薄膜太阳能电池知识大全
《薄膜太阳电池》课件
在光照下,光子被吸收 并传递给电子,电子和 空穴分别向导带和价带 跃迁,形成光生电流。 随后,电子和空穴分别 被传输到金属电极并收 集起来,形成输出电流 。
薄膜太阳电池的结构和 工作流程决定了其能量 转换效率、开路电压和 短路电流等性能参数。
03 薄膜太阳电池的 材料
硅基薄膜太阳电池
总结词
高效稳定,技术成熟
THANKS
感谢观看
随着移动设备的普及和能源需求的增长,移动能源系 统的发展前景广阔。
未来发展前景与挑战
随着技术的不断进步和应用领域的拓展,薄膜太阳电池的发展前景广阔。
未来,薄膜太阳电池将更加注重提高光电转换效率、降低成本、优化组件制造工艺等方面的 发展。
同时,薄膜太阳电池也面临着市场竞争力、政策支持、并网技术等方面的挑战,需要不断加 强技术创新和市场推广。
在薄膜太阳电池中,光子首先被 吸收并传递给电子,电子从价带
跃迁到导带,形成光生电流。
光电效应是薄膜太阳电池的基本 工作原理之一,它决定了电池的
能量转换效率。
光伏效应
光伏效应是指光生电压或电流的现象 ,即当光照射在半导体材料上时,半 导体的导电性能发生变化,产生电压 或电流。
光伏效应是薄膜太阳电池的基本工作 原理之一,它决定了电池的开路电压 。
真空沉积技术包括真空蒸镀、 电子束蒸镀和离子束溅射等。
真空沉积技术具有较高的沉积 速率和较好的大面积成膜质量 ,适用于制备高性能的薄膜太 阳电池。
化学气相沉积技术
化学气相沉积技术是通过化学反应将气态物质转化为固态薄膜的一种技术。
化学气相沉积技术包括常压化学气相沉积、等离子体增强化学气相沉积和金属有机 化学气相沉积等。
《薄膜太阳电池》PPT课件
薄膜太阳能电池知识培训
扩散 N P
内建电场形成 N P N
漂移 P N
平衡态 P
电子
空穴
平衡时,产生的空穴-电子对和复合的空穴-电子对数目相同。
热平衡下的PN结
在内建电场的作用下,载流
子作漂移运动。相同载流子 漂移与扩散方向相反。在无
Ec EF Ev
电子漂移 电子扩散
•
绝缘体、导体和半导体能带示意图
•
材料 单晶硅 非晶硅 CuInSe2
禁带宽度/eV 1.12 1.75 1.05
材料 CdTe GaAs InP
禁带宽度/eV 1.45 1.42 1.34
重要太阳能半导体材料的禁带宽度
•
半导体分类
• 本征半导体 没有掺入杂质的半导体材料,电子和空穴的浓度相等。 • N型半导体 在半导体材料中掺入了某种杂质(P),使得电子浓度大于空穴浓度,称其 为N型半导体,此时电子称为多数载流子,空穴称为少数载流子。相应的 杂质被称为N型掺杂剂(施主杂质) • P型半导体 在超高纯的半导体材料中掺入了某种杂质(B),使得空穴浓度大于电子浓 度,称其为P型半导体,此时空穴称为多数载流子,电子称为少数载流子 。相应杂质称为P型掺杂剂(受主杂质)
要提高光生电流就要减小禁带宽度,激发更多 电子,但是问题是高能光子激发电子后剩余能量
转换为热能,对电池性能产生负面影响。
要提高开路电压就要提高光生电流和反响饱和 电流的比值,增大禁带宽度可以减小反向饱和电 流,但是同时也减少了光生电流。
太阳能电池等效电路
实际上,p-n结太阳能电池存在着Rs和Rsh的影 响。其中, Rs是由材料体电阻、薄层电阻、电极 接触电阻及电极本身传导电流的电阻所构成的总 串联电阻。Rsh是在p-n结形成的不完全的部分所 导致的漏电阻及电池边缘的漏电阻,称为旁路电 阻或漏电电阻。
薄膜太阳能电池介绍
薄膜太阳能电池介绍
薄膜太阳能电池是一种新型的光伏器件,其核心原材料包括硅材料、非晶硅材料、CIGS材料和CdTe材料等。
其中,非晶硅材料是太阳能电池的核心原材料之一,具有降低制造成本、易于实现大面积和大批量连续生产等优点,是降低成本和提高光子循环效率的理想材料。
薄膜太阳能电池除了具有平面结构外,还具有可挠性和可制成非平面构造等特性,使其在应用范围上非常广泛,可以与建筑物结合或变成建筑物的一部分。
薄膜太阳能电池的制造方法包括电子回旋共振法、光化学气相沉积法、直流辉光放电法、射频辉光放电法、溅射法和热丝法等。
其中,射频辉光放电法由于其低温过程、易于实现大面积和大批量连续生产,已成为国际公认的成熟技术。
薄膜太阳能电池在光伏建筑一体化、屋顶并网发电系统以及光伏电站等领域有着广泛的应用前景。
此外,非晶硅薄膜太阳电池在高气温条件下衰减微弱,适合高温、荒漠地区建设电站。
