上海市第二中学2020-2021学年高一上学期期中数学试题

合集下载

上海市第二中学2023-2024学年高二下学期期中数学试题

上海市第二中学2023-2024学年高二下学期期中数学试题

上海市第二中学2023-2024学年高二下学期期中数学试题一、填空题1.抛物线224y x =-的准线方程是.2.已知直线l 的一个法向量是()2,1-,则它的斜率为.3.设a ∈R ,若直线230x y +-=与直线20x y a ++=a 的值为. 4.若方程220x y x y m +-++=表示圆,则实数m 的取值范围是.5.如果双曲线关于原点对称,它的焦点在y 轴上,实轴的长为8,焦距为10.则双曲线的标准方程为.6.设椭圆22221(0)x y a b a b+=>>的焦距为2c ,若2b ac =,则椭圆的离心率为.7.设圆C 与双曲线221916x y -=的渐近线相切,且圆心在双曲线的右焦点,则圆C 的标准方程为.8.圆228x y +=内有一点0(1,2)P -,AB 为过点0P 的弦.当弦AB 被点0P 平分时,则直线AB 的方程为.9.已知直线1y ax =-与曲线22y x =只有一个公共点,则实数a 的值为.10.如图,点C 是以AB 为直径的半圆O 上异于A 、B 的动点,点D 与点A 在直线BC 的两侧,且π2BCD ∠=,CD CB =u u u r u u u r ,若2AB =u u u r ,则OC OD ⋅u u u r u u u r 的最大值为.11.过焦点在x 轴上的椭圆2221(0)xy a a+=>的顶点()0,1B -引一条弦BP ,弦BP 的最大长=a .12.若恰有三组不全为0的实数对(a ,)b 满足关系式|1||431|a b a b ++=-+=数t 的所有可能的值为.二、单选题13.“1m >”是“方程11522y x m m -=--表示焦点在y 轴上的双曲线”的( )条件A .充分非必要B .必要非充分条件C .充要D .既非充分也非必要14.设P 是椭圆2211612x y +=上一点,P 到两焦点12F F ,的距离之差为2,则12PF F V 是A .锐角三角形B .直角三角形C .钝角三角形D .等腰直角三角形15.直线0x =绕原点按顺时针方向旋转30︒后所得的直线l 与圆()2223x y -+=的位置关系是( )A .直线l 过圆心B .直线l 与圆相交,但不过圆心C .直线l 与圆相切D .直线l 与圆无公共点16.数学中有许多形状优美、寓意美好的曲线,曲线22:1C x y x y +=+就是其中之一(如图).给出下列三个结论:①曲线C 恰好经过4个整点(即横、纵坐标均为整数的点);②曲线C ③曲线C 所围成的“心形”区域的面积小于3; 其中,所有正确结论的序号是( )A .①B .②C .①②D .①②③三、解答题17.已知点()1,0A ,()1,2B -.(1)设m ∈R ,若直线AB 与直线10x my -+=垂直,求m 的值;(2)求过点B 且与直线210x y -+=的直线方程. 18.已知圆22:460C x y x y +--=. (1)求直线2y x =被圆截得弦长;(2)已知圆M 过点()4,0-且与圆22:460C x y x y +--=相切于原点,求圆M 的方程.19.设()2,M t t 为抛物线2:C y x =上的动点.(1)若点M M 与抛物线C 的焦点之间的距离;(2)过点()2,M t t 分别作两条直线交抛物线C 于()1,1P 、()1,1Q -两点,交直线=1x -于(,),(,)A A B B A x y B x y 两点,求A B y y ×的值.20.已知A 、B 、C 是我方三个炮兵阵地,A 地在B 地的正东方向,相距6km ;C 地在B 地的北偏西30︒,相距4km .P 为敌方炮兵阵地.某时刻A 地发现P 地产生的某种信号,12s 后B 地也发现该信号(该信号传播速度为13km/s ).以BA 方向为x 轴正方向,AB 中点为坐标原点,与AB 垂直的方向为y 轴建立平面直角坐标系.(1)判断敌方炮兵阵地P 可能分布在什么样的轨迹上,并求该轨迹的方程; (2)若C 地与B 地同时发现该信号,求从A 地应以什么方向炮击P 地?21.太曲线Γ由曲线22122:1(0,0)x y C a b y a b +=>>≤和曲线22222:1(0)x y C y a b-=>组成,其中点1F 、2F 为曲线1C 所在圆锥曲线的焦点,点3F 、4F 为曲线2C 所在圆锥曲线的焦点.(1)若)2F ,()3F ,求曲线的方程;(2)作曲线2C 第一象限中渐近线的平行线l ,若与曲线1C 有两个公共点A 、B ,求证:弦AB 的中点M 必在曲线2C 的另一条渐近线上;(3)设a =4b =,若直线1l 过点4F 交曲线1C 于点,C D ,求1CDF V 的面积S 的最大值.。

浙江省杭州市第二中学2024-2025学年高一上学期期中考试数学试题

浙江省杭州市第二中学2024-2025学年高一上学期期中考试数学试题

浙江省杭州市第二中学2024-2025学年高一上学期期中考试数学试题一、单选题1.设集合{}N 12A x x =∈-≤≤,{}2,1,0,1B =--,则A B = ()A .{}2,1,0,1,2--B .{}1,0,1-C .{}0,1D .{}12.若函数()1f x +的定义域是{}10x x -<<,则函数()f x 的定义域为()A .{}01x x <<B .{}21x x -<<-C .{}10x x -<<D .{}20x x -<<3.不等式20cx ax b ++>的解集为112x x ⎧⎫-<<⎨⎬⎩⎭,则函数2y ax bx c =+-的图象大致为()A .B .C .D .4.已知()e e x x xf x a -=+是偶函数,则a =()A .2-B .1-C .1D .25.已知命题p :0x ∃≥,111x x +<+,则()A .命题p 的否定为0x ∀≥,111x x +≥+,且p 是真命题B .命题p 的否定为0x ∃≥,111x x +≥+,且p 是真命题C .命题p 的否定为0x ∀≥,111x x +≥+,且p 是假命题D .命题p 的否定为0x ∀<,111x x +≥+,p 是假命题6.已知函数2()32x a x f x ax x ⎧≤=⎨+>⎩,,是R 上的增.函数,则实数a 的取值范围为()A .1a >B .13a <<C .13a -≤≤D .13a <£7.已知,,abc 为正数,且22a b c ++=,则14a b b c +++的最小值为()A .52B .52C .92D .948.已知函数341()=41x x f x x -++,则不等式(21)()0f x f x -+<的解集为()A .(1,)+∞B .(,1)-∞C .1(,)3+∞D .1(,)3-∞二、多选题9.设,R a b ∈,若0a b ->,则下列结论正确的是()A .0b a ->B .0b a +>C .220a b ->D .330a b +<10.某校“五一田径运动会”上,共有12名同学参加100米、400米、1500米三个项目,其中有8人参加“100米比赛”,有7人参加“400米比赛”,有5人参加“1500米比赛”,“100米和400米”都参加的有4人,“100米和1500米”都参加的有3人,“400米和1500米”都参加的有3人,则下列说法正确的是()A .三项比赛都参加的有2人B .只参加100米比赛的有3人C .只参加400米比赛的有3人D .只参加1500米比赛的有3人11.设R x ∈,[]x 表示不超过x 的最大整数,如][1.51, 1.52⎡⎤=-=-⎣⎦,记{}[]x x x =-.则下列说法正确的有()A .R,Z x n ∀∈∈,都有[][]n x n x +=+B .,x y ∀∈R ,都有[][][]xy x y ≥C .*R,N x n ∀∈∈,都有[]x x n n ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦D .若存在实数x ,使得23[]1,[]2,[]3,...,[]n x x x x n ====同时成立,则正整数n 的最大值为4.三、填空题12.设集合(){}22,2,N,N A x y x y x y =+≤∈∈,则A 中元素的个数为13.如果2339x x --<,则x 的取值范围为.14.函数()f x 的定义域为D ,若对于任意12x x D ∈,当12x x <时,有12()()f x f x ≤,则称函数()f x 在D 上为非减函数.设函数()f x 在[0,1]上为非减函数,且满足以下三个条件:①(0)0;f =②1()()32x f f x =;③(1)()1f x f x -+=.则21((55f f +=四、解答题15.已知命题22:R,60p x x x a ∃∈-+=,当命题p 为真命题时,实数a 的取值集合为A .(1)求集合A ;(2)设集合{}321B a m a m =-≤≤-,若x A ∈是x B ∈的必要不充分条件,求实数m 的取值范围.16.已知函数()4(0)4x xa f x a =+≠(1)当1a =时,根据定义证明函数()f x 在(0,+∞)上单调递增.(2)若()f x 有最小值4,求a 的值.17.某公园为了美化游园环境,计划修建一个如图所示的总面积为7502m 的矩形花园.图中阴影部分是宽度为1m 的小路,中间,,A B C 三个矩形区域将种植牡丹、郁金香、月季(其中,B C 区域的形状、大小完全相同).设矩形花园的一条边长为m x ,鲜花种植的总面积为2m S .(1)用含有x 的代数式表示a ,并写出x 的取值范围;(2)当x 的值为多少时,才能使鲜花种植的总面积最大?18.设函数()222f x x tx =-+,其中R t ∈.(1)若1t =,(i )当[0,3]x ∈时,求()f x 的最大值和最小值;(ii )对任意的[]0,2x a ∈+,都有()5f x ≤,求实数a 的取值范围;(2)若对任意的12,[0,4]x x ∈,都有()()128f x f x -≤,求实数t 的取值范围.19.定义在R 上的奇函数()f x ,当0x ≥时,2()4f x x x =-+.(1)求()f x 的解析式;(2)当()f x 的定义域为[,]a b (0a )时,()f x 的值域为[,]a b ,求,a b 的取值.(3)是否存在实数,a b ,使得当()f x 的定义域为[,]a b 时,()f x 的值域为88[,b a,如果存在,求出,a b 的值;若不存在,请说明理由.。

上海市曹杨第二中学2022-2023学年高一下学期期中数学试题

上海市曹杨第二中学2022-2023学年高一下学期期中数学试题

上海市曹杨第二中学2022-2023学年高一下学期期中数学试题学校:___________姓名:___________班级:___________考号:___________13.C【分析】根据基底的知识确定正确答案.【详解】依题意,12e e u r u u r 、不共线,A 选项,不存在R l Î使()1212e e e e l +=-u r u u r u r u u r,所以12e e +u r u u r 和12e e -u r u u r 可以组成基底.B 选项,不存在R l Î使()122122e e e e l =++u u r u r u u r u r ,所以122e e +u r u u r 和212e e +u u r u r 可以组成基底.C 选项,()211246223e e e e =---u u r u r u r u u r ,所以1232e e -u r u u r 和2146e e -u u r u r 不能构成基底.D 选项,不存在R l Î使()221e e e l +=u u r u u r u r,所以2e u u r 和21e e +u u r u r 可以组成基底.故选:C14.A【分析】根据充分、必要条件的定义,结合“z 是纯虚数”“2z ÎR ”二者关系,即可求解.【详解】z 是纯虚数,则2z ÎR 成立,当z R Î时,2z ÎR ,即2z ÎR ,z 不一定是纯虚数,“z 是纯虚数”是“2z ÎR ”的充分不必要条件.故选:A.【点睛】本题考查充分不必要条件的判断,考查纯虚数的特征,属于基础题.15.B。

【数学】上海市普陀区曹杨第二中学2022-2023学年高一下学期期末考试试卷 (解析版)

【数学】上海市普陀区曹杨第二中学2022-2023学年高一下学期期末考试试卷 (解析版)

上海市普陀区曹杨第二中学2020-2021学年高一下学期期末考试数学试题一,填空题1.已知复数z=1﹣i,则Im z= .【结果】﹣1【思路】∵复数z=1﹣i,∴Im z=﹣1,故结果为:﹣1.2.已知复数z满足,且|z+i|=1,则z= .【结果】1﹣i【思路】设复数z=a+bi(a,b∈R),∵,∴a+bi+a﹣bi=2,∴a=1,∴z=1+bi,∵|z+i|=|1+(b+1)i|==1,∴b=﹣1,∴z=1﹣i,故结果为:1﹣i.3.已知向量=(2,4),=(﹣1,1),则2﹣= .【结果】(5,7)【思路】∵向量=(2,4),=(﹣1,1),∴2﹣=2(2,4)﹣(﹣1,1)=(5,7).故结果为:(5,7).4.若cos(θ+)=1,则cosθ= .【结果】【思路】因为cos(θ+)=1,所以sin(θ+)=0,所以cosθ=cos[(θ+)﹣]=cos(θ+)cos+sin(θ+)sin=1×+0×=.故结果为:.5.若向量,,,则= .【结果】0【思路】向量,,,可得,所以1+2+4=5,所以=0.故结果为:0.6.已知{a n}为等差数列,{a n}地前5项和S5=20,a5=6,则a10= .【结果】11【思路】∵{a n}为等差数列,∴S5=5a3=20,∴a3=4,∵a5=6,a3=4,∴2d=a5﹣a3=6﹣4=2,即d=1,∴a10=a5+5d=6+5=11.故结果为:11.7.已知{a n}为等比数列,首项和公比均为,则{a n}前10项和为 .【结果】【思路】依据题意,{a n}为等比数列,首项和公比均为,则S10==。

故结果为:.8.设O为坐标原点,A(2,0),B(﹣3,4),则向量在上地投影为 ﹣3 .【结果】-3【思路】因为A(2,0),B(﹣3,4),所以,所以在上地投影为.故结果为:﹣3.9.已知正方形ABCD地边长为3,点E,F分别在边BC,DC上,BC=3BE,,若,则实数λ地值为 .【结果】【思路】,,所以,解得.故结果为:.10.已知数列{a n}为等比数列,函数过定点(a1,a2),设b n=log2a n,数列{b n}地前n项和为S n,则S n地最大值为 1 .【结果】1【思路】函数过定点(a1,a2),令x=2=0,解得x=2,当x=2时,y=1,所以a1=2,a2=1,由于数列{a n}为等比数列,,所以公比q=,所以,则b n=log2a n=2﹣n,由于b1=1,b2=0,b3=﹣1,......,所以S n地最大值为:S2=b1+b2=1.故结果为:1.11.已知函数,则地值为 .【结果】2020【思路】依据题意,函数,则f(1﹣x)=(1﹣x﹣)3+1=﹣(x﹣)3+1,故f(x)+f(1﹣x)=2,则=f()+f()+f()+f()+……+f()+f()=2×1010=2020。

陕西省汉中市勉县第二中学2024-2025学年高一上学期11月期中考试数学试题

陕西省汉中市勉县第二中学2024-2025学年高一上学期11月期中考试数学试题

陕西省汉中市勉县第二中学2024-2025学年高一上学期11月期中考试数学试题一、单选题1.已知集合{}250A x x x =-=,则()A .{}0A∈B .5A∉C .{}5A∈D .0A∈2.设全集R U =,集合{}|01M x x =<≤,{}|1x x ≥,则()U M N = ðA .{}|01x x ≤<B .{}|01x x <≤C .{}|01x x ≤≤D .{}|1x x <3.已知命题:11p x -<<,命题:2q x ≥-,则p 是q 的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.命题“200x x x ∀≥≥,+”的否定是()A .200x x x ∃<<,+B .200x x x ∃≥≤,+C .200x x x ∃≥<,+D .200x x x ∃≥<,+5.若偶函数()f x 在(],1-∞-上是增函数,则下列关系式中成立的是()A .()()3122f f f ⎛⎫-<-< ⎪⎝⎭B .()()3122f f f ⎛⎫-<-< ⎪⎝⎭C .()()3212f f f ⎛⎫<-<- ⎪⎝⎭D .()()3212f f f ⎛⎫<-<- ⎪⎝⎭6.已知非空集合{}|123A x a x a =-≤≤+,{}|14B x x =-≤≤,若“x B ∈”是“x A ∈”的必要条件,则实数a 的取值范围是()A .10,2⎡⎤⎢⎥⎣⎦B .10,2⎛⎤ ⎥⎝⎦C .[)0,+∞D .1,2∞⎛⎤- ⎥⎝⎦7.中文“函数”一词,最早是由近代数学家李善兰翻译的,之所以这么翻译,他给出的原因是“凡此变数中函彼变数者,则此为彼之函数”,下列选项中是同一个函数的是()A .01y x =-与0y =B .y =y =C .y x =与z =D .2y x x =+与32x x y x+=8.已知函数()y f x =在R 上是奇函数,当0x >时,()22xf x =-,则不等式()()40x f x f x ⎡⎤--<⎣⎦的解集是()A .()1,1-B .()()1,00,1-U C .()(),11,-∞-⋃+∞D .()()(),31,13,∞∞--⋃-⋃+二、多选题9.以下函数中,既是偶函数,又在(1,)+∞上单调递增的函数是()A .2(1)y x =--B .2y x -=C .||e x y =D .y =10.在下列根式与分数指数幂的互化中,不正确的是()A .())0.50x x -=≠B 13y =C .)340x xy y -⎛⎫=≠ ⎪⎝⎭D .13x -=11.函数f (x )=ax -1a(a >0,a ≠1)的图象不可能是()A .B .C .D .三、填空题12.函数[]2()27(2,2f x x x x =+-∈-)的值域是.13.函数()f x 的定义域为.14.若函数()300x x a x f x a x -+<⎧=⎨≥⎩,,(>0,且1a ≠),在定义域R 上满足()()21120f x f x x x ->-,则a 的取值范围是四、解答题15.解下列不等式(1)260x x --<(2)2820x x -+-<(3)2103x x -≥+16.已知x ,y 都是正数.(1)若3212x y +=,求xy 的最大值;(2)若23x y +=,求11x y+的最小值.17.已知函数21,11()23,1x x f x x x ⎧+-≤<=⎨+<-⎩(1)求((2))f f -的值;(2)若()2f a =,求a .18.已知()f x 是定义在R 上的偶函数,当0x ≥时,2()2f x x x =-.(1)求()f x 的解析式,并画出函数图象;(2)根据函数图象写出函数的单调区间和值域.19.为了保护环境,某工厂在政府部门的鼓励下进行技术改进:把二氧化碳转化为某种化工产品,经测算,处理成本y (单位:万元)与处理量x (单位:吨)之间的函数关系可近似表示为2401600y x x =-+,[]3050x ∈,,已知每处理一吨二氧化碳可获得价值20万元的某种化工产品.(1)判断该技术改进能否获利?如果能获利,求出最大利润;如果不能获利,则国家至少需要补贴多少万元该工厂才不会亏损?(2)当处理量为多少吨时,每吨的平均处理成本最少?。

2020-2021学年上海市交通大附属中学高一上学期期中考试数学试卷(含详解)

2020-2021学年上海市交通大附属中学高一上学期期中考试数学试卷(含详解)

