存档2、系统集成后将达到功能:2.1动态图形显示功能在上位监控管理计算机彩色显示器上逼真、动态实时显示各空调机房空调机组和新风机组工艺流程、各主要设备的运行状态等数据,送、回风风道上的风流方向等,遇到报警信号时,自动弹出报警提示框,同时故障设备处图标闪烁,直至故障消除。
使空调管理人员随时掌握当前动力设备的运行情况,画面应包括但不限于:υ空调机组和新风机组动态工艺流程图。
υ空调机组和新风机组参数设定画面。
υ空调机组和新风机组回风温湿度等参数动态实时显示。
υ空调机组和新风机组运行参数实时、历史变化趋势曲线。
υ空调机组和新风机组报警信息查询。
4.2.2实时数据显示功能列表式数据显示画面,直观地查看18套空调机组和新风机组各部位运行参数。
回风温湿度,初效、中效过滤网压差开关状态、风机运行状态等,数据全部用中文定义,一目了然浏览各部分的运行参数。
4.2.3报表的产生和打印制作出多样化的打印形式,根据需要,可打印出日报表,班报表、月报表、季度报表等,并可对报表打印设置为人工打印和定时打印,不仅提高了管理工作效率而且实现了办公的自动化和无纸化。
可以保存一年的历史数据,历史数据的永久保存是存在电脑硬盘中。
打印功能包括:⌝数据的班、日、月、年的定时报表打印。
⌝操作人员的随机打印⌝全部监视器上可以看到的硬拷贝输出打印⌝打印格式包括:⌝时间(年、月、日、时、分、秒)⌝数据或时间名称⌝单位(瞬时值、平均值、最大/最小值、累积值)4.2.4报警功能报警内容包括:回风温湿度超限报警,过滤网压差报警,防冻开关报警,风机故障报警等。
对报警信息进行保存记录,在遇到故障报警、联锁停机时,系统将会记录故障发生的时间、设备号、故障原因以及故障确认时间等,可方便快捷的查询和排除系统故障。
计算机系统内配置了故障处理专家系统软件,通过预装的专家系统得到故障原因的详细资料及排除故障的对策。
在任何时间和任何显示上工作站都能在画面顶部或底部显示出总的报警信息,操作人员点击该报警信息可以快速地调出与本报警有关的画面。
该画面可以显示出故障原因的详细资料及排除故障的对策。
所有的报警信号都以时间先后排队,该队可以在画面上显示并存储在内存内。
在任何时间该队列在画面上保留最新的128个报警点。
这个历史报警队列在画面采用颜色的闪烁和颜色的变化来表示一个报警信号是否被确认或是否被已恢复到正常的工况。
在产生任何一个报警信号时,工作站便产生一个报警声音以提醒操作人员、报警内容登录在数据库事件登录清单内,如果需要可以按要求调用并按命令分别打印。
对于长期不正常事件(由监视人员对输入信号确认后)可禁止报警和登录。
对于未确认的报警状态,持续发出声光报警,直至值班人员确认。
4.2.5趋势图功能可以用棒状图或曲线图显示历史趋势或当前趋势,一副画面上可以在一个时间轴上用不同颜色显示1至4条不同的实时或历史曲线。
模拟量的变化同时也是显示在图形的坐标上。
当前趋势显示可根据实时原理不断校正。
操作规程员可以很方便地调整趋势显示的时间坐标或输入范围。
每个测量变量趋势图是以时间为背景的,操作人员能够输入开始时间和结束时间。
随着时间跨度的变化,采样频率也相应变化。
为加快数据检索时间,趋势曲线多所用的数据应存放在数据库中一个特定的缓冲区内,并以新弃旧。
4.2.6安全登录和密码保护设计中把操作级别分为:系统管理员级和操作员级,对各个级别的操作都设置密码,防止非法的操作,确保系统设备安全有序运行。