同时,薄膜太阳能电池的原材料来源广泛、生产成本低、便于大规模生产,具有广阔的市场前景。
薄膜太阳能电池的原理及应用前景
薄膜太阳能电池的原理及应用前景随着能源危机和环境污染问题的日益严重,太阳能逐渐成为了人们研究和利用的重视方向。
薄膜太阳能电池作为一种新型的太阳能利用方式,具有光电转换效率高、制造成本低等优点,正在逐渐成为太阳能利用的新方向。
本文将阐述薄膜太阳能电池的原理及应用前景。
一、薄膜太阳能电池的原理薄膜太阳能电池是一种光电转换器件,利用光电效应将太阳能转化为电能。
所谓光电效应是指在光的作用下,物质中的自由电子被激发成为带电粒子并聚集成电流,从而实现能量转换。
薄膜太阳能电池的结构比较简单,由玻璃基板、透明导电氧化物层、薄膜光电转换层、电子传输层和金属电极层等组成。
当太阳光照射到太阳能电池的表面时,光子会被薄膜材料吸收并激发出电子。
激发出的电子经由电子传输层传输到金属电极层,从而形成电流。
因此,薄膜太阳能电池的实际功率输出与光照强度、薄膜材料的吸收特性、电阻和电池组件的质量等因素有关。
二、薄膜太阳能电池的应用前景由于薄膜太阳能电池具有制造成本低、重量轻、形状可变等特点,因此被广泛应用于各种领域。
下面将分别从三个方面介绍薄膜太阳能电池的应用前景。
1.城市能源利用随着城市化进程的加速,城市能源问题越来越受到关注。
薄膜太阳能电池由于体积小、适应广泛,可以被应用于城市的各种场所,如屋顶、墙壁、路灯、广告牌等。
这些场所利用太阳能发电,不仅可以解决能源储备问题,还可以减轻城市能源负担,缓解环境污染。
2.无人机和航天器用电无人机和航天器的研制离不开高效的能源供应系统,而薄膜太阳能电池正可以应用于这方面。
相较于传统的硅太阳能电池,薄膜太阳能电池具有轻薄、柔性等特点,可以更好地适应于各种复杂环境。
因此,在无人机和卫星技术的发展中,薄膜太阳能电池的应用将变得更加普遍。
3.便携式电源的开发随着科技发展,人们的生活方式和需求也在慢慢改变。
今天,各种便携式电子产品在人们的日常生活中扮演了重要角色,如手机、平板电脑、手电筒等。
而这些设备的发展也离不开高效的电池供应系统。
太阳能光伏发电应用技术知识4薄膜太阳电池
电极制备
在薄膜表面制备金属电极,以便收集和导 出光生电流。
后处理
对沉积好的薄膜进行退火、掺杂等后处理 工艺,以改善其光电性能。
关键设备与技术参数
真空系统
为薄膜沉积提供所需的真空环 境。
电极制备设备
用于在薄膜表面制备金属电极 的设备。
薄膜沉积设备
PVD或CVD设备,用于在基片 上沉积薄膜材料。
温度控制系统
06
总结与展望
本次项目成果回顾
薄膜太阳电池性能提升
01
通过优化材料选择和工艺参数,成功提高了薄膜太阳电池的光
电转换效率。
可靠性增强
02
针对薄膜太阳电池在长期使用过程中可能出现的性能衰减问题,
进行了有效的改进,提高了其稳定性和可靠性。
降低成本
03
通过改进生产流程和采用新型材料,降低了薄膜太阳电池的制
优缺点分析
弱光性能好
在阴天、室内等弱光环境下,薄 膜太阳电池仍能保持较高的发电 效率。
温度系数低
在高温环境下,薄膜太阳电池的 发电效率受温度影响较小。
优缺点分析
转换效率相对较低
与晶体硅太阳电池相比,薄膜太阳电池的转换效率相对较低。
稳定性有待提高
部分薄膜太阳电池在长期使用过程中存在性能衰减的问题,稳定性有待提高。
问题诊断与优化建议
针对测试结果中存在的问题,提出相应的优化措施和 建议,提高电池性能。
04
薄膜太阳电池应用领域及市场前 景
应用领域概述
建筑物集成光伏(BIPV)
便携式设备
薄膜太阳电池可灵活应用于建筑物外墙、 屋顶及窗户等部位,实现光伏发电与建筑 设计的完美结合。
由于其轻质、柔性的特点,薄膜太阳电池 可应用于便携式电子设备、户外装备等领 域,为设备提供持续的电力供应。
薄膜太阳能电池
CdTe薄膜太阳能电池的理论性能参数为开路电压 1.05V,短路电流30.8mA/cm2,填充因子83.7 %,转换效率27%。电池结构稳定、制备工艺简 单、节省原料,容易实现大规模生产,这些优点 使它成为近年来研究的焦点。
CdTe 薄膜太阳能电池由五层结构组成,其中CdTe 和 CdS是CdTe薄膜太阳能电池的主要组成部分。
返回
薄膜太阳能电池的发展态势
可以看出,对于薄膜太阳能产业的研究曾在2011年达到过顶峰,随后开始 衰退,不过从今年开始又慢慢恢复。