上海交通大学附属中学2020-2021学年第一学期高一数学期中考试试卷一、填空题(1-6每小题4分,7-12每小题5分,共54分)1.已知全集{}0,1,2,3,4U =,集合{}1,2A =,{}2,3B =则A B ⋂=______.2.函数20202022(0,1)x y aa a +=+>≠的图像恒过定点______.3.已知幂函数()()22322n nf x n n x-=+-(n Z ∈)的图象关于y 轴对称,且在()0,∞+上是减函数,则n 的值为______.4.函数132xy x-=+的图象中心是______.5.函数y =的定义域是______.6.已知实数a 满足()()3322211a a --->+,则实数a 的取值范围是_________.7.已知6x <,求2446x x x ++-的最大值______.8.设log c a 、log c b 是方程2530x x +-=的两个实根,则log b ac =______.9.著名的哥德巴赫猜想指出:“任何大于2的偶数可以表示为两个素数的和”,用反证法研究该猜想,应假设的内容是_______.10.若关于x 的方程222210()x xa a a R +⋅++=∈有实根,则实数a 的取值范围是______.11.已知函数)()lg f x ax =的定义域为R ,则实数a 的取值范围是____________.12.若实数、满足114422x y x y +++=+,则22x y S =+的取值范围是_______.二、选择题(每小题5分,共20分)13.已知,a b ∈R ,则“33a b >”是“33a b >”的A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件14.若函数()()log a f x x b =+的大致图象如图,其中,a b 为常数,则函数()xg x a b =+的大致图像是()A. B.C. D.15.由无理数引发的数学危机一直延续到19世纪.直到1872年,德国数学家戴德金从连续性的要求出发,用有理数的“分割”来定义无理数(史称戴德金分割),并把实数理论建立在严格的科学基础上,才结束了无理数被认为“无理”的时代,也结束了持续2000多年的数学史上的第一次大危机.所谓戴德金分割,是指将有理数集Q 划分为两个非空的子集M 与N ,且满足Q M N ⋃=,M N ⋂=∅,M 中的每一个元素都小于N 中的每一个元素,则称(,)M N 为戴德金分割.试判断,对于任一戴德金分割(,)M N ,下列选项中,不可能成立的是()A.M 没有最大元素,N 有一个最小元素 B.M 没有最大元素,N 也没有最小元素C.M 有一个最大元素,N 有一个最小元素D.M 有一个最大元素,N 没有最小元素16.设函数()y f x =的定义域D ,若对任意的1x D ∈,总存在2x D ∈,使得()()121f x f x ⋅=,则称函数()y f x =具有性质M .下列结论:①函数3xy =具有性质M ;②函数3y x x =-具有性质M ;③若函数8log (2)y x =+,[]0,x t ∈具有性质M ,则510t =.其中正确的个数是()A.0个B.1个C.2个D.3个三、解答题(共5题,满分76分)17.已知函数2()|21|f x x a x a =-+-+.(1)当2a =时,求不等式()4f x ≥的解集;(2)若()4f x ≥,求a 的取值范围.18.有一种候鸟每年都按一定的路线迁徙,飞往繁殖地产卵,科学家经过测量发现候鸟的飞行速所度可以表示为函数301log lg 2100x v x =-,单位是km /min ,其中x 表示候鸟每分钟耗氧量的单位数,常数0x 表示测量过程中候鸟每分钟的耗氧偏差.(参考数据lg 20.3,= 1.2 1.43 3.74,3 4.66==)(1)若05x =,候鸟停下休息时,它每分钟的耗氧量为多少个单位?(2)若雄鸟的飞行速度为1.5km /min ,雌鸟的飞行速度为1km /min ,那么此时雄鸟每分钟的耗氧量是雌鸟每分钟耗氧量的多少倍?19.柯西不等式具体表述如下:对任意实数1a ,2a ,n a 和1b ,2b n b ,(,2)n Z n ∈≥都有()()()222222212121122n n n n a a a b b b a b a b a b ++++++≥+++L L L ,当且仅当1212n na a ab b b ===L 时取等号.(1)请用柯西不等式证明:对任意正实数a ,b ,x ,y ,不等式222()a b a b x y x y++≥+成立,(并指出等号成立条件)(2)请用柯西不等式证明:对任意正实数1x ,2x , ,n x ,且121n x x x +++= ,求证:12212211111x x x x x x n+++≥++++ (并写出等号成立条件).20.已知函数、()y f x =的表达式为()(0,1)xf x a a a =>≠,且1(2)4f -=,(1)求函数()y f x =的解析式;(2)若()()22log ()4()0m f x f x -+=在区间[]0,2上有解,求实数m 的取值范围;(3)已知113k ≤<,若方程()10f x k --=的解分别为1x 、()212x x x <,方程()1021k f x k --=+的解分别为3x 、()434x x x <,求1234x x x x -+-的最大值.21.对于集合{}()12,,,3n A a a a n Z n =∈≥ ,其中每个元素均为正整数,如果任意去掉其中一个元素(1,2,3,)i a i n = 之后,剩余的所有元素组成集合(1,2,)i A i n = ,并且i A 都能分为两个集合B 和C ,满足B C =∅ ,i B C A ⋃=,其中B 和C 的所有元素之和相等,就称集合A 为“可分集合”.(1)判断集合{}1,2,3,4和{}1,3,5,7,9,11,13是否是“可分集合”(不必写过程);(2)求证:五个元素的集合{}12345,,,,A a a a a a =一定不是“可分集合”;(3)若集合{}()12,,,3n A a a a n Z n =∈≥ 是“可分集合”.①证明:n 为奇数;②求集合A 中元素个数的最小值.上海交通大学附属中学2020-2021学年第一学期高一数学期中考试试卷一、填空题(1-6每小题4分,7-12每小题5分,共54分)1.已知全集{}0,1,2,3,4U =,集合{}1,2A =,{}2,3B =则A B ⋂=______.【答案】{}1【解析】【分析】通过全集,计算出{}0,1,4B =,根据交集的定义即可.【详解】因为{}0,1,2,3,4U =,{}2,3B =,所以{}0,1,4B =所以{}1A B ⋂=.故答案为:{}1.2.函数20202022(0,1)x y aa a +=+>≠的图像恒过定点______.【答案】()2020,2023-【解析】【分析】根据01(0,1)a a a =>≠,结合条件,即可求得答案.【详解】 01(0,1)a a a =>≠,令20200x +=,得2020x =-,020222023y a =+=,∴函数20202022(0,1)x y a a a +=+>≠的图象恒过定点()2020,2023-,故答案为:()2020,2023-.3.已知幂函数()()22322n n f x n n x -=+-(n Z ∈)的图象关于y 轴对称,且在()0,∞+上是减函数,则n 的值为______.【答案】1【解析】【分析】根据函数是幂函数得2221+-=n n ,求得3n =-或1,再检验是否符合题意即可.【详解】因为()()22322n n f x n n x -=+-是幂函数,2221n n ∴+-=,解得3n =-或1,当3n =-时,()18=f x x 是偶函数,关于y 轴对称,在()0,∞+单调递增,不符合题意,当1n =时,()2f x x -=是偶函数,关于y 轴对称,在()0,∞+单调递减,符合题意,1n ∴=.故答案为:1.4.函数132xy x-=+的图象中心是______.【答案】()2,3--【解析】【分析】将函数化成ky b x a=++,根据的对称中心为(,)a b -,即可得出答案.【详解】1373(2)73222x x y x x x --+===-+++,因为函数72y x =+的图象的对称中心是()2,0-,所以函数732y x =-+的图象的对称中心是()2,3--.故答案为:()2,3--.【点睛】对称性的3个常用结论:(1)若函数()y f x a =+是偶函数,即()()f a x f a x +=-,则函数()y f x =的图象关于直线x a =对称;(2)若对于R 上的任意x 都有(2)()f a x f x -=或(2)()f a x f x +=-,则()y f x =的图象关于直线x a =对称;(3)若函数()y f x b =+是奇函数,即((0))f x b f x b +++-=,则函数()y f x =关于点(,0)b 中心对称.5.函数y =的定义域是______.【答案】(7,)+∞【解析】【分析】根据被开方数非负且分母不为零可得132log 05x ⎛⎫>⎪-⎝⎭,解对数不等式即可求得定义域.【详解】1322log 00155x x ⎛⎫>⇒<<⎪--⎝⎭,()()271075055x x x x x -<⇒>⇒-->--且5x ≠,解得5x <或7x >,2055x x <⇒>-,∴函数y =(7,)+∞.故答案为:(7,)+∞6.已知实数a 满足()()3322211a a --->+,则实数a 的取值范围是_________.【答案】1,22⎛⎫ ⎪⎝⎭【解析】【分析】根据幂函数的定义域和单调性得到关于a 的不等式,解之可得实数a 的取值范围.【详解】由题意知,3322(21)(1)a a --->+,>由于幂函数32y x =的定义域为[0,)+∞,且在[0,)+∞上单调递增,则2101121110a a a a ->⎧⎪⎪>⎨-+⎪+>⎪⎩,即:()()12202111a a a a a ⎧>⎪⎪-⎪>⎨-+⎪⎪>-⎪⎩,所以1221a a a ⎧>⎪⎪<⎨⎪>-⎪⎩,所以实数a 的取值范围是:122a <<.故填:1,22⎛⎫ ⎪⎝⎭.【点睛】本题主要考查幂函数的定义域和单调性,属于基础题.7.已知6x <,求2446x x x ++-的最大值______.【答案】0【解析】【分析】原式化为64(6)166x x -++-,结合基本不等式即可求解最大值.【详解】6x < ,所以60x ->,2244(6)16(6)6464(6)16666x x x x x x x x ++-+-+==-++---因为64(6)6x x -+-64[(6)]166x x =--+-=--,当且仅当2x =-时,取等号;∴2244(6)16(6)6464(6)160666x x x x x x x x ++-+-+==-++---.即2446x x x ++-的最大值为0.故答案为:0.【点睛】方法点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.8.设log c a 、log c b 是方程2530x x +-=的两个实根,则log b ac =______.【答案】3737±【解析】【分析】根据题意由韦达定理得log log 5c c a b +=-,log log 3c c a b ⋅=-,进而得()2log log 37c c a b -=,再结合换底公式得137log 37log b acc b a==±【详解】解:因为log c a 、log c b 是方程2530x x +-=的两个实根,所以由韦达定理得log log 5c c a b +=-,log log 3c c a b ⋅=-,所以()()22log log log log 4log log 37c c c c c c a b a b a b -=+-⋅=,所以log log c c b a -=所以1137log log log 37log b c c acc b b a a===±-.故答案为:3737±【点睛】本题解题的关键在于根据韦达定理与换底公式进行计算,其中()()22log log log log 4log log c c c c c c a b a b a b -=+-⋅,1log log b acc b a=两个公式的转化是核心,考查运算求解能力,是中档题.9.著名的哥德巴赫猜想指出:“任何大于2的偶数可以表示为两个素数的和”,用反证法研究该猜想,应假设的内容是_______.【答案】存在一个大于2的偶数不可以表示为两个素数的和.【解析】【分析】从命题的否定入手可解.【详解】反证法先否定命题,故答案为存在一个大于2的偶数不可以表示为两个素数的和.【点睛】本题主要考查反证法的步骤,利用反证法证明命题时,先是否定命题,结合已知条件及定理得出矛盾,从而肯定命题.10.若关于x 的方程222210()x xa a a R +⋅++=∈有实根,则实数a 的取值范围是______.【答案】(,4-∞-【解析】【分析】利用换元法,设20x t t =>,,转化为方程2210t at a +++=,有正根,分离参数,求最值.【详解】设20x t t =>,,转化为方程2210t at a +++=,有正根,即221(2)4(2)55[(2)]4222t t t a t t t t ++-++=-=-=-++++++,022t t >∴+> ,,则5[(2)4442t t -+++≤-+=-+当且仅当5(2)2t t +=+,即2t =时取等,(,4a ∴∈-∞-故答案为:(,4-∞-11.已知函数)()lgf x ax =的定义域为R ,则实数a 的取值范围是____________.【答案】[1,1]-【解析】【分析】根据对数函数的真数大于0,得出+ax >0恒成立,利用构造函数法结合图象求出不等式恒成立时a 的取值范围.【详解】解:函数f (x )=lg (+ax )的定义域为R ,+ax >0恒成立,-ax 恒成立,设y =,x ∈R ,y 2﹣x 2=1,y ≥1;它表示焦点在y 轴上的双曲线的一支,且渐近线方程为y =±x ;令y =﹣ax ,x ∈R ;它表示过原点的直线;由题意知,直线y =﹣ax 的图象应在y =的下方,画出图形如图所示;∴0≤﹣a ≤1或﹣1≤﹣a <0,解得﹣1≤a ≤1;∴实数a 的取值范围是[﹣1,1].故答案为[﹣1,1].【点睛】本题考查了不等式恒成立问题,考查数形结合思想与转化思想,是中档题.12.若实数、满足114422x y x y +++=+,则22x y S =+的取值范围是_______.【答案】24S <≤【解析】【详解】1122224+4=2+2(2)(2)2(22)(22)2222(22)x y x y x x y x y x y x y ++⇒+=+⇒+-⋅⋅=+22222xyS S -=⋅⋅,又22(22)022222x y xyS +<⋅⋅≤=.22022S S S <-≤,解得24S <≤二、选择题(每小题5分,共20分)13.已知,a b ∈R ,则“33a b >”是“33a b >”的A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件【答案】C 【解析】【分析】根据充分、必要条件定义判定即可.【详解】解:当33a b >时,根据指数函数3x y =是定义域内的增函数可得a b >,因为幂函数3y x =是定义域内的增函数,所以33a b >,所以充分性成立,当33a b >时,因为幂函数3y x =是定义域内的增函数,所以a b >,又指数函数3x y =是定义域内的增函数,所以33a b >,所以必要性成立,综上:“33a b >”是“33a b >”的充要条件.故选:C.【点睛】充分条件、必要条件的三种判定方法:(1)定义法:根据,p q q p ⇒⇒进行判断,适用于定义、定理判断性问题;(2)集合法:根据,p q 对应的集合之间的包含关系进行判断,多适用于命题中涉及字母范围的推断问题;(3)等价转化法:根据一个命题与其逆否命题的等价性进行判断,适用于条件和结论带有否定性词语的命题.14.若函数()()log a f x x b =+的大致图象如图,其中,a b 为常数,则函数()xg x a b =+的大致图像是()A. B.C. D.【答案】B 【解析】【分析】由函数()log ()a f x x b =+的图象为减函数可知,01a <<,且01b <<,可得函数()x g x a b =+的图象递减,且1(0)2g <<,从而可得结果.【详解】由函数()log ()a f x x b =+的图象为减函数可知,01a <<,再由图象的平移知,()log ()a f x x b =+的图象由()log a f x x =向左平移可知01b <<,故函数()x g x a b =+的图象递减,且1(0)2g <<,故选B.【点睛】函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的特征点,排除不合要求的图象.15.由无理数引发的数学危机一直延续到19世纪.直到1872年,德国数学家戴德金从连续性的要求出发,用有理数的“分割”来定义无理数(史称戴德金分割),并把实数理论建立在严格的科学基础上,才结束了无理数被认为“无理”的时代,也结束了持续2000多年的数学史上的第一次大危机.所谓戴德金分割,是指将有理数集Q 划分为两个非空的子集M 与N ,且满足Q M N ⋃=,M N ⋂=∅,M 中的每一个元素都小于N 中的每一个元素,则称(,)M N 为戴德金分割.试判断,对于任一戴德金分割(,)M N ,下列选项中,不可能成立的是()A.M 没有最大元素,N 有一个最小元素 B.M 没有最大元素,N 也没有最小元素C.M 有一个最大元素,N 有一个最小元素 D.M 有一个最大元素,N 没有最小元素【答案】C 【解析】【分析】由题意依次举出具体的集合,M N ,从而得到,,A B D 均可成立.【详解】对A ,若{|0}M x Q x =∈<,{|0}N x Q x =∈;则M 没有最大元素,N 有一个最小元素0,故A 正确;对B ,若{|M x Q x =∈<,{|N x Q x =∈;则M 没有最大元素,N 也没有最小元素,故B 正确;对C ,M 有一个最大元素,N 有一个最小元素不可能,故C 错误;对D ,若{|0}M x Q x =∈,{|0}N x Q x =∈>;M 有一个最大元素,N 没有最小元素,故D 正确;故选:C .【点睛】本题考查对集合新定义的理解,考查创新能力和创新应用意识,对推理能力的要求较高.16.设函数()y f x =的定义域D ,若对任意的1x D ∈,总存在2x D ∈,使得()()121f x f x ⋅=,则称函数()y f x =具有性质M .下列结论:①函数3xy =具有性质M ;②函数3y x x =-具有性质M ;③若函数8log (2)y x =+,[]0,x t ∈具有性质M ,则510t =.其中正确的个数是()A.0个 B.1个C.2个D.3个【答案】C 【解析】【分析】根据函数性质M 的定义和指数对数函数的性质,结合每个选项中具体函数的定义,即可判断.【详解】解:对于①:3x y =的定义域是R ,所以1212()()13x x f x f x +⋅==,则120x x +=.对于任意的1x D ∈,总存在2x D ∈,使得()()121f x f x ⋅=,所以函数3x y =具有性质M ,①正确;对于②:函数3y x x =-的定义域为R ,所以若取10x =,则1()0f x =,此时不存在2x R ∈,使得12()()1f x f x ⋅=,所以函数3y x x =-不具有性质M ,②错误;对于③:函数8log (2)y x =+在[]0,t 上是单调增函数,其值域为[]88log 2,log (2)t +,要使得其具有M 性质,则88881log 2log (2)1log (2)log 2t t ⎧≤⎪+⎪⎨⎪+≤⎪⎩,即88log 2log (2)1t ⨯+=,解得3(2)8t +=,510t =,故③正确;故选:C.【点睛】本题考查函数新定义问题,对数和指数的运算,主要考查运算求解能力和转换能力,属于中档题型.三、解答题(共5题,满分76分)17.已知函数2()|21|f x x a x a =-+-+.(1)当2a =时,求不等式()4f x ≥的解集;(2)若()4f x ≥,求a 的取值范围.【答案】(1)32x x ⎧≤⎨⎩或112x ⎫≥⎬⎭;(2)(][),13,-∞-+∞ .【解析】【分析】(1)分别在3x ≤、34x <<和4x ≥三种情况下解不等式求得结果;(2)利用绝对值三角不等式可得到()()21f x a ≥-,由此构造不等式求得结果.【详解】(1)当2a =时,()43f x x x =-+-.当3x ≤时,()43724f x x x x =-+-=-≥,解得:32x ≤;当34x <<时,()4314f x x x =-+-=≥,无解;当4x ≥时,()43274f x x x x =-+-=-≥,解得:112x ≥;综上所述:()4f x ≥的解集为32x x ⎧≤⎨⎩或112x ⎫≥⎬⎭.(2)()()()()22222121211f x x a x a x ax a a a a =-+-+≥---+=-+-=-(当且仅当221a x a -≤≤时取等号),()214a ∴-≥,解得:1a ≤-或3a ≥,a ∴的取值范围为(][),13,-∞-+∞ .【点睛】本题考查绝对值不等式的求解、利用绝对值三角不等式求解最值的问题,属于常考题型.18.有一种候鸟每年都按一定的路线迁徙,飞往繁殖地产卵,科学家经过测量发现候鸟的飞行速所度可以表示为函数301log lg 2100xv x =-,单位是km /min ,其中x 表示候鸟每分钟耗氧量的单位数,常数0x 表示测量过程中候鸟每分钟的耗氧偏差.(参考数据lg 20.3,= 1.2 1.43 3.74,3 4.66==)(1)若05x =,候鸟停下休息时,它每分钟的耗氧量为多少个单位?(2)若雄鸟的飞行速度为1.5km /min ,雌鸟的飞行速度为1km /min ,那么此时雄鸟每分钟的耗氧量是雌鸟每分钟耗氧量的多少倍?【答案】(1)466;(2)3倍.【解析】【分析】(1)将05x =,0v =代入函数解析式,计算得到答案.(2)根据题意得到方程组13023011.5log lg 210011log lg 2100x x x x ⎧=-⎪⎪⎨⎪=-⎪⎩,两式相减化简即可求出答案.【详解】(1)将05x =,0v =代入函数301log lg 2100x v x =-,得:31log lg 502100x-=,即()3log 2lg 521lg 2 1.40100x==-=,所以1.403 4.66100x==,所以466x =.故候鸟停下休息时,它每分钟的耗氧量为466个单位.(2)设雄鸟每分钟的耗氧量为1x ,雌鸟每分钟耗氧量为2x ,由题意可得:13023011.5log lg 210011log lg 2100x x x x⎧=-⎪⎪⎨⎪=-⎪⎩,两式相减可得:13211log 22x x =,所以132log 1x x =,即123x x =,故此时雄鸟每分钟的耗氧量是雌鸟每分钟耗氧量的3倍.【点睛】方法点睛:与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考查书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际问题转化为数学模型进行解答.19.柯西不等式具体表述如下:对任意实数1a ,2a ,n a 和1b ,2b n b ,(,2)n Z n ∈≥都有()()()222222212121122n n n n a a a b b b a b a b a b ++++++≥+++L L L ,当且仅当1212n na a ab b b ===L 时取等号.(1)请用柯西不等式证明:对任意正实数a ,b ,x ,y ,不等式222()a b a b x y x y++≥+成立,(并指出等号成立条件)(2)请用柯西不等式证明:对任意正实数1x ,2x , ,n x ,且121n x x x +++= ,求证:12212211111x x x x x x n+++≥++++ (并写出等号成立条件).【答案】(1)证明见解析;(2)证明见解析.【解析】【分析】(1)根据任意正实数a ,b ,x ,y ,由柯西不等式得222()(()a b x y a b x y +++,从而证明222()a b a b x yx y+++成立;(2)由121n x x x ++=…+,得121(1)(1)(1)n n x x x +=++++⋯++,然后利用柯西不等式,即可证明12212211111x x xx x x n++⋯⋯+++++成立.【详解】(1)对任意正实数a ,b ,x ,y ,由柯西不等式得()()()()222222222a b a b x y a b x y ⎡⎤⎛⎫⎡⎤⎢⎥++=++⎪⎢⎥⎢⎥⎣⎦⎝⎭⎢⎥⎣⎦,当且仅当x y a b=时取等号,∴222()a b a b x y x y+++.(2)121n x x x ++⋯+= ,121(1)(1)(1)n n x x x ∴+=++++⋯++,2221212()(1)111n nx x x n x x x ++⋯+++++222121212()[(1)(1)(1)]111n n nx x x x x x x x x =++⋯+++++⋯+++++212()1n x x x ++⋯+=,当且仅当121n x x x n==⋯==时取等号,∴222121211111n nx x x x x x n ++⋯+++++.【点睛】方法点睛:利用柯西不等式求最值或证明不等式时,关键是对原目标代数式进行配凑,以保证出现常数结果.同时,要注意等号成立的条件,配凑过程采取如下方法:一是考虑题设条件;二是对原目标代数式进行配凑后利用柯西不等式解答.20.已知函数、()y f x =的表达式为()(0,1)xf x a a a =>≠,且1(2)4f -=,(1)求函数()y f x =的解析式;(2)若()()22log ()4()0m f x f x -+=在区间[]0,2上有解,求实数m 的取值范围;(3)已知113k ≤<,若方程()10f x k --=的解分别为1x 、()212x x x <,方程()1021k f x k --=+的解分别为3x 、()434x x x <,求1234x x x x -+-的最大值.【答案】(1)()2x f x =;(2)[]3,1-;(3)2log 3-.【解析】【分析】(1)由2211(2)4f aa --===可得答案.(2)由条件可得()2()4()1m f x f x -+=在区间[]0,2上有解,设2x t =,由[]0,2x ∈,则14t ≤≤,即()24123t t t m -+==--在区间[]1,4t ∈上有解,可得答案.(3)由条件121x k =-,221x k =+,即12121x x k k --=+,以及431221xk k +=+或3+1221x k k =+,所以341312x x k k -+=+,从而可得()()1234341241111322213131331x x x x x x x x k k k k k k k -+---+-+-=⋅=⨯==-++++,求出最大值可得答案.【详解】(1)由2211(2)4f a a --===,所以2a =所以()2xf x =(2)()()22log ()4()0m f x f x -+=在区间[]0,2上有解即()2()4()1m f x f x -+=在区间[]0,2上有解即()22421x x m -+⨯=在区间[]0,2上有解即设2x t =,由[]0,2x ∈,则14t ≤≤所以()24123t t t m -+==--在区间[]1,4t ∈上有解当[]1,4t ∈时,[]2134,1t t ∈--+所以31m -≤≤(3)由()10f x k --=,即21x k =+或21x k=-由方程()10f x k --=的解分别为1x 、()212x x x <,则121x k =-,221x k=+所以12121x x k k--=+由()1021k f x k --=+,即31212121x k k k k +=+=++或+1212121xk k k k =-=++方程()1021k f x k --=+的解分别为3x 、()434x x x <,则431221x k k +=+或3+1221xk k =+所以341312x xk k -+=+所以()()1234341241111322213131331x x x x x x x x k k k k k k k -+---+-+-=⋅=⨯==-++++函数431133y k =++-在113k ⎡⎫∈⎪⎢⎣⎭,上单调递减,当13k =时,431133y k =++-有最大值13.所以()()1234123x x x x -+-≤,则1322421log log 33x x x x -=-+≤-所以1234x x x x -+-的最大值为2log 3-【点睛】关键点睛:本题考查指数的运算和方程有解求参数,方程根的关系,解答本题的关键是由题意可得()22421x x m -+⨯=在区间[]0,2上有解,设2x t =,分类参数即()24123t t t m -+==--在区间[]1,4t ∈上有解,以及根据方程的根的情况可得()()1234341241111322213131331x x x x x x x x k k k k k k k -+---+-+-=⋅===-++++,属于中档题.21.对于集合{}()12,,,3n A a a a n Z n =∈≥ ,其中每个元素均为正整数,如果任意去掉其中一个元素(1,2,3,)i a i n = 之后,剩余的所有元素组成集合(1,2,)i A i n = ,并且i A 都能分为两个集合B 和C ,满足B C =∅ ,i B C A ⋃=,其中B 和C 的所有元素之和相等,就称集合A 为“可分集合”.(1)判断集合{}1,2,3,4和{}1,3,5,7,9,11,13是否是“可分集合”(不必写过程);(2)求证:五个元素的集合{}12345,,,,A a a a a a =一定不是“可分集合”;(3)若集合{}()12,,,3n A a a a n Z n =∈≥ 是“可分集合”.①证明:n 为奇数;②求集合A 中元素个数的最小值.【答案】(1)集合{}1,2,3,4不是,集合{}1,3,5,7,9,11,13是;(2)证明见解析;(3)①证明见解析;②7.【解析】【分析】(1)根据“可分集合”定义直接判断即可得到结论;(2)不妨设123450a a a a a <<<<<,分去掉的元素是1a 时得5234a a a a =++①,或2534a a a a +=+②,去掉的元素是2a 得5134a a a a =++③,或1534a a a a +=+④,进而求解得矛盾,从而证明结论.(3)①设集合{}()12,,,3n A a a a n Z n =∈≥ 所有元素之和为M ,由题可知,()1,2,3,,i M a i n -= 均为偶数,所以()1,2,3,,i a i n = 的奇偶性相同,进而分类讨论M 为奇数和M 为偶数两类情况,分析可得集合A 中的元素个数为奇数;②结合(1)(2)问依次验证3,5,7n n n ===时集合A 是否为“可分集合”从而证明.【详解】解:(1)对于集合{}1,2,3,4,去掉元素1,剩余的元素组成的集合为{}12,3,4A =,显然不能分为两个集合B 和C ,满足B C =∅ ,1B C A ⋃=,其中B 和C 的所有元素之和相等,故{}1,2,3,4不是“可分集合”对于集合{}1,3,5,7,9,11,13,去掉元素1,{}13,5,7,9,11,13A =,显然可以分为{}{}11,13,3,5,7,9B C ==,满足题意;去掉元素3,{}21,5,7,9,11,13A =,显然可以分为{}{}1,9,13,5,7,11B C ==,满足题意;去掉元素5,{}31,3,7,9,11,13A =,显然可以分为{}{}1,3,7,11,9,13B C ==,满足题意;去掉元素7,{}41,3,5,9,11,13A =,显然可以分为{}{}1,9,11,3,5,13B C ==,满足题意;去掉元素9,{}51,3,5,7,11,13A =,显然可以分为{}{}7,13,1,3,5,11B C ==,满足题意;去掉元素11,{}61,3,5,7,9,13A =,显然可以分为{}{}3,7,9,1,5,13B C ==,满足题意;去掉元素13,{}71,3,5,7,9,11A =,显然可以分为{}{}1,3,5,9,7,11B C ==,满足题意;故{}1,3,5,7,9,11,13是可分集合.(2)不妨设123450a a a a a <<<<<,若去掉的是1a ,则集合{}12345,,,A a a a a =可以分成{}{}5234,,,B a C a a a ==或{}{}2534,,,B a a C a a ==,即:5234a a a a =++①或2534a a a a +=+②若去掉的是2a ,则集合{}21345,,,A a a a a =可以分成{}{}5134,,,B a C a a a ==或{}{}1534,,,B a a C a a ==,即:5134a a a a =++③或1534a a a a +=+④,由①③得21a a =,矛盾;由①④21a a =-,矛盾;由②③得21a a =-,矛盾;由②④21a a =,矛盾;所以五个元素的集合{}12345,,,,A a a a a a =一定不是“可分集合”;(3)①证明:设集合{}()12,,,3n A a a a n Z n =∈≥ 所有元素之和为M ,由题可知,()1,2,3,,i M a i n -= 均为偶数,所以()1,2,3,,i a i n = 的奇偶性相同,若M 为奇数,则()1,2,3,,i a i n = 也均为奇数,由于12n M a a a =+++ ,所以n 为奇数;若M 为偶数,则()1,2,3,,i a i n = 也均为偶数,此时设()21,2,3,,i i a b i n == ,则{}12,,,n b b b 也是“可分集合”,重复上述操作有限次,便可得各项均为奇数的“可分集合”,此时各项之和也为奇数,集合A 中的元素个数为奇数.综上所述,集合A 中的元素个数为奇数.②当3n =时,显然任意集合{}123,,A a a a =不是“可分集合”;当5n =时,第二问已经证明集合{}12345,,,,A a a a a a =不是“可分集合”;当7n =时,第一问已验证集合{}1,3,5,7,9,11,13A =是“可分集合”.所以集合A 中元素个数的最小值为7.【点睛】本题考查集合新定义的问题,对此类题型首先要多读几遍题,将新定义理解清楚,然后根据定义依次验证,证明即可.注意对问题思考的全面性,考查学生的思维迁移能力,分析能力.本题第二问解题的关键在于假设123450a a a a a <<<<<,以去掉元素1a 和2a 两种情况下的可分集合推出矛盾,进而证明,是难题.。

2020-2021学年上海市杨浦区控江中学高一上学期期末数学试题(解析版)

2020-2021学年上海市杨浦区控江中学高一上学期期末数学试题(解析版)

2020-2021学年上海市杨浦区控江中学高一上学期期末数学试题一、单选题1.函数111y x =-+的值域是( ) A .(,1)-∞B .(1,)+∞C .(,1)(1,)-∞⋃+∞D .(,)-∞+∞【答案】C 【分析】由反比例函数的性质可知101x ≠+,从而推出所求函数的值域. 【详解】解:由反比例函数的性质可知:101y x =≠+,则1111y x =-≠+,故值域为()(),11,+-∞⋃∞. 故选:C.2.若,0a b c a b c >>++=,则下列各式正确的是( )A .ab bc >B .ac bc >C .a b b c >D .ab ac > 【答案】D【分析】已知a b c >>,且0a b c ++=,于是可以推出得到最大数0a >和最小数0c <,而b 为正、负、零均有可能,所以每个选项代入不同的b ,逐一验证.【详解】a b c >>且0a b c ++=.当0a ≤时,0c b a <<,则0a b c ++<,与已知条件0a b c ++=矛盾,所以必有0a >,同理可得0c <.A 项,当1a =,0b =,1c =-时,ab bc =,故A 项错误;B 项,()0ac bc c a b -=-<,即ac bc <,故B 项错误;C 项,0b =时,a b c b =,故C 项错误;D 项,()0ab ac a b c -=->,即ab ac >,故D 项正确.故选:D3.已知函数1,0()0,01,0x f x x x >⎧⎪==⎨⎪-<⎩,若2()()F x x f x =⋅,则()F x 是( )A .奇函数,在(,)-∞+∞上为严格减函数B .奇函数,在(,)-∞+∞上为严格增函数C .偶函数,在(,0)-∞上严格减,在(0,)+∞上严格增D .偶函数,在(,0)-∞上严格增,在(0,)+∞上严格减【答案】B【分析】由()()f x f x -=-可知()f x 为奇函数,利用奇偶函数的概念即可判断设2()()F x x f x =⋅的奇偶性,从而得到答案.【详解】1,01,0()0,00,0()1,01,0x x f x x x f x x x ⎧->>⎧⎪⎪-===-==-⎨⎨⎪⎪<-<⎩⎩()f x ∴为奇函数,又2()()F x x f x =⋅22()()()()()F x x f x x f x F x ∴-=-⋅-=-⋅=-()F x ∴是奇函数,可排除C,D.又222,0()()0,0,0x x F x x f x x x x ⎧>⎪=⋅==⎨⎪-<⎩()F x ∴在(,)-∞+∞上单调递增.故选:B4.设0a b c >>>,则()221121025a ac c ab a a b ++-+-取得最小值时,a 的值为( ) AB .2C .4 D.【答案】A 【分析】转化条件为原式211()(5)()ab a a b a c ab a a b =+++-+--,结合基本不等式即可得解. 【详解】()221121025a ac c ab a a b ++-+- 2211()()21025()ab a a b ab a a b a ac c ab a a b =+++----+-+- 2211()1025()ab a a b a ac c ab a a b =+++-+-+-211()(5)()ab a a b a c ab a a b =+++-+--04≥=, 当且仅当1()15ab a a b a c =⎧⎪-=⎨⎪=⎩,即a =2b =5c =时,等号成立. 故选:A.【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1) “一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.二、填空题5.已知全集{}{}210,27U x x A x x =<≤=<<,则A =_________.【答案】[]7,10【分析】根据补集的定义写出补集即可.【详解】解:{}{}210,27U x x A x x =<≤=<<,则A ={}|710x x ≤≤.故答案为:[]7,10.6.设实数a 满足2log 4a =,则a =_________.【答案】16【分析】根据对数式与指数式的互化即可求解.【详解】因为2log 4a =,所以4216a ==,故答案为:167.已知幂函数235()(1)mm f x m x --=-的图像不经过原点,则实数m =_________.【答案】2【分析】先由幂函数的定义求出m ,再检验得解.【详解】依题意得11m -=,解得2m =.此时()771f x x x -==,其图像不经过原点,符合题意, 因此实数m 的值为2.故答案为: 28.函数2()21f x x ax =--在区间[]1,3上为严格减函数的充要条件是_________.【答案】3a ≥【分析】根据二次函数的性质,建立对称轴与所给区间的关系即可求解.【详解】因为函数2()21f x x ax =--在区间[]1,3为严格减函数,所以二次函数对称轴3x a =≥,故答案为:3a ≥9.函数22()log (1)f x x =-的定义域为_________.【答案】(1,1)-【分析】根据对数的真数大于0求解即可.【详解】()()22log 1f x x =-, 210x ∴->,解得11x -<<所以函数()()2log 1a f x x =-的定义域为()1,1-, 故答案为:()1,1-10.设函数f (x )200x x x x -≤⎧=⎨⎩,,>,若f (α)=9,则α=_____. 【答案】﹣9或3 【分析】对函数值进行分段考虑,代值计算即可求得结果.【详解】由题意可得09αα≤⎧⎨-=⎩或209αα⎧⎨=⎩>, ∴α=﹣9或α=3故答案为:﹣9或3【点睛】本题考查由分段函数的函数值求自变量,属简单题.11.若函数()(1)x f x a a =>在[]1,2-上的最大值为4,则其最小值为_________.【答案】12【分析】根据指数函数的单调性即可求解.【详解】因为函数()(1)x f x a a =>在[]1,2-单调递增,所以24a =,解得2a =,当1x =-,1min 1()(1)22f x f -=-==, 故答案为:1212.在同一平面直角坐标系中,函数()y g x =的图像与3x y =的图像关于直线y x =对称,而函数()y f x =的图像与()y g x =的图像关于y 轴对称,若()1f a =-,则a 的值是______. 【答案】13- 【分析】根据函数的对称性求出()f x 的解析式,代入a 求解即可.【详解】解:因为函数()y g x =的图像与3x y =的图像关于直线y x =对称,则()3log g x x =, 又函数()y f x =的图像与()y g x =的图像关于y 轴对称,则()3()log f x x =-,()3()log 1f a a =-=-,则13a =-. 故答案为:13- 【点睛】知识点点睛:(1)()y g x =与x y a =图像关于直线y x =对称,则()log a g x x =;(2)()y f x =与()y g x =关于y 轴对称,则()()f x g x =-;(3)()y f x =与()y g x =关于x 轴对称,则()()f x g x =-;13.如果关于x 的方程53x x a -++=有解,则实数a 的取值范围是_________.【答案】[)8,+∞【分析】根据绝对值的几何意义求得53x x -++最小值为8,即可求出实数a 的取值范围.【详解】因为53x x -++表示数轴上的x 对应点到-3和5对应点的距离之和,其最小值为8, 故当8a ≥时,关于x 的方程53x x a -++=有解,故实数a 的取值范围为[8,)+∞,故答案为:[8,)+∞.14.若定义在R 上的奇函数()f x 在(0,)+∞上是严格增函数,且(4)0f -=,则使得()0xf x >成立的x 的取值范围是_________.【答案】(,4)(4,)-∞-⋃+∞【分析】由函数的奇偶性和零点,分别求出()0f x >和()0f x <的解集,再分别讨论当0x >和0x <时()0xf x >的解集即可求出结果.【详解】解:因为()f x 为奇函数,且有(4)0f -=,则()f x 在(,0)-∞上是也严格递增,且(4)0f =,所以()0f x >的解集为:()()4,04,-+∞;()0f x <的解集为:()(),40,4-∞-,则当0x >时,()0xf x >的解为()4,+∞,当0x <时,()0xf x >的解为(),4-∞-故()0xf x >成立的x 的取值范围是()(),44,-∞-+∞. 故答案为:()(),44,-∞-+∞【点睛】思路点睛:类似求()0xf x >或求()0f x x >的解集的问题,往往是根据函数的奇偶性和单调性先求出()0f x >或()0f x <的解,再结合x 的范围进行求解.15.函数()lg(221)x x f x a -=++-的值域是R ,则实数a 的取值范围是___________.【答案】](,1-∞-【分析】函数()lg(221)x x f x a -=++-的值域为R ,即()221x x g x a -=++-能取遍一切正实数,利用均值不等式求解即可.【详解】设()221x x g x a -=++-,由()lg(221)x x f x a -=++-的值域为R ,知()221x x g x a -=++-可以取所有的正值,又()22111x x g x a a a -=++-≥-=+,当且仅当0x =时等号成立,故()g x 的值域为[1,)a ++∞,所以只需满足[)()1,0,a ++∞⊇+∞即可,即1a ≤-故答案为:](,1-∞-【点睛】关键点点睛:求出()221x x g x a -=++-的值域,由题意知()221x x g x a -=++-能取遍一切正实数,转化为()g x 的值域包含()0,∞+是解题的关键,属于中档题.16..若直角坐标平面内两点,P Q 满足条件:①,P Q 都在函数()y f x =的图象上;②,P Q 关于原点对称,则称点对(,)P Q 是函数()y f x =的一个“友好点对”(点对(,)P Q 与(,)Q P 看作同一个“友好点对”).已知函数2241,0(){2,0x x x x f x x e++<=≥,则()f x 的“友好点对”有 个. 【答案】2【详解】解:根据题意:“友好点对”,可知,只须作出函数y=2x 2+4x+1(x <0)的图象关于原点对称的图象,看它与函数y="2" /e x (x≥0)交点个数即可.如图,观察图象可得:它们的交点个数是:2.即f (x )的“友好点对”有:2个.故答案为2三、解答题17.已知函数2()21f x ax ax =++.(1)若实数1a =,请写出函数()3f x y =的单调区间(不需要过程);(2)已知函数()y f x =在区间[3,2]-上的最大值为2,求实数a 的值.【答案】(1)增区间是(1,)-+∞,减区间是(,1)-∞-;(2)18a =或1a =-. 【分析】(1)求出()f x 的单调区间,然后根据复合函数的单调性写出()3f x y =的单调区间即可;(2)根据二次函数的性质,讨论0a <,0a =,0a >不同范围下()f x 的最值,解出a .【详解】解:(1)1a =时,()221f x x x =++,在(),1-∞-上单调递减,在()1,-+∞上单调递增;则()3f x y =的单调递减区间为(),1-∞-,单调递增区间为()1,-+∞.(2)()()222111f x ax ax a x a =++=++-,对称轴为1-, 当0a <时,()f x 在1x =-处取得最大值,()112f a -=-=,解得:1a =-当0a =时,()1f x =不成立;当0a >时,()f x 在()3,1--上单调递减,在()1,2-上单调递增,且对称轴为1x =-,()max f x =()2f ()2912f a a =+-=,解得:18a =综上所述:1a =-或18a =. 【点睛】本题考查复合函数的单调性以及二次函数的最值,属于基础题.思路点睛:(1)复合函数的单调性:分别判断内层函数和外层函数的单调性,根据同增异减的原则写出单调区间即可;(2)()221f x ax ax =++的最高次项系数为a ,不一定为二次函数,需讨论a 与0的关系; 18.设函数()|2|,()2f x x a g x x =-=+.(1)当1a =时,求不等式()()f x g x ≤的解集;(2)求证:1,,222b b f f f ⎛⎫⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭中至少有一个不小于12. 【答案】(1)1,33⎡⎤-⎢⎥⎣⎦;(2)证明见解析.【分析】(1)利用绝对值的意义,分类讨论,即可求不等式()()f x g x ≤的解集;(2)利用反证法证明即可.【详解】(1)当a =1时,|2x -1|≤x +2, 化简可得12122x x x ⎧≤⎪⎨⎪-≤+⎩或12212x x x ⎧<⎪⎨⎪-≤+⎩ 解得1132x -≤≤或132x <≤ 综上,不等式的解集为)1|33x x ⎧⎫-≤≤⎨⎬⎩⎭.(2)证明:假设1,,222b bf f f⎛⎫⎛⎫⎛⎫-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭都小于12,则1122112211122a ba ba⎧-<+<⎪⎪⎪-<-<⎨⎪⎪-<-<⎪⎩,前两式相加得-12<a<12与第三式12<a<32矛盾.因此假设不成立,故1,,222b bf f f⎛⎫⎛⎫⎛⎫-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭中至少有一个不小于12.【点睛】关键点点睛:证明至少、至多类命题时,考虑反证法是解题的关键,首先要根据题意恰当反设,正常推理,寻求矛盾是重点,属于中档题.19.研究表明:在一节40分钟的网课中,学生的注意力指数y与听课时间x(单位:分钟)之间的变化曲线如图所示,当[0,16]x∈时,曲线是二次函数图像的一部分;当[16,40]x∈时,曲线是函数0.880log()y x a=++图像的一部分,当学生的注意力指数不高于68时,称学生处于“欠佳听课状态”.(1)求函数()y f x=的解析式;(2)在一节40分钟的网课中,学生处于“欠佳听课状态”的时间有多长?(精确到1分钟)【答案】(1)20.81(12)84,(0,16]()4log(15)80,(16,40]x xf xx x⎧--+∈⎪=⎨⎪-+∈⎩;(2)14分钟.【分析】(1)根据题意,分别求得(0,16]x∈和(16,40]x∈上的解析式,即可求解;(2)当(0,16]x∈和(16,40]x∈时,令()68f x<,求得不等式的解集,即可求解.【详解】(1)当(0,16]x∈时,设函数2()(12)84(0)f x b x b=-+<,因为2(16)(1612)8480f b =-+=,所以14b =-,所以21()(12)844f x x =--+, 当(16,40]x ∈时,0.8()log ()80f x x a =++, 由0.8(16)log (16)8080f a =++=,解得15a =-,所以0.8()log (15)80f x x =-+, 综上,函数的解析式为20.81(12)84,(0,16]()4log (15)80,(16,40]x x f x x x ⎧--+∈⎪=⎨⎪-+∈⎩. (2)当(0,16]x ∈时,令21()(12)84684f x x =--+<,即2(12)64x ->,解得4x <或20x >(舍去),所以[0,4]x ∈,当(16,40]x ∈时,令0.8()log (15)8068f x x =-+<,得12150.829.6x -≥+≈,所以[30,40]x ∈,所以学生处于“欠佳听课状态”的时间长为40403014-+-=分钟.20.已知1()log 1a mx f x x -=-(0a >、1a ≠)是奇函数. (1)求实数m 的值;(2)判断函数()f x 在(1,)+∞上的单调性,并给出证明;(3)当(,2)x n a ∈-时,()f x 的值域是(1,)+∞,求实数a 与n 的值.【答案】(1)1m =-;(2)1a >时()f x 在(1,)+∞上严格减;01a <<时.()f x 在(1,)+∞上严格增;(3)21a n ==.【分析】(1)根据奇函数的定义可知f (﹣x )+f (x )=0,建立关于m 的等式关系,解之即可;(2)先利用函数单调性的定义研究真数的单调性,讨论a 的取值,然后根据复合函数的单调性进行判定;(3)先求函数的定义域,讨论(n ,a ﹣2)与定义域的关系,然后根据单调性建立等量关系,求出n 和a 的值.【详解】(1)∵函数()11amx f x log x -=-(a >0,a ≠1)是奇函数. ∴f (﹣x )+f (x )=0 即11log log 011aa mx mx x x +-+=---, 所以11log 011a mx mx x x +-⋅=---, 即222111m x x-=- 解得1m =±,当1m =时,1()log log (1)1a a xf x x -==--无意义,舍去. 故1m =-.(2)由(1)及题设知:()11ax f x log x +=-, 设11221111x x t x x x +-+===+---, ∴当x 1>x 2>1时,()()()211212122221111x x t t x x x x --=-=---- ∴t 1<t 2.当a >1时,log a t 1<log a t 2,即f (x 1)<f (x 2). ∴当a >1时,f (x )在(1,+∞)上是减函数. 同理当0<a <1时,f (x )在(1,+∞)上是增函数.(3)由题设知:函数f (x )的定义域为(1,+∞)∪(﹣∞,﹣1),∴①当n <a ﹣2≤﹣1时,有0<a <1.由(1)及(2)题设知:f (x )在为增函数,由其值域为(1,+∞)知11121an log n a +⎧=⎪-⎨⎪-=-⎩(无解); ②当1≤n <a ﹣2时,有a >3.由(1)及(2)题设知:f (x )在(n ,a ﹣2)为减函数,由其值域为(1,+∞)知1113a n a log a =⎧⎪-⎨=⎪-⎩得2a =+n =1.【点睛】方法点睛:利用定义法判断函数的单调性的一般步骤是:(1)在已知区间上任取21x x >;(2)作差()()21f x f x -;(3)判断()()21f x f x -的符号(往往先分解因式,再判断各因式的符号),()()210f x f x -> 可得()f x 在已知区间上是增函数,()()210f x f x -< 可得()f x 在已知区间上是减函数.21.若函数()f x 的定义域为D ,集合M D ⊆,若存在非零实数t 使得任意x M ∈都有x t D +∈,且()()f x t f x +>,则称()f x 为M 上的t -增长函数.(1)已知函数()g x x =,函数2()h x x =,判断()g x 和()h x 是否为区间[]1,0-上的32-增长函数,并说明理由;(2)已知函数()f x x =,且()f x 是区间[]4,2--上的n -增长函数,求正整数n 的最小值;(3)如果()f x 是定义域为R 的奇函数,当0x ≥时,22()f x x a a =--,且()f x 为R 上的4-增长函数,求实数a 的取值范围.【答案】(1)()g x x =是,2()h x x =不是,理由见解析;(2)9;(3)(1,1)a ∈-. 【分析】(1)利用给定定义推理判断或者反例判断而得; (2)把恒成立的不等式等价转化,再求函数最小值而得解;(3)根据题设条件,写出函数f (x )的解析式,再分段讨论求得,最后证明即为所求. 【详解】(1)g (x )定义域R ,3333[1,0],(),()()()02222x x R g x g x x x ∀∈-+∈+-=+-=>,g (x )是, 取x =-1,311(1)()1(1)224h h h -+==<=-,h (x )不是, 函数()g x x =是区间[]1,0-上的32-增长函数,函数2()h x x =不是;(2)依题意,2[4,2],()()||||20x f x n f x x n x nx n ∀∈--+>⇔+>⇔+>, 而n>0,关于x 的一次函数22nx n +是增函数,x =-4时22min (2)8nx n n n +=-, 所以n 2-8n>0得n>8,从而正整数n 的最小值为9;(3)依题意,2222222,?(),?2,?x a x a f x x a x a x a x a ⎧+≤-⎪=--<<⎨⎪-≥⎩,而,(4)()x R f x f x ∀∈+>, f (x )在区间[-a 2,a 2]上是递减的,则x ,x +4不能同在区间[-a 2,a 2]上,4>a 2-(-a 2)=2a 2, 又x ∈[-2a 2,0]时,f (x )≥0,x ∈[0,2a 2]时,f (x )≤0,若2a 2<4≤4a 2,当x =-2a 2时,x +4∈[0,2a 2],f (x +4)≤f (x )不符合要求, 所以4a 2<4,即-1<a<1.因为:当4a 2<4时,①x +4≤-a 2,f (x +4)>f (x )显然成立;②-a 2<x +4<a 2时,x <a 2-4<-3a 2,f (x +4)=-(x +4)>-a 2,f (x )=x +2a 2<-a 2,f (x +4)>f (x ); ③x +4>a 2时,f (x +4)=(x +4)-2a 2>x +2a 2≥f (x ),综上知,当-1<a<1时,()f x 为R 上的4-增长函数, 所以实数a 的取值范围是(-1,1).【点睛】(1)以函数为背景定义的创新试题,认真阅读,分析转化成常规函数解决;(2)分段函数解析式中含参数,相应区间也含有相同的这个参数,要结合函数图象综合考察,并对参数进行分类讨论.。