非晶硅电池效率最低,但是技术较成熟,目前占据了主要的薄膜电池市场。 CdTe电池由于生产成本低,在工业生产上也得到了很大发展,但由于Cd元素 有毒,对环境有害,所以是其推广的一个主要阻力。铜铟(镓)硒太阳能电池由 于转化效率是薄膜太阳能电池中最高的,而且有带隙可调、抗辐射性能好、生 产过程环保、对元素含量偏离化学计量比容忍度高等优点,在未来的发展潜力 最大。
CIGS太阳能电池的柔性衬底技术
传统的CIGS薄膜电池大多是以玻璃为衬底,然而玻璃衬底 的CIGS薄膜太阳能电池并不能满足某些特殊方面的应用要 求,于是就提出了柔性衬底CIGS电池技术。 柔性衬底可以是不锈钢、钛、钼、铜片等金属,也可以是 聚合物(聚酰亚胺PI)。采用柔性衬底可与卷绕技术相结合, 大规模制备质量轻、可弯曲的电池。美国NREL采用共蒸发 法,创造了不锈钢衬底上小面积电池效率为17.5%:德国 HaIln-Meitner-Institude在钛衬底上共蒸发得到CIGS电池 效率为12.5%;ETH(SWI)采用共蒸发法在聚合物衬底上制 得的CIGS电池效率为12.8%。2011年5月,瑞士联邦材料科 学与技术实验室(EMPA)在PI衬底上制造出转化效率18.7% 的柔性CIGS电池。
clgs薄膜太阳能电池技术要点
clgs薄膜太阳能电池技术要点
一、引言
薄膜太阳能电池,作为一种新型的光伏技术,正逐渐受到全球的关注。
其中,CLGS薄膜太阳能电池以其独特的性能和优势,在光伏领域中占有重要地位。
本文将重点介绍CLGS薄膜太阳能电池的技术要点。
二、技术原理
CLGS薄膜太阳能电池基于光电效应原理,利用特定波长的光照射在薄膜上的光子产生电子-空穴对,然后在电场的作用下,电子和空穴分别向两极移动,产生电流。
其核心技术在于制备高性能的薄膜材料,以及优化薄膜结构以增强光电转换效率。
三、关键技术
1. 薄膜材料:CLGS薄膜太阳能电池主要采用铜、镓、硒等元素作为主要材料,通过精确控制材料的组成和厚度,实现高效的光电转换。
2. 薄膜制备:制备CLGS薄膜的方法有多种,如电沉积、真空蒸镀、化学气相沉积等。
选择合适的制备方法,保证薄膜的均匀性、致密性和稳定性是关键。
3. 表面处理:为了提高光的吸收效率和降低反射损失,需要对薄膜表面进行特殊处理,如纳米纹理化、化学蚀刻等。
4. 集成技术:将制备好的薄膜太阳能电池集成到各种应用场景中,需要考虑到其耐久性、稳定性以及与各种材料的兼容性。
四、技术优势与挑战
CLGS薄膜太阳能电池具有较高的光电转换效率、低制造成本、易于
大规模生产等优势。
然而,其技术挑战也不容忽视,如提高光电转换效率、解决材料短缺问题、降低生产成本等。
五、未来展望
随着科技的进步和研究的深入,我们相信CLGS薄膜太阳能电池的技术会不断优化,其应用领域也将越来越广泛。
未来,CLGS薄膜太阳能电池有望成为光伏产业的主流技术之一,为可再生能源的发展和全球能源结构的转型做出重要贡献。
薄膜太阳能工作原理
薄膜太阳能工作原理
薄膜太阳能是一种利用光电效应将太阳光转化为电能的技术。
其工作原理如下:
1. 光吸收:薄膜太阳能电池通常由多层薄膜组成,其中包括吸收光线的材料层。
当阳光照射到太阳能电池上时,光子被吸收并转化为能量。
2. 光电效应:材料层中的光子被电子吸收后,会激发材料中的电子跃迁到一个高能级。
这个过程称为光电效应。
3. 能级分离:在光电效应之后,电子会在材料中形成能级分离。
电子在高能级会形成富电子区域,而低能级会形成带正电荷的空穴区域。
4. 电子漂移:由于电子和空穴的带电状态,它们会受到电场力的作用而进行漂移。
电子和空穴通过导电材料中的导电带传输。
5. 电流输出:当电子和空穴通过导电材料移动时,它们会产生电流。
这个电流可以被电路连接,供给外部设备使用。
薄膜太阳能的工作原理基于光电效应,当光线被吸收后,电子的跃迁和能级分离会导致电子和空穴的运动和漂移,从而产生电流输出。
这种技术可以有效地将太阳能转化为电能,具有广泛的应用前景。
非晶硅薄膜太阳能电池基础知识大全(百科)
非晶硅太阳电池是以玻璃、 不锈钢及特种塑料为衬底的薄膜太阳电池, 结构如图 1 所示。 为减少串联电阻, 通常用激光器将 TCO 膜、 非晶硅(A-si)膜和铝(Al)电极膜分别切割成 条状, 如图 2 所示。国际上采用的标准条宽约 1cm,称为一个子电池,用内部连接的方式将 各子电池串连起来, 因此集成型电池的输出电流为每个子电池的电流, 总输出电压为各个子 电池的串联电压。在实际应用中,可根据电流、电压的需要选择电池的结构和面积,制成非 晶硅太阳电池。
独立光伏电源系统设计方法
经过光伏工作者们坚持不懈的努力,太阳能电池的生产技术不断得到提高,并且日益 广泛地应用于各个领域。特别是邮电通信方面,由于近年来通信行业的迅猛发展,对通信电 源的要也越来越高, 所以稳定可靠的太阳能电源被广泛使用于通信领域。 而如何根据各地区 太阳能辐射条件, 来设计出既经济而又可靠的光伏电源系统, 这是众多专家学者研究已久的 课题,而且已有许多卓越的研究成果,为我国光伏事业的发展奠定了坚实的基础。笔者在学 习各专家的设计方法时发现, 这些设计仅考虑了蓄电池的自维持时间 (即最长连续阴雨天) , 而没有考虑到亏电后的蓄电池最短恢复时间 (即两组最长连续阴雨天之间的最短间隔天数) 。 这个问题尤其在我国南方地区应引起高度重视, 因为我国南方地区阴雨天既长又多, 而对于 方便适用的独立光伏电源系统, 由于没有应急的其他电源保护备用, 所以应该将此问题纳入 设计中一起考虑。 本文综合以往各设计方法的优点, 结合笔者多年来实际从事光伏电源系统 设计工作的经验, 引入两组最长连续阴雨天之间的最短间隔天数作为设计的依据之一, 并综 合考虑了各种影响太阳能辐射条件的因素,提出了太阳能电池、蓄电池容量的计算公式,及 相关设计方法。 影响设计的诸多因素 太阳照在地面太阳能电池方阵上的辐射光的光谱、 光强受到大气层厚度 (即大气质量) 、 地理位置、所在地的气候和气象、地形地物等的影响,其能量在一日、一月和一年内都有很 大的变化,甚至各年之间的每年总辐射量也有较大的差别。 太阳能电池方阵的光电转换效率, 受到电池本身的温度、 太阳光强和蓄电池电压浮动的 影响,而这三者在一天内都会发生变化,所以太阳能电池方阵的光电转换效率也是变量。 蓄电池组也是工作在浮充电状态下的,其电压随方阵发电量和负载用电量的变化而变 化。蓄电池提供的能量还受环境温度的影响。 太阳能电池充放电控制器由电子元器件制造而成, 它本身也需要耗能, 而使用的元器件 的性能、质量等也关系到耗能的大小,从而影响到充电的效率等。 负载的用电情况, 也视用途而定, 如通信中继站、 无人气象站等, 有固定的设备耗电量。 而有些设备如灯塔、航标灯、民用照明及生活用电等设备,用电量是经常有变化的。 因此,太阳能电源系统的设计,需要考虑的因素多而复杂。特点是:所用的数据大多为 以前统计的数据,各统计数据的测量以及数据的选择是重要的。 设计者的任务是:在太阳能电池方阵所处的环境条件下(即现场的地理位置、太阳辐射 能、气候、气象、地形和地物等),设计的太阳能电池方阵及蓄电池电源系统既要讲究经济 效益,又要保证系统的高可靠性。 某特定地点的太阳辐射能量数据, 以气象台提供的资料为依据, 供设计太阳能电池方阵 用。这些气象数据需取积累几年甚至几十年的平均值。 地球上各地区受太阳光照射及辐射能变化的周期为一天 24h。处在某一地区的太阳能电 池方阵的发电量也有 24h 的周期性的变化,其规律与太阳照在该地区辐射的变化规律相同。 但是天气的变化将影响方阵的发电量。如果有几天连续阴雨天,方阵就几乎不能发电,只能 靠蓄电池来供电, 而蓄电池深度放电后又需尽快地将其补充好。 设计者多数以气象台提供的 太阳每天总的辐射能量或每年的日照时数的平均值作为设计的主要数据。 由于一个地区各年 的数据不相同,为可靠起见应取近十年内的最小数据。根据负载的耗电情况,在日照和无日 照时, 均需用蓄电池供电。 气象台提供的太阳能总辐射量或总日照时数对决定蓄电池的容量 大小是不可缺少的数据。 对太阳能电池方阵而言, 负载应包括系统中所有耗电装置 (除用电器外还有蓄电池及线
薄膜太阳能电池基础知识整理
非晶硅薄膜太阳能电池基础知识一、优点:1.光谱特性好(弱光性好、光谱吸收范围宽)2.温度特性好(温度上升时电池效率下降很小)3.成本能耗低(硅用量少:2um、生产温度底:200度)4.生产效率高(连续,大面积,自动化生产)5.使用方便(重量轻,厚度薄.可弯曲,易携带)6.无毒无污染、美观大方缺点:二、非晶硅薄膜太阳能电池的四个效应:1.光电效应2.光致衰退效应(薄膜经较长时间的强光照射或电流通过,在其内部将产生缺陷而使薄膜的使用性能下降,简称为S-W效应)3.边缘效应(边缘效率比中心效率低)4.面积效应(面积越大,效率越低)三、结构1.一般结构2.非晶\微晶硅叠层结构衬底:玻璃、不锈钢、特种塑料TOC :透明导电氧化膜(要求:透光性>80%、表面绒面度12~15% 面电阻R 9~13 Ω )四、原理非晶硅太阳电池的工作原理是基于半导体的光伏效应。