2020-2021学年上海市中考数学二模试卷及答案解析A

2020-2021学年上海市中考数学二模试卷及答案解析A

上海市中考数学二模试卷一、选择题(共6小题,每小题4分,满分24分)1.﹣8的立方根是()A.2 B.﹣2 C.±2 D.2.下列属于最简二次根式的是()A.B.C.D.3.下列方程中,有实数根的是()A.=﹣2 B.x2+1=0 C.=1 D.x2+x+1=04.在△ABC中,DE∥BC,DE与边AB相交于点D,与边AC相交于点E.如果DE过重心G点,且DE=4,那么BC的长是()A.5 B.6 C.7 D.85.饭店为某公司提供“白领午餐”,有12元、15元、18元三种价格的套餐可供选择,每人限购一份.本周销售套餐共计500份,其中12元的占总份数的20%,15元的卖出180份,其余均为18元的,那么所购买的盒饭费用的中位数和众数分别是()A.15元和18元B.15元和15元C.18元和15元D.18元和18元6.如图,某水渠的横断面是等腰梯形,已知其斜坡AD和BC的坡度为1:0.6,现测得放水前的水面宽EF为1.2米,当水闸放水后,水渠内水面宽GH为2.1米.求放水后水面上升的高度是()A.0.55 B.0.8 C.0.6 D.0.75二、填空题(共12小题,每小题4分,满分48分)7.计算:2﹣2= .8.用科学记数法表示:3402000= .9.化简分式:= .10.不等式组的解集是.11.方程x+=0的解是.12.已知反比例函数y=(k≠0)图象过点(﹣1,﹣3),在每个象限内,自变量x的值逐渐增大时,y的值随着逐渐.(填“减小”或“增大”)13.文件夹里放了大小相同的试卷共12张,其中语文4张、数学2张、英语6张,随机从中抽出1张,抽出的试卷恰好是数学试卷的概率为.14.某品牌汽车经过两次连续的调价,先降价10%,后又提价10%,原价10万元的汽车,现售价万元.15.如图,在正方形ABCD中,如果AC=3,=,=,那么|﹣|= .16.某公园正在举行郁金香花展,现从红、黄两种郁金香中,各抽出6株,测得它们离地面的高度分别如下(单位cm):红:54、44、37、36、35、34;黄:48、35、38、36、43、40;已知它们的平均高度均是40cm,请判断哪种颜色的郁金香样本长得整齐?.(填“红”或“黄”)17.已知⊙O的直径是10,△ABC是⊙O的内接等腰三角形,且底边BC=6,求△ABC的面积是.18.如图,在Rt△ABC中,∠ACB=90°,将△ABC沿BD折叠,点C恰巧落在边AB上的C′处,折痕为BD,再将其沿DE折叠,使点A落在DC′的延长线上的A′处.若△BED与△ABC相似,则相似比= .三、解答题(共7小题,满分78分)19.计算:﹣|cos45°﹣1|+(﹣2015)0+3.20.解方程组:.21.已知:如图,点E是矩形ABCD的边AD上一点,BE=AD,AE=8,现有甲乙两人同时从E点出发,分别沿EC,ED方向前进,甲的速度是乙的倍,甲到达目的地C点的同时乙恰好到达终点D处.(1)求tan∠ECD的值;(2)求线段AB及BC的长度.22.某公司的物流业务原来由A运输队承接,已知其收费标准y(元)与运输所跑路程x(公里)之间是某种函数关系.其中部分数据如表所示:x(公里)80 120 180 200 …y(元)200 300 450 500 …(1)写出y(元)关于x(公里)的函数解析式;(不需写出定义域)(2)由于行业竞争激烈,现B运输队表示:若公司每次支付200元的汽车租赁费,则可按每公里0.9元收费.请写出B运输队每次收费y(元)关于所跑路程x(公里)的函数解析式;(不需写出定义域)(3)如果该公司有一笔路程500公里的运输业务,请通过计算说明应该选择哪家运输队?23.已知:如图(1),在平行四边形ABCD中,点E、F分别在BC、CD上,且AE=AF,∠AEC=∠AFC.(1)求证:四边形ABCD是菱形;(2)如图(2),若AD=AF,延长AE、DC交于点G,求证:AF2=AG•DF;(3)在第(2)小题的条件下,连接BD,交AG于点H,若HE=4,EG=12,求AH的长.24.已知如图,二次函数图象经过点A(﹣6,0),B(0,6),对称轴为直线x=﹣2,顶点为点C,点B关于直线x=﹣2的对称点为点D.(1)求二次函数的解析式以及点C和点D的坐标;(2)联结AB、BC、CD、DA,点E在线段AB上,联结DE,若DE平分四边形ABCD的面积,求线段AE的长;(3)在二次函数的图象上是否存在点P,能够使∠PCA=∠BAC?如果存在,请求出点P的坐标;若不存在,请说明理由.25.已知:如图1,在△ABC中,已知AB=AC=6,BC=4,以点B为圆心所作的⊙B与线段AB、BC 都有交点,设⊙B的半径为x.(1)若⊙B与AB的交点为D,直线CD与⊙B相切,求x的值;(2)如图2,以AC为直径作⊙P,那么⊙B与⊙P存在哪些位置关系?并求出相应x的取值范围;(3)若以AC为直径的⊙P与⊙B的交点E在线段BC上(点E不与C点重合),求两圆公共弦EF的长.上海市中考数学二模试卷参考答案与试题解析一、选择题(共6小题,每小题4分,满分24分)1.﹣8的立方根是()A.2 B.﹣2 C.±2 D.【考点】立方根.【分析】利用立方根的定义即可求解.【解答】解:∵(﹣2)3=﹣8,∴﹣8的立方根是﹣2.故选B【点评】本题主要考查了平方根和立方根的概念.如果一个数x的立方等于a,即x的三次方等于a(x3=a),那么这个数x就叫做a的立方根,也叫做三次方根.读作“三次根号a”其中,a叫做被开方数,3叫做根指数.2.下列属于最简二次根式的是()A.B.C.D.【考点】最简二次根式.【分析】判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察.【解答】解:A、,无法化简,故是最简二次根式,故本选项正确;B、,被开方数中含有分母;故本选项错误;C、,被开方数中含有分母,故本选项错误;D、所以本二次根式的被开方数中含有没开的尽方的数;故本选项错误;故选:A.【点评】本题考查了最简二次根式的定义.在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数大于或等于2,也不是最简二次根式.3.下列方程中,有实数根的是()A.=﹣2 B.x2+1=0 C.=1 D.x2+x+1=0【考点】根的判别式;无理方程;分式方程的解.【专题】计算题.【分析】根据二次很式的性质可对A进行判断;根据判别式的意义对B、D进行判断;通过解分式方程对C进行判断.【解答】解:A、方程=﹣2没有实数解,所以A选项错误;B、△=0﹣4<0,方程没有实数解,所以B选项错误;C、去分母得1=x+1,解得x=0,经检验x=0是原方程的解,所以C选项正确;D、△=14<0,方程没有实数解,所以D选项错误.故选C.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.也考查了分式方程和无理方程.4.在△ABC中,DE∥BC,DE与边AB相交于点D,与边AC相交于点E.如果DE过重心G点,且DE=4,那么BC的长是()A.5 B.6 C.7 D.8【考点】三角形的重心.【专题】计算题.【分析】如图,连结AG并延长交BC于F,根据三角形重心性质得=2,再证明△ADE∽△ABC,根据相似三角形的性质得=,然后利用比例的性质计算BC的长.【解答】解:如图,连结AG并延长交BC于F,如图,∵点G为△ABC的重心,∴=2,∵DE∥BC,∴△ADE∽△ABC,∴=,即=,∴BC=6.故选B.【点评】本题考查了三角形的重心:三角形的重心是三角形三边中线的交点;重心到顶点的距离与重心到对边中点的距离之比为2:1.也考查了相似三角形的判定与性质.5.饭店为某公司提供“白领午餐”,有12元、15元、18元三种价格的套餐可供选择,每人限购一份.本周销售套餐共计500份,其中12元的占总份数的20%,15元的卖出180份,其余均为18元的,那么所购买的盒饭费用的中位数和众数分别是()A.15元和18元B.15元和15元C.18元和15元D.18元和18元【考点】众数;中位数.【分析】根据题意先计算出本周销售套餐12元和18元的份数,再根据中位数和众数的定义即可得出答案.【解答】解:12元的份数有500×20%=100(份),18元的份数有500﹣100﹣180=220(份),∵本周销售套餐共计500份,∴所购买的盒饭费用的中位数是第250和251个数的平均数,∴中位数是15元;18元出现的次数最多,则众数是18元;故选A.【点评】此题考查了众数与中位数,众数是一组数据中出现次数最多的数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.6.如图,某水渠的横断面是等腰梯形,已知其斜坡AD和BC的坡度为1:0.6,现测得放水前的水面宽EF为1.2米,当水闸放水后,水渠内水面宽GH为2.1米.求放水后水面上升的高度是()A.0.55 B.0.8 C.0.6 D.0.75【考点】解直角三角形的应用-坡度坡角问题.【分析】先过点E作EM⊥GH于点M,根据水渠的横断面是等腰梯形,求出GM,再根据斜坡AD 的坡度为1:0.6,得出EM:GM=1:0.6,最后代入计算即可.【解答】解:如图;过点E作EM⊥GH于点M,∵水渠的横断面是等腰梯形,∴GM=×(GH﹣EF)=×(2.1﹣1.2)=0.45,∵斜坡AD的坡度为1:0.6,∴EM:GM=1:0.6,∴EM:0.45=1:0.6,∴EM=0.75,故选:D.【点评】此题考查了解直角三角形的应用,用到的知识点是坡度、等腰三角形的性质,关键是根据题意画出图形,作出辅助线,构造直角三角形.二、填空题(共12小题,每小题4分,满分48分)7.计算:2﹣2= .【考点】负整数指数幂.【专题】计算题.【分析】根据负整数指数幂的定义求解:a﹣p=(a≠0,p为正整数)【解答】解:2﹣2==,故答案为.【点评】本题考查了负整数指数幂的定义,解题时牢记定义是关键,此题比较简单,易于掌握.8.用科学记数法表示:3402000= 3.402×106.【考点】科学记数法—表示较大的数.【分析】确定a×10n(1≤|a|<10,n为整数)中n的值是易错点,由于3402000有7位,所以可以确定n=7﹣1=6.【解答】解:3402000=3.402×106.故答案为:3.402×106.【点评】此题考查科学记数法,用科学记数法表示一个数的方法是(1)确定a:a是只有一位整数的数;(2)确定n:当原数的绝对值≥10时,n为正整数,n等于原数的整数位数减1;当原数的绝对值<1时,n为负整数,n的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零).9.化简分式:= .【考点】约分.【专题】计算题.【分析】先把分母因式分解,然后进行约分即可.【解答】解:原式==.故答案为.【点评】本题考查了约分:约去分式的分子与分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分.10.不等式组的解集是x≥3 .【考点】解一元一次不等式组.【分析】根据不等式的性质求出不等式①和②的解集,根据找不等式组的解集的规律找出不等式组的解集即可.【解答】解:由①得:x>﹣2,由②得:x≥3,∴不等式组的解集是x≥3.故答案为x≥3.【点评】本题主要考查对不等式的性质,解一元一次不等式,解一元一次不等式组等知识点的理解和掌握,能根据不等式的解集找出不等式组的解集是解此题的关键.11.方程x+=0的解是0 .【考点】无理方程.【分析】本题含根号,计算比较不便,因此可先对方程两边平方,得到x=x2,再对方程进行因式分解即可解出本题.【解答】解:原方程变形为:x=x2即x2﹣x=0∴(x﹣1)x=0∴x=0或x=1∵x=1时不满足题意.∴x=0.故答案为:0.【点评】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的提点灵活选用合适的方法.本题运用的是因式分解法和平方法.12.已知反比例函数y=(k≠0)图象过点(﹣1,﹣3),在每个象限内,自变量x的值逐渐增大时,y的值随着逐渐减小.(填“减小”或“增大”)【考点】反比例函数的性质.【分析】首先利用待定系数法确定反比例函数的比例系数,然后根据其符号确定其增减性即可.【解答】解:设反比例函数的解析式为y=(k≠0),∵反比例函数图象过点(﹣1,﹣3),∴把(﹣1,﹣3)代入得3=k>0,根据反比例函数图象的性质可知它在每个象限内y随x的增大而减小,故答案为:减小;【点评】考查了反比例函数的性质,解答此题的关键是要熟知反比例函数图象的性质及用待定系数法求反比例函数的解析式.反比例函数图象的性质:(1)当k>0时,反比例函数的图象位于一、三象限;(2)当k<0时,反比例函数的图象位于二、四象限.13.文件夹里放了大小相同的试卷共12张,其中语文4张、数学2张、英语6张,随机从中抽出1张,抽出的试卷恰好是数学试卷的概率为.【考点】概率公式.【分析】由文件夹里放了大小相同的试卷共12张,其中语文4张、数学2张、英语6张,直接利用概率公式求解即可求得答案.【解答】解:∵文件夹里放了大小相同的试卷共12张,其中语文4张、数学2张、英语6张,∴随机从中抽出1张,抽出的试卷恰好是数学试卷的概率为:=.故答案为:.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.14.某品牌汽车经过两次连续的调价,先降价10%,后又提价10%,原价10万元的汽车,现售价9.9 万元.【考点】有理数的混合运算.【专题】计算题.【分析】根据题意列出算式,计算即可得到结果.【解答】解:根据题意得:10×(1﹣10%)×(1+10%)=9.9(万元),则现售价为9.9万元.故答案为:9.9.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.15.如图,在正方形ABCD中,如果AC=3,=,=,那么|﹣|= 3 .【考点】*平面向量.【分析】首先由在正方形ABCD中,如果AC=3,可求得BC的长,又由=,=,可得|﹣|=||=BC.【解答】解:∵在正方形ABCD中,AC=3,∴AB=BC=3,∵=,=,∴﹣=﹣=,∴|﹣|=||=BC=3.故答案为:3.【点评】此题考查了平面向量的知识.注意掌握三角形法则的应用.16.某公园正在举行郁金香花展,现从红、黄两种郁金香中,各抽出6株,测得它们离地面的高度分别如下(单位cm):红:54、44、37、36、35、34;黄:48、35、38、36、43、40;已知它们的平均高度均是40cm,请判断哪种颜色的郁金香样本长得整齐?黄.(填“红”或“黄”)【考点】方差.【分析】先根据方差公式S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2]分别求出红颜色和黄颜色的方差,然后进行比较,即可得出答案.【解答】解:红颜色的郁金香的方差是:[(54﹣40)2+(44﹣40)2+(37﹣40)2+(36﹣40)2+(35﹣40)2+(34﹣40)2]≈49.67,黄颜色的郁金香的方差是:[(48﹣40)2+(35﹣40)2+(38﹣40)2+(36﹣40)2+(43﹣40)2+(40﹣40)2]≈29.67,>S2黄,∵S2红∴黄颜色的郁金香样本长得整齐;故答案为:黄.【点评】本题考查方差的定义与意义:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.17.已知⊙O的直径是10,△ABC是⊙O的内接等腰三角形,且底边BC=6,求△ABC的面积是3或27 .【考点】垂径定理;等腰三角形的性质;勾股定理.【分析】从圆心在三角形内部和外部两种情况讨论,根据垂径定理和三角形的性质求出答案.【解答】解:当圆心在三角形内部时,0B=5,BD=3,根据勾股定理,OD=4,则AD=9,S△=×6×9=27,ABC当圆心在三角形外部时,0B=5,BD=3,根据勾股定理,OD=4,则AD=1,=×6×1=3,S△ABC故答案为:3或27.【点评】本题考查的是垂径定理、等腰三角形的性质和勾股定理,正确运用定理和性质是解题的关键,注意分情况讨论思想的运用.18.如图,在Rt△ABC中,∠ACB=90°,将△ABC沿BD折叠,点C恰巧落在边AB上的C′处,折痕为BD,再将其沿DE折叠,使点A落在DC′的延长线上的A′处.若△BED与△ABC相似,则相似比= .【考点】相似三角形的性质;翻折变换(折叠问题).【分析】根据△BED与△ABC相似和△ABC沿BD折叠,点C恰巧落在边AB上的C′处,求出∠A=∠DBA=∠DBC=30°,利用三角函数求出BD、AC的长,得到答案.【解答】解:△BED与△ABC相似,∴∠DBA=∠A,又∠DBA=∠DBC,∴∠A=∠DBA=∠DBC=30°,设BC为x,则AC=x,BD=x,=.故答案为:.【点评】本题考查的是相似三角形的性质和翻折变换的知识,掌握相似三角形的对应角相等和锐角三角函数的应用是解题的关键.三、解答题(共7小题,满分78分)19.计算:﹣|cos45°﹣1|+(﹣2015)0+3.【考点】二次根式的混合运算;分数指数幂;零指数幂;特殊角的三角函数值.【专题】计算题.【分析】根据零指数幂、分数指数幂和特殊角的三角函数值得到原式=﹣|﹣1|+1+,然后分母有理化和去绝对值后合并即可.【解答】解:原式=﹣|﹣1|+1+=2﹣+﹣1+1+=2+.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂和分数指数幂.20.解方程组:.【考点】高次方程.【分析】把①化为x=±2y,把②化为x+y=±2,重新组成方程组,解二元一次方程组即可.【解答】解:,由①得,x=±2y,由②得,x+y=±2,则,,,解得,,,,.【点评】本题考查的是二元二次方程组的解法,把二元二次方程根据平方差公式和完全平方公式进行变形化为两个二元一次方程是解题的关键.21.已知:如图,点E是矩形ABCD的边AD上一点,BE=AD,AE=8,现有甲乙两人同时从E点出发,分别沿EC,ED方向前进,甲的速度是乙的倍,甲到达目的地C点的同时乙恰好到达终点D处.(1)求tan∠ECD的值;(2)求线段AB及BC的长度.【考点】勾股定理.【分析】(1)设ED=a,则EC=a,在Rt△EDC中根据勾股定理用a表示出DC的长,在Rt△ABE 中,根据BE2=AB2+AE2求出a的值,故可得出ED及CD的长,由锐角三角函数的定义即可得出结论;(2)由(1)中,DE=a,CD=3a,a=2可得出DE=2,CD=6,再根据四边形ABCD是矩形,BE=AD 即可得出结论.【解答】解:(1)设ED=a,则EC=a,在Rt△EDC中,∵DC===3a,∴BE=AE+ED=8+a.在Rt△ABE中,∵BE2=AB2+AE2,即(8+a)2=(3a)2+82,解得a=2,∴ED=2,CD=6,∴tan∠ECD===.(2)∵由(1)知,DE=a,CD=3a,a=2,∴DE=2,CD=6.∵四边形ABCD是矩形,BE=AD,AE=8,∴AB=CD=6,BC=AD=AE+DE=8+2=10.【点评】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.22.某公司的物流业务原来由A运输队承接,已知其收费标准y(元)与运输所跑路程x(公里)之间是某种函数关系.其中部分数据如表所示:x(公里)80 120 180 200 …y(元)200 300 450 500 …(1)写出y(元)关于x(公里)的函数解析式y A=2.5x ;(不需写出定义域)(2)由于行业竞争激烈,现B运输队表示:若公司每次支付200元的汽车租赁费,则可按每公里0.9元收费.请写出B运输队每次收费y(元)关于所跑路程x(公里)的函数解析式y B=200+0.9x ;(不需写出定义域)(3)如果该公司有一笔路程500公里的运输业务,请通过计算说明应该选择哪家运输队?【考点】一次函数的应用.【分析】(1)根据表可知:当运输路程跑80公里时,收费200元,所以每公里收费为2.5元,所以y A=2.5x.(2)根据题意得:y B=200+0.9x.(3)当x=500时,y A=2.5×500=1250,y B=2000+0.9×500=2450,因为y A>y B,所以选择B运输队.【解答】解:(1)根据表可知:当运输路程跑80公里时,收费200元,∴每公里收费为2.5元,=2.5x.∴yA故答案为:y A=2.5x.(2)根据题意得:y B=200+0.9x.故答案为:y B=200+0.9x.(3)当x=500时,y A=2.5×500=1250,y B=200+0.9×500=650,>y B,∴yA∴选择B运输队.【点评】本题考查了一次函数的应用,解决本题的关键是读懂题意,列出函数解析式.23.已知:如图(1),在平行四边形ABCD中,点E、F分别在BC、CD上,且AE=AF,∠AEC=∠AFC.(1)求证:四边形ABCD是菱形;(2)如图(2),若AD=AF,延长AE、DC交于点G,求证:AF2=AG•DF;(3)在第(2)小题的条件下,连接BD,交AG于点H,若HE=4,EG=12,求AH的长.【考点】相似形综合题.【分析】(1)通过AAS证得△AEB≌△AFD,则其对应边相等:AB=AD,所以“邻边相等的平行四边形是菱形”;(2)欲证明AF2=AG•DF,需要通过相似三角形△GAD∽△AFD的对应边成比例得到AD=AF,则AF2=AG•DF;(3)根据菱形的性质和平行线分线段成比例得到:AH:HG=BH:HD,BH:HD=EH:AH,故AH:HG=EH:AH.把相关线段的长度代入来求AH的长度即可.【解答】(1)证明:如图1,∵四边形ABCD是平行四边形,∴∠B=∠D.∵∠AEC=∠AFC,∠AEC+∠AEB=∠AFC+∠AFD=180°,∴∠AEB=∠AFD.在△AEB和△AFD中,,∴△AEB≌△AFD(AAS)∴AB=AD,∴平行四边形ABCD是菱形;(2)由(1)知,△AEB≌△AFD,则∠BAE=∠DAF.如图2,∵四边形ABCD是平行四边形,∴AB∥DG,∴∠BAE=∠G,∴∠G=∠DAF.又∵∠ADF=∠GDA,∴△GAD∽△AFD,∴DA:DF=DG:DA,∴DA2=DG•DF.∵DG:DA=AG:FA,且AD=AF,∴DG=AG.又∵AD=AF,∴AF2=AG•DF;(3)如图2,在菱形ABCD中,∵AB∥DC,AD∥BC,∴AH:HG=BH:HD,BH:HD=EH:AH,∴AH:HG=EH:AH.∵HE=4,EG=12,∴AH:16=4:AH,∴AH=8.【点评】本题考查了相似综合题.此题综合性比较强,其中涉及到了菱形的性质,平行线分线段成比例,相似三角形的判定与性质,解题时,需要弄清楚相似三角形的对应边与对应角,以防弄错.24.已知如图,二次函数图象经过点A(﹣6,0),B(0,6),对称轴为直线x=﹣2,顶点为点C,点B关于直线x=﹣2的对称点为点D.(1)求二次函数的解析式以及点C和点D的坐标;(2)联结AB、BC、CD、DA,点E在线段AB上,联结DE,若DE平分四边形ABCD的面积,求线段AE的长;(3)在二次函数的图象上是否存在点P,能够使∠PCA=∠BAC?如果存在,请求出点P的坐标;若不存在,请说明理由.【考点】二次函数综合题.【专题】综合题;二次函数图象及其性质;二次函数的应用.【分析】(1)由二次函数对称轴为直线x=2,根据A坐标确定出二次函数与x轴的另一个交点坐标,设出二次函数解析式为y=a(x+6)(x﹣2),把C坐标代入求出a的值,确定出二次函数解析式,进而确定出C与D坐标即可;(2)连接AB、BC、CD、DA,点E在线段AB上,连接DE,如图1所示,利用勾股定理求出AB,BC,CD与BD的长,根据直线CD与直线AB斜率相等,得到DC与AB平行,继而得到四边形ABCD 为直角梯形,若DE平分四边形ABCD的面积,可得直角梯形面积等于三角形ADE面积的2倍,求出AE的长即可;(3)在二次函数的图象上存在点P,能够使∠PCA=∠BAC,如图2所示,直线CP与AB交于点G,可得GA=GC,根据直线AB解析式设出G坐标(x,x+6),利用两点间的距离公式求出x的值,确定出G坐标,利用待定系数法求出直线CG解析式,与二次函数解析式联立求出P坐标;由(2)得到四边形ABCD为直角梯形,即DC与AB平行,利用两直线平行内错角相等,得到P 与D重合时,满足题意,确定出此时P的坐标即可.【解答】解:(1)∵二次函数经过A(﹣6,0),B(0,6),对称轴为直线x=2,∴二次函数图象经过(2,0),设二次函数解析式为y=a(x+6)(x﹣2),把B(0,6)代入得:6=﹣12a,即a=﹣,∴二次函数解析式为y=﹣(x+6)(x﹣2)=﹣x2﹣2x+6=﹣(x+2)2+8,则C(﹣2,8),D(﹣4,6);(2)如图1所示,由题意得:AB=6,BC=CD=2,BD=4,∵BD2=CD2+BC2,∴∠DCB=90°,∵直线AB的解析式为y=x+6,直线DC解析式为y=x+10,∴DC∥AB,∴四边形ABCD为直角梯形,,即×2×(2+6)=2××2×AE,若S梯形ABCD=2S△ADE解得:AE=4;(3)如图2,在二次函数的图象上存在点P,使∠PCA=∠BAC,直线CP与AB交于点G,可得GA=GC,∵A(﹣6,0),C(﹣2,8),直线AB解析式为y=x+6,设G(x,x+6),∴=,解得:x=﹣,经检验是原方程的根且符合题意,∴G(﹣,),设直线CG解析式为y=kx+b,把C与G坐标代入得:,解得:,∴直线CG解析式为y=7x+22,联立得:,解得:或(经检验不合题意,舍去),∴P坐标为(﹣16,﹣90);由(2)得到四边形ABCD为直角梯形,AB∥CD,∴∠DCA=∠BAC,此时P与D重合,即P(﹣4,6),综上,满足题意P的坐标为(﹣16,﹣90)或(﹣4,6).【点评】此题属于二次函数综合题,涉及的知识有:待定系数法确定二次函数解析式,待定系数法确定一次函数解析式,直角梯形的判定,直线与二次函数的交点,坐标与图形性质,熟练掌握待定系数法是解本题的关键.25.已知:如图1,在△ABC中,已知AB=AC=6,BC=4,以点B为圆心所作的⊙B与线段AB、BC 都有交点,设⊙B的半径为x.(1)若⊙B与AB的交点为D,直线CD与⊙B相切,求x的值;(2)如图2,以AC为直径作⊙P,那么⊙B与⊙P存在哪些位置关系?并求出相应x的取值范围;(3)若以AC为直径的⊙P与⊙B的交点E在线段BC上(点E不与C点重合),求两圆公共弦EF的长.【考点】圆的综合题.【分析】(1)作AH⊥BC于点H,根据直线CD与⊙B相切,得到CD⊥AB,从而得到cos∠DBC=cos∠ACH,利用余弦的定义得到BD:BC=CH:CA,从而得到BD:4=2:6,求得BD 的长即可求得圆的半径;(2)作PK⊥BC于点K,求得两圆的圆心距,然后根据两圆的半径和圆心距的大小关系得到位置关系即可;(3)设EF与PB交于点G,BG=m,在△PBE中,PE2﹣PG2=BE2﹣BG2求得m的值,然后根据EG2﹣BG2=BE2求得EG的长即可求得EF的长.【解答】解:(1)如图1,作AH⊥BC于点H,∵AB=AC=6,BC=4,∴BH=2.∵直线CD与⊙B相切,∴CD⊥AB,∵∠DBC=∠ACH,∴cos∠DBC=cos∠ACH,∴BD:BC=CH:CA,∴BD:4=2:6,∴BD=.(2)如图1,作PK⊥BC于点K,∴PK∥AH.∵AH⊥BC,AB=AC=6,BC=4,∴BH=2,∴AH=4.∵以AC为直径作⊙P,∴AP=PC,∴PK=2,CK=BC=1,∴BK=3,∴在Rt△PBK中,PB===,∴当0<x<﹣3时,⊙B与⊙P外离,当x=﹣3时,⊙B与⊙P外切,当﹣3<x≤4时,⊙B与⊙P相交;(3)如图2,点E即为BC边的中点H,∴PE=3.设EF与PB交于点G,BG=m,∴在△PBE中,PE2﹣PG2=BE2﹣BG2,∴32﹣(﹣m)2=22﹣m2,∴m=.∵EG2﹣BG2=BE2,∴EG2﹣()2=22,∴EG=,∴EF=.【点评】本题考查了圆的综合知识,题目中还涉及到了勾股定理、两圆的位置关系等知识,知识点较多,难度较大,特别是最后一题中两次运用勾股定理求得EG的长更是解决本题的关键.。