当太阳光照射到电池上时,电池吸收光层(i 层)能产生光生电子—空穴对,在电池内建电场Vb 的作用下,光生电子和空穴被分离,空穴漂移到P 边,电子漂移到N 边,形成光生电动势VL, VL 与内建电势Vb 相反,当VL = Vb 时,达到平衡; IL = 0, VL 达到最大值,称之为开路电压Voc ; 当外电路接通时,则形成最大光电流,称之为短路电流Isc ,此时VL= 0;当外电路加入负载时,则维持某一光电压VL 和光电流IL 。
其I--V 特性曲线见图3SiO2(20~40nm)TCO(700~1000nm) a-si(~300nm) SiO2(100nm) μc-Si (~1.7μm ) AZO (~100nm) Ag (130~200nm)五、非晶硅薄膜太阳能电池制备图5是非晶硅太阳能电池制备方法示意图,把硅烷(SiH4)等原料气体导入真空度保持在10—1000Pa的反应室中,由于射频(RF)电场的作用,产生辉光放电,原料气体被分解,在玻璃或者不锈钢等衬底上形成非晶硅薄膜材料。
非晶硅薄膜太阳能电池基础知识大全
非晶硅太阳电池的原理非晶硅太阳电池是20世纪70年代中期发展起来的一种新型薄膜太阳电池,与其他太阳电池相比,非晶硅电池具有以下突出特点:1).制作工艺简单,在制备非晶硅薄膜的同时就能制作pin结构。
2).可连续、大面积、自动化批量生产。
3).非晶硅太阳电池的衬底材料可以是玻璃、不锈钢等,因而成本小。
4).可以设计成各种形式,利用集成型结构,可获得更高的输出电压和光电转换效率。
5).薄膜材料是用硅烷SiH4等的辉光放电分解得到的,原材料价格低。
1.非晶硅太阳电池的结构、原理及制备方法非晶硅太阳电池是以玻璃、不锈钢及特种塑料为衬底的薄膜太阳电池,结构如图1所示。
为减少串联电阻,通常用激光器将TCO膜、非晶硅(A-si)膜和铝(Al)电极膜分别切割成条状,如图2所示。
国际上采用的标准条宽约1cm,称为一个子电池,用内部连接的方式将各子电池串连起来,因此集成型电池的输出电流为每个子电池的电流,总输出电压为各个子电池的串联电压。
在实际应用中,可根据电流、电压的需要选择电池的结构和面积,制成非晶硅太阳电池。
工作原理非晶硅太阳电池的工作原理是基于半导体的光伏效应。
当太阳光照射到电池上时,电池吸收光能产生光生电子—空穴对,在电池内建电场Vb的作用下,光生电子和空穴被分离,空穴漂移到P边,电子漂移到N边,形成光生电动势VL, VL 与内建电势Vb相反,当VL = Vb时,达到平衡; IL = 0, VL达到最大值,称之为开路电压Voc ; 当外电路接通时,则形成最大光电流,称之为短路电流Isc,此时VL= 0;当外电路加入负载时,则维持某一光电压VL和光电流IL。
其I--V特性曲线见图3非晶硅太阳电池的转换效率定义为:Pi是光入射到电池上的总功率密度,Isc是短路电流密度,FF为电池的填充因子,Voc为开路电压,Im 和 Vm 分别是电池在最大输出功率密度下工作的电流密度和电压。
目前,子电池的开路电压约在—之间,Isc达到13mA/cm2,FF在之间,η达到12%以上。
【VIP专享】薄膜太阳能电池基础知识
硅基薄膜太阳能电池基础知识 非晶硅薄膜太阳能电池及制造工艺 内容提纲 一、非晶硅薄膜太阳能电池结构、制造技术简介 二、非晶硅太阳能电池制造工艺 三、非晶硅电池封装工艺 一、非晶硅薄膜太阳能电池结构、制造技术简介 1、电池结构 分为:单结、双结、三结 2、制造技术 三种类型: ①单室,多片玻璃衬底制造技术 该技术主要以美国Chronar、APS、EPV公司为代表 ②多室,双片(或多片)玻璃衬底制造技 该技术主要以日本KANEKA公司为代表 ③卷绕柔性衬底制造技术(衬底:不锈钢、聚酰亚胺) 该技术主要以美国Uni-Solar公司为代表 所谓“单室,多片玻璃衬底制造技术”就是指在一个真空室内,完成P、I、N三层非晶硅的沉积方法。
作为工业生产的设备,重点考虑生产效率问题,因此,工业生产用的“单室,多片玻璃衬底制造技术”的非晶硅沉积,其配置可以由X个真空室组成(X为≥1的正整数),每个真空室可以放Y个沉积夹具(Y为≥1的正整数),例如: •1986年哈尔滨哈克公司、1988年深圳宇康公司从美国Chronar公司引进的内联式非晶硅太阳能电池生产线中非晶硅沉积用6个真空室,每个真空室装1个分立夹具,每1个分立夹具装4片基片,即生产线一批次沉积6×1×4=24片基片,每片基片面积305mm×915mm。