2020-2021学年上海市奉贤中学高一(下)期中数学试卷

2020-2021学年上海市奉贤中学高一(下)期中数学试卷

2020-2021学年上海市奉贤中学高一(下)期中数学试卷试题数:21,总分:1501.(填空题,4分)已知向量 AB ⃗⃗⃗⃗⃗ =(1,2), AC ⃗⃗⃗⃗⃗ =(3,5),则向量 BC ⃗⃗⃗⃗⃗ 的坐标是___ .2.(填空题,4分)函数y=sin (πx+3)的最小正周期是___ .3.(填空题,4分)一个扇形半径是2,圆心角的弧度数是3,则此扇形的面积是___ .4.(填空题,4分)设 a =( 32 ,sinα), b ⃗ =(cosα, 16),且 a || b ⃗ ,则cos2α=___ . 5.(填空题,4分)函数y=sinx- √3 cosx 在[0,2π]的单调增区间是___ .6.(填空题,4分)直角坐标系xOy 中, i 、 j 分别是与x 、y 轴正方向同向的单位向量.在直角三角形ABC 中,若 AB ⃗⃗⃗⃗⃗ =2 i + j , AC ⃗⃗⃗⃗⃗ =3 i +k j ,则k 的可能值个数是___ .7.(填空题,5分)已知函数f (x )=sinx (x∈[0,π])和函数g (x )= √32 tanx 的图象交于A 、B 、C 三点.则△ABC 的面积为___ .8.(填空题,5分)已知| a |=1,| b ⃗ |=2, a 与 b ⃗ 的夹角为60°,则 a + b ⃗ 在 a 方向上的投影为___ .9.(填空题,5分)函数y=sin 2x+2cosx+1在区间[- 23 π,θ]上的最小值是 34 ,则θ的最大值为 ___ .10.(填空题,5分)已知函数f (x )=cosx|sinx|,下列说法正确的是___ . ① f (x )图象关于x= π4对称; ② f (x )的最小正周期为2π; ③ f (x )在区间[ 3π4,5π4 ]上是严格减函数; ④ f (x )图象关于( π2 ,0)中心对称.11.(填空题,5分)a≤b 时,记{a ,b}min =a .已知f (x )=cosnx•{sinnx ,cosnx}min ,x∈[0,π2n].则y=f (x )的图象与x 轴围成的图形的面积为___ .12.(填空题,5分)如图,在锐角△ABC 中,BC=a ,AC=b ,AB=c ,a >b >c ,且a 、b 、c 是常数,O 是△ABC 的外心,OD⊥BC 于D ,OE⊥AC 于E ,OF⊥AB 于F ,设m= OD ⃗⃗⃗⃗⃗⃗ • OE ⃗⃗⃗⃗⃗ ,n= OE ⃗⃗⃗⃗⃗ • OF ⃗⃗⃗⃗⃗ ,l= OF ⃗⃗⃗⃗⃗ • OD⃗⃗⃗⃗⃗⃗ ,则m :n :l=___ .13.(单选题,5分)函数y=3sin (2x+ π3)的图象可以看作是把函数y=3sin2x 的图象作下列移动而得到( ) A.向左平移 π3 单位 B.向右平移 π3 单位 C.向左平移 π6 单位 D.向右平移 π6 单位14.(单选题,5分)已知0<α< π2 ,将角α的终边逆时针旋转 π6 ,所得的角的终边交单位圆于P (- 13 ,y ),则sinα的值为( ) A. 2√2−√36B. 2√2+√36C.2√6−16 D.2√6+1615.(单选题,5分)设O 为△ABC 所在平面内一点,满足 OA ⃗⃗⃗⃗⃗ +2OB ⃗⃗⃗⃗⃗ +2OC ⃗⃗⃗⃗⃗ =0⃗ ,则△ABC 的面积与△BOC 的面积的比值为( ) A.6 B. 83C. 127D.516.(单选题,5分)已知 x ,y ∈[−π4,π4] ,x 3+sinx-2a=0,4y 3+sinycosy+a=0,则cos (x+2y )的值是( ) A.1 B.-1 C.0 D. 1217.(问答题,14分)化简:(1)tan(α−β)+tanβ1−tan(α−β)tanβ;(2)sin 2(π−θ)cos(π2−θ)−sin(π2+θ)−cos(π+θ)1−tan(3π+θ)−√2sin(θ+π4).18.(问答题,14分)设平面上有两个向量a =(cosα,sinα),b⃗ =(−√32,12).(1)求证:向量a + b⃗与a - b⃗垂直:(2)当向量√3a + b⃗与a - √3b⃗的模相等时,求α的大小.19.(问答题,14分)甲船在距离A港口12海里并在南偏西10°方向的C处驻留等候进港,乙船在A港口南偏东20°方向的B处沿直线行驶入港,甲、乙两船距离为6 √5海里.乙船的速度为每小时18海里,经过20分钟航行到D处,求此时甲、乙两船相距多少海里?甲在乙的什么方向?20.(问答题,16分)函数f(x)=6cos2ωx2+ √3 sin(ωx)-3(ω>0)在一个周期内的图象如图所示,A为图象的最高点,B、C为图象与x轴的交点,且△ABC为正三角形.(1)求函数f(x)的解析式;(2)若f(x0)=6√35,且x0∈(−103,23),求f(x0+1)的值;(3)若y=f2(x)-af(x)+1的最小值为12,求a的取值.21.(问答题,18分)f(x)=sin2x+sin2(x+α)+sin2(x+β).其中α、β是常数.且0≤α≤β≤π:(1)若α=π2,β=π2,m<f(x)恒成立,求m的取值范围;(2)若α=π6,β=π3,求关于x的方程n=f(x),x∈[0,2π]所有解的和:(3)f(x)是否可能为常值函数?如果可能,求出f(x)为常值函数时,α、β的值;如果不可能,请说明理由.2020-2021学年上海市奉贤中学高一(下)期中数学试卷参考答案与试题解析试题数:21,总分:1501.(填空题,4分)已知向量 AB ⃗⃗⃗⃗⃗ =(1,2), AC ⃗⃗⃗⃗⃗ =(3,5),则向量 BC ⃗⃗⃗⃗⃗ 的坐标是___ . 【正确答案】:[1](2,3)【解析】:根据 BC ⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ 即可求出向量 BC ⃗⃗⃗⃗⃗ 的坐标.【解答】:解: BC ⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ =(3,5)−(1,2)=(2,3) . 故答案为:(2,3).【点评】:考查向量减法的几何意义,以及向量坐标的减法运算. 2.(填空题,4分)函数y=sin (πx+3)的最小正周期是___ . 【正确答案】:[1]2【解析】:由题意利用正弦函数的单调性,得出结论.【解答】:解:函数y=sin (πx+3)的最小正周期是 2ππ =2, 故答案为:2.【点评】:本题主要考查正弦函数的单调性,属于基础题.3.(填空题,4分)一个扇形半径是2,圆心角的弧度数是3,则此扇形的面积是___ . 【正确答案】:[1]6【解析】:利用扇形面积公式求解.【解答】:解:由扇形面积公式可知:S= 12|α|r 2 =6, 故答案为:6.【点评】:本题主要考查了扇形面积公式,是基础题.4.(填空题,4分)设 a =( 32 ,sinα), b ⃗ =(cosα, 16),且 a || b ⃗ ,则cos2α=___ . 【正确答案】:[1]± √32【解析】:由已知利用平面向量共线的坐标表示以及二倍角公式,同角三角函数基本关系式即可求解.【解答】:解:因为 a =( 32 ,sinα), b ⃗ =(cosα, 16),且 a || b ⃗ , 所以sinαcosα- 14 =0,即sin2α= 12 , 所以cos2α=± √1−sin 22α =± √32 . 故答案为:± √32 .【点评】:本题主要考查了平面向量共线的坐标表示以及二倍角公式,同角三角函数基本关系式在三角函数求值中的应用,考查了转化思想,属于基础题.5.(填空题,4分)函数y=sinx- √3 cosx 在[0,2π]的单调增区间是___ . 【正确答案】:[1] [0,5π6]和[11π6,2π] 【解析】:首先把函数的关系式通过三角函数的关系式的恒等变换,把函数的关系式变形成正弦型函数,进一步利用函数的性质的应用求出结果.【解答】:解:y=sinx- √3 cosx=2sin (x- π3 ), 令 −π2+2kπ≤x −π3≤2kπ+π2 (k∈Z ), 整理得: −π6+2kπ≤x ≤2kπ+5π6(k∈Z ), 当k=0和1时,在[0,2π]的单调增区间 [0,5π6]和[11π6,2π] . 故答案为: [0,5π6]和[11π6,2π] .【点评】:本题考查的知识要点:三角函数的关系式的恒等变换,正弦型函数的性质的应用,主要考查学生的运算能力和数学思维能力,属于基础题.6.(填空题,4分)直角坐标系xOy 中, i 、 j 分别是与x 、y 轴正方向同向的单位向量.在直角三角形ABC 中,若 AB ⃗⃗⃗⃗⃗ =2 i + j , AC ⃗⃗⃗⃗⃗ =3 i +k j ,则k 的可能值个数是___ . 【正确答案】:[1]-6,-1【解析】:利用 BC ⃗⃗⃗⃗⃗ = AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ = i +(k-1) j ,再分三种情况∠A=90°或∠B=90°或∠C=90°加以讨论,利用向量的数量积等于零,建立关系式,再解方程求得所有可能k 的值.【解答】:解:∵ AB ⃗⃗⃗⃗⃗ =2i +j ,AC ⃗⃗⃗⃗⃗ =3i +kj , ∴ BC ⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ = i +(k −1)j 因为△ABC 为直角三角形,(1)∠A=90°时, AB ⃗⃗⃗⃗⃗ •AC ⃗⃗⃗⃗⃗ =6+k =0 ⇒k=-6; (2)∠B=90°时, AB⃗⃗⃗⃗⃗ •BC ⃗⃗⃗⃗⃗ =2+k −1=0 ⇒k=-1; (3))∠C=90°时, BC ⃗⃗⃗⃗⃗ •AC ⃗⃗⃗⃗⃗ =3+k (k −1)=0 ⇒k∈∅ 综上所述,k=-6或-1 故答案为:-6,-1.【点评】:本题考查向量坐标的定义、考查向量的运算法则、考查向量垂直的充要条件.解答的关键是利用向量垂直的充要条件列出等式,所得到方程的所有解即为可能的k 值.7.(填空题,5分)已知函数f (x )=sinx (x∈[0,π])和函数g (x )= √32 tanx 的图象交于A 、B 、C 三点.则△ABC 的面积为___ . 【正确答案】:[1] π4【解析】:画出两个函数的图象,求出三个点的坐标,然后求解三角形面积.【解答】:解:由函数f (x )=sinx (x∈[0,π])和函数g (x )= √32 tanx 的图象交于A 、B 、C 三点,可得A (0,0),B (π,0),令sinx= √32 tanx ,可得cosx= √32 ,x= π6 ,∴C ( π6 , 12 ), 所以S △ABC = 12×π× 12= π4, 故答案为: π4 .【点评】:本题考查三角函数的图象以及三角形的面积的求法,考查转化思想以及计算能力,属于中档题.8.(填空题,5分)已知| a |=1,| b ⃗ |=2, a 与 b ⃗ 的夹角为60°,则 a + b ⃗ 在 a 方向上的投影为___ .【正确答案】:[1]2【解析】:根据| a |=1,| b ⃗ |=2, a 与 b ⃗ 的夹角为60°,算出| a + b ⃗ |= √7 且( a + b ⃗ )• a =2.再设 a + b ⃗ 与 a 的夹角为θ,结合数量积公式和向量投影的定义,算出| a + b ⃗ |cosθ的值,即可得到向量 a + b ⃗ 在 a 方向上的投影值.【解答】:解:∵| a |=1,| b ⃗ |=2, a 与 b ⃗ 的夹角为60°, ∴ a • b ⃗ = a |×| b ⃗ |×cos60°=1由此可得( a + b ⃗ )2=| a |2+2 a • b ⃗ +| b ⃗ |2=1+2+4=7 ∴| a + b ⃗ |= √7 .设 a + b ⃗ 与 a 的夹角为θ,则 ∵( a + b ⃗ )• a =| a |2+ a • b ⃗ =2 ∴cosθ=(a ⃗ +b ⃗ )•a ⃗ |a⃗ +b ⃗ |•|a ⃗ | = 2√77 , 可得向量 a + b ⃗ 在 a 方向上的投影为| a + b⃗ |cosθ= √7 × 2√77=2 故答案为:2【点评】:本题给出向量| a |、| b ⃗ |和 a 与 b ⃗ 的夹角,求向量 a + b ⃗ 在 a 方向上的投影.着重考查了向量数量积的定义、向量的夹角公式和向量投影的概念等知识,属于基础题. 9.(填空题,5分)函数y=sin 2x+2cosx+1在区间[- 23 π,θ]上的最小值是 34 ,则θ的最大值为 ___ .【正确答案】:[1] 56π【解析】:由已知中函数y=sin 2x+2cosx+1,由同角三角函数的基本关系,将函数的解析式化为y=-(cosx-1)2+3的形式,进而根据函数的最小值为 34 ,结合已知中x∈[- 23 π,θ]及余弦函数的图象和性质,即可得到θ的最大值.【解答】:解:∵函数y=sin 2x+2cosx+1=-cos 2x+2cosx+2=-(cosx-1)2+3 若在区间[- 23 π,θ]上的最小值为 34 , 则由y=-(cosx-1)2+3= 34 , 解得cosx=- 12 , 又∵x∈[- 23 π,θ] ∴θ= 56 π,故答案为: 56π.【点评】:本题考查的知识点是二次函数在闭区间上的最值,同角三角函数的基本关系,余弦函数的图象和性质,其中根据已知条件,结合同角三角函数的基本关系,将函数的解析式化为二次型函数的形式是解答本题的关键.10.(填空题,5分)已知函数f (x )=cosx|sinx|,下列说法正确的是___ . ① f (x )图象关于x= π4 对称; ② f (x )的最小正周期为2π; ③ f (x )在区间[ 3π4,5π4 ]上是严格减函数; ④ f (x )图象关于( π2 ,0)中心对称. 【正确答案】:[1] ② ④【解析】:画出f (x )的图像,由图像即可判断 ① ② ③ ④ 的正误.【解答】:解:函数f (x )=cosx|sinx|的图像如图所示,由f (-x )=f (x ),可得f (x )为偶函数,由图像可得 ① 错, ② 正确; f (x )在区间[ 3π4,5π4 ]上为不单调函数,故 ③ 错; f (x )的图像关于( π2 ,0)中心对称,故 ④ 正确; 故答案为: ② ④ .【点评】:本题考查了三角函数的图像和性质,考查了函数的对称性,单调性和周期性,注意数形结合思想的运用.11.(填空题,5分)a≤b 时,记{a ,b}min =a .已知f (x )=cosnx•{sinnx ,cosnx}min ,x∈[0,π2n].则y=f (x )的图象与x 轴围成的图形的面积为___ .【正确答案】:[1] π8n【解析】:先由x∈[0, π2n ].确定nx 的范围,然后就能确定{sinnx ,cosnx}min 取值,将函数f (x )写成分段形式,利用积分的性质 ∫f ba (x )dx =∫f ca (x )dx +∫f bc(x )dx ,分别对分段进行求取积分在相加.【解答】:解:因为x∈[0, π2n ].所以nx ∈[0,π2] , 所以f (x )=cosnx•{sinnx ,cosnx}min = {cosnx •sinnxx ∈[0,π4n ]cosnx •cosnxx ∈(π4n ,π2n ]= {12sin2nx x ∈[0,π4n ]12(1+cos2nx )x ∈(π4n ,π2n ]y=f (x )的图象与x 轴围成的图形的面积为 ∫f π2n0(x )dx = ∫12π4nsin2nxdx +∫12π2n π4n(1+cos2nx )dx = 14n•(−cos2nx ) |0π4n+ (12x+14n sin2nx) |π4nπ2n = π8n故答案为: π8n .【点评】:本题主要考查积分的几何意义及分段函数积分的求解,难点在复合函数的定积分求解,属于中档题.12.(填空题,5分)如图,在锐角△ABC 中,BC=a ,AC=b ,AB=c ,a >b >c ,且a 、b 、c 是常数,O 是△ABC 的外心,OD⊥BC 于D ,OE⊥AC 于E ,OF⊥AB 于F ,设m= OD ⃗⃗⃗⃗⃗⃗ • OE ⃗⃗⃗⃗⃗ ,n= OE⃗⃗⃗⃗⃗ • OF ⃗⃗⃗⃗⃗ ,l= OF ⃗⃗⃗⃗⃗ • OD ⃗⃗⃗⃗⃗⃗ ,则m :n :l=___ .【正确答案】:[1]1:1:1【解析】:连接OA ,OB ,OC ,设∠BAC=∠1,∠ABC=∠2,∠ACB=∠3,利用三角形外接圆的性质以及数量积的运算可求得m= OD ⃗⃗⃗⃗⃗⃗ • OE ⃗⃗⃗⃗⃗ =-R 2cos∠1cos∠2cos∠3,同理可求得n ,l ,计算可得结论.【解答】:解:如图,连接OA ,OB ,OC , 设∠BAC=∠1,∠ABC=∠2,∠ACB=∠3,因为O 是△ABC 的外心,OD⊥BC 于D ,OE⊥AC 于E ,OF⊥AB 于F , 所以∠DOC=∠DOB=∠1,∠AOE=∠COE=∠2,∠BOF=∠AOF=∠3, 所以m= OD ⃗⃗⃗⃗⃗⃗ • OE ⃗⃗⃗⃗⃗ =| OD ⃗⃗⃗⃗⃗⃗ || OE ⃗⃗⃗⃗⃗ |cos∠DOE=(Rcos∠DOC )(Rcos∠COE )cos (π-∠ACB ) =-R 2cos∠1cos∠2cos∠3,同理可得n= OE ⃗⃗⃗⃗⃗ • OF ⃗⃗⃗⃗⃗ =-R 2cos∠1cos∠2cos∠3,l= OF ⃗⃗⃗⃗⃗ • OD ⃗⃗⃗⃗⃗⃗ =-R 2cos∠1cos∠2cos∠3, 所以m :n :l=1:1:1. 故答案为:1:1:1.【点评】:本题主要考查向量的数量积运算,三角形外接圆的性质,考查运算求解能力,属于中档题.13.(单选题,5分)函数y=3sin (2x+ π3 )的图象可以看作是把函数y=3sin2x 的图象作下列移动而得到( ) A.向左平移 π3 单位 B.向右平移 π3 单位 C.向左平移 π6 单位 D.向右平移 π6 单位 【正确答案】:C【解析】:由条件根据函数y=Asin (ωx+φ)的图象变换规律,可得结论.【解答】:解:把函数y=3sin2x 的图象向左平移 π6个单位,可得y=3sin2(x+ π6)=3sin (2x+ π3 )的图象, 故选:C .【点评】:本题主要考查函数y=Asin (ωx+φ)的图象变换规律,属于基础题.14.(单选题,5分)已知0<α< π2 ,将角α的终边逆时针旋转 π6 ,所得的角的终边交单位圆于P (- 13 ,y ),则sinα的值为( ) A.2√2−√36B. 2√2+√36C.2√6−16 D.2√6+16【正确答案】:D【解析】:设角α的终边逆时针旋转 π6 后的角为β,由题意可知 β=α+π6 ,由任意角的三角函数定义可知cos β=−13 ,再利用两角和的余弦公式结合同角三角函数间的基本关系求解.【解答】:解:设角α的终边逆时针旋转 π6 后的角为β, 则 β=α+π6,由任意角的三角函数定义可知cos β=−13, ∴cos ( α+π6 )=- 13 , ∴ cosα×√32−sinα×12=−13,又∵sin 2α+cos 2α=1,且0<α< π2, 联立两式可求:sinα= 2√6+16, 故选:D .【点评】:本题主要考查了任意角的三角函数的定义,考查了同角三角函数间的基本关系,是基础题.15.(单选题,5分)设O 为△ABC 所在平面内一点,满足 OA ⃗⃗⃗⃗⃗ +2OB ⃗⃗⃗⃗⃗ +2OC ⃗⃗⃗⃗⃗ =0⃗ ,则△ABC 的面积与△BOC 的面积的比值为( ) A.6 B. 83C. 127 D.5【正确答案】:D【解析】:根据奔驰定理可得S △BOC :S △AOC :S △AOB =1:2:2,进而可以求解.【解答】:解:根据奔驰定理可得S △BOC :S △AOC :S △A OB =1:2:2, 所以S △BOC =15S △ABC ,所以三角形ABC 的面积与三角形BOC 的面积的比值为5,故选:D.【点评】:本题考查了平面向量基本定理的应用,涉及到奔驰定理的应用,属于基础题.16.(单选题,5分)已知x,y∈[−π4,π4],x3+sinx-2a=0,4y3+sinycosy+a=0,则cos(x+2y)的值是()A.1B.-1C.0D. 12【正确答案】:A【解析】:设f(u)=u3+sinu.根据题设等式可知f(x)=2a,f(2y)=-2a,进而根据函数的奇偶性,求得f(x)=-f(2y)=f(-2y).进而推断出x+2y=0.进而求得cos(x+2y)=1.【解答】:解:设f(u)=u3+sinu.由① 式得f(x)=2a,由② 式得f(2y)=-2a.因为f(u)在区间[−π4,π4]上是单调奇函数,∴f(x)=-f(2y)=f(-2y).∴x=-2y,即x+2y=0.∴cos(x+2y)=1.故选:A.【点评】:本题主要考查了利用函数思想解决实际问题.考查了学生运用函数的思想,转化和化归的思想.17.(问答题,14分)化简:(1)tan(α−β)+tanβ1−tan(α−β)tanβ;(2)sin 2(π−θ)cos(π2−θ)−sin(π2+θ)−cos(π+θ)1−tan(3π+θ)−√2sin(θ+π4).【正确答案】:【解析】:(1)结合两角和的正切公式进行化简可求; (2)结合同角基本关系进行化简即可求解.【解答】:解:(1) tan (α−β)+tanβ1−tan (α−β)tanβ =tan[(α-β)+β]=tanα;(2)原式= sin 2θsinθ−cosθ + cosθ1−tanθ -(sinθ+cosθ),=sin 2θsinθ−cosθ + cosθ1−sinθcosθ-(sinθ+cosθ),= sin 2θsinθ−cosθ + cos 2θcosθ−sinθ -(sinθ+cosθ),=sinθ+cosθ-sinθ-cosθ, =0.【点评】:本题主要考查了同角基本关系,两角和的正切公式,属于基础题. 18.(问答题,14分)设平面上有两个向量 a =(cosα,sinα), b ⃗ =( −√32,12 ). (1)求证:向量 a + b ⃗ 与 a - b⃗ 垂直: (2)当向量 √3 a + b ⃗ 与 a - √3 b ⃗ 的模相等时,求α的大小.【正确答案】:【解析】:(1)根据条件可求出 (a +b ⃗ )•(a −b ⃗ )=0 ,从而得出 (a +b ⃗ )⊥(a −b ⃗ ) ; (2)根据条件可得出 (√3a +b ⃗ )2=(a −√3b ⃗ )2,然后进行数量积的运算可得出 a •b ⃗ =0 ,从而可得出 sin (α−π3)=0 ,这样即可求出α的值.【解答】:解:(1)证明:∵ a =(cosα,sinα),b ⃗ =(−√32,12) , ∴ (a +b ⃗ )•(a −b ⃗ )=a 2−b ⃗ 2=1−1=0 , ∴向量 a +b ⃗ 与 a −b ⃗ 垂直; (2)∵ |√3a +b ⃗ |=|a −√3b ⃗ | , ∴ (√3a +b ⃗ )2=(a −√3b⃗ )2, ∴ 3+1+2√3a •b ⃗ =1+3−2√3a •b⃗ ,∴ a•b⃗=−√32cosα+12sinα=sin(α−π3)=0,∴ α−π3=kπ,k∈Z,∴ α=π3+kπ,k∈Z.【点评】:本题考查了向量数量积的运算,向量坐标的数量积运算,向量垂直的充要条件,考查了计算能力,属于基础题.19.(问答题,14分)甲船在距离A港口12海里并在南偏西10°方向的C处驻留等候进港,乙船在A港口南偏东20°方向的B处沿直线行驶入港,甲、乙两船距离为6 √5海里.乙船的速度为每小时18海里,经过20分钟航行到D处,求此时甲、乙两船相距多少海里?甲在乙的什么方向?【正确答案】:【解析】:结合实际问题作出图形,然后结合正弦定理及余弦定理即可直接求解.【解答】:解:作出符合题意的图形,AC=12,BC=6 √3,∠CAB=30°,△ABC中,由正弦定理得,12sin∠ABC = 6√3sin30°,所以sin∠ABC= √55,由AC<BC知∠ABC为锐角,所以cos∠ABC= 2√55,△BCD中,由余弦定理得CD= √BC2+BD2−2BC•BDcos∠B =√(6√3)2+62−2×6×6√3×2√55=6 √2,由余弦定理得,cos∠BDC= 62+(6√2)2−(6√5)22×6×6√2=- √22,所以∠BDC=135°,1180°-135°+20°=65°,所以甲、乙两船相距6 √2海里,甲在乙的北偏西65°方向.【点评】:本题主要考查了正弦定理,余弦定理在求解实际问题中的应用,属于中档题.20.(问答题,16分)函数f(x)=6cos2ωx2+ √3 sin(ωx)-3(ω>0)在一个周期内的图象如图所示,A为图象的最高点,B、C为图象与x轴的交点,且△ABC为正三角形.(1)求函数f(x)的解析式;(2)若f(x0)=6√35,且x0∈(−103,23),求f(x0+1)的值;(3)若y=f2(x)-af(x)+1的最小值为12,求a的取值.【正确答案】:【解析】:(1)直接利用函数的关系式的恒等变换和函数的图象的应用求出函数的关系式;(2)利用(1)的结论,进一步利用角的变换求出结果;(3)求出f(x)的值域,令t=f(x),利用二次函数的性质即可求解a的值.【解答】:解:(1)函数f(x)=6cos2ωx2+ √3 sin(ωx)-3=3cosωx+ √3sinωx=2 √3 sin(ωx+ π3),由于△ABC为正三角形,所以三角形的高为2 √3,所以BC=4.所以函数f(x)的最小正周期为T=4×2=8,所以ω= π4,从而得到f(x)=2 √3 sin(π4 x+ π3).(2)若f(x0)=6√35,则2 √3 sin(π4x0+ π3)= 6√35,整理得sin(π4x0+ π3)= 35,由于x0∈(−103,23),所以π4x0+ π3∈(- π2,π2),所以cos(π4x0+ π3)= 45,所以f(x0+1)=2 √3 sin(π4 x0+ π4+ π3)=2 √3 [sin(π4x0+ π3)cos π4+cos(π4x0+ π3)sinπ4 ]=2 √3(35× √22+ 45× √22)= 7√65.(3)f(x)=2 √3 sin(ωx+ π3)的值域为[-2 √3,2 √3 ],令t=f(x),则t∈[-2 √3,2 √3 ],所以y=f2(x)-af(x)+1转化为g(t)=t2-at+1,对称轴为t= a2,当a2≥2 √3,即a≥4 √3时,g(t)min=g(4 √3)=12-2 √3 a+1= 12,解得a= 25√312(舍);当a2≤-2 √3,即a≤-4 √3时,g(t)min=g(-4 √3)=12+2 √3 a+1= 12,解得a=- 25√312(舍);当-2 √3<a2<2 √3,即-4 √3<a<4 √3时,g(t)min=g(a2)= a24- a22+1= 12,解得a=±√2.综上可得a=± √2.【点评】:本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数的性质的应用,二次函数的图象与性质,考查转化思想与分类讨论思想的应用,考查运算求解能力,属于中档题.21.(问答题,18分)f(x)=sin2x+sin2(x+α)+sin2(x+β).其中α、β是常数.且0≤α≤β≤π:(1)若α=π2,β=π2,m<f(x)恒成立,求m的取值范围;(2)若α=π6,β=π3,求关于x的方程n=f(x),x∈[0,2π]所有解的和:(3)f(x)是否可能为常值函数?如果可能,求出f(x)为常值函数时,α、β的值;如果不可能,请说明理由.【正确答案】:【解析】:(1)根据题意可得f(x)=1+cos2x,则f(x)≥1,进而可得m<1,即可得出答案.(2)根据题意可得f(x)= 32 +sin(2x- π6),x∈[0,2π],求出对称轴,作出图象,分情况讨论,即可得出答案.(3)根据题意可得f(x)= 32 - 12(cos2x(1+cos2α+cos2β)-sin2x(sin2α+sin2β))若f(x)是常值函数,则1+cos2α+cos2β=0,sin2α+sin2β=0,由三角恒等变化,解得答案.【解答】:解:(1)f(x)=sin2x+sin2(x+ π2)+sin2(x+ π2)=sin2x+2cos2x=1+cos2x,所以f(x)≥1,所以m<1.(2)所以f(x)=sin2x+sin2(x+ π6)+sin2(x+ π3)= 32 - 12(cos2x+cos(2x+ π3)+cos(2x+ 2π3))= 32 - 12(cos2x- √3 sin2x),= 32 +sin(2x- π6),x∈[0,2π].令2x- π6 = π2+kπ,k∈Z,则x= π6 + kπ2,k∈Z,所以在(0,2π)上的对称轴为x= π6,x= 2π3,x= 7π6,x= 5π3,当n>1时,关于x的方程n=f(x),x∈[0,2π]所有解的和为2× π6 +2× 7π6= 8π3,当12<n≤1时,关于x的方程n=f(x),x∈[0,2π]所有解的和为2× 2π3+2× 5π3= 14π3,当n= 12时,关于x的方程n=f(x),x∈[0,2π]所有解的和为2π3+ 5π3= 7π3,当n>52或n<12时,关于x的方程n=f(x),x∈[0,2π]所有解的和为0.(3)f(x)= 32 - 12(cos2x+cos2xcos2α-sin2xsin2α+cos2xcos2β-sin2xsin2β)= 32 - 12(cos2x(1+cos2α+cos2β)-sin2x(sin2α+sin2β))若f(x)是常值函数,则1+cos2α+cos2β=0,sin2α+sin2β=0,由sin2α+sin2β=0,得2β=-π+2α或2β=2π-2α,当β= π2+α时,1+cos2α+cos2β=1+cos2α+cos(π+2α)=1≠0,所以不成立,当β=π-α时,1+cos2α+cos2β=1+cos2α+cos(2π-2α)=1+2cos2α=0,所以cos2α=- 12,所以2α= 2π3或2α= 4π3,所以α= π3,β= 2π3.【点评】:本题考查三角函数的性质,解题中需要理清思路,属于中档题.。