•1990年美国APS公司生产线非晶硅沉积用1个真空室,该沉积室可装1个集成夹具,该集成夹具可装48片基片,即生产线一批次沉积1×48=48片基片,每片基片面积760mm×1520mm。
•本世纪初我国天津津能公司、泰国曼谷太阳公司(BangKok Solar Corp)、泰国光伏公司(Thai Photovoltaic Ltd)、分别引进美国EPV技术生产线,非晶硅沉积也是1个真空室,真空室可装1个集成夹具,集成夹具可装48片基片,即生产线一批次沉积1×48=48片基片,每片基片面积635mm×1250mm。
薄膜太阳能电池知识大全
薄膜太阳能电池知识大全说明:薄膜太阳电池可以使用在价格低廉的玻璃、塑料、陶瓷、石墨,金属片等不同材料当基板来制造,形成可产生电压的薄膜厚度仅需数μm,因此在同一受光面积之下可较硅晶圆太阳能电池大幅减少原料的用量(厚度可低于硅晶圆太阳能电池90%以上),目前转换效率最高以可达13%,薄膜电池太阳电池除了平面之外,也因为具有可挠性可以制作成非平面构造其应用范围大,可与建筑物结合或是变成建筑体的一部份,在薄膜太阳电池制造上,则可使用各式各样的沈积(deposition)技术,一层又一层地把p-型或n-型材料长上去,常见的薄膜太阳电池有非晶硅、CuInSe2 (CIS)、CuInGaSe2 (CIGS)、和CdTe..等。
薄膜太阳电池产品应用:半透明式的太阳能电池模块:建筑整合式太阳能应用(BIPV)薄膜太阳能之应用:随身折迭式充电电源、军事、旅行薄膜太阳能模块之应用:屋顶、建筑整合式、远程电力供应、国防薄膜太阳能电池的特色:1.相同遮蔽面积下功率损失较小(弱光情况下的发电性佳)2.照度相同下损失的功率较晶圆太阳能电池少3.有较佳的功率温度系数4.较佳的光传输5.较高的累积发电量6.只需少量的硅原料7.没有内部电路短路问题(联机已经在串联电池制造时内建)8.厚度较晶圆太阳能电池薄9.材料供应无虑10.可与建材整合性运用(BIPV)太阳能电池厚度比较:晶硅(200~350μm)、非晶性薄膜(0.5μm)薄膜太阳能电池的种类:非晶硅(Amorphus Silicon, a-Si)、微晶硅(Nanocrystalline Silicon,nc-Si,Microcrystalline Silicon,mc-Si)、化合物半导体II-IV 族[CdS、CdTe(碲化镉)、CuInSe2]、色素敏化染料(Dye-Sensitized Solar Cell)、有机导电高分子(Organic/polymer solar cells) 、CIGS (铜铟硒化物)..等薄膜太阳能电池分类表薄膜太阳能电池制造厂商:联相光电、富阳光电、旭能光电、绿能科技、新能光电、茂迪、奇美能源、大亿光电、大丰能源、鑫笙能源、威奈联合、嘉晶电子、崇越科技、台达电、中环、宇通光电薄膜太阳能测试设备厂商:庆声科技薄膜太阳能制程流程表薄膜太阳能模块结构图说明:薄膜太阳能模块是由玻璃基板、金属层、透明导电层、电器功能盒、胶合材料、半导体层..等所构成的。
薄膜太阳能电池
06
未来展望与研究方向
提高光电转换效率
1 2 3
深入研究光吸收机制
通过深入研究光在薄膜太阳能电池中的吸收、传 播和转换机制,优化材料结构,提高光的有效利 用率。
新型光电器件结构探索
开发新型的光电器件结构,如采用多层结构、异 质结结构等,以增强光生载流子的分离和传输效 率。
表面处理与界面工程
通过表面处理和界面工程的方法,改善薄膜表面 的光反射、光散射以及电荷输运特性,提高光电 转换效率。
高光电转换效率
染料敏化太阳能电池的光电转换效率可达11%左 右,具有较好的应用前景。
稳定性较差
染料敏化太阳能电池的稳定性相对较差,使用寿 命较短,需要进一步改进。
04
薄膜太阳能电池的优势与挑战
优势:高光电转换效率、低成本、可弯曲等
01
高光电转换效率
薄膜太阳能电池采用先进的光电材料和工艺,能够实现较高的光电转换
05
薄膜太阳能电池的应用场景
分布式发电系统
分布式发电系统是指将发电系统分散布置在用户附近,直接 为用户供电的电力系统。薄膜太阳能电池由于其轻便、可弯 曲和高效等特性,在分布式发电系统中具有广泛应用,如偏 远地区的供电、城市屋顶光伏发电等。
分布式发电系统有助于提高能源利用效率,降低对传统能源 的依赖,减少能源输送损耗,同时也能够缓解集中式电网的 压力。
它与传统的晶体硅太阳能电池相比, 具有更高的光电转换效率和更低的制 造成本。
薄膜太阳能电池的重要性