2020-2021学年上海市奉贤区高一(上)期中数学试卷及答案

2020-2021学年上海市奉贤区高一(上)期中数学试卷及答案

2020-2021学年上海市奉贤区高一(上)期中数学试卷一、填空题(本大题满分54分)本大题共有12题,考生应在答题纸相应编号的空格内直接写结果,1-6题每个空格填对得4分,7-12题每个空格填对得5分)1.(4分)集合{1,2}的真子集的个数为.2.(4分)若幂函数y=x a的图象经过点(3,),则a=.3.(4分)已知方程x2+x﹣4=0的两个根为x1,x2,则(2)=.4.(4分)已知“x<﹣1或x>5”是“a≤x≤a+4”的必要非充分条件,则实数a的取值范围是.5.(4分)设a>0,a≠1,若log a4=2,则=.6.(4分)设集合A={x|x=2a,a>0},B={x|x2﹣2x+3>0},则A∩B=.7.(5分)若lg2=a,lg3=b,则log916=.(用a,b的代数式表示)8.(5分)某车间分批生产某种产品,每批的生产准备费用为800元,若每批生产x件,则平均仓储时间为天,且每件产品每天的仓储费用为1元,为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品件.9.(5分)设x>0,y>0,若e x、e y的几何平均值为e(e是自然对数的底),则x2、y2的算术平均值的最小值是.10.(5分)已知集合A={(x,y)|kx+y=k+1},B={(x,y)|x+ky=2k},其中k为实数,当A∩B≠∅时,则k满足的条件是.11.(5分)已知关于x的不等式组的解集为[b,a],则实数a 的值为.12.(5分)已知实数x、y、z满足x>y>z,且x+y+z=1,x2+y2+z2=1,则x+y的取值范围为.二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律零分.13.(5分)若a>0,a≠1,M>0,N>0,下列运算正确的是()A.log a=log a MB.(log a M)N=N log a MC.(log a M)÷(log a N)=log a(M﹣N)D.log a M+log a N=log a(M+N)14.(5分)若非空集合M、N满足M⊆N,则下列集合中表示空集的是()A.M∩B.∩N C.∪D.M∩N15.(5分)根据有关资料,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N为1080,则下列各数中与最接近的是()A.1033B.1053C.1073D.109316.(5分)对于区间(1,10000)内的任意两个正整数m、n,定义某种运算“※”如下:当m、n都为正偶数时,m※n=m n,当m、n都为正奇数时,m※n=log m n,则在此定义下,集合M={(a,b)|a※b=4}中的元素个数是()A.3个B.4个C.5个D.6个三、解答题(第17-19题每题14分,第20题16分,第21题18分,满分76分)17.(14分)已知关于x的不等式≥0的解集为P,不等式(x﹣1)2<1的解集为Q.(1)若a=3,求集合P;(2)求集合P,并求当P∪Q=P时a的取值范围.18.(14分)每年3月3日是国际爱耳日,2020年的主题是“保护听力,终生受益”.声强级是表示声强度相对大小,其值为y【单位:dB(分贝)】定义为y=10lg,其中,I 为声场中某点的声强度,其单位为W/m2(瓦/平方米),I0=10﹣12W/m2为基准值.(1)如果一辆小轿车内的声音是50dB,求相应的声强度;(2)如果飞机起飞时的声音是120dB,两人正常交谈的声音是60dB,那么前者的声强度是后者的声强度的多少倍?19.(14分)设x≥0,A=,B=.(1)求证:A<,并指出等号成立的条件;(2)比较A与B的大小关系,并说明理由.20.(16分)我们知道当a>0时,a m+n=a m•a n对一切m、n∈R恒成立,学生小贤在进一步研究指数幂的性质时,发现有这么一个等式21+1=21+21,带着好奇,他进一步对2m+n=2m+2n进行深入研究.(1)当m=2时,求n的值;(2)当m≤0时,求证:n是不存在的;(3)求证:只有一对正整数对(m,n)使得等式成立.21.(18分)已知代数式|x+2|和|ax﹣b|.(1)若a=0,b=,求不等式|x+2|<|ax﹣b|的解集(用区间表示);(2)若a=1,b=1,用反证法证明:|x+2|、|ax﹣b|中至少有一个数不小于;(3)若a>0,不等式|x+2|+|ax﹣b|≥x+1对任意实数x恒成立,试确定实数a、b满足的条件.2020-2021学年上海市奉贤区高一(上)期中数学试卷参考答案与试题解析一、填空题(本大题满分54分)本大题共有12题,考生应在答题纸相应编号的空格内直接写结果,1-6题每个空格填对得4分,7-12题每个空格填对得5分)1.(4分)集合{1,2}的真子集的个数为3.【分析】若集合A中有n个元素,则集合A有2n﹣1个真子集.【解答】解:集合{1,2}的真子集一共有:22﹣1=3个.故答案为:3.【点评】本题考查集合的真子集个数的求法,是基础题,解题时要认真审题,注意真子集定义的合理运用.2.(4分)若幂函数y=x a的图象经过点(3,),则a=.【分析】设出函数的解析式,根据幂函数y=f(x)的图象过点(3,),构造方程求出指数的值,即可得到函数的解析式.【解答】解:设幂函数的解析式为y=x a,∵幂函数y=f(x)的图象过点(3,),∴=3a,解得a=,故答案为:.【点评】本题考查的知识点是函数解析式的求法,属基础题.3.(4分)已知方程x2+x﹣4=0的两个根为x1,x2,则(2)=.【分析】利用根与系数的关系得到x1x2=﹣4,再对所求式子化简代入即可求出结果.【解答】解:∵方程x2+x﹣4=0的两个根为x1,x2,∴由根与系数的关系得:x1x2=﹣4,∴(2)==2﹣4=,故答案为:.【点评】本题主要考查了根与系数的关系,考查了指数幂的运算,是基础题.4.(4分)已知“x<﹣1或x>5”是“a≤x≤a+4”的必要非充分条件,则实数a的取值范围是(﹣∞,﹣5]∪[5,+∞).【分析】根据“x<﹣1或x>5”是“a≤x≤a+4”的必要非充分条件,得到不等式组,解出即可.【解答】解:若“x<﹣1或x>5”是“a≤x≤a+4”的必要非充分条件,则由“a≤x≤a+4”⇒“x<﹣1或x>5”,∴a≥5或a+4≤﹣1,解得:a≤﹣5或a≥5,故答案为:(﹣∞,﹣5]∪[5,+∞).【点评】本题考查了充分必要条件,考查不等式问题,属于基础题.5.(4分)设a>0,a≠1,若log a4=2,则=.【分析】先把对数式化为指数式,求出a的值,再利用指数幂的运算性质化简所求式子,代入a的值即可求出结果.【解答】解:∵log a4=2,∴a2=4,又∵a>0,a≠1,∴a=2,∴====.故答案为:.【点评】本题考查了对数式与指数式的互化,考查了指数幂的运算性质,属于基础题.6.(4分)设集合A={x|x=2a,a>0},B={x|x2﹣2x+3>0},则A∩B={x|x>1}.【分析】可求出集合A,B,然后进行交集的运算即可.【解答】解:∵A={x|x>1},B=R,∴A∩B={x|x>1}.故答案为:{x|x>1}.【点评】本题考查了描述法的定义,指数函数的单调性,一元二次不等式的解法,交集的运算,考查了计算能力,属于基础题.7.(5分)若lg2=a,lg3=b,则log916=.(用a,b的代数式表示)【分析】利用对数的换底公式、运算法则直接求解.【解答】解:∵lg2=a,lg3=b,∴log916===.故答案为:.【点评】本题考查对数式化简求值,对数的性质、运算法则等基础知识,考查运算求解能力,是基础题.8.(5分)某车间分批生产某种产品,每批的生产准备费用为800元,若每批生产x件,则平均仓储时间为天,且每件产品每天的仓储费用为1元,为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品80件.【分析】确定生产x件产品的生产准备费用与仓储费用之和,可得平均每件的生产准备费用与仓储费用之和,利用基本不等式,即可求得最值.【解答】解:根据题意,该生产x件产品的生产准备费用与仓储费用之和是800+x•=800+x2这样平均每件的生产准备费用与仓储费用之和为f(x)==(x为正整数)由基本不等式,得f(x)≥2=20当且仅当,即x=80时,f(x)取得最小值、∴x=80时,每件产品的生产准备费用与仓储费用之和最小故答案为80【点评】本题考查函数的构建,考查基本不等式的运用,属于中档题,运用基本不等式时应该注意取等号的条件,才能准确给出答案.9.(5分)设x>0,y>0,若e x、e y的几何平均值为e(e是自然对数的底),则x2、y2的算术平均值的最小值是1.【分析】由题意可得e x e y=e2,即x+y=2,x>0,y>0,然后结合即可求解.【解答】解:由题意可得e x e y=e2,∴x+y=2,x>0,y>0,∴=1,当且仅当x=y=1时取等号,故答案为:1.【点评】本题主要考查了基本不等式在最值求解中的应用,属于基础试题.10.(5分)已知集合A={(x,y)|kx+y=k+1},B={(x,y)|x+ky=2k},其中k为实数,当A∩B≠∅时,则k满足的条件是k≠±1.【分析】根据题意可得出:方程组有解,然后可得出方程(1﹣k2)x=k﹣k2有解,从而可得出k需满足的条件.【解答】解:∵A∩B≠∅,∴方程组有解,消y得(1﹣k2)x=k﹣k2,∴1﹣k2≠0,即k≠±1.故答案为:k≠±1.【点评】本题考查了描述法的定义,交集的定义及运算,空集的定义,考查了计算能力,属于基础题.11.(5分)已知关于x的不等式组的解集为[b,a],则实数a 的值为.【分析】结合解集区间为闭区间可知x=b,x=a是方程x2+2ax+b+1=4a2﹣3a3的解,且b<a,然后结合方程的根与系数关系可求.【解答】解:因为关于x的不等式组的解集为[b,a],结合解集区间为闭区间可知x=b,x=a是方程x2+2ax+b+1=4a2﹣3a3的解,且b<a,所以,解可得,或或(舍),当a=1,b=﹣3时,不等式组为,解得﹣3≤x≤1且x≠﹣1不合题意;当a=,b=﹣1时,不等式组,解得﹣1,此时符合题意.故a=,故答案为:.【点评】本题主要考查了二次不等式的求解,体现了方程与二次不等相互转化关系的应用.12.(5分)已知实数x、y、z满足x>y>z,且x+y+z=1,x2+y2+z2=1,则x+y的取值范围为(,).【分析】利用基本不等式和题设求得结果即可.【解答】解:令x+y=t,则z=1﹣t,∵x>y>z,且x+y+z=1,∴z=1﹣t<⇒t>,t2=(x+y)2<2(x2+y2),即x2+y2>,∵x2+y2+z2=1,∴1>+z2=+(1﹣t)2,即3t2﹣4t<0,解得:0<t<,综上,<t<,即x+y∈(,),故答案为:(,).【点评】本题主要考查基本不等式的应用及解不等式,属于中档题.二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律零分.13.(5分)若a>0,a≠1,M>0,N>0,下列运算正确的是()A.log a=log a MB.(log a M)N=N log a MC.(log a M)÷(log a N)=log a(M﹣N)D.log a M+log a N=log a(M+N)【分析】利用对数的性质、运算法则直接求解.【解答】解:由a>0,a≠1,M>0,N>0,知:对于A,log a==log a M,故A正确;对于B,(log a M)N≠N log a M=,故B错误;对于C,(log a M)÷(log a N)≠log a(M﹣N),故C错误;对于D,log a M+log a N=log a MN≠log a(M+N),故D错误.故选:A.【点评】本题考查对数式化简求值、对数运算法则,考查运算求解能力,考查数学运算核心素养.14.(5分)若非空集合M、N满足M⊆N,则下列集合中表示空集的是()A.M∩B.∩N C.∪D.M∩N【分析】可以用Venn图来表示集合M,N,U,结合图形即可找出表示空集的选项.【解答】解:可用Venn图表示集合M,N,U如下:∴M∩(∁U N)=∅,即M∩=∅,故选:A.【点评】本题主要考查Venn图表示集合的方法,以及集合的补集和交集运算.15.(5分)根据有关资料,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N为1080,则下列各数中与最接近的是()A.1033B.1053C.1073D.1093【分析】根据对数的性质得:3=10lg3≈100.48,将M化为以10为底的指数形式,计算即可.【解答】解:由题意:M≈3361,N≈1080,根据对数性质有:3=10lg3≈100.48,∴M≈3361≈(100.48)361≈10173,∴≈=1093.故选:D.【点评】本题考查了指数形式与对数形式的互化问题,是基础题.16.(5分)对于区间(1,10000)内的任意两个正整数m、n,定义某种运算“※”如下:当m、n都为正偶数时,m※n=m n,当m、n都为正奇数时,m※n=log m n,则在此定义下,集合M={(a,b)|a※b=4}中的元素个数是()A.3个B.4个C.5个D.6个【分析】当a,b都为正偶数时,a※b=a b=4,a当a,b都为正奇数时,a※b=log a b=4,a4=b,再由a,b∈(1,10000),能求出集合M中元素的个数.【解答】解:∵m、n都为正偶数时,m※n=m n,当m、n都为正奇数时,m※n=log m n,集合M={(a,b)|a※b=4},∴a,b都为正偶数时,a※b=a b=4,a=2,b=2,当a,b都为正奇数时,a※b=log a b=4,a4=b,∵a,b∈(1,10000),∴a=3,b=81,或a=5,b=625,或a=7,b=2401,或a=9,b=6561,∴M={(2,2),(3,81),(5,625),(7,2401),(9,6561)}.∴集合M中有5个元素.故选:C.【点评】本题考查集合中元素个数的求法,考查集合定义等基础知识,考查运算求解能力,是基础题.三、解答题(第17-19题每题14分,第20题16分,第21题18分,满分76分)17.(14分)已知关于x的不等式≥0的解集为P,不等式(x﹣1)2<1的解集为Q.(1)若a=3,求集合P;(2)求集合P,并求当P∪Q=P时a的取值范围.【分析】(1)a=3时,P={x|≥0},由此能求出集合P.(2)P={x|≥0}={x|≤0},根据a>﹣1,a=﹣1,a<﹣1分类讨论,由此能求出集合P,求出Q={x|(x﹣1)2<1}={x|0<x<2},由P∪Q=P,得Q⊆P,由此能求出a的取值范围.【解答】解:(1)a=3时,P={x|≥0}={x|≤0}={x|﹣1<x≤3},(2)P={x|≥0}={x|≤0},当a>﹣1时,P={x|﹣1<x≤a},当a=﹣1时,P=∅,当a<﹣1时,P={x|a≤x<﹣1}.∵Q={x|(x﹣1)2<1}={x|x2﹣2x<0}={x|0<x<2},P∪Q=P,∴Q⊆P,∴当a>﹣1时,a>2,当a≤﹣1时,无解,综上,当P∪Q=P时a的取值范围是(2,+∞).【点评】本题考查集合、实数的取值范围的求法,考查并集定义等基础知识,考查运算求解能力,是基础题.18.(14分)每年3月3日是国际爱耳日,2020年的主题是“保护听力,终生受益”.声强级是表示声强度相对大小,其值为y【单位:dB(分贝)】定义为y=10lg,其中,I 为声场中某点的声强度,其单位为W/m2(瓦/平方米),I0=10﹣12W/m2为基准值.(1)如果一辆小轿车内的声音是50dB,求相应的声强度;(2)如果飞机起飞时的声音是120dB,两人正常交谈的声音是60dB,那么前者的声强度是后者的声强度的多少倍?【分析】(1)直接把y=50代入y=10lg,求得I得结论;(2)分别求出声音是120dB和60dB的声强度,作比得结论.【解答】解:(1)由50=10lg,得,即I=W/m2.故声音是50dB,相应的声强度是10﹣7W/m2;(2)设声音是120dB的声强度为I1,则120=10lg,即,设声音是60dB的声强度为I2,则60=10lg,即,∴.∴前者的声强度是后者的声强度的106倍.【点评】本题考查函数模型的选择及应用,考查对数方程的求法,是基础的计算题.19.(14分)设x≥0,A=,B=.(1)求证:A<,并指出等号成立的条件;(2)比较A与B的大小关系,并说明理由.【分析】(1)把A进行分离常数,再由x的范围求得A的值域,则结论得证,并指出等号成立的条件;(2)利用基本不等式求出B的范围,结合(1)中求得的A的范围,即可比较A与B的大小关系.【解答】证明:(1)A==,∵x≥0,∴x+,8(x+)≥4,,可得<,即A<,当且仅当x=0时等号成立;解:(2)B<A,证明如下:由(1)知,A<,B=,当x=0时,B=0,当x>0时,x2+1≥2x>0,∴,当且仅当x=1时取等号,∴0,而A与B中的等号不同时成立,∴B<A.【点评】本题考查利用分离常数法与基本不等式求函数的值域,考查运算求解能力,是中档题.20.(16分)我们知道当a>0时,a m+n=a m•a n对一切m、n∈R恒成立,学生小贤在进一步研究指数幂的性质时,发现有这么一个等式21+1=21+21,带着好奇,他进一步对2m+n=2m+2n进行深入研究.(1)当m=2时,求n的值;(2)当m≤0时,求证:n是不存在的;(3)求证:只有一对正整数对(m,n)使得等式成立.【分析】(1)由题意求解关于n的方程即可确定实数n的值;(2)由题意求得2n的表达式,然后分类讨论即可证得题中的结论;(3)将m,n分离到等式的两侧,然后讨论左右两侧的值即可证得题中的结论.【解答】(1)解:当m=2时,22+n=22+2n,即3⋅2n=4,∴;(2)证明:设t=2m,由于m≤0,故t∈(0,1],由题意可得:t⋅2n=t+2n,当m=0,t=1时,上述等式明显不成立,当m≠0,t<1时,,由于2n>0,t>0,t﹣1<0,故上述等式不成立,综上可得,实数n不存在.(3)证明:由2m+n=2m+2n可得:,当m,n均为正整数时,等式左侧为2的指数幂,故右侧也是2的指数幂,很明显只有2m﹣1=1,m=1 时满足题意,此时n=1,即只有一对正整数对(1,1)使得等式成立.【点评】本题主要考查指数方程的解法,分类讨论的数学思想,方程思想的应用等知识,意在考查学生的转化能力和计算求解能力.21.(18分)已知代数式|x+2|和|ax﹣b|.(1)若a=0,b=,求不等式|x+2|<|ax﹣b|的解集(用区间表示);(2)若a=1,b=1,用反证法证明:|x+2|、|ax﹣b|中至少有一个数不小于;(3)若a>0,不等式|x+2|+|ax﹣b|≥x+1对任意实数x恒成立,试确定实数a、b满足的条件.【分析】(1)将a=0,b=代入|x+2|<|ax﹣b|中,然后去绝对值解不等式即可;(2)当a=1,b=1时,|ax﹣b|=|x﹣1|,然后假设|x+2|,|x﹣1|均小于,得到,推出矛盾结论,从而证明原命题成立;(3)根据a>0时,不等式|x+2|+|ax﹣b|≥x+1对任意实数x恒成立,对|x+2|+|ax﹣b|去绝对值,然后分别得到满足条件实数a、b即可.【解答】解:(1)当a=0,b=时,由|x+2|<|ax﹣b|,得|x+2|,∴,∴,∴不等式的解集为{x|}.(2)当a=1,b=1时,|ax﹣b|=|x﹣1|.假设|x+2|,|x﹣1|均小于,则,∴,∴x∈∅,与假设矛盾,故|x+2|,|x﹣1|中至少有一个数不小于.(3)若a>0,不等式|x+2|+|ax﹣b|≥x+1对任意实数x恒成立,则①当x≥﹣2,ax﹣b≥0时,,∴,要使不等式在R上恒成立,则,∴.②当x⩾﹣2,ax﹣b≤0时,,∴,要使不等式在R上恒成立,则与a>0矛盾.③当x≤﹣2,ax﹣b≥0时,,∴,要使不等式在R上恒成立,则,∴,将代入中,得,要使与x≤﹣2有交集,则,∴与b≤﹣3矛盾.④当x≤﹣2,ax﹣b≤0时,,∴,要使不等式在R上恒成立,则与a>0矛盾.综上,要使不等式在R上恒成立,实数a、b满足的条件为.【点评】本题考查了绝对值不等式的解法,利用反证法证明不等式和不等式恒成立问题,考查了转化思想和分类讨论思想,属中档题.。

上海市第二中学2024-2025学年高一上学期期中考试数学试题(含解析)

上海市第二中学2024-2025学年高一上学期期中考试数学试题(含解析)

2024~2025学年市二中学高一(上)期中考试数学试卷一、填空题(第1-6题每題4分,第7-12题每题5分,满分54分)1.若,,则______.2.不等式的解集是______.3.已知,则______.4.不等式“”是“”______的条件.5.已知集合,集合,若集合M 满足,则这样的集合M 共有______个.6.已知,那么等于______.7.已知,,则用m ,n 表示______.8.若关于x 的不等式恰有两个整数解,则a 的取值范围是______.9.命题“任意,为真命题,则实数a 的取值范围是______.10.碳14是透过宇宙射线撞击空气中的氨14原子所产生.碳14原子经过衰变转变为氨原子.由于其半衰期达5730年,经常用于考古年代鉴定,半衰期(Half-life )是指放射性元素的原子核有半数发生衰变时所需要的时间,对北京人遗址中某块化石鉴定时,碳14含量约为原来的1%,则这块化石距今约为______万年.(四舍五入到0.1万年)11.已知,,,,,若且,,中各元素的和为256,则集合______.12.已知实数a ,b 满足,且,则的最小值为______.二、单选题(本大题共4题,满分20分)13.已知集合,,则( )A .B .C .D .14.关于x 的不等式的解集是,那么()A .1B .C .12D .{}|31A x x =-≥{}|15B x x =<<A B = 304x x -≤+12510a b ==11a b +=23x x ≤|2|1x -<{}2,3,5,8A ={}2,3,5,8,13,21B =A M B ⊂⊆()223350x x x -+=>1133x x -+9log 5m =3log 7n =35log 9=()22120x a x a -++<x ∈R ()()222240a x a x -+--<β14235{,,,,}A a a a a a =4222221235{,,,},B a a a a a =51234a a a a a <<<<i a ∈Z 1,2,3,4,5i ={}14,B a a A = 1410a a +=22a >A B A =11a b -<<<2a b +=1311a ab ++-4|,1P x y y x ⎧⎫=∈=∈⎨⎬+⎩⎭N N {}|14Q x x =-≤≤P Q = {}1,2,4{}0,1,3{}|03x x ≤≤{}|14x x -≤≤2x ax b ≤-{}4log a b =344315.若,,则下列不等式中一定成立的是()A .B .C .D .16.定义集合运算;将称为集合A 与集合B 的对称差,命题甲::命题乙:则下列说法正确的是( )A .甲乙都是真命题B .只有甲是真命题C .只有乙是真命题D ,甲乙都不是真命题三、解答题(本大题共有5题,满分76分)17.已知集合,,若,,则实数a 、b 、c 的值为.18.设关于x 的方程的两个实根分别是,.(1)求实数p 的取值范围;(2)求的取值范围.19.近几年来,“盲盒文化”广为流行,这种文化已经在中国落地生根,并发展处具有中国特色的盲盒经济,某盲盒生产及销售公司今年初用98万购进一批盲盒生产线,每年可有50万的总收入,已知生产此盲盒x 年(x 为正整数)所用的各种费用总计为万元(1)该公司第几年首次盈利(总收入超过总支出,今年为第一年)?(2)该公司第几年年平均利润最大,最大是多少?20.某天数学课上,你突然惊醒,发现黑板上有如下内容:(1)老师请你模仿例题,研究,上的最小值;(提示:,当且仅当时,等号成立);(2)研究,上的最小值;(3)当时,求,的最小值.21.已知有限集,如果A 中的元素满足,就称A 为“完美集”.x a m -<y a n -<2x y m -<2x y n -<x y n m-<-x y n m -<+{}|A B x x A x B -=∈∉且()()A B A B B A ∆=-- ()()()A B C A B A C ∆=∆ △()()()A B C A B A C ∆=∆ {}2|0A x x ax b =++={}2|150B x x cx =++={}3,5A B = {}3A B = 22lg lg 30x x p -+=αβlog log βαβα+2210x x +44x x -()0,x ∈+∞a b c d +++≥a b c d ===3139x x -()0,x ∈+∞0a >3x ax -()0,x ∈+∞{}()12,,2,,n A a a a n n ⋅⋅⋅=≥∈N ()1,2,,i a i n =⋅⋅⋅1212n n a a a a a a ++⋅⋅⋅+=⨯⨯⋅⋅⋅⨯(1)判断:集合是否是“完美集”并说明理由:(2)、是两个不同的正数,且是“完美集”,求证:、至少有一个大于2;(3)若为正整数,求:“完美集”A .2024~2025学年市二中学高一(上)期中考试数学试卷一、填空题1.【答案】【解析】由题意知,,所以.2.【答案】【解析】,解得或,所以不等式的解集为.3.【答案】【解析】若,可得,,.4.【答案】必要不充分【解析】,,由于是的真子集,所以“”是“”的必要不充分条件.5.【答案】3【解析】因为集合,所以集合M 中包含2,3,5,8且至少包含13,21中的一个元素,所以或或,所以满足条件的M 个数为3.6.【解析】由,因,故,即得,.7.【答案】【解析】由,,可得,,又由{11---+1a 2a {}12,a a 1a 2a i a ()1,4(),4A =-∞()1,4A B = ()[),43,-∞-+∞ ()()34030440x x x x x -+≤⎧-⎪≤⇔⎨++≠⎪⎩4x <-3x ≥()[),43,-∞-+∞ 1-12510b a ==2log 10a =-5log 10b =-()521111lg 5lg 2lg101log 10log 10a b ⎛⎫+=-+=-+=-=- ⎪⎝⎭{}{}23|0|3x x x x x ≤=≤≤{}{}3|21|1x x x x -<=<<{}|13x x <<{}3|0x x ≤≤23x x ≤21x -<A M B ⊂⊆{}2,3,5,8,13M ={}2,3,5,8,21{}2,3,5,8,13,212112233332527x x x x --⎛⎪+=++⎫⎝⎭+ ==0x >11330x x -+>1133x x -+=22m n+9log 5m =3log 7n =31log 52m =3log 7n =8.【答案】【解析】令,解得或.当,即时,不等式,解得,则不等式中的两个整数解为2和3,有,解得;当,即时,不等式无解,所以不符合题意;当,即时,不等式解得,则不等式中的两个整数解为0和,有,解得.综上,a 的取值范围是9.【答案】【解析】因为“任意,”为真命题,所以不等式在上恒成立,当时,,显然成立,当时,有,解得,综上所述,实数a 的取值范围是.10.【答案】3.8【解析】设第n 个半衰期结束时,碳14含为,由题意可得,第一个半衰期结束时,碳14含量为,第二个半衰期结束时,碳14含量为;以此类推,为以首项,公比为的等比数列,所以第n 个半衰期结束时,碳14含量为,335333log 922log 9log 35log 5log 72m n===++3|21212a a a ⎭<≤⎧⎫-≤<-⎨⎬⎩或()22120x a x a -++=1x =2x a =21a >12a >()22120x a x a -++<12x a <<324a <≤322a <≤21a =12a =()22120x a x a -++<12a =21a <12a <()22120x a x a -++<21a x <<1-221a -≤<-112a -≤<-3|21212a a a ⎭<≤⎧⎫-≤<-⎨⎬⎩或(]2,2-x ∈R ()()222240a x a x -+--<()()222240a x a x -+--<R 2a =40-<2a ≠()()220421620a a a -<⎧⎪⎨∆=-+-<⎪⎩22a -<<(]2,2-n a 112a =214a ={}n a 112a =12q =12n n a ⎛⎫= ⎪⎝⎭令,解得所以这块化石距今约为年,即约为3.8万年:11.【答案】【解析】由,且,得到只可能,即或0,当时,,而,故舍去,则,又,∴,且,∴或,①若时,,不合题意;②若时,此时,,因,从而,又,则,当时,无整数解,当时,,所以,综上,12.【解析】因为,所以,,因为,所以,由,所以所以,11%2n n a ⎛⎫== ⎪⎝⎭2212lg102log 10 6.6410.301lg 2n ---===≈-5730 6.6438047.2⨯={}1,3,5,9,11{}14,A B a a = 12345a a aa a <<<<211a a =1a =11a =0410a ={}14,A B a a = =Z 1a =11410a a +=49a =()24923i a a i ==≤≤23a =33a =33a =22a =23a ={}531,3,,9,A a a ={}22531,9,,81,B a a =22353513981256a a a a +++++++=2255331620a a a a +++-=234a a a <<339a <<3a =4,6,7,85a 35a =511a ={}1,3,5,9,11A ={}1,3,5,9,11A =1-11a b -<<<10a +>10b ->2a b +=()()112a b ++-=2a b +=()32131133111111b a a b a b a b -+=+=+-+-+-+-()()13113311311211a b a b a b ⎡⎤⎢-+-=+++--⎡⎤⎣⎦+-+⎥⎣⎦()31111133432312112a b a b ⎛+- =+++-≥⎝⎛⎫ ⎪⎝+-=+-=- +⎭-当且仅当,即,二、单选题13.【答案】B 【解析】若,则是4的正因数,而4的正因数有1,2,4,所以,因为,所以,故选:B .14.【答案】D【解析】即,因为解集为,则根据韦达定理知,即,则故选:D .15.【答案】D 【解析】运用绝对值三角不等式,由于,,运用不等式性质得到故,故选:D .16.【答案】B【解析】对于甲,,故命题甲正确;对于乙,如图所示:所以,,故命题乙不正确三、解答题17.【答案】,,()31111a b a b +-=+-2a =-+4b =-41y x =+y ∈N 1x +{}4|,0,1,31P x y y x ⎧⎫=∈=∈=⎨⎬+⎩⎭N N {}|14Q x x =-≤≤{}0,1,3P Q = 2x ax b ≤-20x ax b -+≤{}42424a b =⨯⎧⎨=⎩816a b =⎧⎨=⎩32844log log 16log 23a b ===x y x a a y x a a y -=--≤-++-x a m -<y a n -<x a a y m n-+-<+x y m n -<+()()()()A B C A B B C B C A B C A B C ∆=-=- ()()()()()()A B A C A B A C A B A C =-=∆ ()()()A B C A B A C ∆≠∆ ()A B C ∆ ()()A B A C ∆ 6a =-9b =8c =-【解析】因为,所以,所以,得,所以,所以,即有且只有一个实根,所以,,解得,,综上可得,,,.18.【答案】(1);(2)【解析】(1)因为,即,设,则关于t 的方程:的两根为和,所以,解得.(2)由韦达定理,得,所以因为且,所以或,所以或,所以的取值范围为19.【答案】(1)第3年:(2)第7年平均利润最大,为12万元【解析】(1)设利润为y ,则,由整理得,,解得,由于,所以,所以第3年首次盈利.(2)首先,由(1)得平均利润万元,{}3AB = 3B ∈93150c ++=8c =-{}{}28150|3,5B x x x =-+=={}3A =20x ax b ++=3x =33a +=-33b ⨯=6a =-9b =6a =-9b =8c =-1,3⎛⎤-∞ ⎥⎝⎦()[),22,-∞-+∞ 22lg lg 30x x p -+=2lg 2lg 30x x p -+=lg t x =2230t t p -+=lg αlg β()22120p ∆=-≥-13p ≤lg lg 2lg lg 3pαβαβ+=⎧⎨=⎩22lg lg lg lg log log lg lg lg lg αββαβαβααβαβ++=+=2(lg lg )2lg lg 4642lg lg 33p p pβααβαβ+--===-31p ≤30p ≠443p ≥403p<4223p -≥4223p-<-log log αββα+()[),22,-∞-+∞ ()()22*509821024098y x x x x x x =-++=-+-∈N 2240980x x -+->220490x x -+<1010x -<<x *∈N {}|317x x x *∈∈≤≤N {}|317x x x *∈∈≤≤N 4924024012y x x x ⎛⎫=-++≤-⨯+= ⎪⎝⎭当且仅当,万元时等号成立,综上,第7年,平均利润最大,为12万元20.【答案】(1):(2);(3)【解析】(1)因为,利用,于是,,当且仅当时,取得最小值.(2)因为,利用,得到,于是,,当且仅当时,取得最小值.(3)因为利用,得到,于是,,当且仅当时,取得最小值21.【解析】(1)由,,则集合是“完美集”.(2)若、是两个不同的正数,且是“完美集”,设,根据根和系数的关系知,和相当于的两根,由,解得或(舍去),所以,又,均为正数所以、至少有一个大于2.(3)不妨设A中,49x x=7x =3-6-0x >a b c d +++≥41114x x ++≥+444111434433x x x x x x -=+++--≥--=-1x =3-0x >a b c ++≥313339x x ++≥331133363363699x x x x x x -=++--≥--=-3x =6-0x >a b c ++≥3x ax +≥33x ax x ax -=-≥x =((112-+-+=-(112--=-{11--+1a 2a {}12,a a 12120a a a a t +=⋅=>1a 2a 20x tx t -+=240t t ∆=->4t >0t <124a a ⋅>1a 2a 1a 2a 312n a a a a <<<⋅⋅⋅<由,得,当时,即有,又为正整数,所以,于是,则无解,即不存在满足条件的“完美集”;当时,,故只能,,求得,于是“完美集”A 只有一个,为.当时,由,即有,而,又,因此,故矛盾,所以当时不存在完美集A ,综上知,“完美集”A 为1212n n n a a a a a n a a ⋅⋅⋅=++⋅⋅<⋅+121n n a a a -⋅⋅<⋅2n =12a <i a 11a =2211a a +=⨯2a 3n =123a a <11a =2a =23a =3{}1,2,34n ≥()1211231n a a a n n -⋅⋅⋅≥⨯⨯⨯⋅⋅⋅⨯-()1231n n n ≥⨯⨯⨯⋅⋅⋅⨯-()()()221242220n n n n n n ---=-+-=--+<()()()121231n n n n --≤⨯⨯⨯⋅⋅⋅⨯-()1231n n n <⨯⨯⨯⋅⋅⋅⨯-4n ≥{}1,2,3。

湖南省娄底市第一中学2020-2021学年高一上学期期中考试数学试题

湖南省娄底市第一中学2020-2021学年高一上学期期中考试数学试题

1、若集合A = {x | -2 ≤ x ≤ 5},B = {x | m + 1 ≤ x ≤ 2m - 1},且B ⊆ A,则m的取值范围是A. -2 ≤ m ≤ 3B. -3 ≤ m ≤ 2C. 2 ≤ m ≤ 3D. -2 ≤ m ≤ 2且m ≠ 3(答案)D解析:考虑B集合为空集和非空集两种情况。

当B为空集时,即m+1>2m-1,解得m<2;当B非空时,需满足m+1≥-2,2m-1≤5,且m+1≤2m-1,联立解得2≤m≤3。

综合两种情况,得m的取值范围为-2≤m≤3且m≠3,但由于m<2时已包含在内,故最终答案为D。

2、已知向量a = (1, 2),b = (2, -1),则向量a - 2b的坐标为A. (-3, 4)B. (3, -4)C. (3, 4)D. (-3, -4)(答案)A解析:根据向量坐标运算规则,向量a-2b的坐标等于a的坐标分别减去2倍b的对应坐标。

即(1-22, 2-2(-1))=(-3, 4)。

3、下列函数中,在其定义域内为增函数的是A. y = -x2 + 2xB. y = 1/xC. y = 2(-x)D. y = log2(x)(答案)D解析:A选项为二次函数,开口向下,在对称轴左侧增,右侧减;B选项为反比例函数,在x<0时减,x>0时减;C选项为指数函数,底数小于1,故在整个定义域内为减函数;D 选项为对数函数,底数大于1,在其定义域(0, +∞)内为增函数。

4、设全集U = {1, 2, 3, 4, 5},若集合A = {1, 2, 3},B = {3, 4},则A ∩ B =A. ∅B. {3}C. {1, 2, 3, 4}D. {3, 4, 5}(答案)B解析:交集A∩B表示同时属于A和B的元素。

观察A和B,发现只有元素3同时存在于两个集合中,因此A∩B={3}。

5、下列等式成立的是A. √((-3)2) = -3B. √(25) = ±5C. ∛(8) = 2D. ∛((-2)3) = 2(答案)C解析:A选项,√((-3)2) = √9 = 3,不等于-3;B选项,√(25) = 5,算术平方根只取非负值;C选项,∛(8) = 2,因为23 = 8;D选项,∛((-2)3) = ∛(-8) = -2,不等于2。

2020-2021学年新教材高一数学上学期期末复习练习(四)

2020-2021学年新教材高一数学上学期期末复习练习(四)

2020-2021高一数学期末复习练习(四)考查知识:苏教版必修第一册第I 卷(选择题)请点击修改第I 卷的文字说明一、单选题1.集合{|14}A x N x =∈≤<的真子集的个数是( )A .16B .8C .7D .42.已知:p :A ={x |x 2﹣2x ﹣3≤0},q :B ={x |x 2﹣2mx +m 2﹣4≤0},若p 是¬q 成立的充分不必要条件,求m 的取值范围是( )A .(﹣∞,﹣3)∪(5,+∞)B .(﹣3,5)C .[﹣3,5]D .(﹣∞,﹣3]∪[5,+∞)3.已知a b >,0ab ≠,则下列不等式正确的是( )A .22a b >B .22a b >C .|a |>|b|D .11a b < 4.已知lg 20.3010=,由此可以推断20142是( )位整数.A .605B .606C .607D .6085.设f (x )=12(1),1x x x <<-≥⎪⎩,若f (a )=12,则a =( ) A .14 B .54 C .14或54 D .26.正实数x ,y 满足lg lg 100y x x y =,则xy 的取值范围是( )A .1[,100]100B .1(0,][100,)100⋃+∞ 117.已知扇形的圆心角为23π,面积为24 c m 3π,则扇形的半径为( ) A .12cm B .1cmC .2cmD .4cm 8.复利是一种计算利息的方法.即把前一期的利息和本金加在一起算作本金,再计算下一期的利息.某同学有压岁钱1000元,存入银行,年利率为2.25%;若放入微信零钱通或者支付宝的余额宝,年利率可达4.01%.如果将这1000元选择合适方式存满5年,可以多获利息( )元(参考数据:1.02254=1.093,1,02255=1.170,1.04015=1.217)A .176B .104.5C .77D .88二、多选题9.已知集合{}2A x ax =≤,{B =,若B A ⊆,则实数a 的值可能是( ) A .1- B .1 C .2- D .2 10.设正实数a ,b 满足a +b =1,则( )A .11a b +有最小值4B 12C D .a 2+b 2有最小值12 11.已知定义在R 上的函数()y f x =满足条件()()2f x f x +=-,且函数()1y f x =-为奇函数,则( )A .()4()f x f x +=B .函数()y f x =的图象关于点()1,0-对称C .函数()y f x =为R 上的奇函数D .函数()y f x =为R 上的偶函数12.将函数()sin2f x x =向右平移4π个单位后得到函数()g x ,则()g x 具有性质( ) A .在0,4π⎛⎫ ⎪⎝⎭上单调递增,为偶函数 B .最大值为1,图象关于直线32x π=对称 C .在3,88ππ⎛⎫- ⎪⎝⎭上单调递增,为奇函数 D .周期为π,图象关于点3,04π⎛⎫⎪⎝⎭对称第II 卷(非选择题)请点击修改第II 卷的文字说明三、填空题13.已知p :2106x x >--,则“非p ”对应的x 值的集合是___. 14.若对数ln (x 2﹣5x +6)存在,则x 的取值范围为___.15.若()log 3a y ax =+(0a >且1a ≠)在区间(-1,+∞)上是增函数,则a 的取值范围是________.四、双空题16.已知函数()22log (1),02,0x x f x x x x +>⎧=⎨--≤⎩. 若函数()()g x f x m =-有3个零点,则实数m 的取值范围是________;若()f x m =有2个零点,则m =________.17.已知集合{}12A x x =-≤≤,{}2B x a x a =≤≤+.(1)若1a =,求A B ;(2)在①R R A B ⊆,②A B A ⋃=,③A B B =中任选一个作为已知,求实数a 的取值范围.18.已知函数()222y ax a x =-++,a R ∈ (1)32y x <-恒成立,求实数a 的取值范围;(2)当0a >时,求不等式0y ≥的解集;(3)若存在0m >使关于x 的方程()21221ax a x m m-++=++有四个不同的实根,求实数a 的取值.19.计算下列各式的值:(1)lg2+lg50;(2)39log 4log 8; (3))211lg12log 432162lg 20lg 2log 2log 319-⎛⎫++--⋅+ ⎪⎝⎭.20.已知函数f (x )=ax 2﹣2x +1+b (a ≠0)在x =1处取得最小值0.(1)求a ,b 的值;(2)()()f x g x x =,求函数1(|21|),,22x y g x ⎡⎤=-∈⎢⎥⎣⎦的最小值与最大值及取得最小值与最大值时对应的x 值.21.设函数()cos(),0,02f x x πωϕωϕ⎛⎫=+>-<< ⎪⎝⎭的最小正周期为π,且16f π⎛⎫= ⎪⎝⎭. (1)求函数()f x 的解析式;(2)求函数()f x 的单调递增区间;(3)将函数()y f x =的图象向左平移3π个单位长度,再将所得图象上各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数y =g (x )的图象,求g (x )在2,63ππ⎡⎤-⎢⎥⎣⎦上的值域.22.销售甲种商品所得利润为P 万元,它与投入资金t 万元的函数关系为1at P t =+;销售乙种商品所得利润为Q 万元,它与投入资金t 万元的函数关系为Q bt =,其中a ,b 为常数.现将5万元资金全部投入甲、乙两种商品的销售:若全部投入甲种商品,所得利润为52万元;若全部投入乙种商品,所得利润为53万元.若将5万元资金中的x 万元投入甲种商品的销售,余下的投入乙种商品的销售,则所得利润总和为()f x 万元. (1)求函数()f x 的解析式;(2)求()f x 的最大值.2020-2021高一数学期末复习练习(四)考查知识:苏教版必修第一册参考答案1.C【分析】先用列举法写出集合A ,再写出其真子集即可.【详解】解:∵141,2,3{|}{}A x N x =∈≤<=,{|1}4A x N x ∴=∈≤<的真子集为:{}{}{},,,,{}1231,21,{},,3{}2,3∅共7个. 故选:C .2.A【分析】求出集合A ,B ,由题可得[1,3]- ()(),22,m m -∞-⋃+∞,即可求出.【详解】解:由2230x x --≤,解得:13x -≤≤.{}2:230[1,3]p A x x x ∴=--≤=-∣.由22240x mx m -+-≤,解得:22m x m -≤≤+.∴q :B ={x |x 2﹣2mx +m 2﹣4≤0}=[m ﹣2,m +2], {}22:240[2,2]q B x x mx m m m ∴=-+-≤=-+∣.∵p 是¬q 成立的充分不必要条件,[1,3]∴- ()(),22,m m -∞-⋃+∞,32m ∴<-或21m +<-,解得5m >或3m <-.∴m 的取值范围是(,3)(5,)-∞-+∞. 故选:A.【点睛】结论点睛:本题考查根据充分不必要条件求参数,一般可根据如下规则判断: (1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集; (2)若p 是q 的充分不必要条件,则p 对应集合是q 对应集合的真子集; (3)若p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)若p 是q 的既不充分又不必要条件,则q 对应的集合与p 对应集合互不包含. 3.B【分析】利用不等式性质和指数函数的单调性,以及举反例,逐项判定,即可求解.【详解】对于A 中,令1,2a b ==-,此时满足a b >,0ab ≠,但22a b <,所以不正确; 对于B 中,由函数2x y =为R 上的单调递增函数,因为a b >,所以22a b >,所以正确; 对于C 中,令1,2a b ==-,此时满足a b >,0ab ≠,但|a ||b |<,所以不正确; 对于D 中,令1,2a b ==-,此时满足a b >,0ab ≠,但11a b>,所以不正确. 故选:B.4.C【分析】令20142t =,两边取对数后求得lg t ,由此可得20142的整数位.【详解】解:∵lg 20.3010=,令20142t =,∴2014lg 2lg t ⨯=,则lg 20140.3010606.214t =⨯=,∴20142是607位整数.故选:C.5.C【分析】根据解析式分段讨论可求出.【详解】解:∵()12(1),1x f x x x <<=-≥⎪⎩,1()2f a =,∴由题意知,0112a <<⎧=或()11212a a ≥⎧⎪⎨-=⎪⎩, 解得14a =或54a =. 故选:C .6.B【分析】两边取对数可得lg lg 1x y =,利用基本不等式即可求出xy 的取值范围.【详解】正实数x ,y 满足lg lg 100y x x y =,两边取对数可得2lg lg 2x y =,所以lg lg 1x y =, 所以22lg lg lg()1lg lg 22x y xy x y +⎛⎫⎡⎤=≤= ⎪⎢⎥⎝⎭⎣⎦,即2lg ()4xy ≥, 所以lg()2xy ≥或lg()2xy ≤-,解得100xy ≥或10100xy <≤, 所以xy 的取值范围是1(0,][100,)100⋃+∞. 故选:B【点睛】 关键点点睛:本题的求解关键是两边取对数得到lg lg x y 积为定值. 7.C【分析】利用扇形的面积公式即可求解.【详解】设扇形的半径为R ,则扇形的面积2211242233S R R ππα==⨯⨯=, 解得:2R =,故选:C8.B【分析】由题意,某同学有压岁钱1000元,分别计算存入银行和放入微信零钱通或者支付宝的余额宝所得利息,即可得到答案.【详解】将1000元钱存入微信零钱通或者支付宝的余额宝,选择复利的计算方法,则存满5年后的本息和为51000 1.04011217⨯=,故而共得利息1217–1000=217元.将1000元存入银行,不选择复利的计算方法,则存满5年后的利息为1000×0.0225×5=112.5,故可以多获利息217–112.5=104.5.故选:B .【点睛】本题主要考查了等比数列的实际应用问题,其中解答中认真审题,准确理解题意,合理利用等比数列的通项公式求解是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.9.ABC【分析】由B A ⊆可得出关于实数a 的不等式组,解出实数a 的取值范围,进而可得出实数a 的可能取值.【详解】{}2A x ax =≤,{B =且B A ⊆,所以,222a ≤≤⎪⎩,解得1a ≤. 因此,ABC 选项合乎题意.故选:ABC.10.ABCD由正实数a ,b 满足1a b +=,可得2a b ab +,则104ab <,根据1114a b ab +=判断A ;104ab <开平方判断B =判断C ;利用222222()a b a a b b +++判断D .【详解】正实数a ,b 满足1a b +=,即有2a b ab +,可得104ab <, 即有1114a b a b ab ab ++==,即有12a b ==时,11a b+取得最小值4,无最大值,A 正确;由104ab <可得102<,可得12a b ==有最大值12,B 正确;1122=+⨯,可得12a b ==,C 正确; 由222a b ab +可得2222222()()1a a b a b a b b ++=++=,则2212a b +,当12a b ==时,22a b +取得最小值12,D 正确. 故选:ABCD .【点睛】 利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数是否在定义域内,二是多次用≥或≤时等号能否同时成立).【分析】由()()2f x f x +=-,可得推得()()4f x f x +=,得到A 是正确的;由奇函数的性质和图象的变换,可得判定B 是正确的;由(1)(1)f x f x --=--+,可得推得函数()f x 是偶函数,得到D 正确,C 不正确.【详解】对于A 中,函数()y f x =满足()()2f x f x +=-,可得()()()42f x f x f x +=-+=,所以A 是正确的;对于B 中,()1y f x =-是奇函数,则(1)f x -的图象关于原点对称,又由函数()f x 的图象是由()1y f x =-向左平移1个单位长度得到,故函数()f x 的图象关于点(1,0)-对称,所以B 是正确的;对于C 、D ,由B 可得:对于任意的x ∈R ,都有(1)(1)f x f x --=--+,即(1)(1)0f x f x --+-+=,可变形得(2)()0f x f x --+=,则由(2)()(2)f x f x f x --=-=+对于任意的x ∈R 都成立,令2t x =+,则()()f t f t -=,即函数()f x 是偶函数,所以D 正确,C 不正确.故选:ABD【点睛】函数的周期性有关问题的求解策略:1、求解与函数的周期性有关问题,应根据题目特征及周期定义,求出函数的周期;2、解决函数周期性、奇偶性和单调性结合问题,通常先利用周期性中为自变量所在区间,再利用奇偶性和单调性求解.12.ABD【分析】化简得到()cos 2g x x =-,分别计算函数的奇偶性,最值,周期,轴对称和中心对称,单调区间得到答案.【详解】()sin 2sin 2cos 242g x x x x ππ⎛⎫⎛⎫=-=-=- ⎪ ⎪⎝⎭⎝⎭ 因为0,4x π⎛⎫∈ ⎪⎝⎭,则20,2x π⎛⎫∈ ⎪⎝⎭,所以()cos 2g x x =-单调递增,且为偶函数,A 正确,C 错误; 最大值为1,当32x π=时,23x π=,所以32x π=为对称轴,B 正确; 22T ππ==,取2,,242k x k x k Z ππππ=+∴=+∈,当1k =时满足,图像关于点3,04π⎛⎫ ⎪⎝⎭对称,D 正确;故选:ABD【点睛】本题考查了三角函数的平移,最值,周期,单调性 ,奇偶性,对称性,意在考查学生对于三角函数知识的综合应用.13.{}23x x -≤≤【分析】先求出命题p ,再按照非命题的定义求解即可.【详解】p :2106x x >--, 则260x x -->,解得2x <-或3x >,所以“非p ”对应的x 值的集合是{}23x x -≤≤. 故答案为:{}23x x -≤≤.14.()(),23,-∞+∞ 【分析】若对数存在,则真数大于0,解不等式即可.【详解】解:∵对数ln (x 2﹣5x +6)存在,∴x 2﹣5x +6>0,∴解得: x <2或 x >3,即x 的取值范围为:(﹣∞,2)∪(3,+∞).故答案为:(﹣∞,2)∪(3,+∞).15.(]1,3【分析】先利用0a >判断30u ax =+>是增函数,进而得到log a y u =是增函数,列关系计算即得结果.【详解】因为()log 3a y ax =+,(0a >且1a ≠)在区间(-1,+∞)上是增函数,知3u ax =+在区间(-1,+∞)上是增函数,且0>u ,故log a y u =是增函数,所以30101a a a a ⎧⎪-+≥⎪⎪>⎨⎪>⎪≠⎪⎩,解得13a .故a 的取值范围是(]1,3.故答案为:(]1,3.16.(0,1) 0或1【分析】把函数()()g x f x m =-有3个零点,转化为()y f x =和y m =的交点有3个,作出函数()f x 的图象,结合图象,即可求解.【详解】由题意,函数()()g x f x m =-有3个零点,转化为()0f x m -=的根有3个,转化为()y f x =和y m =的交点有3个,画出函数()22log (1),02,0x x f x x x x +>⎧=⎨--≤⎩的图象,如图所示,则直线y m =与其有3个公共点, 又抛物线的顶点为(1,1)-,由图可知实数m 的取值范围是(0,1).若()f x m =有2个零点,则0m =或(1)1m f =-=.故答案为:(0,1);0或1.【点睛】本题主要考查了函数与方程的综合应用,其中解答中把函数的零点问题转化为两个函数的图象的交点个数,结合图象求解是解答的关键,着重考查数形结合思想,以及推理与运算能力. 17.(1){}13A B x x ⋃=-≤≤;(2)选①/②/③,10a -≤≤.【分析】(1)应用集合并运算求A B 即可;(2)根据所选条件有B A ⊆,即可求a 的取值范围.【详解】(1)当1a =时,{}13B x x =≤≤,则{}13A B x x ⋃=-≤≤.(2)选条件①②③,都有B A ⊆, ∴1,22,a a ≥-⎧⎨+≤⎩解得10a -≤≤, ∴实数a 的取值范围为10a -≤≤.【点睛】本题考查了集合的基本运算,利用并运算求并集,由条件得到集合的包含关系求参数范围,属于简单题.18.(1)(4,0]-;(2)当02a <<时,不等式的解集为 {|1x x ≤或2}x a ≥;当2a =时,不等式的解集为R ;当2a >时,不等式的解集为 2{|x x a≤或1}x ≥;(3)(,4-∞-- 【分析】(1)先整理,再讨论0a =和0a ≠,列出恒成立的条件,求出a 的范围;(2)先因式分解,对两根大小作讨论,求出解集; (3)先令11t m m =++,由0m >,则可得3t ≥,再将()21221ax a x m m-++=++有四个不同的实根,转化为2(2)20ax a x t -++-=有两个不同正根,根据根与系数的关系,求出a 的取值范围.【详解】(1)由题有()22232ax a x x -++<-恒成立,即210ax ax -+-<恒成立, 当0a =时,10-<恒成立,符合题意;当0a ≠时,则2040a a a <⎧⎨∆=+<⎩,得040a a <⎧⎨-<<⎩,得40a , 综合可得40a .(2)由题2(2)20,ax a x -++≥ 即 (2)(1)0ax x --≥,由0,a >则2()(1)0x x a --=,且221a a a--= ①当02a <<时,21>a,不等式的解集为 {1x x ≤∣或2}x a ≥; ②当2a =时,不等式的解集为R③当2a >时,21a <,不等式的解集为 {2x x a≤∣或1}x ≥;综上可得:当02a <<时,不等式的解集为 {|1x x ≤或2}x a≥; 当2a =时,不等式的解集为R ;当2a >时,不等式的解集为 2{|x x a≤或1}x ≥; (3)当 0m > 时,令1113t m m =++≥=, 当且仅当1m =时取等号,则关于x 的方程(||)f x t = 可化为2||(2)||20a x a x t -++-=,关于x 的方程 2||(2)||20a x a x t -++-= 有四个不等实根, 即2(2)20ax a x t -++-=有两个不同正根, 则 2(2)4(2)0(1)20(2)20(3)a a t a a t a ⎧⎪∆=+-->⎪+⎪>⎨⎪-⎪>⎪⎩由(3)得0a <,再结合(2)得2a <-,由 (1) 知,存在 [3,)t ∈+∞ 使不等式24(2)80at a a ++->成立,故243(2)80a a a ⨯++->,即 2840,a a ++>解得4a <--或4a >-+综合可得4a <--故实数a的取值范围是(,4-∞--.【点睛】已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解;19.(1)2;(2)43;(3)2. 【分析】(1)根据对数的加法运算法则,即可求得答案;(2)利用换底公式,结合对数的运算性质,即可求得答案;(3)根据对数的运算性质及减法法则,即可求得答案.【详解】(1)2lg 2lg50lg100lg102+===; (2)39lg 4log 42lg 22lg 324lg 32lg8log 8lg 33lg 233lg 9==⨯=⨯=; (3))211lg12log 432162lg 20lg 2log 2log 319-⎛⎫++--⋅+ ⎪⎝⎭=013lg1011)1111244++-+=+-+= 20.(1)a =1,b =0;(2)当x =2时,g (|2x ﹣1|)max =43,x =1时,g (|2x ﹣1|)min =0. 【分析】(1)利用二次函数的性质求出a ,b 的值;(2)求出函数(|21|)x y g =-的解析式,利用换元法对勾函数的性质,得出最值以及取得最值时的x 值.【详解】(1)f (x )=ax 2﹣2x +1+b (a ≠0)在x =1处取得最小值0, 即1a =1,f (1)=a +b ﹣1=0,解得a =1,b =0; (2)由(1)知f (x )=(x ﹣1)2,()()12f x g x x x x==+-,g (|2x ﹣1|)=121221x x -+--,令t =|2x ﹣1|,∵1,22x ⎡∈⎤⎢⎥⎣⎦,则1,3t ⎤∈⎦, 由对勾函数的性质可得()min ()10g t g ==,此时t =1即|2x ﹣1|=1,解得x =1;又)1122g =-=,())14332133g g =+-=>, 当t =3时,解得x =2时,所以当x =2时,g (|2x ﹣1|)max =43,当x =1时,g (|2x ﹣1|)min =021.(1)()cos(2)3f x x π=-;(2)[,],36k k k Z ππππ-+∈;(3)[-. 【分析】(1)由函数()f x 的最小正周期为π,求得2w =,再由16f π⎛⎫=⎪⎝⎭,求得ϕ的值,即可求得函数()f x 的解析式;(2)由(1)知()cos(2)3f x x π=-,根据余弦型函数的性质,即可求得函数的递增区间;(3)根据三角函数的图象变换,求得()cos()3g x x π=+,结合三角函数的性质,即可求解. 【详解】 (1)由题意,函数()cos()f x x =+ωϕ的最小正周期为π, 所以2wππ=,可得2w =,所以()cos(2)f x x ϕ=+, 又由16f π⎛⎫= ⎪⎝⎭,可得()cos(2)cos()1663f πππϕϕ=⨯+=+=, 可得2,3k k Z πϕπ+=∈,即2,3k k Z πϕπ=-∈, 因为02πϕ-<<,所以3πϕ=-, 所以函数()f x 的解析式为()cos(2)3f x x π=-.(2)由(1)知()cos(2)3f x x π=-, 令222,3k x k k Z ππππ-≤-≤∈,解得,36k x k k Z ππππ-≤≤+∈, 所以函数()cos(2)3f x x π=-的单调递增区间为[,],36k k k Z ππππ-+∈. (3)将函数()y f x =的图象向左平移3π个单位长度, 得到函数cos[2()]cos(2)333y x x πππ=+-=+, 再将所得图象上各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数()cos()3y g x x π==+,因为2[,]63x ππ∈-,可得[,]36x πππ+∈,所以()1g x -≤≤,所以函数()g x 的值域为[-. 【点睛】 解答三角函数的图象与性质的基本方法:1、根据已知条件化简得出三角函数的解析式为sin()y A wx ϕ=+的形式;2、熟练应用三角函数的图象与性质,结合数形结合法的思想研究函数的性质(如:单调性、奇偶性、对称性、周期性与最值等),进而加深理解函数的极值点、最值点、零点及有界性等概念与性质,但解答中主要角的范围的判定,防止错解.22.(1)()3513x x f x x -=++,[]0,5x ∈;(2)3万元. 【分析】(1)对甲种商品投资x 万元,则对乙种商品投资为5x -万元,当5t =时,求得3a =,13b =,代入()(5)1ax f x b x x =+-+即可. (2)转化成一个基本不等式的形式,最后结合基本不等式的最值求法得最大值,从而解决问题.【详解】(1)因为1at P t =+,Q bt = 所以当5t =时,55512a P ==+,553Q b ==,解得3a =,13b =. 所以31t P t =+,13=Q t ,从而()3513x x f x x -=++,[]0,5x ∈ (2)由(1)可得()()()313613531+553131313x x x x x f x x x x +--+-+⎛⎫=+==-+≤-= ⎪+++⎝⎭当且仅当3113x x +=+,即2x =时等号成立.故()f x 的最大值为3. 答:当分别投入2万元、3万元销售甲、乙两种商品时总利润最大,为3万元.【点睛】方法点睛:与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考查书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际问题转化为数学模型进行解答.。