解决能源危机
随着传统能源资源的日益枯竭,可再生能源的需求越来越 迫切,薄膜太阳能电池作为一种高效、环保的能源转换技 术,对于解决全球能源危机具有重要意义。
促进可持续发展
薄膜太阳能电池的应用有助于减少对化石燃料的依赖,降 低温室气体排放,对于推动可持续发展和应对气候变化具 有积极作用。
薄膜砷化镓太阳能电池
薄膜砷化镓太阳能电池摘要:1.薄膜砷化镓太阳能电池简介2.薄膜砷化镓太阳能电池的优势3.薄膜砷化镓太阳能电池的应用领域4.我国在薄膜砷化镓太阳能电池研究进展5.薄膜砷化镓太阳能电池的发展前景正文:薄膜砷化镓太阳能电池是一种新型的太阳能电池,它采用薄膜形式,具有高效、轻质、柔性等特点。
近年来,随着太阳能光伏领域的不断发展和技术创新,薄膜砷化镓太阳能电池受到了广泛关注。
薄膜砷化镓太阳能电池的优势主要体现在以下几个方面:1.高效:薄膜砷化镓太阳能电池的光电转化效率较高,可以在低光照条件下实现较好的发电效果。
2.轻质:薄膜太阳能电池采用柔性材料制成,重量轻,便于安装和搬运。
3.柔性:薄膜砷化镓太阳能电池具有较好的柔性,可以适应各种形状和曲率的表面。
4.耐候性:薄膜砷化镓太阳能电池具有良好的耐候性,能在恶劣环境下保持稳定的发电性能。
5.节约资源:与传统硅基太阳能电池相比,薄膜砷化镓太阳能电池的生产过程更加环保,资源消耗较低。
薄膜砷化镓太阳能电池广泛应用于建筑一体化、新能源汽车、无人机、卫星等领域。
在我国,薄膜砷化镓太阳能电池的研究取得了显著成果。
政府和企业纷纷加大投入,推动薄膜砷化镓太阳能电池技术的研发和产业化进程。
展望未来,薄膜砷化镓太阳能电池的发展前景十分广阔。
随着技术的不断进步,薄膜砷化镓太阳能电池的光电转化效率将进一步提高,成本降低,有望成为未来光伏市场的主流产品。
此外,薄膜砷化镓太阳能电池在新能源、物联网等领域的应用也将不断拓展,为全球可持续发展作出更大贡献。
总之,薄膜砷化镓太阳能电池作为一种高效、环保的新型光伏产品,具有广泛的应用前景。
薄膜太阳能电池的归纳总结
薄膜太阳能电池的归纳总结薄膜太阳能电池是一种新型的太阳能转换设备,其独特的结构与材料使得其在太阳能领域有着广泛的应用前景。
本文将对薄膜太阳能电池的原理、发展历程、优缺点以及应用领域进行归纳总结。
一、薄膜太阳能电池的原理薄膜太阳能电池是通过几个薄膜层之间的相互作用和能量转换来实现太阳能的转化过程。
它主要由包括透明导电层、n型半导体层、p型半导体层、反射层和背接触层等多个功能层组成。
光线首先穿过透明导电层进入电池,经过吸收层后,光能被转化为电能,并通过导电层输出。
二、薄膜太阳能电池的发展历程薄膜太阳能电池起源于20世纪80年代初,当时主要使用硅薄膜材料。
随着技术的发展,航空航天领域对薄膜太阳能电池的需求促进了其进一步研究与创新。
近年来,薄膜太阳能电池的发展经历了无机材料、有机材料、无机-有机混合材料等多个阶段,并在效率、稳定性和成本方面取得了长足的进步。
三、薄膜太阳能电池的优缺点1. 优点:a. 薄膜太阳能电池相比传统硅晶体太阳能电池更轻薄、柔软,适应于更多的应用场景,如建筑外墙、柔性设备等。
b. 制造过程简单,不需要高温高压的工艺条件,成本较低。
c. 在低光照条件下仍能产生电能,具备良好的低光响应性能。
2. 缺点:a. 效率较传统硅晶体太阳能电池低,尚需要进一步提升。
b. 光电转换过程中存在能量损失,影响系统整体效率。
c. 长期使用中薄膜太阳能电池可能受到环境因素的影响,稳定性有待提升。
四、薄膜太阳能电池的应用领域1. 太阳能建筑集成:薄膜太阳能电池适用于建筑外墙、屋顶、窗户等各种形状的建筑表面,能够与建筑完美融合,实现建筑与能源的高效利用。
2. 移动设备应用:由于薄膜太阳能电池的轻薄柔软特性,使其成为移动设备(如手机、平板电脑、手表等)的理想充电装置,提供便携式、可持续的能源供应。
3. 太阳能汽车:将薄膜太阳能电池应用于汽车车顶、车窗等部位,可实现汽车自身充电,降低能源消耗,为电动汽车提供可持续的动力。
薄膜太阳能电池
TCO
在太阳能电池中,晶体硅片类电池的电极是焊接在硅片表面的导线,前盖板玻璃仅需达到高透光率就可以了。薄膜太阳能电池是在玻璃表面的导电薄膜上镀制p-i-n半导体膜,再镀制背电极。
透明导电氧化物的镀膜原料和工艺很多,通过科学研究进行不断的筛选,目前主要有以下三种TCO玻璃与光伏电池的性能要求相匹配。
陈冶明. 非晶半导体材料和器件EM]. 北京:科学出版社,1991.166~415.