2020-2021学年上海市华东师范大学第二附属中学高一上学期期末数学试题及答案

2020-2021学年上海市华东师范大学第二附属中学高一上学期期末数学试题及答案

2020-2021学年上海市华东师范大学第二附属中学高一上学期期末数学试题一、单选题1.已知()f x 是R 上的偶函数,12,x x R ∈,则“120x x +=”是“()()12f x f x =”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案:A根据函数的奇偶性,以及充分条件、必要条件的判定方法,即可求解. 解:由题意,函数()f x 是R 上的偶函数,若120x x +=,则12x x =-,则()()()122f x f x f x =-=成立,即充分性成立; 若()()12f x f x =,则12x x =-或12x x =,即必要性不一定成立, 所以“120x x +=”是“()()12f x f x =”的充分不必要条件. 故选:A.点评:本题考查充分不必要条件的判断,一般可根据如下规则判断: (1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集; (2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集; (3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含. 2.函数2(0)1axy a x =>+的图象大致为( ) A . B .C .D .答案:A确定奇偶性,排除两个选项,再由函数值的正负排除一个选项,得出正确结论. 解:记2()1axf x x =+,函数定义域为R ,则2()1ax f x x -=-+()f x =-,函数为奇函数,排除BC ,又0x >时,()0f x >,排除D . 故选:A .点评:思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.3.设集合{}2230A x x x =+->,集合{}2210,0B x x ax a =--≤>,若A B 中恰有一个整数,则实数a 的取值范围是( ) A .30,4⎛⎫ ⎪⎝⎭B .34,43⎡⎫⎪⎢⎣⎭C .3,24⎡⎫⎪⎢⎣⎭D .()1,+∞答案:B先化简集合A ,再根据函数2()21y f x x ax ==--的零点分布,结合A∩B 恰有一个整数求解.解:{}{22303A x x x x x =+->=<-或}1x >,函数2()21y f x x ax ==--的对称轴为0x a =>, 而(3)680f a -=+>,(1)20,(0)0f a f -=><,故其中较小的零点为(1,0)-之间,另一个零点大于1,(1)0f <, 要使A∩B 恰有一个整数,即这个整数解为2,(2)0f ∴≤且(3)0f >,即44109610a a --≤⎧⎨-->⎩,解得:3443a ≤< ,则a 的取值范围为34,43⎡⎫⎪⎢⎣⎭.故答案为:B.点评:关键点睛:本题主要考查集合的交集运算的应用以及二次函数的零点分布问题,解题的关键是根据二次函数的性质得出AB 中的整数为2,利用零点存在性定理求解.4.已知函数111,22(),1(2),262x x f x f x x ⎧--≤⎪⎪=⎨⎪-<≤⎪⎩则方程()10xf x -=的解得个数是( )A .5B .6C .7D .8答案:C化简得出函数()f x 的表达式,方程()10xf x -=的解得个数,即方程1()f x x=的实数根的个数,作出函数()f x 和1y x=的图象,结合函数图象可得出答案. 解:当2x ≤时,()31212111122x x f x x x x -⎧⎪≤≤⎪=--=⎨+<⎪⎪⎩ 当24x <≤时,()12314(2)53424x x f x f x xx -⎧⎪<≤⎪=-=⎨-<≤⎪⎪⎩当46x <≤时,()34518(2)75628x x f x f x xx -⎧⎪<≤⎪=-=⎨-<≤⎪⎪⎩方程()10xf x -=的解得个数,即方程1()f x x=的实数根的个数. 在同一坐标系中作出()y f x =与1y x=的图象, 由()()()11112424f f f ===,,, 如图:函数()y f x =的图象与1y x=的图象有7个交点. 所以函数()()1g x xf x =-的零点个数是:7 故选:C点评:关键点点睛:本题考查函数的零点个数,解答本题的关键是得出函数函数()f x 的表达式,作出函数()f x 的图象,将问题转化为方程1()f x x=的实数根的个数,即函数()y f x =的图象与1y x=的图象的交点个数,数形结合可解.二、填空题5.计算:2233318log 752log 52-⎛⎫++-= ⎪⎝⎭________.答案:9根据分数指数幂的运算、对数的运算性质求解出结果. 解:原式=()()232333333212log 3552log 542log 32log 52log 512++⨯⨯-=+++-⎛⎫ ⎪⎝⎭4419=++=,故答案为:9.6.已知1cos 3α=,,02πα⎛⎫∈- ⎪⎝⎭,则tan α等于________. 答案:22-利用同角三角函数的基本关系可求得sin α的值,进而利用商数关系可求得tan α的值.解:,02πα⎛⎫∈-⎪⎝⎭,sin 3α∴==-,因此,sin tan cos ααα==- 故答案为:-.7.不等式2411x x x --≥-的解集为______.答案:[1,1)[3,)-+∞把分式不等式转化为整式不等式,然后利用高次不等式的结论求解.解:不等式2411x x x --≥-化为24101x x x ---≥-,22301x x x --≥-,(1)(3)(1)010x x x x +--≥⎧⎨-≠⎩, 解得3x ≥或11x -≤<. 故答案为:[1,1)[3,)-+∞.点评:方法点睛:解分式不等式的方法:把分式不等式移项,不等式右边化为0,左边通分,然后化为整式不等式,要注意分母不为0,对一元二次不等式易得解,对高次的不等式可利用序轴标根法写出不等式的解.解题中多项式的最高次项系数正数. 8.已知一扇形的圆心角为3π,弧长是cm π,则扇形的面积是__________2cm . 答案:32π 先由弧长公式求出扇形所在圆的半径,再根据扇形面积公式,即可得出结果.解:因为一扇形的圆心角为3π,弧长是cm π, 所以其所在圆的半径为33r ππ==,因此该扇形的面积是1133222S lr ππ==⨯⨯=. 故答案为:32π. 9.已知幂函数()f x 的图象过点2,2⎛⎫⎪⎝⎭,则()3f =______.答案:3由条件求出()12f x x-=,然后可求出答案.解:因为幂函数()f x x α=的图象过点⎛ ⎝⎭所以22α=,解得12α=-,即()12f x x -=所以()1233f -==10.已知函数12()log (21),()f x x y f x -=-=是其反函数,则1(1)f -=__________.答案:32令2log (21)1x -=即可求出1(1)f-解:解:令22log (21)1log 2x -==,所以212x -=,解得32x =,即1(1)f -=32. 故答案为:32. 11.方程()()2lg 2lg 2610+-+-+=x x x 的解集为_________.答案:132⎧⎫⎨⎬⎩⎭根据对数运算法则,先将方程化为()()2lg102lg 26+=+-x x x ,得到()210226+=+-x x x ,求解,再由对数的性质,得到x 的范围,即可得出结果.解:因为()()2lg 2lg 2610+-+-+=x x x ,所以()()2lg102lg 26+=+-x x x ,所以()210226+=+-x x x ,整理得:292602--=x x ,解得2x =-或132x =; 又由220260x x x +>⎧⎨+->⎩解得 32x >;所以132x =,原方程的解集为132⎧⎫⎨⎬⎩⎭ 故答案为132⎧⎫⎨⎬⎩⎭点评:本题主要考查解对数方程,熟记对数运算法则与对数的性质即可,属于常考题型. 12.若关于x 的方程9(4)340x xa ++⋅+=有解,则实数a 的取值范围是__________. 答案:8a ≤-令30x t =>,方程转化为2(4)40t a t +++=有正根,由根的判别式结合根与系数关系,建立关于a 的不等式,求解即可. 解:方程9(4)340x xa ++⋅+=有解,令30x t =>,则方程2(4)40t a t +++=有正根, 又两根的积为4,()()2416040a a ⎧∆=+-≥⎪∴⎨-+>⎪⎩,解得8a ≤-.故答案为:8a ≤-.点评:本题考查一元二次方程根的分布,应用根的判别式和根与系数的关系是解题的关键,属于基础题.13.已知0a >,0b >且3a b +=.式子2021202120192020a b +++的最小值是___________.答案:2令2019a x +=,2020b y +=,从而可得1()14042x y +=,再利用基本不等式即可求解. 解:令2019a x +=,2020b y +=, 则2019x >,2020y >且4042x y +=, ∴1()14042x y +=, ∴202120211111120212021()201920204042x y a b x y x y ⎛⎫⎛⎫+=+=+⋅+ ⎪ ⎪++⎝⎭⎝⎭1111222y x x y ⎛⎫=+++⋅ ⎪⎝⎭≥,当且仅当y xx y=取等号,即2021,2,1x y a b ====时成立. 故答案为:2点评:易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方 14.已知122020()1232021x x x x f x x x x x +++=++++++++,()()F x f x m n =+-,若函数()y F x =为奇函数,则2||x m x n ++-的最小值是___________.答案:2021利用已知条件得到()()20224042f x f x +--=,又利用()y F x =为奇函数,即可求出,m n 的值,代入2||x m x n ++-,分四种情况去绝对值,利用二次函数的单调性求最值即可得出结果.解:由122020()1232021x x x x f x x x x x +++=++++++++, 得()111112320211111f x x x x x =-+-+-++-++++ 1112021122021x x x ⎛⎫=-+++⎪+++⎝⎭,又()11120222021202120211f x x xx ⎛⎫--=-+++⎪------⎝⎭1112021202120211x x x ⎛⎫++++⎪+++⎝⎭, 则()()20224042f x f x +--=,因为()()F x f x m n =+-,又函数()y F x =为奇函数,()()()()()()0222F x F x f x m f x m n f x f x m n -+=⇒-+++=⇒+-+=,故22022,240421011,2021m n m n =-=⇒=-=; 所以()221011|||2021|x m x n x x g x ++-=+-=-,当2021x ≥时,原式22101120213032x x x x =-+-=+-, 对称轴为12x =-,故函数()g x 在[)2021,+∞上为增函数, 所以()g x 的最小值为:220211011-;2021x ≤<时,原式22101120211010x x x x =-+-=-+, 对称轴为12x =,故函数()g x 在)上为增函数,所以()g x 的最小值为:2021-当x <≤22101120213032x x x x =-++-=--+, 对称轴为12x =-,故函数()g x 在12⎛⎫-⎪⎝⎭上为增函数,在12⎛- ⎝上为减函数,所以()g x 的最小值为:2021-当x ≤22101120211010x x x x =-+-=-+, 对称轴为12x =,故函数()g x 在(,-∞上为减函数,所以()g x 的最小值为:2021+综上:2||x m x n ++-的最小值是2021-故答案为:2021点评:方法点睛:形如()20x a x b a b -+-<<求最值的问题.分段讨论法:利用绝对值号内式子对应方程的根,将数轴分为(((),,,,,b b ⎤-∞+∞⎦四个部分,在每个部分上去掉绝对值符号,研究二次函数的单调性即可求解最值. 三、解答题15.已知函数2()21x x a f x -=+为奇函数.(1)求实数a 的值并证明()f x 是增函数;(2)若实数满足不等式1(1)02f f t ⎛⎫+-> ⎪-⎝⎭,求t 的取值范围. 答案:(1)1a =,证明见解析;(2)(2,3)t ∈.(1)依题意可得()()f x f x -=-,即可求出参数a 的值,从而求出函数解析式,再利用作差法证明函数的单调性;(2)根据函数的奇偶性及单调性,将函数不等式转化为自变量的不等式,再解分式不等式即可;解:(1)因为()y f x =是定义域为R 奇函数,由定义()()f x f x -=-,所以222121x x x xa a ----=-++ 所以2(1)1xa a -=-, ∴1a =. 所以21()21x x f x 证明:任取12x x -∞<<<+∞,121212*********(22)()()2121(21)(21)x x x x x x x x f x f x ----=-=++++.12x x -∞<<<+∞,1222x x ∴<.12()()0f x f x ∴-<,即12()()f x f x <. ()f x ∴在定义域上为增函数.(2)由(1)得()y f x =是定义域为R 奇函数和增函数1(1)(1)2f f f t ⎛⎫>--= ⎪-⎝⎭112t ⇒>- 302t t -⇒>- (2)(3)0t t ⇒--<23t ⇒<<所以(2,3)t ∈.点评:正确理解奇函数和偶函数的定义,必须把握好两个问题:(1)定义域关于原点对称是函数f(x)为奇函数或偶函数的必要非充分条件;(2)f(-x)=-f(x)或f(-x)=f(x)是定义域上的恒等式.奇函数的图象关于原点对称,偶函数的图象关于y 轴对称,反之也成立.利用这一性质可简化一些函数图象的画法,也可以利用它去判断函数的奇偶性.16.已知函数2()46f x ax x =-+.(1)若函数2log ()y f x =的值域为R ,求实数a 的取值范围;(2)若函数log ()a y f x =在区间](1,3上严格增,求实数a 的取值范围.答案:(1)20,3a ⎡⎤∈⎢⎥⎣⎦;(2)[)2,a ∈+∞. (1)根据条件分析出2()46f x ax x =-+的值域包含()0,∞+,由此根据a 与0的关系分类讨论,求解出结果;(2)根据1,01a a ><<两种情况结合复合函数单调性的判断方法进行分类讨论,然后求解出a 的取值范围.解:(1)当0a =时,2log (46)y x =-+满足题意; 当0a ≠时,要使得2log ()y f x =的值域为R , 只需要满足016240a a >⎧⎨∆=-≥⎩,解得203a <≤,综上20,3a ⎡⎤∈⎢⎥⎣⎦(2)2log ,46a y t t ax x ==-+,当1a >时,外层函数为严格增,所以只需满足212460a aa ⎧≤⎪⇒≥⎨⎪-+≥⎩; 当01a <<时,外层函数为严格减,所以只需满足22332912603a a a a ⎧≤⎧⎪≥⎪⎪⇒⎨⎨⎪⎪-+>>⎩⎪⎩,此时不存在,舍去; 综上[)2,a ∈+∞.点评:思路点睛:形如()()()2lg 0f x ax bx ca =++≠的函数,若函数的定义域为R ,则有00a >⎧⎨∆<⎩;若函数的值域为R ,则有00a >⎧⎨∆≥⎩.17.新冠疫情造成医用防护服短缺,政府决定为生产防护服的公司提供([0,10])∈x x (万元)的专项补贴用于扩大生产,并以每套80元的价格收购其生产的全部防护服,公司在收到政府x (万元)补贴后,防护服产量将增加到1264t k x ⎛⎫=- ⎪+⎝⎭(万件),其中([0.5,1])k k ∈为工人的复工率.公司生产t 万件防护服还需投入成本(20850)x t ++(万元).(1)将公司生产防护服的利润y (万元)表示为补贴x (万元)的函数(政府补贴x 万元计入公司收入);(2)当复工率0.7k =时,政府补贴多少万元才能使公司的防护服利润达到最大? (3)对任意的[0,10]x ∈(万元),当复工率k 达到多少时,公司才能不亏损?(精确到0.01).答案:(1)3601807204ky k x x =---+,[]0,10x ∈;(2)2;(3)0.58 (1)利用已知条件列出函数的解析式,写出定义域即可; (2)当0.7k =时,可得()2527+4+134+4y x x ⎡⎤=-+⎢⎥⎣⎦,利用基本不等式即可求出; (3)若对任意的x∈[0,10],公司都不产生亏损,得到36018072004kk x x ---≥+在x∈[0,10]恒成立,利用换元法,结合函数的单调性求解函数的最值即可得到结果. 解:(1)依题意,()3608020850302071807204ky x t x t t x k x x =+-++=--=---+,[]0,10x ∈; (2)当0.7k =时,3600.71800.77204y x x ⨯=⨯---+()25225271067+4+1344+4x x x x ⎡⎤=--+=-+⎢⎥+⎣⎦50≤-=, 当且仅当()2527+4+4x x =,即2x =时等号成立, 所以政府补贴2万元才能使公司的防护服利润达到最大50万元; (3)若对任意的x∈[0,10],公司都不产生亏损,则36018072004kk x x ---≥+在[]0,10x ∈恒成立,∴21748802180x x k x ++≥⋅+,令[]22,12t x =+∈,2172012112720180180t t k t t t ++⎛⎫∴≥⋅=++ ⎪⎝⎭,设()12720f t t t =++在[]2,12上递增,∴()()max 12127122010512f t f ==⨯++=,∴1105180.580k ≥⨯≈. 即当工人的复工率达到0.58时,公司不亏损.点评:结论点睛:本题考查实际问题的处理方法,函数的单调性以及函数的解析式的求法,考查转化思想以及计算能力,解决此类问题的关键是根据条件准确的求出关系式,对于实际问题的最值问题,常用基本不等式或函数单调性的办法求解,注意实际问题中的取值范围.18.已知函数()32723x xf x ⋅-=-,()2log g x x =. (1)当[]0,1x ∈时,求函数()f x 的值域;(2)若关于x 的方程()g x t =有两个不等根(),αβαβ<,求αβ的值;(3)已知存在实数a ,使得对任意]1[0m ∈,,关于x 的方程()()()244310g x ag x a f m -+--=在区间1,48⎡⎤⎢⎥⎣⎦上总有..3个不等根1x ,2x ,3x ,求出实数a 的取值范围.答案:(1)[]1,2;(2)1a β=;(3)141153a <≤. (1)将函数()f x 化简再根据单调性即可得函数()f x 的值域; (2)根据()g x 的解析式,将,αβ代入化简,即可得到αβ的值.(3)令()p f m =,()t x g =,2()4431h t t at a =-+-,根据]1[0m ∈,得出p 的取值范围,由题意可得关于t 的方程()h t p =在区间[]0,3有两解12,t t ,且()1t g x =有两个不等根,()2t g x =只有一个根,列出不等式组得出a 的范围. 解:(1)()()3232232323x x x f x -+==+--在区间[]0,1x ∈上严格减,而()02f =,()11f =,故函数()f x 的值域为[]1,2.(2)因为()2|log |g x x =在[]0,1x ∈单调递减,在[)1,+∞单调递增,()()t g g αβ== 01αβ∴<<<,则有22log log αβ=,即22log log αβ-=故2220log log log αβαβ=+=,所以1a β= (3)令()p f m =,由(1)知()[]1,2p f m =∈令()t x g =,因为()2log g x x =在1,18x ⎡⎤∈⎢⎥⎣⎦单调减,在[]1,4单调递增,且138g ⎛⎫= ⎪⎝⎭,()10g =,()42g = 则当(]0,2t ∈时,方程()t x g =有两个不等根,由(2)知,且两根之积为1; 当(2,3]{0}t ∈时,方程()t x g =有且只有一个根且此根在区间11,84⎡⎫⎪⎢⎣⎭内或者为1. 令2()4431h t t at a =-+-,由二次函数()h t 与()g x 的图象特征,原题目等价于: 对任意[]1,2p ∈,关于t 的方程()h t p =在区间[]0,3上总有2个不等根()1212,t t t t <, 且()1t g x =有两个不等根,()2t g x =只有一个根, 则必有12023t t <≤<≤或102t <≤且20t =,当12023t t <≤<≤时,结合二次函数()h t 的图象,则有(0)312(2)1551(3)3592h a h a h a =->⎧⎪=-<⎨⎪=-≥⎩,解之得141153a <≤, 当102t <≤且20t =,则()()1020221222h a a h h ⎧≤≤⎪⎪<<⎪⎨⎛⎫⎪< ⎪⎪⎝⎭⎪≥⎩,此时无解.综上所述,实数a 的取值范围为141153a <≤. 点评:关键点点睛:本题主要考查的是利用函数的单调性求函数值域,以及对数函数方程的零点以及复合函数零点的求法,解题的关键是确定方程()t x g =有且只有一个根且此根在区间11,84⎡⎫⎪⎢⎣⎭内或者为1,能够变抽象思维为形象思维,有助于把握数学问题的本质,考查学生的分析问题解决问题的能力,是难题.。

2024-2025学年安徽省马鞍山市第二中学高一上学期期中素质测试数学试题(含答案)

2024-2025学年安徽省马鞍山市第二中学高一上学期期中素质测试数学试题(含答案)

2024-2025学年安徽省马鞍山市第二中学高一上学期期中素质测试数学试题一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.集合A={x|y=1−x},B={y|y=2x},则A∩B=( )A. {x|x≤1}B. {x|0≤x≤1}C. {x|0<x≤1}D. R2.命题“∀x>0,x2+1>0”的否定是( )A. ∀x≤0,x2+1>0B. ∀x>0,x2+1≤0C. ∃x≤0,x2+1≤0D. ∃x>0,x2+1≤03.子曰:“工欲善其事,必先利其器.”这句名言最早出自于《论语・卫灵公》.此名言中的“利其器”是“善其事”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件4.函数y=f(x)的定义域为[0,4],则函数y=f(2x−2)的定义域为( )x−3A. [1,3)B. (1,3]C. [−2,6]D. [−2,3)∪(3,6]5.已知幂函数y=f(x)的图象过点(4,12),下列说法中正确的是( )A. f(x)是奇函数B. f(x)的定义域是[0,+∞)C. f(x)的值域是[0,+∞)D. f(x)在定义域上单调递减6.已知函数f(x)=−x2+4x+5在区间[0,m]上的值域为[5,9],则实数m的取值范围是( )A. [2,4]B. [0,4]C. [0,2]D. [1,4]7.若关于x的不等式ax2+bx+c<0的解集为(−3,1),则一元二次不等式cx2+bx+a>0的解集为( )A. (−13,1)B. (−1,13)C. (−∞,−13)∪(1,+∞)D. (−∞,−1)∪(13,+∞)8.已知a=3,b=513,c=(23)34,则( )A. a<b<cB. c<b<aC. c<a<bD. b<c<a二、多选题:本题共3小题,共18分。

上海市曹杨二中2020-2021学年高一上学期期中仿真密卷数学试题(解析版)

上海市曹杨二中2020-2021学年高一上学期期中仿真密卷数学试题(解析版)
【详解】求 的上确界,即求 的最大值,即求 的最小值,
因 ,且
所以 ,
当且仅当 ,即 时,等号成立,
所以 ,即 的上确界为 ,
故选:B.
【点睛】本题考查基本不等式“1”的代换,在用基本不等式时,一定要注意“一正,二定,三相等”原则,考查学生的逻辑推理与转化能力,属于中档题.
三、解答题
17.记关于 的不等式 的解集为P,不等式 的解集为Q,若 求实数 的取值范围.
(1)若 比3远离0,求 的取值范围;
(2)对任意两个不相等的正数 、 ,证明: 比 远离 .
【答案】(1) (2)详见解析
【解析】
【分析】(1)根据定义得到不等式 ,解这个不等式可得 的取值范围.
(2)只要证明 即可,利用作差法可证该不等式,注意利用基本不等式可证绝对值符号内的代数式恒正.
【详解】(1)因为 比3远离0,所以 即 ,
【答案】
【解析】
【分析】先根据条件求出 t<x<2(a+b) t;再结合邻域是一个关于原点对称的区间得到a+b=t,最后结合基本不等式即可求出a2+b2的最小值.
【详解】因为A的B邻域在数轴上表示以A为中心,B为半径的区域,
∴|x (a+b t)|<a+b⇒ t<x<2(a+b) t,
而邻域是一个关于原点对称的区间,所以可得a+b t=0
设b和c都是整数,若 有四个不同的实数根,并且在数轴上四个根等距排列,试求二次函数 的解析式,使得其所有项的系数和最小.
【答案】(1) , , , ;(2)
【解析】
【分析】 由题意可得 ,设 ,则 ,求得t,进而得到x的值;
,即为 ,由题意不妨设四个根分别为 , , , ,可得四个根的和为 ,即 ;再由韦达定理,消去d,可得b,c的方程,结合b,c为正整数和 取得最小值,化简运算和推理可得b,c的最小值,即可得到所求解析式.

2020-2021学年上海市浦东新区华东师大二附中高一(上)月考数学试卷(10月份)

2020-2021学年上海市浦东新区华东师大二附中高一(上)月考数学试卷(10月份)