3
Ying Xuantong,Feldman A ,Farabaugh E N.Fitting of tranm ission data for determining the optical constants and thicknesses of opticalfilmsEJ'].J.App1.Phys.,1990,67(4):2056.
导电性能
耐气候性与耐久性
雾度
激光刻蚀性能
光伏电池对TCO镀膜玻璃的性能要求
光谱透过率
为了能够充分地利用太阳光,TCO镀膜玻璃一定要保持相对较高的透过率。目前,产量最多的薄膜电池是双结非晶硅电池,并且已经开始向非晶/微晶复合电池转化。因此,非晶/微晶复合叠层能够吸收利用更多的太阳光,提高转换效率,即将成为薄膜电池的主流产品。
TCO(Transparent conducting oxide)玻璃,即透明导电氧化物镀膜玻璃,是在平板玻璃表面通过物理或者化学镀膜的方法均匀镀上一层透明的导电氧化物薄膜,主要包括In、Sn、Zn和Cd的氧化物及其复合多元氧化物薄膜材料。
TCO玻璃首先被应用于平板显示器中,现在ITO类型的导电玻璃仍是平板显示器行业的主流玻璃电极产品。近几年,晶体硅价格的上涨极大地推动了薄膜太阳能电池的发展,目前薄膜太阳能电池占世界光伏市场份额已超过10%,光伏用TCO玻璃作为电池前电极的必要构件,市场需求迅速增长,成为了一个炙手可热的高科技镀膜玻璃产品。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
薄膜太阳能电池知识大全
说明:薄膜太阳电池可以使用在价格低廉的玻璃、塑料、陶瓷、石墨,金属片等不同材料当基板来制造,形成可产生电压的薄膜厚度仅需数μm,因此在同一受光面积之下可较硅晶圆太阳能电池大幅减少原料的用量(厚度可低于硅晶圆太阳能电池90%以上),目前转换效率最高以可达13%,薄膜电池太阳电池除了平面之外,也因为具有可挠性可以制作成非平面构造其应用范围大,可与建筑物结合或是变成建筑体的一部份,在薄膜太阳电池制造上,则可使用各式各样的沈积(deposition)技术,一层又一层地把p-型或n-型材料长上去,常见的薄膜太阳电池有非晶硅、CuInSe2 (CIS)、CuInGaSe2 (CIGS)、和CdTe..等。
薄膜太阳电池产品应用:
半透明式的太阳能电池模块:建筑整合式太阳能应用(BIPV)
薄膜太阳能之应用:随身折迭式充电电源、军事、旅行
薄膜太阳能模块之应用:屋顶、建筑整合式、远程电力供应、国防
薄膜太阳能电池的特色:
1.相同遮蔽面积下功率损失较小(弱光情况下的发电性佳)
2.照度相同下损失的功率较晶圆太阳能电池少
3.有较佳的功率温度系数
4.较佳的光传输
5.较高的累积发电量
6.只需少量的硅原料
7.没有内部电路短路问题(联机已经在串联电池制造时内建)
8.厚度较晶圆太阳能电池薄
9.材料供应无虑
10.可与建材整合性运用(BIPV)
太阳能电池厚度比较:晶硅(200~350μm)、非晶性薄膜(0.5μm)
薄膜太阳能电池的种类:
非晶硅(Amorphus Silicon, a-Si)、微晶硅(Nanocrystalline Silicon,nc-Si,Microcrystalline Silicon,mc-Si)、化合物半导体II-IV 族[CdS、CdTe(碲化镉)、CuInSe2]、色素敏化染料(Dye-Sensitized Solar Cell)、有机导电高分子(Organic/polymer solar cells) 、CIGS (铜铟硒化物)..等
薄膜太阳能电池分类表
薄膜太阳能电池制造厂商:联相光电、富阳光电、旭能光电、绿能科技、新能光电、茂迪、奇美能源、大亿光电、大丰能源、鑫笙能源、威奈联合、嘉晶电子、崇越科技、台达电、中环、宇通光电
薄膜太阳能测试设备厂商:庆声科技
薄膜太阳能制程流程表
薄膜太阳能模块结构图
说明:薄膜太阳能模块是由玻璃基板、金属层、透明导电层、电器功能盒、胶合材料、半导体层..等所构成的。
薄膜太阳能电池可靠度试验规范:IEC61646(薄膜太阳光电模块测试标准)、CNS15115(薄膜硅陆上太阳光电模块设计确认和型式认可)。