2020-2021学年上海市浦东新区华东师大二附中高一(上)月考数学试卷(10月份)试题数:21,总分:01.(填空题,0分)已知0<a<b,则ab ___ a+1b+1(填“>”或“<”).2.(填空题,0分)已知集合A={1,-m},B={1,m2},且A=B,则m的值为___ .3.(填空题,0分)不等式x2-5|x|-6<0的解集是___ .4.(填空题,0分)已知p:x≤1,q:x≤a,若p是q的必要不充分条件,则a的取值范围是___ .5.(填空题,0分)已知x为实数,且x2+ 1x2 =3,则x3+ 1x3的值是___ .6.(填空题,0分)设A={x|x= √5k+1,k∈N},B={x|x≤5,x∈Q},则A∩B=___ .7.(填空题,0分)已知关于x的不等式-1<ax+1x−1<1的解集是{x|-2<x<0},则所有满足条件的实数a组成的集合是___ .8.(填空题,0分)对班级40名学生调查对A、B两事件的态度,有如下结果:赞成A的人数是全体的五分之三,其余的不赞成,赞成B的比赞成A的多3人,其余的不赞成;另外,对A、B都不赞成的学生数比对A、B都赞成的学生数的三分之一多1人.问对A、B都不赞成的学生各有人数是___ .9.(填空题,0分)若关于x的不等式ax2+x-1≥0只有一个解,则满足条件的实数a组成的集合是___ .10.(填空题,0分)已知全集U=R,集合A={x|x2+(x-1)|x+1|=1},则A =___ .11.(填空题,0分)已知集合A={x|x2+2x-8≥0},B={x|x2-2ax+4≤0},若a>0,且A∩B∩N 中恰有2个元素,则a的取值范围为___ .12.(填空题,0分)在整数集Z中,被整数t除所得余数为k(t>k≥0)的所有整数组成一个“类”,记为[k]t={at+k|a∈Z},k=0,1,2,…,t-1,如[3]5={5a+3|a∈Z},则下列结论正确的为___ .① [1]2=[1]4∪[3]4;② Z=[0]2∪[0]3;③ 整数a、b满足a∈[1]5且b∈[2]5的充要条件是a+b∈[3]5;④ [0]3∩[1]2=[3]6.13.(单选题,0分)已知命题A成立可推出命题B不成立,那么下列说法一定正确的是()A.命题A成立可推出命题B成立B.命题A不成立可推出命题B不成立C.命题B成立可推出命题A不成立D.命题B不成立可推出命题A成立14.(单选题,0分)已知a、b、c∈R,则下列四个命题正确的个数是()① 若ac2>bc2,则a>b;② 若|a-2|>|b-2|,则(a-2)2>(b-2)2;③ 若a>b>c>0,则1a <1b<1c;④ 若a>0,b>0,a+b>4,ab>4,则a>2,b>2.A.1B.2C.3D.415.(单选题,0分)定义A-B={x|x∈A且x∉B},设A、B、C是某集合的三个子集,且满足(A-B)∪(B-A)⊆C,则A⊆(C-B)∪(B-C)是A∩B∩C=∅的()A.充要条件B.充分非必要条件C.必要非充分条件D.既非充分也非必要条件16.(单选题,0分)使得5x+12 √xy≤a(x+y)对所有正实数x,y都成立的实数a的最小值为()A.8B.9C.10D.前三个答案都不对17.(问答题,0分)已知关于x的不等式:a(x−1)x−2>1(a∈R).(1)当a=1时,求此不等式的解集;(2)当a<1时,求此不等式的解集.18.(问答题,0分)已知集合A={x||3x-1|≤x ,x∈R},集合B={x| x 1−2x ≥1,x∈R}.(1)用区间表示集合A 与集合B ;(2)若定义集合A 为全集,求集合B 在集合A 中的补集 B .19.(问答题,0分)命题甲:关于x 的方程x 2+x+m=0有两个相异负根;命题乙:不等式m 2+pm >4m+p-3对p∈[0,1]恒成立.(1)若这两个命题至少有一个成立,求实数m 的取值范围;(2)若这两个命题有且仅有一个成立,求实数m 的取值范围.20.(问答题,0分)定义区间(m ,n )、[m ,n]、(m ,n]、[m ,n )的长度均为n-m ,其中n >m .(1)不等式组 {1≤71+x ≤7x 2+3tx −4<0解集构成的各区间的长度和等于6,求实数t 的范围; (2)已知实数a >b ,求满足不等式 1x−a + 1x−b ≥1的解集的各区间长度之和.21.(问答题,0分)记有理数集Q 的非空子集S 具有以下性质: ① 0∉S ; ② 若s 1∈S ,s 2∈S ,则 s1s 2 ∈S ; ③ 存在非零有理数q ,q∉S 且每一个不在S 中的非零有理数都可写成qs 的形式,其中s∈S .(1)若s∈S ,t∈S ,求证:st∈S ;(2)若u 是非零有理数,且u∉S ,求证:u 2∈S ;(3)求证:x∈S ,则存在y 、z∈S ,使x=y+z .2020-2021学年上海市浦东新区华东师大二附中高一(上)月考数学试卷(10月份)参考答案与试题解析试题数:21,总分:01.(填空题,0分)已知0<a<b,则ab ___ a+1b+1(填“>”或“<”).【正确答案】:[1]<【解析】:利用作差法,结合条件,即可得结论.【解答】:解:ab - a+1b+1= a(b+1)−b(a+1)b(b+1)= a−bb(b+1),∵0<a<b,∴a-b<0,b+1>0,∴ a−b b(b+1)<0,∴ ab<a+1b+1.故答案为:<.【点评】:本题考查不等式的基本性质,不等式比较大小,以及作差法的应用,属于基础题.2.(填空题,0分)已知集合A={1,-m},B={1,m2},且A=B,则m的值为___ .【正确答案】:[1]0【解析】:由A={1,-m},B={1,m2},且A=B,知m2=-m,由此能求出实数m的值,m=-1不满足集合中元素的互异性,舍去.【解答】:解:∵A={1,-m},B={1,m2},且A=B,∴m2=-m,解得m=-1,或m=0.m=-1不满足集合中元素的互异性,舍去.∴m=0符合题意.故答案是:0.【点评】:本题考查实数m的求法,是基础题.解题时要认真审题,注意集合相等的概念的灵活运用.3.(填空题,0分)不等式x2-5|x|-6<0的解集是___ .【正确答案】:[1](-6,6)【解析】:把原不等式中的x2变为|x|2,则不等式变为关于|x|的一元二次不等式,求出解集得到关于x的绝对值不等式,解出绝对值不等式即可得到x的解集.【解答】:解:∵x2-5|x|-6<0,∴(|x|-6)(|x|+1|<0,∴|x|<6,解得:-6<x<6,故不等式的解集是(-6,6),故答案为:(-6,6).【点评】:本题考查一元二次不等式的解法,解题的突破点是把原不等式中的x2变为|x|2,是一道基础题.4.(填空题,0分)已知p:x≤1,q:x≤a,若p是q的必要不充分条件,则a的取值范围是___ .【正确答案】:[1](-∞,1)【解析】:p是q的必要不充分条件,所以q要真包含于p,可判断1与a的大小.【解答】:解:∵p是q的必要不充分条件,所以q要真包含于p,通过数轴可判断1位于a的右侧,∴a<1,即a的取值范围为(-∞,1).故答案为:(-∞,1).【点评】:本题是简易逻辑推理,通过数轴解决,属于基础题.5.(填空题,0分)已知x为实数,且x2+ 1x2 =3,则x3+ 1x3的值是___ .【正确答案】:[1] ±2√5【解析】:先利用已知条件结合完全平方公式求出x+ 1x的值,再利用立方和公式即可算出结果.【解答】:解:∵x2+ 1x2 = (x+1x)2−2 =3,∴ x+1x=±√5,又∵x3+ 1x3 = (x+1x)(x2−1+1x2) =2(x+ 1x),∴x3+ 1x3= ±2√5,故答案为:±2√5.【点评】:本题主要考查了有理数指数幂及根式的计算,考查了完全平方公式和立方和公式,是基础题.6.(填空题,0分)设A={x|x= √5k+1,k∈N},B={x|x≤5,x∈Q},则A∩B=___ .【正确答案】:[1]{1,4}【解析】:利用交集性质求解即可.【解答】:解:∵A={x|x= √5k+1,k∈N}={1,√6,√11,4,√21,√26,√31,6,…},B={x|x≤5,x∈Q},∴A∩B={1,4}.故答案为:{1,4}.【点评】:本题考查交集的求法,是基础题,解题时要认真审题,注意交集性质的合理运用.7.(填空题,0分)已知关于x的不等式-1<ax+1x−1<1的解集是{x|-2<x<0},则所有满足条件的实数a组成的集合是___ .【正确答案】:[1]{2}【解析】:先把不等式-1<ax+1x−1<1转化为二次不等式(a2-1)x2+2(a+1)x<0,再利用其解集为{x|-2<x<0}求出a的值即可.【解答】:解:不等式-1<ax+1x−1<1等价于| ax+1x−1|<1,等价于|ax+1|<|x-1|,等价于(ax+1)2<(x-1)2,等价于(a2-1)x2+2(a+1)x<0,∵其解集是{x|-2<x<0},∴a2>1且方程(a2-1)x2+2(a+1)x=0的两根为-2与0,∴ {a 2>14(a 2−1)−4(a +1)=0, 解得:a=2,∴满足条件的实数a 组成的集合为{2}.故答案为:{2}.【点评】:本题主要考查不等式的解集和其对应方程的根之间的关系,属于中档题.8.(填空题,0分)对班级40名学生调查对A 、B 两事件的态度,有如下结果:赞成A 的人数是全体的五分之三,其余的不赞成,赞成B 的比赞成A 的多3人,其余的不赞成;另外,对A 、B 都不赞成的学生数比对A 、B 都赞成的学生数的三分之一多1人.问对A 、B 都不赞成的学生各有人数是___ .【正确答案】:[1]7【解析】:赞成A 的人数24,赞成B 的人数为27,设对A 、B 都赞成的学生数为x ,则对A 、B 都不赞成的学生数 13 x+1,结合韦恩图求解即可【解答】:解:由题意:赞成A 的人数24,赞成B 的人数为27,设对A 、B 都赞成的学生数为x ,则对A 、B 都不赞成的学生数 13 x+1,如图可得x+24-x+27-x+ 13 x+1=40所以x=18, 13 x+1=7.故答案为:7【点评】:本题考查集合的交集并集中的元素个数问题,是中档题.解题时要认真审题,注意韦恩图在解题中的灵活运用9.(填空题,0分)若关于x 的不等式ax 2+x-1≥0只有一个解,则满足条件的实数a 组成的集合是___ .【正确答案】:[1]{- 14 }【解析】:结合二次函数的图象求出满足题意的a 的集合.【解答】:解:设f (x )=ax 2+x-1,由其图象可知:关于x 的不等式ax 2+x-1≥0只有一个解,等价于 {a <0△=1+4a =0, 解得:a=- 14 ,∴满足条件的实数a 组成的集合是{- 14 },故答案为:{- 14 }.【点评】:本题主要考查二次函数的图象与二次不等式解集之间的联系,属于基础题.10.(填空题,0分)已知全集U=R ,集合A={x|x 2+(x-1)|x+1|=1},则 A =___ .【正确答案】:[1]{x|-1<x <1或x >1}【解析】:对x+1的正负分情况讨论,分别求出x 的范围,得到集合A ,再利用补集的定义即可算出结果.【解答】:解: ① 当x≥-1时,方程化为x 2+(x-1)(x+1)=1,解得x=±1,符合题意;② 当x <-1时,方程化为x 2+(x-1)[-(x+1)]=1,即1=1,方程恒成立,综上所述,集合A={x|x≤-1或x=1}, ∴ A ={x|-1<x <1或x >1},故答案为:{x|-1<x <1或x >1}.【点评】:本题主要考查了补集的运算,是基础题.11.(填空题,0分)已知集合A={x|x 2+2x-8≥0},B={x|x 2-2ax+4≤0},若a >0,且A∩B∩N 中恰有2个元素,则a 的取值范围为___ .【正确答案】:[1][ 136 , 52 ]【解析】:求出A 中不等式的解集确定出A ,设f (x )=x 2-2ax+4,则f (x )的轴对称x=a >0,对应方程的根x 1,x 2满足 {x 1x 2=4x 1+x 2>0,从而0<x 1≤2≤x 2(取x 1≤x 2),A∩B∩N 中恰有的整数为2,3,进而 {f (3)=9−6a +4≤0f (4)=16−8a +4>0 ,由此能求出a 的取值范围.【解答】:解:由A 中不等式变形得:(x-2)(x+4)≥0,解得:x≤-4或x≥2,即A=(-∞,-4]∪[2,+∞),设f (x )=x 2-2ax+4,则f (x )的轴对称x=a >0,且对应方程的根x 1,x 2满足 {x 1x 2=4x 1+x 2>0, ∴0<x 1≤2≤x 2(取x 1≤x 2), ∴A∩B∩N 中恰有的整数为2,3,∴ {f (3)=9−6a +4≤0f (4)=16−8a +4>0, 解得 136≤a <52 ,∴a 的取值范围为[ 136 , 52 ].故答案为:[ 136 , 52 ].【点评】:本题考查交集及其运算,熟练掌握交集的定义是解本题的关键,属于中档题.12.(填空题,0分)在整数集Z 中,被整数t 除所得余数为k (t >k≥0)的所有整数组成一个“类”,记为[k]t ={at+k|a∈Z},k=0,1,2,…,t-1,如[3]5={5a+3|a∈Z},则下列结论正确的为___ .① [1]2=[1]4∪[3]4;② Z=[0]2∪[0]3;③ 整数a 、b 满足a∈[1]5且b∈[2]5的充要条件是a+b∈[3]5;④ [0]3∩[1]2=[3]6.【正确答案】:[1] ① ④【解析】:根据集合相等的定义判断 ① ,举反例判断 ② ③ ,根据集合的交集的定义判断 ④ .【解答】:解:对于 ① ,若m∈[1]2,则m=2k+1,k∈Z ,若k=2n ,则m=4n+1,故m∈[1]4,若k=2n+1,则m=4n+3,故m∈[3]4,∴[1]2=是[1]4∪[3]4的子集,若m∈[1]4∪[3]4,则m=4k+1或m=4k+3,若m=4k+1,则m=2(2k )+1,若m=4k+3,则m=2(2k+1)+1,∴m∈[1]2,故[1]4∪[3]4是[1]2的子集,∴[1]2=[1]4∪[3]4,故 ① 正确;对于 ② ,∵1∈Z ,而1∉[0]2且1∉[0]3,∴Z≠[0]2∪[0]3,故 ② 错误;对于 ③ ,∵3+5=8,8∈[3]5,而3∉[1]5,5∉[2]5,∴整数a 、b 满足a∈[1]5且b∈[2]5不是a+b∈[3]5的必要条件,故 ③ 错误;对于 ④ ,若m∈[3]6,则m=6k+3=3(2k+1)=2(3k+1)+1,∴m∈[0]3,且m∈[1]2,∴[0]3∩[1]2=[3]6,1故④ 正确.故答案为:① ④【点评】:本题考查集合与集合的关系判断,考查充分必要条件,属于基础题.13.(单选题,0分)已知命题A成立可推出命题B不成立,那么下列说法一定正确的是()A.命题A成立可推出命题B成立B.命题A不成立可推出命题B不成立C.命题B成立可推出命题A不成立D.命题B不成立可推出命题A成立【正确答案】:C【解析】:直接根据原命题与逆否命题是等价的,则真假性一致,从而可判定选项的真假.【解答】:解:逻辑学认为命题与逆否命题是等价的,也就是命题真,则逆否命题也真.“命题A成立可推出命题B不成立”的逆否命题为“命题B成立可推出命题A不成立”∴命题B成立可推出命题A不成立一定正确故选:C.【点评】:本题主要考查了四种命题的真假关系,解题的关键是原命题与逆否命题是等价的,属于基础题.14.(单选题,0分)已知a、b、c∈R,则下列四个命题正确的个数是()① 若ac2>bc2,则a>b;② 若|a-2|>|b-2|,则(a-2)2>(b-2)2;③ 若a>b>c>0,则1a <1b<1c;④ 若a>0,b>0,a+b>4,ab>4,则a>2,b>2.A.1B.2C.3D.4【正确答案】:C【解析】:利用不等式的基本性质判断命题的真假即可.【解答】:解:① 若ac2>bc2,可知c2>0,则a>b;所以① 正确;② 若|a-2|>|b-2|,则(a-2)2>(b-2)2;满足不等式的基本性质,所以② 正确;③ 若a>b>c>0,则1a <1b<1c;满足不等式的基本性质,所以③ 正确;④ 若a>0,b>0,a+b>4,ab>4,则a>2,b>2.反例a=10,b=0.5,满足条件,推不出结论,所以④ 不正确;故选:C.【点评】:本题考查命题的真假的判断与应用,不等式的基本性质的应用,是基础题.15.(单选题,0分)定义A-B={x|x∈A且x∉B},设A、B、C是某集合的三个子集,且满足(A-B)∪(B-A)⊆C,则A⊆(C-B)∪(B-C)是A∩B∩C=∅的()A.充要条件B.充分非必要条件C.必要非充分条件D.既非充分也非必要条件【正确答案】:A【解析】:作出示意图,由于(A-B)∪(B-A)⊆C,可知两个阴影部分均为∅,根据新定义结合集合并集的运算以及充分条件与必要条件的定义判断即可.【解答】:解:如图由于(A-B)∪(B-A)⊆C,可知两个阴影部分均为∅,于是A=Ⅰ∪Ⅳ∪Ⅴ,B=Ⅲ∪Ⅳ∪Ⅴ,C=Ⅰ∪Ⅱ∪Ⅲ∪Ⅴ,(1)若A∩B∩C=∅,则Ⅴ=∅,所以A=Ⅰ∪Ⅳ,而(C-B)∪(B-C)=Ⅰ∪Ⅱ∪Ⅳ,所以A⊆(C-B)∪(B-C)成立,(2)反之,若A⊆(C-B)∪(B-C),则由于(C-B)∪(B-C)=Ⅰ∪Ⅱ∪Ⅳ,A=Ⅰ∪Ⅳ∪Ⅴ,所以(Ⅰ∪Ⅳ∪Ⅴ)⊆(Ⅰ∪Ⅱ∪Ⅳ),所以Ⅴ=∅,所以A∩B∩C=∅,故A⊆(C-B)∪(B-C)是A∩B∩C=∅的充要条件,故选:A.【点评】:本题考查了简易逻辑的判定方法、集合之间的关系,考查了推理能力与计算能力,属于难题.16.(单选题,0分)使得5x+12 √xy≤a(x+y)对所有正实数x,y都成立的实数a的最小值为()A.8B.9C.10D.前三个答案都不对【正确答案】:B【解析】:由已知分离参数可得,a ≥5x+12√xyx+y = 5x+12√xyx+y=5+12√yx1+yx,换元t= √yx,(t>0),然后导数与单调性关系及恒成立与最值的相互转化可求.【解答】:解:∵5x+12 √xy≤a(x+y)对所有正实数x,y都成立,∴a ≥5x+12√xyx+y = 5x+12√xyx+y=5+12√yx1+yx,令t= √yx,(t>0),a≥ 5+12t1+t2,令f(t)= 5+12t1+t2,t>0,则f′(t)=−2(6t 2+5t−6)(1+t2)2 =- 2(2t+3)(3t−2)(1+t2)2,易得f(t)在(23,+∞)上单调递减,(0,23)上单调递增,故f(t)<f(23)=9,∴a≥9即最小值为9故选:B.【点评】:本题主要考查了不等式恒成立与最值的相互转化关系的转化,还考查了利用导数研究函数的最值,体现了转化思想的应用.17.(问答题,0分)已知关于x的不等式:a(x−1)x−2>1(a∈R).(1)当a=1时,求此不等式的解集;(2)当a<1时,求此不等式的解集.【正确答案】:【解析】:(1)根据题意,当a=1时,不等式即x−1x−2>1,变形可得1x−2>0,解可得x的取值范围,即可得答案;(2)根据题意,原不等式变形可以转化为(x- a−2a−1)(x-2)<0,对a的值分3种情况进行讨论,求出不等式的解集,即可得答案.【解答】:解:(1)根据题意,当a=1时,不等式即x−1x−2>1,变形可得1x−2>0,解可得x>2,即该不等式的解集为(2,+∞);(2)根据题意,不等式:a(x−1)x−2>1即(a−1)x−(a−2)x−2>0,则有[(a-1)x-(a-2)](x-2)>0,又由a<1,不等式可以变形为(x- a−2a−1)(x-2)<0分3种情况讨论:① ,a<0时,不等式的解集为(a−2a−1,2);② ,当a=0时,不等式为0>1,解集为空集;③ ,当0<a<1时,不等式的解集为(2,a−2a−1).【点评】:本题考查分时不等式的解法,注意将分式不等式转化为整式不等式,属于基础题.18.(问答题,0分)已知集合A={x||3x-1|≤x,x∈R},集合B={x| x1−2x≥1,x∈R}.(1)用区间表示集合A与集合B;(2)若定义集合A为全集,求集合B在集合A中的补集B.【正确答案】:【解析】:(1)根据不等式的解法分别求出集合A和B,再用区间表示即可;(2)利用补集的运算即可求解.【解答】:解:(1)解不等式|3x-1|≤x,可得8x2-6x+1≤0,解得14≤x≤ 12,∴集合A={x||3x-1|≤x,x∈R}={x| 14≤x≤ 12},用区间表示为A=[ 14,12].解不等式x1−2x ≥1,即3x−11−2x≥0,即3x−12x−1≤0,解得13≤x<12,∴集合B={x| x1−2x ≥1,x∈R}={x| 13≤x<12}.用区间表示为B=[ 13,12).(2)集合A=[ 14,12]为全集,则集合B=[ 13,12)在集合A中的补集B =[ 14,13)∪{ 12}.【点评】:本题主要考查不等式的解法,集合的表示法和补集及其运算,属于中档题.19.(问答题,0分)命题甲:关于x的方程x2+x+m=0有两个相异负根;命题乙:不等式m2+pm>4m+p-3对p∈[0,1]恒成立.(1)若这两个命题至少有一个成立,求实数m的取值范围;(2)若这两个命题有且仅有一个成立,求实数m的取值范围.【正确答案】:【解析】:分别求出甲,乙为真时的m 的范围;(1)取并集即可;(2)问题转化为甲假乙真或甲真乙假,得到关于m 的不等式组,解出即可.【解答】:解:命题甲:关于x 的方程x 2+x+m=0有两个相异负根;若命题甲为真命题时,只需 {x 1•x 2=m >0x 1+x 2=−1<0△=1−4m >0,解得:0<m < 14 ;命题乙:不等式m 2+pm >4m+p-3对p∈[0,1]恒成立.若命题乙为真命题时,则p (1-m )<(m-1)(m-3)在p∈[0,1]恒成立,1-m >0即m <1时,p <3-m ,即m <(3-p )min ,故m <2,从而m <1,m=1时,显然不成立,1-m <0即m >1时,p >3-m ,即m >(3-p )max ,故m >3,故命题乙是真命题时,m <1或m >3;(1)若这两个命题至少有一个成立,则甲∪乙为m∈(-∞,1)∪(3,+∞);(2)若这两个命题有且仅有一个成立,则甲假乙真或甲真乙假,故 {m ≥14或m ≤0m >3或m <1 或 {0<m <141≤m ≤3 , 故m∈(-∞,0]∪[ 14 ,1)∪(3,+∞).【点评】:本题考查了二次函数的性质以及函数恒成立问题,考查复合命题的判断,是一道常规题.20.(问答题,0分)定义区间(m ,n )、[m ,n]、(m ,n]、[m ,n )的长度均为n-m ,其中n >m .(1)不等式组 {1≤71+x ≤7x 2+3tx −4<0解集构成的各区间的长度和等于6,求实数t 的范围; (2)已知实数a >b ,求满足不等式 1x−a + 1x−b ≥1的解集的各区间长度之和.【正确答案】:【解析】:(1)先求得不等式1≤ 71+x ≤7的解集,然后根据题设得到:不等式x 2+3tx-4<0在x∈(0,6)恒成立,再求出t 的取值范围即可;(2)先对x 分成 ① 当x >a 或x <b 时, ② 当b <x <a 两类,然后构造函数f (x )=x 2-(a+b+2)x+(a+b+ab ),结合其图象分别求出原不等式的解集,最后求出原不等式的解集的各区间长度之和即可.【解答】:解:(1)由1≤ 71+x ≤7可得: {x +1>0x +1≤7≤7(x +1) 或 {x +1<0x +1≥7≥7(x +1) ,解得:0≤x≤6,∵不等式组 {1≤71+x ≤7x 2+3tx −4<0解集构成的各区间的长度和等于6, ∴不等式x 2+3tx-4<0在x∈(0,6)恒成立,令g (x )=x 2+3tx-4,x∈(0,6),则 {g (0)=−4≤0g (6)=36+18t −4≤0,解得:t≤- 169 , ∴实数t 的范围为(-∞,- 169 ];(2) ① 当x >a 或x <b 时,原不等式等价于x-b+x-a≥(x-a )(x-b ),整理得:x 2-(a+b+2)x+(a+b+ab )≤0,令f (x )=x 2-(a+b+2)x+(a+b+ab ),∵f (a )=b-a <0,f (b )=a-b >0,设f (x )=0的两根为x 1,x 2(x 1<x 2),∴结合f (x )的图象,易知此时原不等式的解集为(a ,x 2],解集的区间长度为x 2-a ; ② 当b <x <a 时,同理可得原不等式的解集为(b ,x 1],此时解集的区间长度为x 1-b . 综合 ① ② 知:原不等式的解集的区间长度之和为x 2+x 1-a-b ,又由韦达定理可知:x 1+x 2=a+b+2,∴原不等式的解集的区间长度之和为2.【点评】:本题主要考查不等式、不等式组的解法、不等式的解集的区间长度之和的计算、韦达定理的应用及不等式恒成立涉及的参数的范围的求法,综合性比较强,属于难题.21.(问答题,0分)记有理数集Q 的非空子集S 具有以下性质: ① 0∉S ; ② 若s 1∈S ,s 2∈S ,则 s1s 2 ∈S ; ③ 存在非零有理数q ,q∉S 且每一个不在S 中的非零有理数都可写成qs 的形式,其中s∈S .(1)若s∈S,t∈S,求证:st∈S;(2)若u是非零有理数,且u∉S,求证:u2∈S;(3)求证:x∈S,则存在y、z∈S,使x=y+z.【正确答案】:【解析】:(1)分别s∈S,令s1=s2,令s1=1,s2=s,若t∈S,令s1=t,s2= 1s,证明即可;(2)由题意可得于是u2=q2s2,利用反证法,假设q2∉S,即可证明;(3)假设x∈S,则由(35)2,(45)2,为平方数可知,即可证明.【解答】:证明:(1)若s∈S,令s1=s2,则s1s2=1∈S,令s1=1,s2=s,则1s∈S,若t∈S,令s1=t,s2= 1s ,则s1s2= t1s=st∈S;(2)u∉S,则存在q1∉S且q1≠0使得u=qs,其中s∈S,于是u2=q2s2,假设q2∉S,则可设q2=qt,t∈S,则q=t∈S,矛盾,所以q2∈S,由q2∈S,s2∈S,可得u2=q2s2∈S.(3)假设x∈S,则由(35)2,(45)2,为平方数可知,x(35)2∈S,x(45)2∈S,但x=x(35)2+x(45)2,故x=y+z.【点评】:本题考查了推理论证能力,考查了综合法反证法,属于中档题.。

上海市曹杨第二中学2020-2021学年高一上学期期中考试数学试卷(含简答)

上海市曹杨第二中学2020-2021学年高一上学期期中考试数学试卷(含简答)

2020-2021学年曹杨二中高一期中数学试卷一. 填空题1. 已知0<a <b ,则ab a+2b+2 (填“>”或“<”)2. 已知等式(2x +3)x+2020=1(其中x 为整数)成立,则x =3. 已知集合M ={x|x(4−x)<0},N ={x|(x −1)(x −6)<0,x ∈Z},则M ∩N =4. 若3a =7b =63,则2a+1b 的值为5. 不等式(x +2)(x +1)2(x −1)3(x −2)≤0的解集为6. 已知a =lg5,用a 表示lg2和lg20,分别为7. 已知关于x 的不等式|2x−a|x+a>0的解集为M ,且2∉M ,则a 的取值范围是8. 设a,b ∈R ,已知关于x 的不等式(a +b)x +(b −2a)<0的解集为(1,+∞) ,求不等式(a −b)x +3b −a >0的解集为9. 已知集合A ={x|x 2−5x +4≤0},B ={x|x 2−2ax +a +2≤0},若B ⊆A ,则a 的取值范围 10. 设x ∈R,则f(x)=|x −1|+|2x −1|+⋯+|9x −1|+|10x −1|取到最小值时,x = 11. 已知关于x 的不等式2−2x ≤kx 2+k ≤3−2x 有唯一解,则实数k 的取值集合为 12. 已知x,y ∈[0,+∞)且满足x 3+y 3+3xy =1,则x 2y 的最大值为 二. 选择题13.若a 、b 是满足ab <0的实数,那么下列结论中成立的是( ) A. |a −b |<|a|−|b| B. |a −b |<|a |+|b| C. |a +b |>|a −b| D. |a +b |<|a −b| 14.已知a,b,c ∈R ,则下列四个命题正确的个数是( )①若ac 2>bc 2,则a >b ; ②若|a −2|>|b −2|,则(a −2)2>(b −2)2③若a >b >c >0,则1a<1b<1c; ④若a >0,b >0,a +b >4,ab >4,则a >2,b >2;A.1B.2C.3D.415.已知p:{a >−3b >−3,q:{a +b >−6ab >9,则p 是q 的( )A.充分非必要条件B.必要非充分条件C.充要条件D.非充分非必要条件16.满足5x +12√xy ≤a(x +y)对所有正实数x 、y 都成立,实数a 的最小值为( ) A.8 B.9 C.10 D.前三个答案都不对三. 解答题17.已知关于x 的不等式ax−5x 2−a <0的解集为M . (1)a =4时,求集合M ;(2)若3∈M 且5∉M,求实数a 的取值范围.18.已知a,b,c∈R+,求证:√a2+b2+√b2+c2+√c2+a2≥√2(a+b+c)19.某工厂生产某产品x件所需成本费用为P元,且P=1000+5x+110x2,而每件售出的价格为Q元,其中Q=a+xb(a,b∈R).(1)问:该工厂生产多少件产品时,使得每件产品所需成本费用最少?(2)若生产出的产品能全部售出,且当产量为150件时利润最大,此时每件价格为30,求a、b的值.20.设函数f(x)=|x+1|−|x|的最大值是m.(1)求m的值;(2)若正实数a、b满足4a+3b=m,求12a+b +1a+b最小值及此时a、b的值;(3)若正实数a、b满足a+b=2m,求a2+2a +b2b+1的最小值及此时a、b的值.参考答案一.填空、选择题三.解答题17.(1) M={x|x<−2或54<x<2}; (2) [1,53)∪(9,25].18.略19.(1)该工厂生产100件产品时,使得每件产品所需成本费用最少;(2)a=25,b=30.20.(1) m=1;(2)最小值为3+2√2,此时a=3√2−42,b=3−2√2;(3)最小值为2+2√23, 此时a=6−3√2,b=3√2−4.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上海市第二中学2020-2021学年高一上学期期中数学试题
学校:___________姓名:___________班级:___________考号:___________
一、填空题
1.已知集合{}{}12
3450246A B ==,,,,,,,,,则A B =_________
2.若正实数x y 、满足4xy =,则4x y +的最小值是_________
3.已知方程2210x mx m -+-=的两实根为12x x 、,且22
124x x +=,则实数m 的值
为_________
4.若“x a >”的一个充分非必要条件是“2x >”,则实数a 的取值范围是_________ 5.已知42a =,lg x a =,则x =__________.
6. 集合A={x|(a-1)x 2+3x-2=0}有且仅有两个子集,则a=_________. 7.不等式134x x -+-≥解集是______.
8.设关于x 的不等式21110a x b x c ++>与2
2220a x b x c ++>的解集分别为A B 、,用
集合运算表示不等式组21112
2220
a x
b x
c a x b x c ⎧++>⎨++≤⎩的解集_________ 9.不等式
1
x x
>的解集为_________ 10.已知a b R ∈,,写出不等式a b a b a b +≤++-等号成立的所有条件_________ 11.对于问题:“已知关于x 的不等式20ax bx c ++>的解集为()1,2-,解关于x 的不等式20ax bx c -+>”,给出如下一种解法: 解析:由20ax bx c ++>的解集()1,2-,得
()()2
0a x b x c -+-+>的解集为()2,1-,即
关于x 的不等式20ax bx c -+>的解集为()2,1-. 参考上述解法,若关于x 的不等式0k x b x a x c ++<++的解集为111,,1,32⎛
⎫⎛⎫--⋃ ⎪ ⎪⎝
⎭⎝⎭
关于x 的不等式
1
011
kx bx ax cx ++<++的解集为____. 12.已知a b c 、、是不为1的正数,且0lga lgb lgc ++=,则 1111
11lgb lgc
lgc lga
lga lgb
a
b
c
+++⨯⨯的值为_____
二、单选题
13.若不等式|8x+9|<7和不等式ax 2+bx>2的解集相等,则实数a 、b 的值分别为( ) A .a=-8,b=-10 B .a=-1,b=2 C .a=-1,b=9
D .a=-4,b=-9
14.若1
02
x y A x B y C x y D <<===+=,,,,( )
A .A D C
B <<< B .A
C
D B <<< C .D B C A <<<
D .B D C A <<< 15.若,a b ∈R ,则()0ab a b ->的一个充要条件是( ) A .0a b << B .0b a << C .0a b >>
D .
11a b
< 16.设,,a b c 均为正实数,则三个数1a b +,1b c +,1
c a
+( ) A .都大于2
B .都小于2
C .至少有一个不大于2
D .至少有一个不小于2
三、解答题
17.已知全集为R ,集合3
{|
0}1
x A x x -=≤+,集合{||21|3}B x x =+>,求A B .
18.已知a ,b
+≥19.共享单车给市民出行带来了诸多便利,某公司购买了一批单车投放到某地给市民使用.据市场分析,每辆单车的营运累计收入()f x (单位:元)与营运天数(
)*
x x N ∈满
足()2
1608002
f x x x =-
+-. (1)要使营运累计收入高于800元,求营运天数的取值范围; (2)每辆单车营运多少天时,才能使每天的平均营运收入最大? 20.已知集合22{|20}{|20}M x x px N x x x q =+-==-+=,,且
{}1,02M N ⋃=-,
(1)求p q 、的值;
(2)解关于x 的不等式:
(
)()22202a x px a R x x q
+->∈-+
21.已知二次函数()2
y ax bx c a b c R =++∈,,同时满足以下 ①对任意实数x ,都有y x ≥;
②当()13x ,∈时,有()2
128
y x ≤
+恒成立; (1)求证:当2x =时,2y =;
(2)若函数经过点()20-,
,求该二次函数的表达式; (3)在(2)条件下,对任意[
)0x ∈+∞,
都有11
24
y mx >+成立,求实数m 的取值范围.。

相关文档
最新文档